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ABSTRACT
In interior interaction design, achieving intelligent user-interior interaction is
contingent upon understanding the user’s emotional responses. Precise identification
of the user’s visual emotions holds paramount importance. Current visual emotion
recognition methods rely solely on singular features, predominantly facial
expressions, resulting in inadequate coverage of visual characteristics and low
recognition rates. This study introduces a deep learning-based multimodal weighting
network model to address this challenge. The model initiates with a convolutional
attention module, employing a self-attention mechanism within a convolutional
neural network (CNN). As a result, the multimodal weighting network model is
integrated to optimize weights during training. Finally, a weight network classifier is
derived from these optimized weights to facilitate visual emotion recognition.
Experimental outcomes reveal a 77.057% correctness rate and a 74.75% accuracy rate
in visual emotion recognition. Comparative analysis against existing models
demonstrates the superiority of the multimodal weight network model, showcasing
its potential to enhance human-centric and intelligent indoor interaction design.

Subjects Artificial Intelligence, Computer Networks and Communications, Data Mining and
Machine Learning, Data Science, Neural Networks
Keywords Visual emotion recognition, Self-attentionmechanism,Convolutional attentionmodule,
Multimodal weighting network, Interior design

INTRODUCTION
As society and the economy evolve, the convergence between interaction design and
people’s daily lives intensifies, encompassing art, technology, fashion, and other influential
elements. Traditional interior space design primarily caters to the functional needs of
living and habitation. However, the evolution of personal aesthetics and increasing design
expectations go beyond the basic level of traditional design services. Consequently, a form
of interior space design that encapsulates the essence and values of its inhabitants emerges
as the prospective norm in spatial design. Interaction design, as a comprehensive
discipline, focuses primarily on enhancing the user experience. Presently, interaction
design within interior spaces seamlessly merges design with technology. This integration
leverages cutting-edge technologies like artificial intelligence, sensors, and interactive
projection, among others, facilitating the fusion of users with the interior environment.
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The objective is to offer interior space designs that are more accessible, interactive, and
tailored to individual preferences.

In contemporary interior space interaction design, visual recognition serves as a crucial
tool, helping users understand and engage with interactive devices. Visual feedback
mechanisms enable users to ascertain whether the system accurately interprets their body
language and gestures, thereby enhancing operational precision and efficiency. Moreover,
visual recognition technology allows diverse inputs to undergo analysis and recognition via
tailored algorithms. Consequently, smart home systems can adapt and learn by capturing
user behavior through cameras, furnishing users with personalized and intelligent services.
Consequently, researchers and scholars have predominantly focused on enhancing the
effectiveness of interior space interaction design by exploring it through the lens of user
emotion recognition.

While interaction design and visual communication are integral to product interface
design, their approaches differ. Interaction designers focus primarily on users’ operational
habits and psychological needs, enhancing user experiences through strategic layout and
interaction design. In contrast, visual communication seeks to increase the interface’s
appeal and recognizability by using colors, icons, buttons, and other visual elements. Users
predominantly express emotions through multiple languages, facial expressions, and body
language, so relying solely on a singular perspective for emotion recognition appears
limited (Chaves & Gerosa, 2021).

Research scholars have recently introduced a novel approach named the multimodal
weight network (Zhou et al., 2020). This network structure encompasses diverse nodes and
edges, wherein connections between nodes carry specific weights. This technique is
frequently used to articulate and model complex systems that contain multiple modes or
channels of information interaction. In a multimodal weighted network, nodes represent
distinct entities—such as individuals, objects, or concepts—while edges signify interactions
or associations between these entities. Each edge possesses a weight signifying connection
strength, similarity, trust, or other interaction metrics between different entities. In
multimodal weighted networks, user visual emotion recognition is a specialized node
classification task that utilizes deep learning techniques to train an emotion classifier. This
classifier adeptly extracts emotional cues from various facets like mouth shape, facial
expressions, body language, and more, facilitating the prediction of a user's emotional
state. This predictive capacity, in turn, contributes significantly to enhancing user
experiences within interior interaction design.

Indeed, the use of multimodal weighted networks is instrumental in understanding and
identifying users’ visual emotions. This comprehensive understanding allows for a
nuanced interpretation of users’ emotional states and preferences, facilitating personalized
and efficient services. Consequently, this technique introduces novel research avenues for
interior space interaction design (Wiegand et al., 2019; Detjen et al., 2021).

This article proposes a deep learning-based multimodal weighted network model to
address the common issue of inadequate coverage of visual features—such as facial
expression information—by a single feature, which often results in suboptimal visual
emotion recognition rates. This model integrates multi-weight networks and user visual
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emotion recognition into indoor space interaction design, culminating in an efficient and
dependable interaction design framework. The key contributions of this article can be
delineated as follows:

. Introduction of the self-attention mechanism: Given the model’s requirement to handle
extensive input data, incorporating the attention mechanism within the visual emotion
recognition model enhances the model’s comprehension of data. This augmentation
significantly bolsters the model’s performance.

. Constructing visual emotion recognition using convolutional self-attention modules: By
integrating a novel convolutional attention module into the visual recognition task,
weight matrices are adaptively computed based on spatial pixel point relationships.
Leveraging contextual relationships across different channels of the input feature map
enhances the model’s ability to generate dynamic attention matrices, thereby improving
the performance of user emotion recognition.

. Development of a weight network classifier that relies on optimal weights for accurate
visual emotion recognition: This article analyzes original visual signals from different
perspectives, assigning weights to three extracted visual signals—mouth shape, facial
expression, and body language.

This article presents related work on visual emotion recognition in “Related Works”.
“Methods” outlines the multimodal weighted network developed in this article, along with
the user emotion recognition model. “Experiments and Analysis” describes the
experimental results and discusses the scheme’s performance. “Conclusion” concludes the
discussion.

RELATED WORKS
In indoor interaction design, intelligent devices play a crucial role in gathering and
analyzing user visual data, utilizing recognized emotions for enhancing indoor
interactions. The exploration of visual recognition has a historical trajectory spanning
several decades (Yuan et al., 2022). The initial exploration of visual recognition primarily
focused on expression recognition research. This involved comprehensively exploring the
six common expressions in daily life and elucidating the intricate relationship between
facial muscle changes and corresponding emotional states. This seminal work underscored
the distinct internal human activities denoted by different expressions (Ge et al., 2022).
Notably, this groundwork significantly propelled the advancement of facial emotion
recognition, garnering widespread attention from researchers and laying a fundamental
basis for subsequent facial expression recognition research. Traditionally, researchers
heavily relied on handcrafted features like SIFT, HOG, LBP, Haar, etc., Adouani, Henia &
Lachiri (2019), Althnian et al. (2020),Neggaz & Fizazi (2022) for processing. These features
were used to train specific facial image datasets or video databases in order to develop
corresponding classifiers.

In recent years, the rapid rise in the prominence of deep learning technology has
attracted a wide range of research enthusiasts (Chen et al., 2018). Specifically in visual
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emotion recognition, neural network algorithms have acted as a crucial catalyst for
advancing this field, surpassing traditional machine learning methods (Zhang et al., 2020).
The proliferation and in-depth integration of deep learning across significant domains like
image processing, recognition, speech recognition, and natural language processing have
yielded remarkable accomplishments. The application of deep learning in visual emotion
recognition primarily emphasizes two fundamental approaches: Manual extraction of
image features and deep networks to discern category-specific characteristics from these
features or to amalgamate diverse features. Subsequently, this amalgamation facilitates the
construction of models for predicting emotional categories within speech signals.
Secondly, deep networks autonomously learn and extract features about distinct emotion
categories directly from original image signals. These learned features subsequently inform
the development of models for predicting emotional categories.

In the realm of deep learning, convolutional neural networks (CNNs) (Zhang, Zhang &
Wang, 2023) have emerged as a formidable tool for image processing. Their strength lies in
the robust feature extraction capabilities embedded within their convolutional kernels,
which have found widespread applications in tasks ranging from intricate image
processing, pattern recognition, to feature extraction. The introduction of the FER2013
dataset, a vast collection of facial expression images initially presented by ICML, has
gradually solidified its position as a key benchmark for assessing the performance of
emotion recognition models (Wang et al., 2021).

As a result, there has been a significant shift in research focus, with many efforts now
turning to CNNs for facial expression recognition tasks. This approach has resulted in
notable advancements in performance, with single-model classification accuracies on the
FER2013 dataset generally ranging from 65% to 72.7%, closely aligning with the average
human performance of 65%. However, a noteworthy study (Hekler et al., 2019) takes a
unique approach, leveraging three independent CNNs and their fusion to enhance
performance, achieving the current best single-network accuracy of 62.44%. This analysis
demonstrates the potential of ensemble methods and the integration of multiple CNNs to
achieve superior results in emotion recognition tasks.

Following this, Hong et al. (2020) introduced attention convolutional networks within
an end-to-end deep learning framework. Meanwhile, in Hosny, Kassem & Foaud (2020),
support vector machines (SVMs) replaced the softmax layer in a deep neural network,
yielding a notable classification accuracy of 71.2%. Furthermore, Bacea & Oniga (2023)
innovatively proposed the Amend Representation Module (ARM) to supplant the pooling
layer, resulting in elevated test accuracy.

Another study (Khaireddin & Chen, 2021) delved into comparing the performance of
three distinct architectures: VGG (Zhou et al., 2020), Inception (Si et al., 2022), and ResNet
(Yu et al., 2023). The findings indicated VGG achieving the highest accuracy at 72.7%,
closely trailed by ResNet at 72.4%, with Inception securing 71.6%. In the evolution of
expression recognition, some researchers underscore the limitations of relying solely on a
static picture for expression recognition, overlooking inherent dynamic patterns within
facial behaviors (Yu et al., 2023). To address this concern, Norouzi et al. (2023)
conceptualizes facial expression as a sequence of actions occurring within consecutive or
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overlapping temporal intervals of facial movement. They proposed the Interval Time-
constrained Boltzmann Machine (IT-RBM), which adeptly captures spatial and temporal
information of facial behaviors for facial expression analysis, culminating in remarkable
performance outcomes.

In the interactive design of interior space, we need to collect a large amount of user data,
including user actions, voice, facial expressions and so on. However, collecting this data
directly can create a huge volume of data that is difficult to process. At this time, Jiang et al.
(2024) uses compressed sensing technology to recover complete user data from fewer
measured values by utilizing the sparsity of data, so as to achieve data compression and
efficient processing. In Sun (2024), through image reconstruction technology, the indoor
environment can be displayed in the form of three-dimensional images, so that users can
more intuitively understand the layout and decoration of indoor space. Indeed, while the
current landscape of expression recognition research has flourished, propelled by the
integration of deep learning methodologies, significant challenges persist in attaining a
practical, highly accurate, and robust expression recognition model. These challenges stem
from substantial intraclass differences and subtle interclass distinctions observed within
facial expressions.

Recent efforts have involved the integration of multimodal weighted networks across
various domains. Liu et al. (2021) notably introduced these networks into speech emotion
recognition, developing deep learning-based models. Meanwhile, Wang et al. (2022)
expanded on this by leveraging multimodal weighting networks for web-based speech’s
multimodal emotion recognition, encompassing speech, intonation, and linguistic
elements. Although these approaches pave a path for visual emotion recognition, their
application remains confined to experimental research stages, posing challenges for real-
life deployment. Furthermore, there is considerable room for improvement in multimodal
consideration, particularly in incorporating aspects like a user’s body language, mouth
shape, facial expressions, etc., within visual recognition. This area merits deeper research
and exploration for enhancing the effectiveness and applicability of visual emotion
recognition models.

METHODS
The indoor interaction system presented in this article is primarily designed around users’
visual emotion recognition. In emotional recognition tasks, models that utilize non-local
feature fusion networks can build convolutional attention modules based on the self-
attention mechanism to identify users’ emotional expressions. This type of model can
effectively capture the interactions between different regions of the image and extract key
features related to emotions. These features can then be input into a multimodal
weighted network to generate the final distribution of user emotions. In contrast,
traditional CS models may focus more on data storage and retrieval rather than feature
extraction and fusion in emotional recognition tasks. Therefore, as illustrated in Fig. 1,
after image data collection, a visual emotional recognition model based on convolutional
attention modules is primarily constructed on the foundation of the self-attention
mechanism. This model can recognize three emotional expressions of users and finally
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input the extracted visual signals into a multimodal weight network to obtain the final
distribution of user emotions.

Self-attention mechanism
This section introduces the self-attention mechanism to enable the model to prioritize and
retain crucial information within the training data. This mechanism operates by
computing Query-Key-Value (QKV) associations, allowing the model to enhance its data
comprehension by identifying and focusing on key elements within the input. As shown in
Fig. 2, the input H ¼ ½h1; h2�, each row therein represents a corresponding input vector.
The three-parameter matrixWq;Wk;Wv in the figure serves to transform the input H into
the corresponding query spaces Q ¼ ½q1; q2�, K ¼ ½k1; k2� and V ¼ ½v1; v2�, and the
transformation process is as follows:

½q1 ¼ h1Wq; q2 ¼ h2Wq� ! Q ¼ HWq (1)

½k1 ¼ h1Wk; k2 ¼ h2Wk� ! K ¼ HWk (2)

½v1 ¼ h1Wv; v2 ¼ h2Wv� ! V ¼ HWv (3)

The computation of the output context, following the application of the attention
mechanism, relies on the three feature matrices: Q, K, and V. This resultant output
encapsulates the model’s understanding of the input H, constructed upon the foundation
of the self-attention mechanism. Each line of this output contexti signifies the model’s focal
points at corresponding positions hi within the input sequence. The process of computing
the context unfolds as follows:

context ¼ softmax
QKTffiffiffiffiffiffi
Dk

p
� �V

(4)

where Dk is determined by the dimensionality of the vector Q.
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Figure 1 Model frame drawing. Full-size DOI: 10.7717/peerj-cs.2450/fig-1
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Visual emotion recognition based on convolutional attention module
To address the inefficiency of the feature extraction process caused by the computational
invariance of convolution, which results from its invariant parameters. We introduce a
new convolutional attention module (AM) for the visual recognition task. According to
user emotion recognition performance requirements in indoor spatial interaction, we
detect the user’s mouth shape, facial expression, and body movement in three directions.

Given the inherent specificity of the visual recognition task, the expressions of a human
face are often closely related to our five senses, particularly the eyes and mouth. The
expressions of body movements are also associated with our hands, legs, neck, etc. To
capture the specific details of the user’s face and limbs, we analyze the relationship between
pixel points in the input image and adaptively compute the weight matrix based on the
spatial relationships between these pixel points. The rich contextual relationships
embedded between different channels of the input feature map are also considered to guide
learning the dynamic attention matrix. By utilizing two sets of 1 * 1 convolutions and

updating the parameters of the convolution kernel corresponding to each convolution

window, the attention is computed while extracting the global features of the input feature

map. Eventually, during the aggregation process, different weights are assigned to each

pixel point of the input feature map, i.e., different attention is assigned to different input
locations. This structure allows the module to be efficiently utilized in traditional
convolutional architectures while being more efficient in feature extraction.

In Fig. 3, the AM module unifies the exploration of contextual information and the
acquisition of the self-attention mechanism within a cohesive architecture. This
integration maximizes the use of abundant contextual details among adjacent keys,
effectively enhancing the learning process of self-attention. Consequently, this
amalgamation enhances the module’s capacity to characterize and discern nuanced
features within the output. Set the input feature map In as H �W � C. First, we spatially
convolve each key using the k � k convolution set, and denote the learned context
information as T, which reflects the static context information between different channels.
The attention mechanism comprises two distinct components, both involving independent

H

K

Q

V

Wk

Wq

Wv

Attention matrix

Context

Figure 2 Flow chart of self-attention mechanism. Full-size DOI: 10.7717/peerj-cs.2450/fig-2
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convolution operations. Initially, the acquired static context information T is concatenated
with the query to enrich the characterization of information among contexts.
Subsequently, employing a convolutional group facilitates the learning process of
attention, resulting in the derivation of the attention matrix A1.

A1 ¼ ½T;Q� � C1: (5)

Meanwhile, to reinforce the input information to some extent, we use another
independent 1 � 1 convolutional group for query using the same way of learning attention
to get the attention matrix A2:

A2 ¼ Q� C2: (6)

The two sets of attention matrices were subsequently fused to obtain the final attention
matrix A3.

A3 ¼ A1þ A2: (7)

The attention-based output T1 is obtained by aggregating A3 with V:

T1 ¼ V � A3: (8)

In

T k*K V 1*1

Concat

C2:2*2

C1:1*1 +

*

Fusion

Out

Key
ValueQuery

Figure 3 Structure diagram of AM module. Full-size DOI: 10.7717/peerj-cs.2450/fig-3
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Ultimately, the static information T undergoes fusion with the contextual
representation T1, leveraging the dynamic attention mechanism, culminating in the final
output of the module. Subsequently, a visual recognition network model is devised,
incorporating the ATB module and its resultant output. This network encompasses four
distinct sets of convolutions along with one fully connected layer. Each convolutional set
comprises varying numbers of layers—specifically, 2, 2, 3, and 3 convolutional layers,
respectively.

Multimodal weighted network coding classification model
After feature extraction from visual emotion recognition based on convolutional attention
modules, the multi-modal weight network encoding classification model aims to deeply
analyze the originally captured visual signals from various dimensions. This model
comprehensively considers multiple features and automatically assesses the importance of
each individual feature through the network, leading to more accurate and comprehensive
emotional classification results.

Illustrated in Fig. 4, the model initially transforms user mouth shape information within
the visual signal into textual information through mouth shape recognition. Subsequently,
this process facilitates the derivation of the probability distribution for emotion
classification:

Pt ¼ ðt1; t2; t3; t4Þ: (9)

The user expression information f in the visual signal is used as an input to the overall
model, and AM obtains a probability distribution for visual emotion classification:

Ps ¼ ðs1; s2; s3; s4Þ: (10)

A probability distribution is also obtained based on the user’s body movement
information in the visual signal:

Pi ¼ ði1; i2; i3; i4Þ: (11)
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Figure 4 Multi-modal weight network classification model prediction process.
Full-size DOI: 10.7717/peerj-cs.2450/fig-4
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The prediction generated by each individual model represents the expression of a
distinct feature in sentiment categorization. Dynamically assigning varying weights to the
predicted outcomes of these different models entails dynamically altering the influence of
each single feature within the overall categorization process. This dynamic adjustment
aims to further refine the accuracy of sentiment categorization.

In this context, the probability distributions of each component from the individual
models are utilized within the weighting network. These components play a role in
linearly regressing the respective elements of the final classification probability, as
described by Eq. (12).

4n ¼ an1sn þ an2tn þ an3in þ gn (12)

where n represents the emotion category. This article is a four-category situation (emotion
categories are angry, happy, sad, and neutral), so n ¼ f1; 2; 3; 4g. sn; tn; in denote the n-th
category probability in Ps;Pt; Pi respectively. an1; an2; an3 and gn are the learnable
weights and bias terms that balance the three. For example, s1 denotes the probability
that the emotion category obtained from the visual signal after AEM is angry in this
article. 41 denotes the probability that the category of anger is obtained after automatic
weighting regression by the weighting network. Since it is a four-category case, the
categorization probability P ¼ ð41;42;43;44Þ is obtained. After softmax normalization
finally get the probability distribution of emotion classification of speech signal
~P ¼ ð~41; ~42; ~43; ~44Þ.

EXPERIMENTS AND ANALYSIS
In this section, we engage in simulation experiments to evaluate the performance of the
user visual emotion recognition model under the multimodal weighting network. We
assess its efficacy alongside prevalent network models such as convolutional neural
network (CNN) (Zhang, Zhang &Wang, 2023), GoogleNet (Jiang et al., 2024), VGG+SVM
(visual geometry group+support vector machine) (Sun, 2024), CNN+SVM (Yang et al.,
2023), and ResNet (Yu et al., 2023). Our objective is to compare and analyze the
experimental outcomes of each method type. Ultimately, we present the confusion
matrix alongside the correctness curve graph derived from this article’s scheme
(Donuk et al., 2023).

These experimental results serve a dual purpose: first, to analyze the impact of the
multimodal weighted network and convolutional attention module on user emotion
recognition performance; and second, to investigate how the introduction of the
multimodal weighted network and user visual emotion recognition, based on the
convolutional attention module, influences indoor space interaction design
(Lyu et al., 2023).

Evaluation indicators
The prediction evaluation metrics used in this article are accuracy (ACC), precision (Pre)
and recall (R). Let true positive (TP) denote that positive samples are predicted as positive
samples, false negative (FN) denote that positive samples are predicted as negative
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samples, false positive (FP) denotes that negative samples are predicted as positive samples,
and true negative (TN) denote that negative samples are predicted as negative samples.
Then:

(1) The correct rate metric indicates the proportion of positive and negative samples
correctly categorized in the user’s visual emotion categorization recognition. The formula
is as follows:

ACC ¼ TPþ TN
TPþ TNþ FPþ FN

: (13)

(2) The accuracy rate metric is for the user visual emotion classification recognition
results and indicates the proportion of samples predicted to be positive that are positive.
The formula is as follows:

Pre ¼ TP
TPþ FP

: (14)

(3) The recall metric is for the visual emotion raw labels and indicates how many
positive classes in the visual signal sample were predicted correctly. The formula is
calculated as follows:

R ¼ TP
TPþ FN

: (15)

Parameterization
This study involves experimentation conducted on the HMDB (https://zenodo.org/
records/5758926, doi: 10.5281/zenodo.11046710) and CK+ (https://zenodo.org/records/
11221351, doi: 10.5281/zenodo.11221351) datasets. The initial dataset is stored in. H5
format before commencing the experiments. The experimental setup utilizes a 2020Ti
graphics card running the PyTorch framework. The training employs an SGD iterator over
300 rounds, incorporating a 0.9 momentum factor, 0.0005 weight decay, and a learning
rate 0.1. During the training process, an adaptive adjustment of the model occurs every ten
rounds after the initial 80 rounds, contingent upon the change in loss observed.

In the network architecture constructed, traditional convolution is exclusively employed
solely within the initial layer of the first convolution set. All subsequent convolution
operations are executed utilizing the AM module. Adopting traditional convolution in the
initial layer augments the number of channels in the input feature maps, thereby
facilitating model construction and subsequent processing via the AM module. The
ultimate fully connected layer is tailored based on the fixed count of specific expression
categories set at four.

In terms of data processing, this article loads raw data from HMDB and CK+ datasets.
For video dataset HMDB, key frames or video fragments are extracted. For the image
dataset CK+, the image file is loaded directly. At the same time, the pixel value of the image
is normalized to the range of [0, 1] or [−1, 1] to eliminate the difference in brightness,
contrast and other aspects of different images.
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Comparative experimental analysis
The final recognition accuracy achieved by our model stands at 77.057% and 78.562% on
the test sets of the HMDB and CK+ datasets, respectively. In our comparative analysis
against current leading methodologies, presented in Fig. 5, our proposed approach
demonstrates substantial advancements in expression recognition tasks relative to
traditional and contemporary deep learning methods.

Specifically, on the HMDB dataset, the CNN model achieves a correctness rate of
62.44%. Comparatively, GoogleNet, VGG+SVM, and CNN+SVM outperform the CNN
model, achieving correctness rates of 65.20%, 66.31%, and 71.20%, respectively. ResNet
exhibits a correctness rate of approximately 72.7%, fairly comparable to our proposed
model’s prediction. However, with an expansion in the test dataset, a declining trend is
noticeable in the accuracy of ResNet due to the absence of a multimodal weight network,
resulting in its incapability to accurately recognize user emotions amid increased variation
in user features like limbs, mouths, and facial expressions within the dataset.

Conversely, our model’s performance advantage is less pronounced within the CK+
dataset, primarily comprising facial expression images. The accuracy of ResNet is
particularly noteworthy, reaching 76.251%, exhibiting a marginal difference of
approximately 2.3% from our model’s performance.

To comprehensively illustrate the expression recognition outcomes in this study, we
present a longitudinal comparison across different models concerning the HMDB and
CK+ datasets. The dataset undergoes classification, wherein the models’ classification
accuracy for each expression category is compared. Figure 6 showcases the recognition
accuracy rates of each model for the four visual emotion categories alongside their final
average accuracy rates. Given the distinct experimental environments and hyper-
parameter configurations, the comparison schemes for visual emotion recognition
experiments include the CNN network, VGG+SVM, and ResNet. Notably, VGG+SVM

Figure 5 ACC comparison among different models. Full-size DOI: 10.7717/peerj-cs.2450/fig-5
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achieves a recognition accuracy of 73%. However, the model proposed in this article attains
the highest average accuracy of 74.75% across both datasets.

Regarding specific expression categories, the network models introduced in this article
exhibit superior recognition rates for all expressions except for the anger and fear
categories, where the recognition performance slightly trails that of the VGG+SVM
network. Notably, our approach achieves a 91% recognition accuracy for the joy class of
emotions. The substantial improvement observed in this article’s model for the sadness
class of emotions is particularly noteworthy, showcasing a 5% enhancement over the best-
performing ResNet.

To provide a clearer visual representation of accuracy progression during training, we
present a graph that illustrates the changes in recall on the HMDB dataset for both the
proposed method in this article and the ResNet network model, which shows a similar
performance trajectory. As depicted in Fig. 7, it’s evident that for both models, the recall
undergoes a rapid increase during the initial training phase, followed by a gradual
convergence and eventual decline. However, a notable distinction arises from
incorporating a multimodal weighting network in our proposed model.

In this context, the recall of the model outlined in this article showcases a delayed onset
of decline compared to ResNet during training. Overall, the model presented in this article
exhibits significantly superior performance compared to ResNet, mainly attributed to
integrating the multimodal weighting network.

Ablation experiments
Figure 8 illustrates the confusion matrix corresponding to the network model constructed
in this article. Diagonal squares denote the accurate recognition of the current emotion. In
contrast, squares off the diagonal represent the probability of recognizing the emotion on
the vertical axis as the emotion on the horizontal axis. The shading in the grid varies
according to the values within each grid.

Notably, our model achieves a 62% recognition rate for emotions categorized as sadness
compared to other expressions. This outcome stems from the significant similarity

Figure 6 Comparison of sentiment recognition performance under different models.
Full-size DOI: 10.7717/peerj-cs.2450/fig-6
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observed in daily life among fear, sadness, and anger. These expressions often share
notable similarities in body and facial features, making it challenging even for neural
networks to extract distinct features accurately, especially when data is limited. This
similarity complicates accurate feature extraction by the neural network, contributing to
the observed recognition rate in the sadness category.

Figure 9 displays the ablation experiments conducted on the glad dataset to assess and
evaluate the neural network model’s performance. These experiments aimed to understand
the impact of the self-attention mechanism and the multimodal weight network coding
classification on the model’s efficacy by progressively removing them.

The results depict a discernible effect on recognition accuracy when removing these
components. Model 3, derived from Model 4 by removing the self-attention mechanism,
attains a recognition accuracy of 89%. Conversely, Model 2, obtained by exclusively
eliminating the multimodal weight network coding classification from Model 4,
experiences a substantial drop in recognition accuracy, achieving only 79%.
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Figure 7 Comparison of recall rate among different models.
Full-size DOI: 10.7717/peerj-cs.2450/fig-7
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Furthermore, when both the self-attention mechanism and the multimodal weight
network coding classification are removed from the proposed Model 4, resulting in Model
1, the recognition accuracy plunges to a minimum of 72%. These findings underscore the
significant contributions of both the self-attention mechanism and the multimodal weight
network coding classification to the model’s overall performance in visual emotion
recognition.

Discussion
“Comparative experimental analysis” and “Ablation experiments” present a
comprehensive analysis of the comparative performance of the proposed schemes outlined
in this article. Examining three crucial performance metrics—correctness, precision, and
recall—reveals the substantial superiority of the scheme introduced in this article, achieved
through incorporating a multimodal weight network. This scheme attains a correctness
rate of 77.057% and a precision rate of 74.75% on the dataset. Notably, the recall rate peaks
at 94.7% during the training process, showcasing a significantly enhanced performance
compared to CNN, VGG+SVM, ResNet, and other models.

The confusion matrix diagram for the network model constructed in this article further
supports its accuracy in classifying gladness, achieving an impressive recognition rate of
91%. This holds immense significance, particularly in indoor space interaction design.
Accurately recognizing emotions, particularly happiness, in visual emotion recognition
among indoor users bears substantial value. This recognition aids designers in better-
comprehending user needs and emotions, facilitating the provision of more personalized
and comfortable designs. By monitoring users’ visual responses, designers can discern
which design elements evoke positive emotions like pleasure, excitement, or comfort and
negative emotions such as dissatisfaction, despondency, or fatigue. This profound
understanding of user emotions empowers designers to optimize their designs effectively,
aligning them more closely with users’ emotional requirements.

Figure 9 Comparison of model precision under different modules.
Full-size DOI: 10.7717/peerj-cs.2450/fig-9
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Visual, emotional recognition is a pivotal tool for designers to elevate both their designs’
artistic appeal and functionality. Exceptional interior design transcends mere functionality
by evoking emotional resonance within users. Through the lens of visual emotion
recognition, designers gain valuable insights into which design elements effectively convey
desired emotions and atmospheres. This understanding empowers them to integrate these
emotions seamlessly into their designs, enhancing both their creations’ artistry and
functionality.

Moreover, visual emotion recognition technology enables designers to identify which
colors, shapes, materials, and layouts best evoke specific emotional responses by testing
and analyzing users’ reactions to design elements. This technology makes design more
targeted and precise, helping designers achieve artistic and innovative outcomes. Through
visual emotion recognition, this article allows designers to gain a deeper understanding of
users’ emotional needs, thereby integrating more emotional elements into their designs.
This emotional connection with users can enhance their sense of identity and satisfaction
with the design, ultimately strengthening brand image and loyalty. While visual emotion
recognition technology has made certain progress, it still faces numerous technical
challenges. For instance, accurately identifying and understanding complex emotional
responses, as well as addressing emotional differences across various cultures and
backgrounds, is crucial. Since emotional differences in different cultural contexts may
affect the results of visual emotion recognition, future research will continue to focus on
visual emotion recognition in cross-cultural contexts, further exploring the interaction
between emotions and cognition, and how this interaction affects users’ experience and
satisfaction, ultimately providing design services that better meet user expectations.

CONCLUSION
This article delves deeply into enhancing intelligent design within indoor space interaction
by extensively investigating user visual emotion classification, employing a multimodal
weight network. Integrating the self-attention mechanism into the convolutional network
has paved the way for developing a visual emotion recognition network based on the
convolutional attention module.

Our approach harnesses the user’s facial expression, mouth shape, and body features
extracted from the visual emotion recognition network as inputs into the multimodal
weighting network. This network’s weighted linkage yields the final probability
distribution of the user’s emotional state. Notably, the experimental outcomes reveal the
superiority of our method over prevalent models like CNN, VGG+SVM, CNN+SVM, and
ResNet. Achieving significant advancements in correctness, precision, and recall, our
method attains a correctness rate of 77.057% and a precision rate of 74.75%, surpassing the
average performance of comparative models. ResNet mainly demonstrates a 3.2% to 4.3%
higher precision rate than the comparison models on average.

Our model excels in classifying and recognizing happiness during the training process,
allowing designers to identify design elements that evoke positive emotions in users.
Consequently, designers can adjust these elements to amplify positive emotions or alleviate
negative ones, enhancing user experience and satisfaction. In the future, we will further
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improve the construction of visual emotion recognition module and improve the
performance of emotion recognition model, so as to more accurately identify the
emotional needs of users, help designers provide more intimate and comfortable design
services, and enhance user experience and satisfaction.
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