

Edge and texture aware image denoising using median noise residue U-net with hand-crafted features

Soniya S. and Sriharipriya K. C.

School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India

ABSTRACT

Image denoising is a complex task that always yields an approximated version of the clean image. Unfortunately, the existing works have focussed only on the peak signal to noise ratio (PSNR) metric and have shown no attention to edge features in a reconstructed image. Although fully convolution neural networks (CNN) are capable of removing the noise using kernel filters and automatic extraction of features, it has failed to reconstruct the images for higher values of noise standard deviation.

Additionally, deep learning models require a huge database to learn better from the inputs. This, in turn, increases the computational complexity and memory requirement. Therefore, we propose the Median Noise Residue U-Net (MNRU-Net) with a limited training database without involving image augmentation. In the proposed work, the learning capability of the traditional U-Net model was increased by adding hand-crafted features in the input layers of the U-Net. Further, an approximate version of the noise estimated from the median filter and the gradient information of the image were used to improve the performance of U-Net. Later, the performance of MNRU-Net was evaluated based on PSNR, structural similarity, and figure of merit for different noise standard deviations of 15, 25, and 50 respectively. It is witnessed that the results gained from the suggested work are better than the results yielded by complex denoising models such as the robust deformed denoising CNN (RDDCNN). This work emphasizes that the skip connections along with the hand-crafted features could improve the performance at higher noise levels by using this simple architecture. In addition, the model was found to be less expensive, with low computational complexity.

Submitted 9 July 2024
Accepted 4 October 2024
Published 16 January 2025

Corresponding author
Sriharipriya K. C.,
sriharipriya.kc@vit.ac.in

Academic editor
Stefano Cirillo
Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.2449

© Copyright
2025 S. and C.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Subjects Artificial Intelligence, Computer Vision, Neural Networks

Keywords Hand-crafted features, Gradient information, Skip connections, MNRU-Net

INTRODUCTION

The technique of image denoising involves taking out noise from a source image, which is essential for enhancing image quality in a variety of applications. As $y = x + v$, where v is additive white Gaussian noise (AWGN) with a standard deviation of sigma, the objective is to recover a clean image (x) from a noisy observation (y). Numerous strategies have been devised to tackle this issue. *Burger, Schuler & Harmeling (2012)* have shown that a multilayer perceptron (MLP) can directly learn the mapping from noisy image patches to clean patches. Another machine learning-based strategy, called the fast and flexible denoising convolutional neural network (FFDNet), is a quick and flexible denoising network that can handle different kinds and intensities of noise because it takes a tunable

noise level map ([Zhang, Zuo & Zhang, 2018](#)). **Image-Prior-Based Approaches:** These techniques extract meaningful information from noise in images by drawing on prior knowledge about the image, which is typically based on the Bayesian framework. To minimize an energy function that represents the properties of the image, for instance, optimization techniques are used in image denoising with Markov random fields (MRF) or conditional random fields (CRF) ([Barbu, 2009](#)). In addition, Total Variation (TV) regularisation techniques were presented. These techniques aim to reduce noise while maintaining significant image characteristics, such as edges. These regularisation issues have been effectively resolved by quick gradient-based algorithms ([Beck & Teboulle, 2009](#)).

Eventually, a method that combined traditional and learning-based approaches was created. Novel approaches have been achieved by fusing deep learning models with conventional techniques. To better model the block matching and aggregation processes, for instance, BM3D-Net expands the BM3D algorithm with a convolutional neural network (CNN) structure ([Yang & Sun, 2018](#)). To improve image recovery from low-resolution and noisy inputs, a deep CNN intended for denoising or super-resolution can be cascaded with an enhancement CNN ([Huang et al., 2017](#)).

Further emphasized multiresolution transforms. For spatially localized details like edges and singularities, these transforms offer good sparsity, which is essential for efficient denoising. By utilizing these multiresolution features, BM3D has demonstrated efficacy in identifying and conserving significant details from natural images ([Dabov et al., 2007](#)). Innovations in image denoising keep progressing by combining these various methods, striking a balance between noise reduction and the retention of important image elements.

The development of technology is the primary focus of researchers. One kind of deep learning model that works especially well with processing grid-like data, like images, is the deep convolutional neural network (CNN). The ability of CNNs to automatically learn spatial hierarchies of features from raw image data has revolutionized the field of computer vision. This ability makes CNNs highly effective for a variety of tasks, including object detection, segmentation, denoising, and image classification. Deep CNNs have demonstrated their efficacy in numerous computer vision applications under their capacity to represent intricate patterns and correlations found in image data. They are now a mainstay of contemporary deep learning research and development due to their adaptability and effectiveness.

Deep neural network training can improve performance, but it's a common misperception that adding more layers will automatically result in greater accuracy. As a matter of fact, the vanishing gradient problem and the curse of dimensionality problems where accuracy increases initially but rapidly decreases as network depth increases can be brought on by adding more layers ([Aadhitya & Sriharipriya, 2023](#)). Furthermore, prior deep learning techniques for image denoising frequently experience overfitting, which results in the loss of important edge and texture information ([Xu et al., 2023](#)).

This study presents a novel deep convolutional neural network (CNN) model for image denoising, called Median Noise Residue U-Net (MNRU-Net), in order to address these issues. MNRU-Net is made with a simpler architecture than traditional CNN-based denoising techniques in order to prevent training issues and maintain edge and texture

information. The model is less complicated and more computationally efficient because it makes use of a small training dataset without the need for data augmentation.

Additionally, adding manually created features to the input layers of the classic U-Net model improves its learning capacity and allows for improved noise reduction and preservation of image detail.

The main contributions of our work are below

- The model assists in distinguishing between noise and significant image details by using noise estimates obtained from a median filter and image gradient information. This method enhances denoising performance, particularly at higher noise levels.
- Hand-crafted features are integrated directly into the input layers of MNRU-Net, which improves upon the conventional U-Net architecture. Feature loss in deep networks is a common problem that this integration helps to solve by improving the model's ability to preserve edges and textures.
- Without compromising denoising quality, the model keeps a straightforward architecture with fewer parameters, which makes it computationally efficient and appropriate for applications with limited resources.

RELATED STUDY

Convolution neural network for image processing

Due to a strong capacity to learn, CNNs have been formed for image denoising. The original distribution of noise in corrupted images may vary as a result of convolution operation, which could make training for image denoising more challenging. The batch normalization technique can address the problem by normalizing the input layers of a network. This article focuses on the internal covariant shift problem but the vanishing or exploding gradient may be severe ([Ioffe, 2015](#)). For retrieving smooth edges, the constrained total variation (TV) approach requires Fast gradient-based algorithms that can handle edges and eliminate noise in a corrupted image but may cause optimization problems ([Beck & Teboulle, 2009](#)).

To address additional inverse problems, denoiser prior can be promoted into model-based optimization techniques as a modular component ([Zhang et al., 2017b](#)).

Alternatively, the introduction of BRDNet architecture, which integrates two networks to expand the width, addresses the mini-batch and internal covariant shift problems, reduces the training challenges of the structure, and improves performance. However, the main disadvantage of the model is more complex ([Tian, Xu & Zuo, 2020](#)). A dual denoising network (DudeNet) was introduced to restore clean images. A dual network with a sparse mechanism can bring out additional characteristics to improve the relevancy of the denoiser. The combination of local and global characteristics can take out salient features to restore clear details to complicated noisy images ([Tian et al., 2020b](#)). A framework for training DDM on a single image named SinDDM and learning the internal data of the training image utilizes a multi-scale diffusion procedure. They employ a fully convolutional lightweight denoiser, conditioned at both noise level and scale, to encourage

backscatter. With this architecture, patterns of any size, from coarse to fine, can be created (Kulikov *et al.*, 2023). The use of the medical field has seen many advancements. A wide range of image-denoising methods designed with medical imaging in mind are covered in this thorough review. The effectiveness of a wide range of contemporary and conventional techniques, such as wavelet transforms, non-local means, and deep learning approaches, is assessed in various medical imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound (Kaur & Dong, 2023). Dong, Ma & Basu (2021) present a novel feature-guided CNN that is intended for denoising ultrasound images that are captured from portable devices. Because of their portable nature and their noisy operation, ultrasound machines frequently yield images of inferior quality. The feature-guided CNN improves image quality while maintaining clinically significant details by utilizing domain-specific features like edges and textures (Dong, Ma & Basu, 2021). Dong & Basu (2023) describe a denoising method for medical images that uses an explainable AI (XAI) framework to maintain significant features while denoising. To guarantee that the final images maintain crucial diagnostic features while lowering noise, the authors suggest a novel loss function that combines feature preservation with conventional denoising goals.

Deep CNN for image denoising

A lot of research has been published using different methods of CNN, Tian *et al.* (2022) proposed that multi stage image denoising CNN with wavelet transform (MWDCNN) is a technique that consists of three stages: dynamic convolutional block (DCB), wavelet transform and enhancement block (WEB)s, and Residual block (RB) to improve the performance of denoiser. To overcome the width and depth limitations of lightweight CNNs and achieve better denoising performance, a dynamic convolution is used in the CNN and does not focus on complex validation (Tian *et al.*, 2022). A new method of self-supervised image noise canceling that integrates a multi-masking approach with BSN (MM-BSN). It can be employed to resolve the issues of high noise cancellation, which other BSN methods cannot solve effectively (Zhang *et al.*, 2023b). Res-WCAE with the Kullback-Leibler divergence (KLD) rule has been proposed for a lightweight and powerful deep learning architecture, particularly designed for denoising the fingerprint image. Res-WCAE contains two encoders and a decoder. It requires a large database to identify the correct fingerprint (Liang & Liang, 2023). Further, a data enhancement technique called recorrupted-to-recorrupted (R2R) has been proposed, to solve the problem of overfitting due to a lack of realism (Pang *et al.*, 2021). Neshatavar *et al.* (2022) proposed a cyclic multivariate function-supervised image denoising framework. The CVF-SID method can remove clear and noisy image maps from the input by exploiting several self-supervised loss metrics. For better denoising performance, deep boosting denoising net (DBDnet) has been developed. A noisy observation, creates a noise map from a residual learning network. To be more precise, it creates a raw noise map using a straightforward design, and then gradually upgrades the noise map using an enhancement function but the noise prediction may not be clear (Ma *et al.*, 2022; Quan *et al.*, 2021). The authors look into the possibility of complex validating CNNs for image denoise. To fully utilize the benefits of

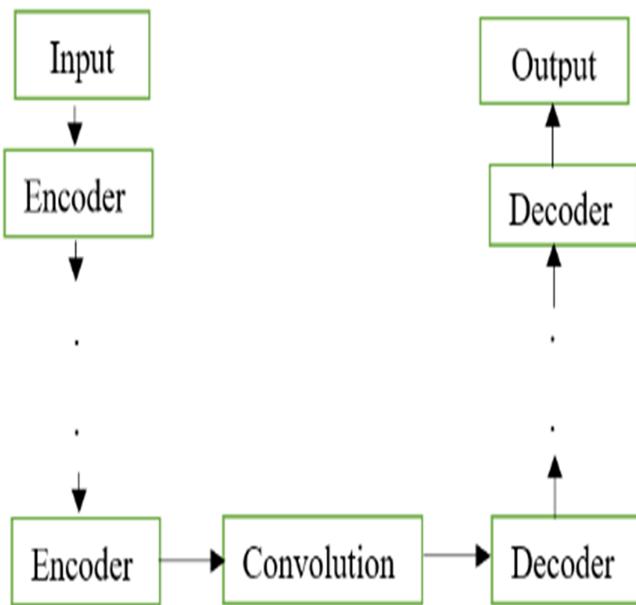


Figure 1 Basic U-Net. Basic U-Net architecture.

Full-size DOI: 10.7717/peerj-cs.2449/fig-1

complex-valued operations, CNN was designed with its main operations defined in the complex number domain. The fact that the various models employed in this comparison study were not rigorously trained in identical settings is one of its limitations.

Moreover, the above-discussed models are increasing the performance by upgrading the networks at different levels. But it leads to complexity and more time consumption. CNNs are the most useful apparatus for denoising an image, as demonstrated by the methods-based CNNs discussed above. As a consequence, we follow suit and use a CNN to solve the image-denoising problem by constructing a simple architecture.

MATERIALS AND METHODS

The proposed denoising model of MNRU-Net architecture has been trained and implemented. This section discussed the Basic U-Net and proposed MNRU-Net model in detail.

Basic U-Net architecture

The U-Net models are widely used for segmentation and denoising applications. The traditional model of U-Net architecture is shown in Fig. 1. The basic architecture of the U-Net model contains an encoder and decoder constructed only using the fully convolutional layers without using any dense layers. The encoders are equipped with convolution and downsampling done by kernel filters and pooling layers respectively. In contrast to encoders, decoders are constructed using up samplers and concatenation of the features from the encoder stage. Unlike the classification models, the final output is a denoised image instead of a class label.

The major strength of deep learning models relies on their ability to learn the feature automatically without human intervention. Though the conventional U-Net models could

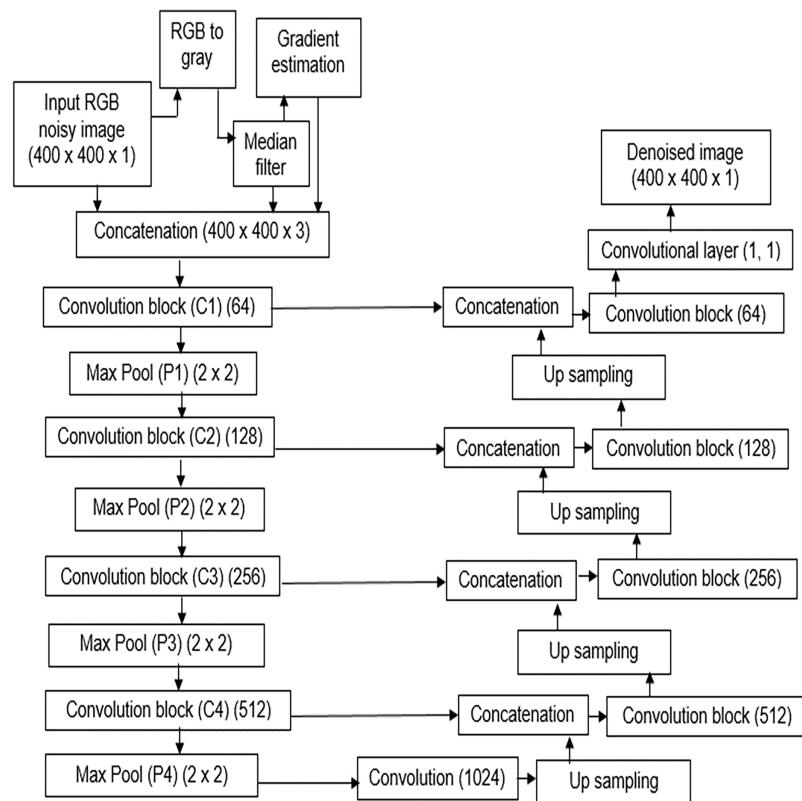


Figure 2 Architecture of MNRU-Net. Proposed method of MNRU-Net Design.

Full-size DOI: [10.7717/peerj-cs.2449/fig-2](https://doi.org/10.7717/peerj-cs.2449/fig-2)

perform better for low-complex databases, the performance of U-Net is poor in the case of challenging applications such as denoising. Therefore, it was proposed to add hand-crafted features to the U-Net model. The U-Net model was constructed using the traditional encoders in the feature abstraction stage and the decoders were employed in the feature reconstruction stage.

MNRU-Net architecture

The MNRU-Net model was constructed using the traditional encoders in the feature abstraction stage and the decoders were employed in the feature reconstruction stage. The traditional model of U-Net architecture as shown in Fig. 1 was modified to the MNRU-Net model as depicted in Fig. 2. The main novelty in this work was the inclusion of hand-crafted features in the deep learning model.

The idea of this research work is to supply manual features to enhance the learning capability of the conventional U-Net model. Though improved versions of U-Net models are available, the main drawback of those models is the high computation cost. In addition, the noise pattern learned by the traditional U-Net model is insufficient to reconstruct a better-denoised image.

Hence, the noise pattern obtained from the conventional median filter was applied in addition to the noisy gray image. Additionally, the gradient information of the image is

also applied to the model. Hence, two image priors are evaluated and concatenated to the input gray image.

Let $I(x, y)$ be the clean image and $N(0, \sigma)$ be the noise. Then the noisy image I is represented as shown in [Eq. \(1\)](#).

$$I_n(x, y) = I(x, y) + N(0, \sigma). \quad (1)$$

The denoised image I_d from the median filter is obtained as [Eq. \(2\)](#). The value of the denoised image I_d at pixel location (x, y) is indicated by $I_d(x, y)$. It is the result of applying the median filter at this particular pixel. The noisy image I_n at pixel location $(x - k, y - l)$ is represented by the expression $I_n(x - k, y - l)$. The median is computed over a local neighborhood centered around the pixel (x, y) , as indicated by the coordinates $(x - k, y - l)$.

$$I_d(x, y) = \text{Median}(I_n(x - k, y - l)) \quad (2)$$

where the median represents the operation that computes the median value, and $(x - k, y - l)$ iterates over the pixels in the filter window around the pixel (x, y) . A 3×3 size window is used to filter the Gaussian noise. An approximate version of the noise matrix is obtained as shown in [Eq. \(3\)](#).

$$\text{Noise}(x, y) = I_n(x, y) - I_d(x, y). \quad (3)$$

Let $I_d(x, y)$ be the recovered image from the median filter and gradient magnitude image $G(x, y)$. The gradient magnitude is obtained as given in [Eq. \(4\)](#).

$$G(x, y) = \sqrt{(G_x(x, y)^2 + G_y(x, y)^2)} \quad (4)$$

where vertical gradient $G_y(x, y)$ and Horizontal gradient $G_x(x, y)$ are calculated using Sobel operators as follows:

$$\begin{aligned} G_x(x, y) = & (I_d(x + 1, y - 1) + 2 I_d(x + 1, y) + I_d(x + 1, y + 1) \\ & - (I_d(x - 1, y - 1) + 2 I_d(x - 1, y) + I_d(x - 1, y + 1)) \end{aligned} \quad (4a)$$

$$\begin{aligned} G_y(x, y) = & (I_d(x - 1, y - 1) + 2 I_d(x, y - 1) + I_d(x + 1, y - 1) \\ & - (I_d(x - 1, y + 1) + 2 I_d(x, y + 1) + I_d(x + 1, y + 1)) \end{aligned} \quad (4b)$$

By substituting [Eqs. \(4a\)](#) and [\(4b\)](#) in [Eq. \(4\)](#) we get a gradient image. Hence, the MNRU-Net model is applied with three layers of information namely, the gray image, the predicted noise image from [Eq. \(3\)](#), and the gradient image from [Eq. \(4\)](#).

The structure of the encoder used in this research is shown in [Fig. 3](#). All the convolutional layers were activated by the activation function of the rectified linear unit (ReLU) activation function. However, the final convolution layers were activated by using the 'sigmoid' function which yielded the final denoised image. Drop-out layers were also added in convolutional layers of both decoder and encoder to improve the performance of denoising. A dropout of 0.05 was done in the decoder and encoder stages. The encoder and

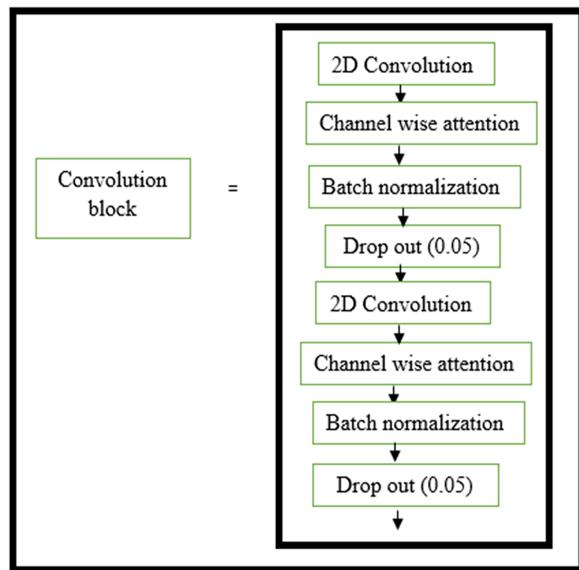


Figure 3 Convolution layer in encoder block. Layers within the convolution block in the encoder block.

Full-size DOI: [10.7717/peerj-cs.2449/fig-3](https://doi.org/10.7717/peerj-cs.2449/fig-3)

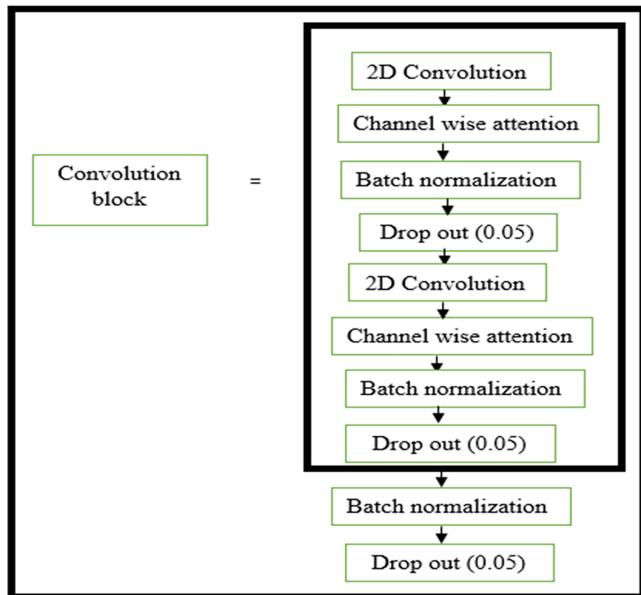


Figure 4 Convolution layer in decoder block. Layers within the convolution block in the decoder block.

Full-size DOI: [10.7717/peerj-cs.2449/fig-4](https://doi.org/10.7717/peerj-cs.2449/fig-4)

decoder sections are constructed using the convolution blocks C1, C2, C3, and C4 as shown in Figs. 3 and 4, respectively. Each of the convolution blocks is internally consisting of two convolutional layers. The number of filters in each encoder block is 64, 128, 256, and 512 respectively for blocks 1, 2, 3, and 4, respectively, in downstream.

Traditional deep networks may experience gradients that explode or vanish as well as becoming stuck in weak local minima when the learning rate is too high. These problems

are aided by batch normalization. Normalizing network activations prevents slight differences in layer parameters from amplifying as the data spreads throughout a deep network (Ioffe, 2015).

Handcrafted features

When applying hand-crafted features to image-denoising tasks, neural networks perform much better, especially when there is a lack of training data or a high noise level. By using pre-defined features that capture significant image properties, the model can make use of handcrafted features, which minimizes the need for large datasets and intensive augmentation. For situations where data availability is restricted, MNRU-Net becomes especially helpful. In contrast to more intricate and sophisticated models, MNRU-Net achieves competitive outcomes with a more straightforward architecture. Handcrafted features reduce the need for deeper layers, making the model faster to train and less expensive to compute.

As demonstrated by the improved performance metrics (PSNR, SSIM, figure of merit) across various noise standard deviations, U-Net's architecture combined with hand-crafted features allows for better handling of high noise levels.

Loss function

Since the problem is related to the reconstruction of the noiseless image, the loss function was chosen as mean squared error (MSE). The loss function as shown in Eq. (5) was used during the training session.

$$MSE\ loss = \frac{1}{M \times N} \sum_{i=1}^M \sum_{j=1}^N (predicted_{i,j} - actual\ target_{i,j})^2 \quad (5)$$

where N = No of Columns, M = No of Rows, and i, j are pixel locations, predicted_{i,j} = denoised images during training session, actual target_{i,j} = the Original Noise free image. The main metrics were to reduce MSE loss and obtain the least error.

Metrics evaluation

The learning rate of the model was initially set at 1×10^{-3} . This rate was adaptively modified based on the validation performance. The learning rate was reduced in non-linear steps of 1×10^{-5} , 1×10^{-6} and the least of 1×10^{-7} . L2 regularization was set to 0.000001. This adaptive variation was done using the call-back functions when there was no improvement even after a patience of 10. The model was optimized by utilizing the Adam optimizer (Kingma & Ba, 2014). The batch size was adjusted to four in the case of the BSD300 database. This model was trained for 50 epochs. In the training loop, the sessions were iterated through four images per batch to cover all the training images. Since the main aim is to improve the learning capability of the traditional U-Net model, image augmentation was not done in this work.

The training metric was chosen as the peak signal to noise ratio (PSNR) as shown in Eq. (6).

$$PSNR = 10 \log \frac{Max^2}{MSE \ loss} \text{dB} \quad (6)$$

where Max = Maximum value of the pixel in the original noise-free image.

The testing performance was obtained from the images that were not exposed to training and validation. The average performance in terms of MSE and PSNR was obtained as 15.25 and 50 dB respectively. The performance of the MNRU-Net model to denoise is evaluated based on PSNR, SSIM, and FOM. In addition to the traditional metrics, a few of the feature-based metrics were also included in the performance evaluation. The formula to calculate the metrics is presented in [Eqs. \(7\) & \(8\)](#).

$$FOM = \frac{1}{\max(|G_t| |D_c|)} \sum \frac{1}{1 + k \cdot d_{G_t}^2(p)} \quad (7)$$

$$SSIM(x, y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}. \quad (8)$$

Training and testing datasets

The images were obtained from the Berkeley Segmentation Dataset (BSD). The images were of dimensions 481×321 and 321×481 , with three color channels R, G, and B. The gray format of images was used after resizing those to 400×400 , with an option of nearest interpolation. The database of 300 images was split into 80% of training images which accounted for 240 images. The remaining images of 30 and 30 were used for validation and testing respectively. The split of the database was done after shuffling the names of the images with a random state of 42. All the images were initially rescaled to in the range $[0, 1]$ from its original scale of $[0, 255]$.

For testing purposes, we used a set of four benchmark datasets they are Set12, KODAK24, McMaster, and CBSD68. The description of each dataset is given below.

Set12: A compact collection of 12 grayscale pictures that are frequently used to assess denoising algorithms, enabling a direct comparison with techniques that are currently in use in the literature.

Kodak24: This collection of 24 finely detailed color images is perfect for evaluating how well denoising techniques maintain color fidelity and sharpness.

McMaster: 18 color images with an emphasis on textures and high-frequency details, which is essential for determining how well fine-grained image details are preserved when denoising.

CBSD68 is a subset of the Berkeley Segmentation Dataset made up of 68 color images that were chosen especially for testing denoising algorithms on a variety of real-world images with different content.

RESULTS

The standard values of SSIM and PSNR of the proposed method are listed in [Table 1](#) with different noise values. In this article, we aim to concentrate on image denoising and also,

Table 1 Metrics evaluation. Essential metrics of different noise levels.

Metrics	PSNR (dB)	SSIM	FOM
$\sigma = 15$	30.6165	0.9290	0.9024
$\sigma = 25$	28.6515	0.8960	0.8768
$\sigma = 50$	26.4619	0.8580	0.8375

Table 2 Comparision table for performance. Results of average value of PSNR in (dB) with various models for noise levels of 15, 25, and 50.

Models	BM3D (Dabov et al., 2007)	WNNM (Gu et al., 2014)	EPLL (Zoran & Weiss, 2011)	TNRD (Chen & Pock, 2015)	CSF (Schmidt & Roth, 2014)	MLP (Burger, Schuler & Harmeling, 2012)
$\sigma = 15$	31.07	31.37	31.21	31.42	31.24	–
$\sigma = 25$	28.57	28.83	28.68	28.92	28.74	28.74
$\sigma = 50$	25.62	25.87	25.67	25.97	–	26.03
DnCNN (Zhang et al., 2017a)	IRCNN (Zhang et al., 2017b)	ECNDNet (Tian et al., 2020c)	FFDNet (Zhang, Zuo & Zhang, 2018)	ADNet (Tian et al., 2020b)	RDDCNN (Zhang et al., 2023b)	MNRUNet
31.72	31.63	31.71	31.63	31.74	31.76	30.61
29.23	29.15	29.22	29.19	29.25	29.27	28.65
26.23	26.19	26.23	26.29	26.29	26.30	26.94

we are preserving the edge and texture information in detail. Experimental results also show a denoising image with clear edges. Most of the traditional methods did not calculate FOM. However, this current work focuses on evaluating SSIM and FOM along with the traditional PSNR metric.

DISCUSSION

In this research work, the suggested method is correlated with recent state-of-the-art works in image-denoising techniques such as *robust deformed denoising CNN* (RDDCNN; [Zhang et al., 2023a](#)), attention-guided denoising convolutional neural network (ADNet; [Tian et al., 2020a](#)), enhanced convolutional neural denoising network (ECNDNet; [Tian et al., 2020c](#)) and conventional denoising techniques such as denoising convolutional neural networks (DnCNN; [Zhang et al., 2017a](#)), image restoration CNN (IRCNN; [Zhang et al., 2017b](#)), Expected Patch Log-Likelihood (EPLL; [Zoran & Weiss, 2011](#)), a cascade of shrinkage fields (CSF; [Schmidt & Roth, 2014](#)), Trainable Nonlinear Reaction Diffusion (TNRD; [Chen & Pock, 2015](#)), and BM3D ([Dabov et al., 2007](#)) to demonstrate the effect of the proposed method. [Table 2](#) shows several network performances with different noise values of 15, 25 and 50, respectively.

The performance of the network can be analyzed by evaluating PSNR values with different noise levels of 15, 25, and 50 respectively. [Figure 5](#) demonstrates that our proposed work performed well compared to other traditional methods. Graphical representation clearly shows the performance of MNRU-Net when the noise level of

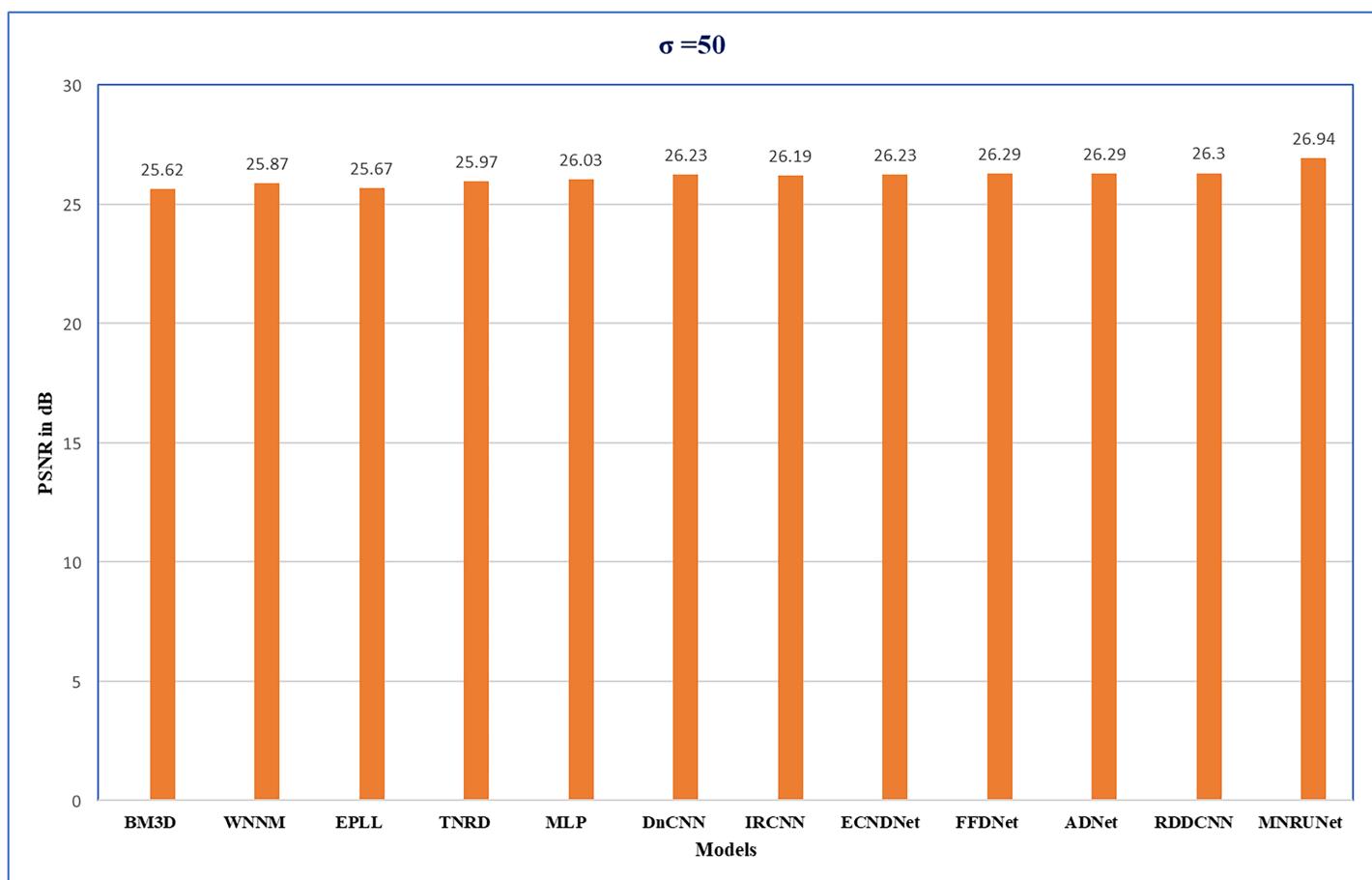


Figure 5 Performance evaluation. Performance analysis of several methods with Average PSNR (dB) when noise level of 50.

Full-size DOI: [10.7717/peerj-cs.2449/fig-5](https://doi.org/10.7717/peerj-cs.2449/fig-5)

$\sigma = 50$. For higher noise levels our models get better PSNR values by using simple architecture are compared to the various complex models. However, the proposed MNRU-Net with noise levels of 15 and 25 is getting nearer the PSNR values of other models.

Figure 6 shows the training and validation performance. Throughout the training process, the model continuously increases PSNR and lowers MSE, exhibiting good generalization across both noise levels. The validation curves quickly stabilized, indicating that even with different noise levels, the model is very effective at learning and reducing overfitting. The model balances training accuracy and validation performance, as evidenced by the small difference between training and validation metrics, and shows good generalization across both noise levels.

Using the Set12 dataset, we tested our work at noise levels of 50, 25, and 15. Table 3 describes each image value and displays the average PSNR value for each model. Based on the comparison table, we find that, with minor variations in 15, our MNRU-Net architecture performs better at noise levels of 50 and 25.

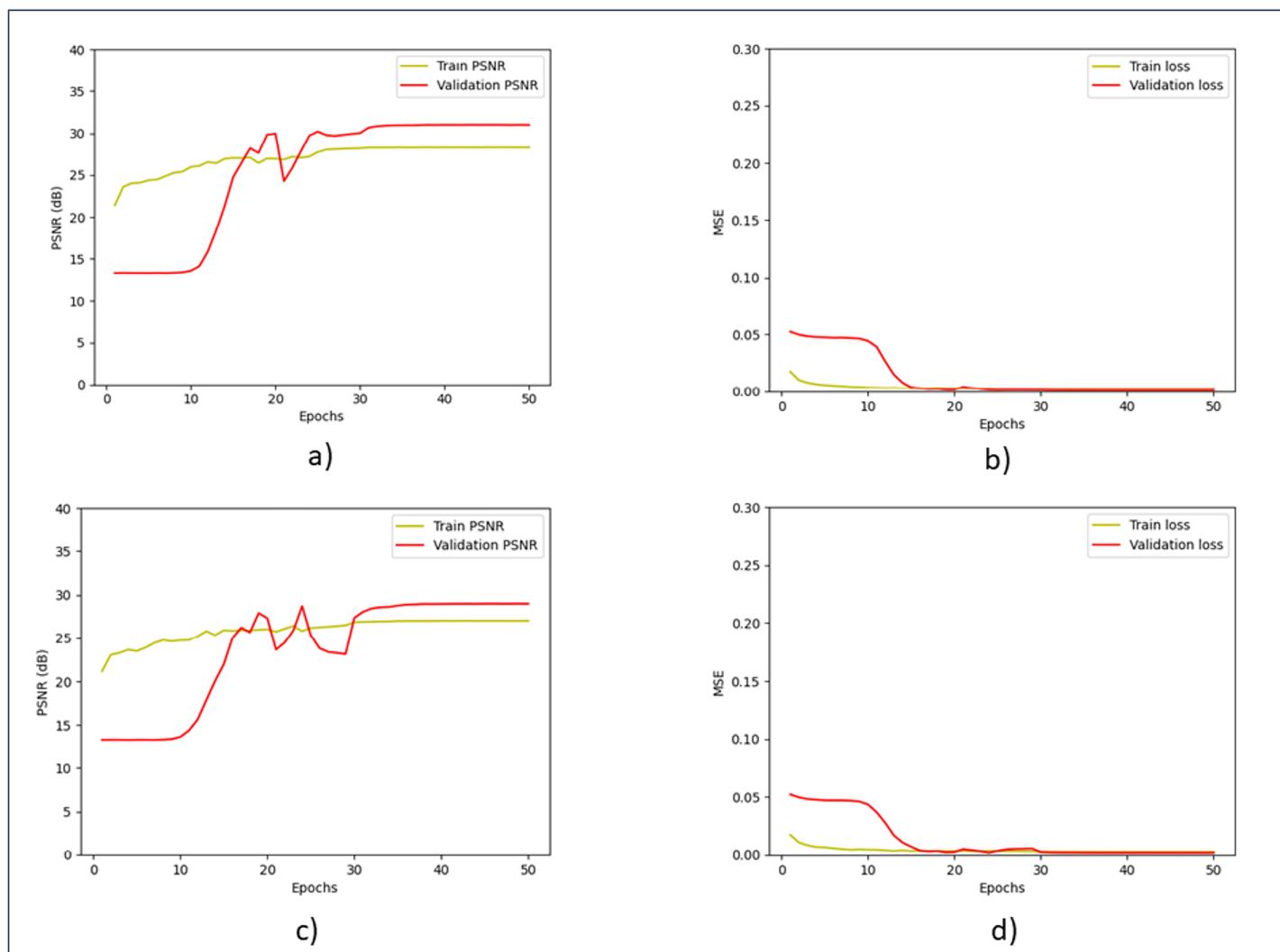


Figure 6 Training and validation of PSNR and MSE. (A) Training and validation of PSNR at the noise level of 15. (B) Training and validation of MSE at the noise level of 15. (C) Training and validation of PSNR at the noise level of 25. (D) Training and validation of MSE at the noise level of 25.

Full-size DOI: [10.7717/peerj-cs.2449/fig-6](https://doi.org/10.7717/peerj-cs.2449/fig-6)

Table 3 Set12 dataset performance. Average results for PSNR (dB) of different models from the Set12 dataset when noise levels of 15, 25, and 50.

Noise level =15

Images	BM3D (<i>Dabov et al., 2007</i>)	WNNM (<i>Gu et al., 2014</i>)	EPLL (<i>Zoran & Weiss, 2011</i>)	CSF (<i>Schmidt & Roth, 2014</i>)	TNRD (<i>Chen & Pock, 2015</i>)	DnCNN (<i>Zhang et al., 2017a</i>)	IRCNN (<i>Zhang et al., 2017b</i>)	FFDNet (<i>Zhang, Zuo & Zhang, 2018</i>)	ECNDNet (<i>Tian et al., 2020c</i>)	RDDCNN (<i>Zhang et al., 2023a</i>)	MNRUNet
C.man	31.91	32.17	31.85	31.95	32.19	32.61	32.55	32.43	32.56	32.61	31.69
Parrot	31.37	31.62	31.42	31.37	31.63	31.83	31.84	31.81	31.82	31.93	31.97
House	34.93	35.13	34.17	34.39	34.53	34.97	34.89	35.07	34.97	35.01	34.59
Lena	34.26	34.27	33.92	34.06	34.24	34.62	34.53	34.62	34.52	34.57	32.57

(Continued)

Table 3 (continued)**Noise level =15**

Images	BM3D (<i>Dabov et al., 2007</i>)	WNNM (<i>Gu et al., 2014</i>)	EPLL (<i>Zoran & Weiss, 2011</i>)	CSF (<i>Schmidt & Roth, 2014</i>)	TNRD (<i>Chen & Pock, 2015</i>)	DnCNN (<i>Zhang et al., 2017a</i>)	IRCNN (<i>Zhang et al., 2017b</i>)	FFDNet (<i>Zhang, Zuo & Zhang, 2018</i>)	ECNDNet (<i>Tian et al., 2020c</i>)	RDDCNN (<i>Zhang et al., 2023a</i>)	MNRUNet
Peppers	32.69	32.99	32.64	32.85	33.04	33.30	33.31	33.25	33.25	33.31	32.15
Barbara	33.10	33.60	31.38	31.92	32.13	32.64	32.43	32.54	32.41	32.62	28.53
Starfish	31.14	31.82	31.13	31.55	31.75	32.20	32.02	31.99	32.17	32.13	32.56
Boat	32.13	32.27	31.93	32.01	32.14	32.42	32.34	32.38	32.37	32.42	30.97
Monarch	31.85	32.71	32.10	32.33	32.56	33.09	32.82	32.66	33.11	33.13	32.92
Man	31.92	32.11	32.00	32.08	32.23	32.46	32.40	32.41	32.39	32.38	31.40
Airplane	31.07	31.39	31.19	31.33	31.46	31.70	31.70	31.57	31.70	31.67	32.84
Couple	32.10	32.17	31.93	31.98	32.11	32.47	32.40	32.46	32.39	32.46	30.77
Average	32.37	32.70	32.14	32.32	32.50	32.86	32.77	32.77	32.81	32.85	31.91
Noise level = 25											
C.man	29.45	29.64	29.26	29.48	29.72	30.18	30.08	30.10	30.11	30.20	29.93
Parrot	28.93	29.15	28.95	28.90	29.18	29.43	29.47	29.44	29.38	29.53	29.76
House	32.85	33.22	32.17	32.39	32.53	33.06	33.06	33.28	33.08	33.13	32.14
Lena	32.07	32.24	31.73	31.79	32.00	32.44	32.43	32.57	32.38	32.40	30.41
Peppers	30.16	30.42	30.17	30.32	30.57	30.87	30.88	30.93	30.85	30.82	30.03
Barbara	30.71	31.24	28.61	29.03	29.41	30.00	29.92	30.01	29.84	30.03	26.59
Starfish	28.56	29.03	28.51	28.80	29.02	29.41	29.27	29.32	29.43	29.38	29.84
Boat	29.90	30.03	29.74	29.76	29.91	30.21	30.17	30.25	30.14	30.19	28.91
Monarch	29.25	29.84	29.39	29.62	29.85	30.28	30.09	30.08	30.30	30.36	30.57
Man	29.61	29.76	29.66	29.71	29.87	30.10	30.04	30.11	30.03	30.05	29.30
Airplane	28.42	28.69	28.61	28.72	28.88	29.13	29.12	29.04	29.07	29.05	30.67
Couple	29.71	29.82	29.53	29.53	29.71	30.12	30.08	30.20	30.03	30.10	28.62
Average	29.97	30.26	29.69	29.84	30.06	30.43	30.38	30.44	30.39	30.44	29.73
Noise level = 50											
C.man	26.13	26.45	26.10	26.37	26.62	27.03	26.88	27.05	27.07	27.16	27.72
Parrot	25.90	26.14	25.95	26.12	26.16	26.48	26.55	26.57	26.32	26.53	27.63
House	29.69	30.33	29.12	29.64	29.48	30.00	29.96	30.37	30.12	30.21	29.63
Lena	29.05	29.25	28.68	29.32	28.93	29.39	29.40	29.66	29.29	29.32	28.36
Peppers	26.68	26.95	26.80	26.68	27.10	27.32	27.33	27.54	27.30	27.38	28.20
Barbara	27.22	27.79	24.83	25.24	25.70	26.22	26.24	26.45	26.26	26.36	25.23
Starfish	25.04	25.44	25.12	25.43	25.42	25.70	25.57	25.75	25.72	25.72	28.12
Boat	26.78	26.97	26.74	27.03	26.94	27.20	27.17	27.33	27.16	27.23	26.90
Monarch	25.82	26.32	25.94	26.26	26.31	26.78	26.61	26.81	26.82	26.84	28.62
Man	26.81	26.94	26.79	27.06	26.98	27.24	27.17	27.29	27.11	27.22	27.56
Airplane	25.10	25.42	25.31	25.56	25.59	25.87	25.89	25.89	25.79	25.88	28.04
Couple	26.46	26.64	26.30	26.67	26.50	26.90	26.88	27.08	26.84	26.88	26.79
Average	26.72	27.05	26.47	26.78	26.81	27.18	27.14	27.32	27.15	27.23	27.73

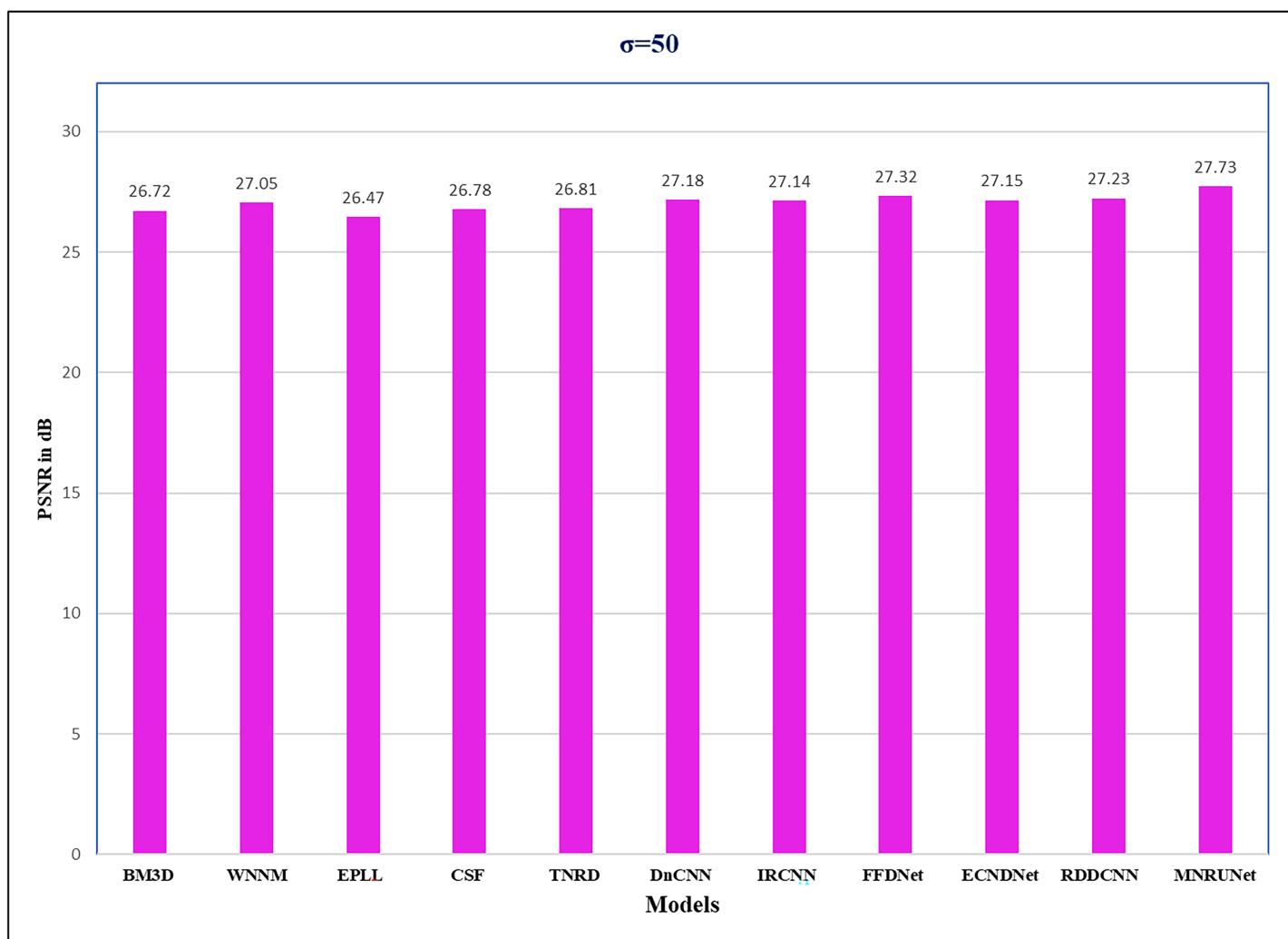


Figure 7 Performance analysis of the Set12 dataset. Performance analysis of several methods from the Set12 dataset with average PSNR (dB) with noise level of 50.

[Full-size](#) DOI: [10.7717/peerj-cs.2449/fig-7](https://doi.org/10.7717/peerj-cs.2449/fig-7)

Our proposed model is more satisfactory for gray image denoising, as evidenced by the figures, which show that the clean images obtained through its use are clearer than those obtained through additional methods. The performance analysis has been mentioned in Fig. 7, it shows a higher performance compared to the other state-of-the-art methods when the noise level of 50 from the Set12 dataset. This performance analysis shows how our architecture works at higher noise levels. In the research work, we focussed on the proposed method as efficient, worked out with different datasets, and got better PSNR values listed in tables and expressed in figures and graphs.

Table 4 shows, that our model works well in any database with better PSNR values. Also, the model is less complex and computationally less expensive.

The proposed model is designed to achieve greater performance with simple architecture and also concentrates on edge and texture-aware information. By evaluating

Table 4 Performance analysis using different dataset. Results for average PSNR (dB) of MNRU-Net from the McMaster, Kodak24, and CBSD68 datasets with different noise levels of 15, 25, and 50.

Noise levels	$\sigma = 15$	$\sigma = 25$	$\sigma = 50$
CBSD68	30.89	28.92	27.23
Kodak24	30.00	28.09	26.36
McMaster	30.71	29.14	27.06

Table 5 Comparison of SSIM values to the state-of-the-art methods.

Models	EPLL (Zoran & Weiss, 2011)	MLP (Burger, Schuler & Harmeling, 2012)	DnCNN (Zhang et al., 2017a)	IrCNN (Zhang et al., 2017b)	MNRU-Net
$\sigma = 15$	0.8826	0.8727	0.9018	0.9071	0.9265
$\sigma = 25$	0.8125	0.8432	0.8802	0.8562	0.8893
$\sigma = 50$	0.6917	0.7312	0.7493	0.7500	0.7832

edge performance, we calculated Structural Similarity Index (SSIM) values and compared them with the state-of-the-art methods. **Table 5** denotes the SSIM value of the MNRU-Net architecture.

Advantages and disadvantages of MNRU-Net

By using handcrafted features in addition to learned features, MNRU-Net improves denoising performance, particularly in high-noise scenarios. This results in the denoised image's edges and textures being better preserved. MNRU-Net maintains a simpler architecture when contrasted with more intricate deep-learning models. Its simplicity makes it more accessible and faster to train, especially on constrained hardware, by lowering computational costs and memory requirements. In conclusion, MNRU-Net has a lot to offer in terms of improved performance and decreased complexity even with small amounts of data, but it also has drawbacks in terms of feature design, generalization, and possible redundancy with learned features.

CONCLUSIONS

Our proposed method has proven a better performance with a simple model. We reconstructed a simple U-Net model as MNRU-Net with a limited training database without involving any image augmentation. To boost the learning capability of the network, hand-crafted features were added to the input layers. It was witnessed in this research work, that the MNRU-Net performs well. Also, we focussed on edge and texture-aware image denoising. In terms of image deblurring and image denoising, the suggested model is resistant to changes in noise level, image content, and hyperparameters. Based on experimental results, the suggested method outperforms other currently used techniques in terms of SSIM and PSNR, while also retaining more information on image and achieving greater performance in noise removal. In the future, we intend to handle more complicated real image denoising problems, like blurry and low-vision images.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

- Soniya S. conceived and designed the experiments, performed the computation work, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Sriharipriya K. C. performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

The BSD dataset is available at: <https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds>.

For testing, we used SET12, CBSD68, KODAK24, and McMaster datasets from Kaggle. They are available at Figshare: S, Soniya; K C, SRIHARIPRIYA (2024). Datasets for Testing Denoised Image. figshare. Dataset. <https://doi.org/10.6084/m9.figshare.26827765.v1>.

Supplemental Information

Supplemental information for this article can be found online at <http://dx.doi.org/10.7717/peerj-cs.2449#supplemental-information>.

REFERENCES

Aadhitya SV, Sriharipriya KC. 2023. Disease detection and diagnosis of agricultural plant leaf using machine learning. *International Journal of Electrical and Electronics Research* 11(3):749–753 DOI 10.37391/ijeer.110317.

Barbu A. 2009. Training an active random field for real-time image denoising. *IEEE Transactions on Image Processing* 18(11):2451–2462 DOI 10.1109/TIP.2009.2028254.

Beck A, Teboulle M. 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. *IEEE Transactions on Image Processing* 18(11):2419–2434 DOI 10.1109/TIP.2009.2028250.

Burger HC, Schuler CJ, Harmeling S. 2012. Image denoising: can plain neural networks compete with BM3D? In: *2012 IEEE Conference on Computer Vision and Pattern Recognition*. Piscataway: IEEE, 2392–2399.

Chen Y, Pock T. 2015. Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 39(6):1256–1272 DOI 10.1109/TPAMI.2016.2596743.

Dabov K, Foi A, Katkovnik V, Egiazarian K. 2007. Image denoising by sparse 3-D transform-domain collaborative filtering. *IEEE Transactions on Image Processing* 16(8):2080–2095 DOI 10.1109/TIP.2007.901238.

Dong G, Basu A. 2023. Medical image denosing via explainable AI feature preserving loss. ArXiv DOI 10.48550/arXiv.2310.20101.

Dong G, Ma Y, Basu A. 2021. Feature-guided CNN for denoising images from portable ultrasound devices. *IEEE Access* 9:28272–28281 DOI 10.1109/ACCESS.2021.3059003.

Gu S, Zhang L, Zuo W, Feng X. 2014. Weighted nuclear norm minimization with application to image denoising. In: *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*. Piscataway: IEEE, 2862–2869 DOI 10.1109/CVPR.2014.366.

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. 2017. Densely connected convolutional networks. GitHub. Available at <https://github.com/liuzhuang13/DenseNet>.

Ioffe S. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. ArXiv DOI 10.48550/arXiv.1502.03167.

Kaur A, Dong G. 2023. A complete review on image denoising techniques for medical images. *Neural Processing Letters* 55(6):7807–7850 DOI 10.1007/s11063-023-11286-1.

Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. ArXiv DOI 10.48550/arXiv.1412.6980.

Kulikov V, Yadin S, Kleiner M, Michaeli T. 2023. Sinddm: a single image denoising diffusion model. In: *International Conference on Machine Learning*. Westminster: PMLR, 17920–17930.

Liang Y, Liang W. 2023. ResWCAE: biometric pattern image denoising using residual wavelet-conditioned autoencoder. ArXiv DOI 10.48550/arXiv.2307.12255.

Ma J, Peng C, Tian X, Jiang J. 2022. DBDnet: a deep boosting strategy for image denoising. *IEEE Transactions on Multimedia* 24:3157–3168 DOI 10.1109/TMM.2021.3094058.

Neshatavar R, Yavartanoo M, Son S, Lee KM. 2022. Cvf-sid: cyclic multi-variate function for self-supervised image denoising by disentangling noise from image. In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 17583–17591.

Pang T, Zheng H, Quan Y, Ji H. 2021. Recorrupted-to-recorrupted: unsupervised deep learning for image denoising. In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. Piscataway: IEEE, 2043–2052.

Quan Y, Chen Y, Shao Y, Teng H, Xu Y, Ji H. 2021. Image denoising using complex-valued deep CNN. *Pattern Recognition* 111(4):107639 DOI 10.1016/j.patcog.2020.107639.

Schmidt U, Roth S. 2014. Shrinkage fields for effective image restoration. In: *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*. Piscataway: IEEE, 2774–2781 DOI 10.1109/CVPR.2014.349.

Tian C, Xu Y, Li Z, Zuo W, Fei L, Liu H. 2020a. Attention-guided CNN for image denoising. *Neural Networks* 124(1–2):117–129 DOI 10.1016/j.neunet.2019.12.024.

Tian C, Xu Y, Zuo W. 2020. Image denoising using deep CNN with batch renormalization. *Neural Networks* 121(11):461–473 DOI 10.1016/j.neunet.2019.08.022.

Tian C, Xu Y, Zuo W, Du B, Lin C-W, Zhang D. 2020b. Designing and training of A dual CNN for image denoising. ArXiv DOI 10.48550/arXiv.2007.03951.

Tian C, Zheng M, Zuo W, Zhang B, Zhang Y, Zhang D. 2022. Multi-stage image denoising with the wavelet transform. ArXiv DOI 10.48550/arXiv.2209.12394.

Tian C, Zhuge R, Wu Z, Xu Y, Zuo W, Chen C, Lin C-W. 2020c. Lightweight image super-resolution with enhanced CNN. ArXiv DOI 10.48550/arXiv.2007.04344.

Xu J, You S, Guo Y, Fan Y. 2023. Combining deep image prior and second-order generalized total variance for image denoising. *IEEE Access* 11:67912–67921 DOI 10.1109/ACCESS.2023.3292158.

Yang D, Sun J. 2018. BM3D-Net: a convolutional neural network for transform-domain collaborative filtering. *IEEE Signal Processing Letters* **25**(1):55–59 DOI [10.1109/LSP.2017.2768660](https://doi.org/10.1109/LSP.2017.2768660).

Zhang Q, Xiao J, Tian C, Chun-Wei Lin J, Zhang S. 2023a. A robust deformed convolutional neural network (CNN) for image denoising. *CAAI Transactions on Intelligence Technology* **8**(2):331–342 DOI [10.1049/cit2.12110](https://doi.org/10.1049/cit2.12110).

Zhang D, Zhou F, Jiang Y, Fu Z. 2023b. MM-BSN: self-supervised image denoising for real-world with multi-mask based on blind-spot network. GitHub. Available at <https://github.com/dannie125/MM-BSN>.

Zhang K, Zuo W, Chen Y, Meng D, Zhang L. 2017a. Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. *IEEE Transactions on Image Processing* **26**(7):3142–3155 DOI [10.1109/TIP.2017.2662206](https://doi.org/10.1109/TIP.2017.2662206).

Zhang K, Zuo W, Gu S, Zhang L. 2017b. Learning deep CNN denoiser prior for image restoration. In: *Proceedings-30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January*. Piscataway: IEEE, 2808–2817 DOI [10.1109/CVPR.2017.300](https://doi.org/10.1109/CVPR.2017.300).

Zhang K, Zuo W, Zhang L. 2018. FFDNet: toward a fast and flexible solution for CNN-Based image denoising. *IEEE Transactions on Image Processing* **27**(9):4608–4622 DOI [10.1109/TIP.2018.2839891](https://doi.org/10.1109/TIP.2018.2839891).

Zoran D, Weiss Y. 2011. From learning models of natural image patches to whole image restoration. In: *2011 International Conference on Computer Vision*. Piscataway: IEEE, 479–486 DOI [10.1109/ICCV.2011.6126278](https://doi.org/10.1109/ICCV.2011.6126278).