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ABSTRACT

Image denoising is a complex task that always yields an approximated version of the
clean image. Unfortunately, the existing works have focussed only on the peak signal
to noise ratio (PSNR) metric and have shown no attention to edge features in a

reconstructed image. Although fully convolution neural networks (CNN) are capable
of removing the noise using kernel filters and automatic extraction of features, it has

failed to reconstruct the images for higher values of noise standard deviation.
Additionally, deep learning models require a huge database to learn better from the
inputs. This, in turn, increases the computational complexity and memory
requirement. Therefore, we propose the Median Noise Residue U-Net (MNRU-Net)
with a limited training database without involving image augmentation. In the
proposed work, the learning capability of the traditional U-Net model was increased
by adding hand-crafted features in the input layers of the U-Net. Further, an
approximate version of the noise estimated from the median filter and the gradient
information of the image were used to improve the performance of U-Net. Later, the
performance of MNRU-Net was evaluated based on PSNR, structural similarity, and
figure of merit for different noise standard deviations of 15, 25, and 50 respectively. It
is witnessed that the results gained from the suggested work are better than the
results yielded by complex denoising models such as the robust deformed denoising
CNN (RDDCNN). This work emphasizes that the skip connections along with the
hand-crafted features could improve the performance at higher noise levels by using
this simple architecture. In addition, the model was found to be less expensive, with
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noise level map (Zhang, Zuo & Zhang, 2018). Image-Prior-Based Approaches: These
techniques extract meaningful information from noise in images by drawing on prior
knowledge about the image, which is typically based on the Bayesian framework. To
minimize an energy function that represents the properties of the image, for instance,
optimization techniques are used in image denoising with Markov random fields (MRF) or
conditional random fields (CRF) (Barbu, 2009). In addition, Total Variation (TV)
regularisation techniques were presented. These techniques aim to reduce noise while
maintaining significant image characteristics, such as edges. These regularisation issues
have been effectively resolved by quick gradient-based algorithms (Beck ¢ Teboulle, 2009).

Eventually, a method that combined traditional and learning-based approaches was
created. Novel approaches have been achieved by fusing deep learning models with
conventional techniques. To better model the block matching and aggregation processes,
for instance, BM3D-Net expands the BM3D algorithm with a convolutional neural
network (CNN) structure (Yang ¢ Sun, 2018). To improve image recovery from low-
resolution and noisy inputs, a deep CNN intended for denoising or super-resolution can be
cascaded with an enhancement CNN (Huang et al., 2017).

Further emphasized multiresolution transforms. For spatially localized details like edges
and singularities, these transforms offer good sparsity, which is essential for efficient
denoising. By utilizing these multiresolution features, BM3D has demonstrated efficacy in
identifying and conserving significant details from natural images (Dabov et al., 2007).
Innovations in image denoising keep progressing by combining these various methods,
striking a balance between noise reduction and the retention of important image elements.

The development of technology is the primary focus of researchers. One kind of deep
learning model that works especially well with processing grid-like data, like images, is the
deep convolutional neural network (CNN). The ability of CNNs to automatically learn
spatial hierarchies of features from raw image data has revolutionized the field of computer
vision. This ability makes CNNs highly effective for a variety of tasks, including object
detection, segmentation, denoising, and image classification. Deep CNNs have
demonstrated their efficacy in numerous computer vision applications under their capacity
to represent intricate patterns and correlations found in image data. They are now a
mainstay of contemporary deep learning research and development due to their
adaptability and effectiveness.

Deep neural network training can improve performance, but it’s a common
misperception that adding more layers will automatically result in greater accuracy. As a
matter of fact, the vanishing gradient problem and the curse of dimensionality problems
where accuracy increases initially but rapidly decreases as network depth increases can be
brought on by adding more layers (Aadhitya ¢ Sriharipriya, 2023). Furthermore, prior
deep learning techniques for image denoising frequently experience overfitting, which
results in the loss of important edge and texture information (Xu et al., 2023).

This study presents a novel deep convolutional neural network (CNN) model for image
denoising, called Median Noise Residue U-Net (MNRU-Net), in order to address these
issues. MNRU-Net is made with a simpler architecture than traditional CNN-based
denoising techniques in order to prevent training issues and maintain edge and texture
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information. The model is less complicated and more computationally efficient because it
makes use of a small training dataset without the need for data augmentation.
Additionally, adding manually created features to the input layers of the classic U-Net
model improves its learning capacity and allows for improved noise reduction and
preservation of image detail.

The main contributions of our work are below

o The model assists in distinguishing between noise and significant image details by using
noise estimates obtained from a median filter and image gradient information. This
method enhances denoising performance, particularly at higher noise levels.

» Hand-crafted features are integrated directly into the input layers of MNRU-Net, which
improves upon the conventional U-Net architecture. Feature loss in deep networks is a
common problem that this integration helps to solve by improving the model’s ability to
preserve edges and textures.

e Without compromising denoising quality, the model keeps a straightforward
architecture with fewer parameters, which makes it computationally efficient and
appropriate for applications with limited resources.

RELATED STUDY

Convolution neural network for image processing

Due to a strong capacity to learn, CNNs have been formed for image denoising. The
original distribution of noise in corrupted images may vary as a result of convolution
operation, which could make training for image denoising more challenging. The batch
normalization technique can address the problem by normalizing the input layers of a
network. This article focuses on the internal covariant shift problem but the vanishing or
exploding gradient may be severe (loffe, 2015). For retrieving smooth edges, the
constrained total variation (TV) approach requires Fast gradient-based algorithms that can
handle edges and eliminate noise in a corrupted image but may cause optimization
problems (Beck e~ Teboulle, 2009).

To address additional inverse problems, denoiser prior can be promoted into model-
based optimization techniques as a modular component (Zhang et al., 2017b).
Alternatively, the introduction of BRDNet architecture, which integrates two networks to
expand the width, addresses the mini-batch and internal covariant shift problems, reduces
the training challenges of the structure, and improves performance. However, the main
disadvantage of the model is more complex (Tian, Xu & Zuo, 2020). A dual denoising
network (DudeNet) was introduced to restore clean images. A dual network with a sparse
mechanism can bring out additional characteristics to improve the relevancy of the
denoiser. The combination of local and global characteristics can take out salient features
to restore clear details to complicated noisy images (Tian et al., 2020b). A framework for
training DDM on a single image named SinDDM and learning the internal data of the
training image utilizes a multi-scale diffusion procedure. They employ a fully
convolutional lightweight denoiser, conditioned at both noise level and scale, to encourage
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backscatter. With this architecture, patterns of any size, from coarse to fine, can be created
(Kulikov et al., 2023). The use of the medical field has seen many advancements. A wide
range of image-denoising methods designed with medical imaging in mind are covered in
this thorough review. The effectiveness of a wide range of contemporary and conventional
techniques, such as wavelet transforms, non-local means, and deep learning approaches, is
assessed in various medical imaging modalities, such as magnetic resonance imaging
(MRI), computed tomography (CT), and ultrasound (Kaur ¢» Dong, 2023). Dong, Ma ¢
Basu (2021) present a novel feature-guided CNN that is intended for denoising ultrasound
images that are captured from portable devices. Because of their portable nature and their
noisy operation, ultrasound machines frequently yield images of inferior quality. The
feature-guided CNN improves image quality while maintaining clinically significant
details by utilizing domain-specific features like edges and textures (Dong, Ma ¢ Basu,
2021). Dong ¢ Basu (2023) describe a denoising method for medical images that uses an
explainable AI (XAI) framework to maintain significant features while denoising. To
guarantee that the final images maintain crucial diagnostic features while lowering noise,
the authors suggest a novel loss function that combines feature preservation with
conventional denoising goals.

Deep CNN for image denoising

A lot of research has been published using different methods of CNN, Tian et al. (2022)
proposed that multi stage image denoising CNN with wavelet transform (MWDCNN) is a
technique that consists of three stages: dynamic convolutional block (DCB), wavelet
transform and enhancement block (WEB)s, and Residual block (RB) to improve the
performance of denoiser. To overcome the width and depth limitations of lightweight
CNNs and achieve better denoising performance, a dynamic convolution is used in the
CNN and does not focus on complex validation (Tian et al., 2022). A new method of self-
supervised image noise canceling that integrates a multi-masking approach with BSN
(MM-BSN). It can be employed to resolve the issues of high noise cancellation, which
other BSN methods cannot solve effectively (Zhang et al., 2023b). Res-WCAE with the
Kullback-Leibler divergence (KLD) rule has been proposed for a lightweight and powerful
deep learning architecture, particularly designed for denoising the fingerprint image. Res-
WCAE contains two encoders and a decoder. It requires a large database to identify the
correct fingerprint (Liang ¢ Liang, 2023). Further, a data enhancement technique called
recorrupted-to-recorrupted (R2R) has been proposed, to solve the problem of overfitting
due to a lack of realism (Pang et al., 2021). Neshatavar et al. (2022) proposed a cyclic multi-
variate function-supervised image denoising framework. The CVE-SID method can
remove clear and noisy image maps from the input by exploiting several self-supervised
loss metrics. For better denoising performance, deep boosting denoising net (DBDnet) has
been developed. A noisy observation, creates a noise map from a residual learning network.
To be more precise, it creates a raw noise map using a straightforward design, and then
gradually upgrades the noise map using an enhancement function but the noise
prediction may not be clear (Ma et al., 2022; Quan et al., 2021). The authors look into the
possibility of complex validating CNNss for image denoise. To fully utilize the benefits of
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Figure 1 Basic U-Net. Basic U-Net architecture. Full-size K&l DOT: 10.7717/peerj-cs.2449/fig-1

complex-valued operations, CNN was designed with its main operations defined in the
complex number domain. The fact that the various models employed in this comparison
study were not rigorously trained in identical settings is one of its limitations.

Moreover, the above-discussed models are increasing the performance by upgrading the
networks at different levels. But it leads to complexity and more time consumption. CNNs
are the most useful apparatus for denoising an image, as demonstrated by the methods-
based CNNs discussed above. As a consequence, we follow suit and use a CNN to solve the
image-denoising problem by constructing a simple architecture.

MATERIALS AND METHODS

The proposed denoising model of MNRU-Net architecture has been trained and
implemented. This section discussed the Basic U-Net and proposed MNRU-Net model
in detail.

Basic U-Net architecture
The U-Net models are widely used for segmentation and denoising applications. The
traditional model of U-Net architecture is shown in Fig. 1. The basic architecture of the U-
Net model contains an encoder and decoder constructed only using the fully convolutional
layers without using any dense layers. The encoders are equipped with convolution and
downsampling done by kernel filters and pooling layers respectively. In contrast to
encoders, decoders are constructed using up samplers and concatenation of the features
from the encoder stage. Unlike the classification models, the final output is a denoised
image instead of a class label.

The major strength of deep learning models relies on their ability to learn the feature
automatically without human intervention. Though the conventional U-Net models could
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Figure 2 Architecture of MNRU-Net. Proposed method of MNRU-NET Design.
Full-size K&l DOTI: 10.7717/peerj-cs.2449/fig-2

perform better for low-complex databases, the performance of U-Net is poor in the case of
challenging applications such as denoising. Therefore, it was proposed to add hand-crafted
features to the U-Net model. The U-Net model was constructed using the traditional
encoders in the feature abstraction stage and the decoders were employed in the feature
reconstruction stage.

MNRU-Net architecture

The MNRU-Net model was constructed using the traditional encoders in the feature
abstraction stage and the decoders were employed in the feature reconstruction stage. The
traditional model of U-Net architecture as shown in Fig. 1 was modified to the MNRU-Net
model as depicted in Fig. 2. The main novelty in this work was the inclusion of hand-
crafted features in the deep learning model.

The idea of this research work is to supply manual features to enhance the learning
capability of the conventional U-Net model. Though improved versions of U-Net models
are available, the main drawback of those models is the high computation cost. In addition,
the noise pattern learned by the traditional U-net model is insufficient to reconstruct a
better-denoised image.

Hence, the noise pattern obtained from the conventional median filter was applied in
addition to the noisy gray image. Additionally, the gradient information of the image is
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also applied to the model. Hence, two image priors are evaluated and concatenated to the
input gray image.

Let I (x, y) be the clean image and N (0, o) be the noise. Then the noisy image I is
represented as shown in Eq. (1).

I, (x’ y) =1 (xa )’) + N (0> 0)' (1)

The denoised image I; from the median filter is obtained as Eq. (2). The value of the
denoised image I; at pixel location (x, y) is indicated by I; (x, y). It is the result of
applying the median filter at this particular pixel. The noisy image I,, at pixel location
(x — k, y — 1) is represented by the expression I, (x — k, y — ). The median is
computed over a local neighborhood centered around the pixel (x, y), as indicated by the
coordinates (x — k, y — I).

I (x, y) = Median (I, (x — k, y — 1)) (2)

where the median represents the operation that computes the median value, and

(x — k, y — ) iterates over the pixels in the filter window around the pixel (x, y). A
3 x 3 size window is used to filter the Gaussian noise. An approximate version of the noise
matrix is obtained as shown in Eq. (3).

Noise (x, y) =1, (x, y) — I (x, y). (3)

Let I;(x, y) be the recovered image from the median filter and gradient magnitude
image G (x, y). The gradient magnitude is obtained as given in Eq. (4).

Glx ) = 1/ (Gelx, ¥)* + Gy(x. ¥)) @)

where vertical gradient G, (x, y) and Horizontal gradient Gy (x, y) are calculated using
Sobel operators as follows:

Ge(x, ) =Ta (x+ 1L, y—1D)+2L; (x+1, y)+1; (x+1, y+1))
—(Li(x—1L,y—-1D+21I; x—1,y)+ Li(x—1,y+1)

Gx,y)=Wa(x—1Ly—-1)4+2IL;(x, y—1)+II; (x+1, y—1))
—ILa(x—=1y+1)4+21; (x, y+1)+I; (x+1, y+1))

(42)

(4b)

By substituting Eqs. (4a) and (4b) in Eq. (4) we get a gradient image. Hence, the MNRU-
Net model is applied with three layers of information namely, the gray image, the predicted
noise image from Eq. (3), and the gradient image from Eq. (4).

The structure of the encoder used in this research is shown in Fig. 3. All the
convolutional layers were activated by the activation function of the rectified linear unit
(ReLU) activation function. However, the final convolution layers were activated by using
the ‘sigmoid” function w hich yielded the final denoised image. Drop-out layers were also
added in convolutional layers of both decoder and encoder to improve the performance of
denoising. A dropout of 0.05 was done in the decoder and encoder stages. The encoder and
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decoder sections are constructed using the convolution blocks C1, C2, C3, and C4 as

shown in Figs. 3 and 4, respectively. Each of the convolution blocks is internally consisting

of two convolutional layers. The number of filters in each encoder block is 64, 128, 256,

and 512 respectively for blocks 1, 2, 3, and 4, respectively, in downstream.

Traditional deep networks may experience gradients that explode or vanish as well as

becoming stuck in weak local minima when the learning rate is too high. These problems
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are aided by batch normalization. Normalizing network activations prevents slight
differences in layer parameters from amplifying as the data spreads throughout a deep
network (loffe, 2015).

Handcrafted features
When applying hand-crafted features to image-denoising tasks, neural networks perform
much better, especially when there is a lack of training data or a high noise level. By using
pre-defined features that capture significant image properties, the model can make use of
handcrafted features, which minimizes the need for large datasets and intensive
augmentation. For situations where data availability is restricted, MNRU-Net becomes
especially helpful. In contrast to more intricate and sophisticated models, MNRU-Net
achieves competitive outcomes with a more straightforward architecture. Handcrafted
features reduce the need for deeper layers, making the model faster to train and less
expensive to compute.

As demonstrated by the improved performance metrics (PSNR, SSIM, figure of merit)
across various noise standard deviations, U-Net’s architecture combined with hand-
crafted features allows for better handling of high noise levels.

Loss function

Since the problem is related to the reconstruction of the noiseless image, the loss function
was chosen as mean squared error (MSE). The loss function as shown in Eq. (5) was used
during the training session.

M

1 N . 2
MSE loss = m Z Z (predzcted,-,j — actual target,-J ) (5)

=1 j=1

where N = No of Columns, M = No of Rows, and i, j are pixel locations, predicted; =
denoised images during training session, actual target;; = the Original Noise free image.
The main metrics were to reduce MSE loss and obtain the least error.

Metrics evaluation
The learning rate of the model was initially set at 1 x 10>, This rate was adaptively
modified based on the validation performance. The learning rate was reduced in non-
linear steps of 1 x 107>, 1 x 107® and the least of 1 x 107", L2 regularization was set to
0.000001. This adaptive variation was done using the call-back functions when there was
no improvement even after a patience of 10. The model was optimized by utilizing the
Adam optimizer (Kingma ¢ Ba, 2014). The batch size was adjusted to four in the case of
the BSD300 database. This model was trained for 50 epochs. In the training loop, the
sessions were iterated through four images per batch to cover all the training images. Since
the main aim is to improve the learning capability of the traditional U-Net model, image
augmentation was not done in this work.

The training metric was chosen as the peak signal to noise ratio (PSNR) as shown in
Eq. (6).
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Max?

0SS

(6)

where Max = Maximum value of the pixel in the original noise-free image.

The testing performance was obtained from the images that were not exposed to
training and validation. The average performance in terms of MSE and PSNR was obtained
as 15,25 and 50 dB respectively. The performance of the MNRU-Net model to denoise is
evaluated based on PSNR, SSIM, and FOM. In addition to the traditional metrics, a few of
the feature-based metrics were also included in the performance evaluation. The formula
to calculate the metrics is presented in Eqs. (7) & (8).

1 1
FOM = 7
max(|Gy| \DC\)Zl+k.dét(p) @

(2uxuy + cl) (204 + ©2)

SSIM (x,y) = .
(Mﬁ + 1y + Cl) (a,% + a2+ Cz)

(8)

Training and testing datasets

The images were obtained from the Berkeley Segmentation Dataset (BSD). The images
were of dimensions 481 x 321 and 321 x 481, with three color channels R, G, and B. The
gray format of images was used after resizing those to 400 x 400, with an option of nearest
interpolation. The database of 300 images was split into 80% of training images which
accounted for 240 images. The remaining images of 30 and 30 were used for validation and
testing respectively. The split of the database was done after shuffling the names of the
images with a random state of 42. All the images were initially rescaled to in the range [0, 1]
from its original scale of [0, 255].

For testing purposes, we used a set of four benchmark datasets they are Set12,
KODAK24, McMaster, and CBSD68. The description of each dataset is given below.

Set12: A compact collection of 12 grayscale pictures that are frequently used to assess
denoising algorithms, enabling a direct comparison with techniques that are currently in
use in the literature.

Kodak24: This collection of 24 finely detailed color images is perfect for evaluating how
well denoising techniques maintain color fidelity and sharpness.

McMaster: 18 color images with an emphasis on textures and high-frequency details,
which is essential for determining how well fine-grained image details are preserved when
denoising.

CBSD68 is a subset of the Berkeley Segmentation Dataset made up of 68 color images
that were chosen especially for testing denoising algorithms on a variety of real-world
images with different content.

RESULTS

The standard values of SSIM and PSNR of the proposed method are listed in Table 1 with
different noise values. In this article, we aim to concentrate on image denoising and also,
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Table 1 Metrics evaluation. Essential metrics of different noise levels.

Metrics PSNR (dB) SSIM FOM

=15 30.6165 0.9290 0.9024
o=25 28.6515 0.8960 0.8768
o =50 26.4619 0.8580 0.8375

Table 2 Comparision table for performance. Results of average value of PSNR in (dB) with various models for noise levels of 15, 25, and 50.

Models BM3D (Dabov WNNM (Gu EPLL (Zoran ¢ TNRD (Chen & CSF (Schmidt & MLP (Burger, Schuler ¢

et al., 2007) et al., 2014) Weiss, 2011) Pock, 2015) Roth, 2014) Harmeling, 2012)
o=15 31.07 31.37 31.21 31.42 31.24 -
o=25 28.57 28.83 28.68 28.92 28.74 28.74
o=50 25.62 25.87 25.67 25.97 - 26.03
DnCNN (Zhang IRCNN (Zhang ECNDNet (Tian FFDNet (Zhang, Zuo ¢ ADNet (Tian RDDCNN (Zhang  MNRUNet
et al., 2017a) et al., 2017b) et al., 2020c) Zhang, 2018) et al., 2020b) et al., 2023b)
31.72 31.63 31.71 31.63 31.74 31.76 30.61
29.23 29.15 29.22 29.19 29.25 29.27 28.65
26.23 26.19 26.23 26.29 26.29 26.30 26.94

we are preserving the edge and texture information in detail. Experimental results also
show a denoising image with clear edges. Most of the traditional methods did not calculate
FOM. However, this current work focuses on evaluating SSIM and FOM along with the
traditional PSNR metric.

DISCUSSION

In this research work, the suggested method is correlated with recent state-of-the-art works
in image-denoising techniques such as robust deformed denoising CNN (RDDCNN; Zhang
et al., 2023a), attention-guided denoising convolutional neural network (ADNet; Tian

et al., 2020a), enhanced convolutional neural denoising network (ECNDNet; Tian et al.,
2020c) and conventional denoising techniques such as denoising convolutional neural
networks (DnCNN; Zhang et al., 2017a), image restoration CNN (IRCNN; Zhang et al.,
2017b), Expected Patch Log-Likelihood (EPLL; Zoran ¢ Weiss, 2011), a cascade of
shrinkage fields (CSF; Schmidt ¢ Roth, 2014), Trainable Nonlinear Reaction Diffusion
(TNRD; Chen ¢» Pock, 2015), and BM3D (Dabov et al., 2007) to demonstrate the effect of
the proposed method. Table 2 shows several network performances with different noise
values of 15, 25 and 50, respectively.

The performance of the network can be analyzed by evaluating PSNR values with
different noise levels of 15, 25, and 50 respectively. Figure 5 demonstrates that our
proposed work performed well compared to other traditional methods. Graphical
representation clearly shows the performance of MNRU-Net when the noise level of
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Figure 5 Performance evaluation. Performance analysis of several methods with Average PSNR (dB) when noise level of 50.
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o = 50. For higher noise levels our models get better PSNR values by using simple
architecture are compared to the various complex models. However, the proposed MNRU-
Net with noise levels of 15 and 25 is getting nearer the PSNR values of other models.

Figure 6 shows the training and validation performance. Throughout the training
process, the model continuously increases PSNR and lowers MSE, exhibiting good
generalization across both noise levels. The validation curves quickly stabilized, indicating
that even with different noise levels, the model is very effective at learning and reducing
overfitting. The model balances training accuracy and validation performance, as
evidenced by the small difference between training and validation metrics, and shows good
generalization across both noise levels.

Using the Set12 dataset, we tested our work at noise levels of 50, 25, and 15. Table 3
describes each image value and displays the average PSNR value for each model. Based on
the comparison table, we find that, with minor variations in 15, our MNRU-Net
architecture performs better at noise levels of 50 and 25.
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Table 3 Setl2 dataset performance. Average results for PSNR (dB) of different models from the Set12 dataset when noise levels of 15, 25, and 50.

Noise level =15

Images BM3D WNNM EPLL CSF TNRD DnCNN IRCNN FFDNet ECNDNet RDDCNN MNRUNet
(Dabov  (Gu (Zoran & (Schmidt (Chen & (Zhang (Zhang (Zhang, Zuo (Tian (Zhang
et al., et al., Weiss, ¢ Roth, Pock, et al., et al., & Zhang, et al., et al.,
2007) 2014)  2011) 2014) 2015) 2017a) 2017b) 2018) 2020¢) 2023a)
C.man 31.91 32.17 31.85 31.95 32.19 32.61 32.55 3243 32.56 32.61 31.69
Parrot 31.37 31.62 31.42 31.37 31.63 31.83 31.84 31.81 31.82 31.93 31.97
House 34.93 35.13 34.17 34.39 34.53 34.97 34.89 35.07 34.97 35.01 34.59
Lena 34.26 34.27 33.92 34.06 34.24 34.62 34.53 34.62 34.52 34.57 32.57
(Continued)
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Table 3 (continued)

Noise level =15

Images BM3D WNNM EPLL CSF TNRD DnCNN IRCNN  FFDNet ECNDNet RDDCNN MNRUNet

(Dabov  (Gu (Zoran & (Schmidt (Chen & (Zhang (Zhang (Zhang, Zuo (Tian (Zhang

et al., et al., Weiss, ¢ Roth, Pock, et al., et al., & Zhang, et al., et al.,

2007) 2014)  2011) 2014) 2015) 2017a) 2017b) 2018) 2020¢) 2023a)
Peppers  32.69 32.99 32.64 32.85 33.04 33.30 33.31 33.25 33.25 33.31 32.15
Barbara 33.10 33.60 31.38 31.92 32.13 32.64 32.43 32.54 3241 32.62 28.53
Starfish  31.14 31.82 31.13 31.55 31.75 32.20 32.02 31.99 32.17 32.13 32.56
Boat 32.13 32.27 31.93 32.01 32.14 32.42 32.34 32.38 32.37 32.42 30.97
Monarch 31.85 32.71 32.10 32.33 32.56 33.09 32.82 32.66 33.11 33.13 32.92
Man 31.92 32.11 32.00 32.08 32.23 32.46 32.40 3241 32.39 32.38 31.40
Airplane 31.07 31.39 31.19 31.33 31.46 31.70 31.70 31.57 31.70 31.67 32.84
Couple  32.10 32.17 31.93 31.98 32.11 32.47 32.40 32.46 32.39 32.46 30.77
Average 32.37 32.70 32.14 32.32 32.50 32.86 32.77 32.77 32.81 32.85 3191
Noise level = 25
Cman 2945 29.64 29.26 29.48 29.72 30.18 30.08 30.10 30.11 30.20 29.93
Parrot 28.93 29.15 28.95 28.90 29.18 29.43 2947 29.44 29.38 29.53 29.76
House 32.85 33.22 32.17 32.39 32.53 33.06 33.06 33.28 33.08 33.13 32.14
Lena 32.07 32.24 31.73 31.79 32.00 32.44 32.43 32.57 32.38 32.40 30.41
Peppers  30.16 30.42 30.17 30.32 30.57 30.87 30.88 30.93 30.85 30.82 30.03
Barbara  30.71 31.24 28.61 29.03 2941 30.00 29.92 30.01 29.84 30.03 26.59
Starfish  28.56 29.03 28.51 28.80 29.02 2941 29.27 29.32 29.43 29.38 29.84
Boat 29.90 30.03 29.74 29.76 29.91 30.21 30.17 30.25 30.14 30.19 2891
Monarch 29.25 29.84 29.39 29.62 29.85 30.28 30.09 30.08 30.30 30.36 30.57
Man 29.61 29.76 29.66 29.71 29.87 30.10 30.04 30.11 30.03 30.05 29.30
Airplane 28.42 28.69 28.61 28.72 28.88 29.13 29.12 29.04 29.07 29.05 30.67
Couple 29.71 29.82 29.53 29.53 29.71 30.12 30.08 30.20 30.03 30.10 28.62
Average 29.97 30.26 29.69 29.84 30.06 30.43 30.38 30.44 30.39 30.44 29.73
Noise level = 50
C.man 26.13 26.45 26.10 26.37 26.62 27.03 26.88 27.05 27.07 27.16 27.72
Parrot 25.90 26.14 25.95 26.12 26.16 26.48 26.55 26.57 26.32 26.53 27.63
House 29.69 30.33 29.12 29.64 29.48 30.00 29.96 30.37 30.12 30.21 29.63
Lena 29.05 29.25 28.68 29.32 28.93 29.39 29.40 29.66 29.29 29.32 28.36
Peppers  26.68 26.95 26.80 26.68 27.10 27.32 27.33 27.54 27.30 27.38 28.20
Barbara 27.22 27.79 24.83 25.24 25.70 26.22 26.24 26.45 26.26 26.36 25.23
Starfish  25.04 25.44 25.12 2543 25.42 25.70 25.57 25.75 25.72 25.72 28.12
Boat 26.78 26.97 26.74 27.03 26.94 27.20 27.17 27.33 27.16 27.23 26.90
Monarch 25.82 26.32 25.94 26.26 26.31 26.78 26.61 26.81 26.82 26.84 28.62
Man 26.81 26.94 26.79 27.06 26.98 27.24 27.17 27.29 27.11 27.22 27.56
Airplane 25.10 25.42 25.31 25.56 25.59 25.87 25.89 25.89 25.79 25.88 28.04
Couple  26.46 26.64 26.30 26.67 26.50 26.90 26.88 27.08 26.84 26.88 26.79
Average 26.72 27.05 26.47 26.78 26.81 27.18 27.14 27.32 27.15 27.23 27.73
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Figure 7 Performance analysis of the Set12 dataset. Performance analysis of several methods from the Set12 dataset with average PSNR (dB) with
noise level of 50.
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Our proposed model is more satisfactory for gray image denoising, as evidenced by the
figures, which show that the clean images obtained through its use are clearer than those
obtained through additional methods. The performance analysis has been mentioned in
Fig. 7, it shows a higher performance compared to the other state-of-the-art methods when
the noise level of 50 from the Set12 dataset. This performance analysis shows how our
architecture works at higher noise levels. In the research work, we focussed on the
proposed method as efficient, worked out with different datasets, and got better PSNR
values listed in tables and expressed in figures and graphs.

Table 4 shows, that our model works well in any database with better PSNR values. Also,
the model is less complex and computationally less expensive.

The proposed model is designed to achieve greater performance with simple
architecture and also concentrates on edge and texture-aware information. By evaluating
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Table 4 Performance analysis using different dataset. Results for average PSNR (dB) of MNRU-Net
from the McMaster, Kodak24, and CBSD68 datasets with different noise levels of 15, 25, and 50.

Noise levels o=15 =25 o =50
CBSD68 30.89 28.92 27.23
Kodak24 30.00 28.09 26.36
McMaster 30.71 29.14 27.06
Table 5 Comparison of SSIM values to the state-of-the-art methods.
Models EPLL MLP DnCNN IrCNN MNRU-Net
(Zoran & Weiss, 2011) (Burger, Schuler ¢ Harmeling, 2012) (Zhang et al., 2017a) (Zhang et al., 2017b)
o=15 0.8826 0.8727 0.9018 0.9071 0.9265
o0=25 0.8125 0.8432 0.8802 0.8562 0.8893
o=50 0.6917 0.7312 0.7493 0.7500 0.7832

edge performance, we calculated Structural Similarity Index (SSIM) values and compared
them with the state-of-the-art methods. Table 5 denotes the SSIM value of the MNRU-Net
architecture.

Advantages and disadvantages of MNRU-Net

By using handcrafted features in addition to learned features, MNRU-Net improves
denoising performance, particularly in high-noise scenarios. This results in the denoised
image’s edges and textures being better preserved. MNRU-Net maintains a simpler
architecture when contrasted with more intricate deep-learning models. Its simplicity
makes it more accessible and faster to train, especially on constrained hardware, by
lowering computational costs and memory requirements. In conclusion, MNRU-Net has a
lot to offer in terms of improved performance and decreased complexity even with small
amounts of data, but it also has drawbacks in terms of feature design, generalization, and
possible redundancy with learned features.

CONCLUSIONS

Our proposed method has proven a better performance with a simple model. We
reconstructed a simple U-Net model as MNRU-Net with a limited training database
without involving any image augmentation. To boost the learning capability of the
network, hand-crafted features were added to the input layers. It was witnessed in this
research work, that the MNRU-Net performs well. Also, we focussed on edge and texture-
aware image denoising. In terms of image deblurring and image denoising, the suggested
model is resistant to changes in noise level, image content, and hyperparameters. Based on
experimental results, the suggested method outperforms other currently used techniques
in terms of SSIM and PSNR, while also retaining more information on image and
achieving greater performance in noise removal. In the future, we intend to handle more
complicated real image denoising problems, like blurry and low-vision images.
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