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ABSTRACT
The p-median problem selects p source locations to serve n destinations such that the
average distance between the destinations and corresponding sources is minimized.
It is a well-studied NP-hard combinatorial optimization problem with many existing
heuristic solutions, however, existing algorithms are not scalable for large-scale
problems. The fast interchange (FI) heuristic which yields results close to the optimal
solution with respect to the objective function value becomes suboptimal with respect
to time requirements for large-scale problems. We present a novel distributed divide
and conquer algorithm, EM-FI, to solve large-scale p-median problems quickly even
with limited computing resources. The algorithm identifies the existing spatial
clusters of the destination locations using expectation maximization (EM) and solves
them as independent p-median problems using integer programming or FI
concurrently. The proposed algorithm showed an order of magnitude improvement
in time without the loss of quality in terms of the objective function value on
synthetic and real datasets.

Subjects Algorithms and Analysis of Algorithms, Data Mining andMachine Learning, Distributed
and Parallel Computing, Optimization Theory and Computation, Spatial and Geographic
Information Systems
Keywords P-median problem, Spatial data mining, Heuristic search, Parallel computing, Location
allocation, Distributed algorithms

INTRODUCTION
The p-median problem is the most commonly used formulation for solving distance-based
location models. Distance-based location models are characterized by minimization of
costs while locating facilities (or sources) to satisfy customer demands. In location science,
costs are usually associated with travel time between sources/facilities and respective
destinations/demand points. Therefore, minimization of the distance between the demand
points and corresponding facilities is the goal in distance-based location models. The
p-median problem specifically seeks to locate p facilities and allocate destinations to them
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such that the average distance between the facilities and destinations is minimized, and
each of the total n destinations is assigned to a facility. This NP-hard problem (Kariv &
Hakimi, 1979) has been used to solve various industrial applications such as location and
demand distribution of warehouses (Baumol & Wolfe, 1958; Dejax, 1988), shopping
centers (Nwogugu, 2006), fire stations (Plane & Hendrick, 1977), etc. Portions of this text
were previously published as part of a preprint in Gwalani et al. (2022).

Many heuristic and meta-heuristic algorithms have been proposed in the literature to
solve this problem approximately. However, these approaches do not scale well as the
number of destinations and the number of sources to be selected increase. Evaluation and
comparison of existing heuristic algorithms in Gwalani, Tiwari & Mikler (2021) showed
that the execution time required to achieve close to optimal solutions for a problem with
n > 3,000 and p > 500 exceeds 3 h on a reasonably equipped personal computer.
Additionally, the execution time increases with increases in both n and p. This problem can
be solved exactly using a mixed integer linear programming (MILP) solver, however, this
approach becomes infeasible with respect to both execution time and memory
requirements as the scale of the problem increases. Very few studies exist in the literature
that solve truly large-scale p-median problems. Table 1 1 lists the scale of the largest
problems that have been solved in the literature along with the methods used to solve
them. As the scale of these problems is still quite low for solving problems with n> 3,000
and p > 500, there is scope for research in this area.

In this article, we present a distributable decomposition-based heuristic algorithm that
utilizes the spatial distribution of the destinations in the problem to allow for concurrent
and faster execution. The problem is divided into subproblems using expectation-
maximization clustering, and the subproblems are solved concurrently using MILP or the
fast-interchange (FI) heuristic algorithm. The subproblem solutions are then combined by
reassigning destinations to their closest facility across all subproblems. This approach
results in significant time improvements over the existing serial algorithms without the loss
of the quality of the solution. The quality of a solution is measured by the demand
weighted average distance between the destinations and corresponding facilities. We
evaluate the proposed novel algorithm on synthetic as well as real datasets. Location of ad-
hoc clinics in a region to dispense pill bottles, vaccines or other medical resources to the
affected population in case of a bio-emergency is used as the application for real datasets.
The algorithm is used to locate these clinics and map them to individuals (or population
centers) so that all the affected individuals can receive the resources in a timely manner.

Our analysis of optimal or close to optimal solutions for p-median problems showed
that there is a relationship between the selected facilities and the spatial clusters of demand
points in the problem space. A cluster is a subregion in the region with a high density of
demand points. It was observed that a demand point belonging to a cluster is not served by
a facility located in another cluster, if p, the number of facilities to be selected, is greater
than the number of distinct clusters in the region. This is true in theory, since the centroid
of the demand points in a cluster is chosen as the facility location, then any demand point
will always be closer to its own cluster centroid than a different cluster centroid, the facility
located in another cluster. However, in real world scenarios, exceptions to this observation

1 We have tried to include results from all
well-cited articles in this area. The table is
not meant to compare computation time
because of variables such as computing
resources and implementation
differences.
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are possible, if the only viable facility location is located on the edge of the cluster then it is
possible that a demand point from a different cluster may be closer to this facility location
and hence served by a facility in another cluster. Figure 1 shows this property for a range of
values of p, starting from p ¼ 2 to p ¼ 128 for 480 demand points. The boundaries in the
figure represent the service areas for facilities. All demand points within the service area of
a facility are assigned to that facility. This is an interesting property of the p-median
problem, which has been used in the past for cluster analysis.

Clustering or cluster analysis, in general, is the process of grouping a set of objects in
such a way that the objects belonging to the same group are more similar to each other
than the objects belonging to other groups. These groups are referred to as clusters in the
data. If these objects represent points in space, and the similarity between them is
measured in terms of distance, then the clustering problem transforms into a non-
demand-weighted p-median problem. In fact, the solution to a p-median problem closely
resembles the solution to a clustering problem on the same data if the selected facilities are
treated as cluster medians. The popular k-means clustering algorithm (also known as
Lloyd’s algorithm), based on the partitioning method proposed in Lloyd (1982) is strikingly
similar to Maranzana’s alternate selection and location algorithm for solving the p-median
problem (Maranzana, 1964). Maranzana’s algorithm was proposed 20 years before the k-
means clustering algorithm. Moreover, researchers have used p-median approaches to
discover population clusters in a region. An interchange based algorithm is used to cluster
spatial entities, along with Maranzana’s alternate selection and allocation in Taillard
(2003). Mulvey & Crowder (1979) use Lagrangian relaxation to improve the quality of
clusters in homogeneous data and compare results with other clustering methods.

The key observation from this existing research is that p-median solutions are good
clustering solutions for distance-based spatial clustering problems. We utilize the inverse
of this observation to solve large-scale p-median problems. The lack of overlap between

Table 1 Scale of p-median problems solved using heuristic or meta-heuristic solutions existing in the literature. n is the number of demand
points in the region and p is the number of facilities to be selected.

Problem scale ( n; p) Method & Year Time (in seconds, rounded to closest integer)

(500, 30) Global Regional Interchange Algorithm (GRIA) (Densham & Rushton, 1992) 865

(500, 20) Tabu Search, Rolland, Schilling & Current (1997) 447

(3,038, 500) Variable Neighborhood Search (VNS) (Hansen & Mladenović, 1997) 21,357

(300, 35) Heuristic concentration (Rosing, ReVelle & Schilling, 1999) 102

(900, 90) Simulated Annealing, Chiyoshi & Galvão (2000) 628

(900, 300) Lagrangian/Surrogate Relaxation, Senne & Lorena (2000) 3,212

(1,000, 333) Genetic Algorithm, Osman, Erhan & Zvi (2003) 444

(5,934, 1,500) GRASP and path-relinking, Resende & Werneck (2004) 2,230

(900, 300) Column generation (Lagrangian Relaxation), Senne, Lorena & Pereira (2005) 1,391

(89,600, 64) Aggregation heuristic, Avella et al. (2012) 5,779

(900, 90) Lagrangian relaxation, Daskin & Maass (2015) 33

(900, 90) GPU Genetic algorithm, AlBdaiwi & AboElFotoh (2017) 1,407
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service areas in one cluster with service areas of another highlights the opportunity for the
use of decomposition methods for solving large-scale problems. These problems can be
solved efficiently by identifying these clustered regions of no overlap and selecting
facilities for them independently. Existing decomposition based techniques (Taillard,
2003) break the problem into arbitrary number of subproblems using various p-median
heuristic algorithms. Solutions obtained from p-median algorithms are good
clustering solutions only if the goal of clustering is to group data points based on distance,
and not necessarily to identify dense sub-regions in the region. They are not optimal for
identifying demand clusters in the region, particularly if clusters are located close to each
other. This is illustrated in Fig. 2. The 10 service areas in the figures do not correspond to
the 10 clusters in the region, and hence do not represent the best subproblem
candidates. In this research, we extend the idea of decomposition of large p-median
problems, the decomposition in the presented algorithm however, is based on the spatial
configuration of demand points, therefore, the number of subproblems is governed by the
structure of the problem.

We discuss the formulation of the p-median problem and some common heuristic
approaches for the problem in the next section. The methodology is described in detail in
“Methodology”. We show results for synthetic and real datasets in “Results”. Finally, we
conclude the article in “Discussion”.

Figure 1 Correlation between clustering and p-median solutions. (A) Demand point locations, solutions for the p-median problem: (B) p ¼ 2,
(C) p ¼ 4, (D) p ¼ 8, (E) p ¼ 16, (F) p ¼ 32, (G) p ¼ 64 and (H) p ¼ 128. The black triangle represents a facility and the orange points represent the
demand points. Full-size DOI: 10.7717/peerj-cs.2446/fig-1
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BACKGROUND AND LITERATURE REVIEW
p-median problem formulation
Linear integer programming (LIP) can be used to obtain optimal solutions for small scale
p-median problems but these solutions quickly become time and memory prohibitive as
the values of n and p increase. The LIP formulation (Daskin, 2013; Rosing, Revelle &
Rosing-Vogelaar, 1979; Senne, Lorena & Pereira, 2005; Resende & Werneck, 2004) for the
discrete p-median problem is described below.

LIP formulation
Decision variables:

1. X ¼ fXjg, 8j 2 f1; 2; 3 . . . ng
2. Y ¼ fYijg, 8i 2 f1; 2; 3 . . . ng and 8j 2 f1; 2; 3 . . . ng

Minimize Z ¼ �n
i¼1�

n
j¼1wiYijdij such that:

Constraints:

1. �n
j¼1Yij ¼ 1, 8i 2 f1; 2; 3 . . . ng

2. �n
j¼1Xj ¼ p, 8j 2 f1; 2; 3 . . . ng

3. Yij � Xj � 0, 8i 2 f1; 2; 3 . . . ng, 8j 2 f1; 2; 3 . . . ng
4. Xj ¼ f0; 1g, 8j 2 f1; 2; 3 . . . ng,
5. Yij ¼ f0; 1g, 8i f1; 2; 3 . . . ng and 8j 2 f1; 2; 3 . . . ng

Xj is a binary variable that, if set, represents the selection of destination j as one of the

facilities. Yij, also a binary variable, if set, represents the assignment of destination i to
facility j. Z, the objective function is the demand (wi) weighted sum of distances between

Figure 2 Service areas corresponding to the optimal solution for p ¼ 10 for demand point
distribution with 10 clusters. Full-size DOI: 10.7717/peerj-cs.2446/fig-2
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facility j and destination i. This distance is denoted by dij. The distance value dij contributes
to the sum only if Yij is set. Constraint 1 ensures that each destination is assigned only to a
single facility. The selection of exactly p facilities is ensured by Constraint 2. The
assignment variable Yij cannot be set if a facility is not located at destination j, this
condition is enforced by Constraint 3. This integer programming problem can be solved by
using branch and cut algorithms on the continuous linear programming solution. The size
of the search space for a p-median problem solution is equal to the Stirling number of the
second kind (Resource, 2020) or the number of ways to partition a set of n items into p
parts. The branch and bound tree in the LIP solution may degenerate into an exhaustive
search leading to exponential time complexity in the worst case scenario (Papadimitriou &
Steiglitz, 1982).

Literature review
Since the linear integer programming solution is not scalable, many heuristic algorithms
have been proposed to yield approximate solutions. Interchange-based algorithms have
been shown to yield the best results out of all heuristic algorithms. Teitz & Bart (1968)
proposed the original exchange or interchange algorithm in 1968. Modifications to the
original algorithm (FI) to reduce the number of exchanges were proposed in Goodchild &
Noronha (1983),Whitaker (1983), andHansen &Mladenović (1997). Facilities currently in
the solution are interchanged with facilities not in the solution one at a time, and the
solution after this interchange is evaluated. The interchange that results in the maximum
decrease in the cost function is selected in each iteration. The interchange algorithm has
been shown to produce close to optimal results, but even the FI algorithm is not feasible for
larger datasets because of the large number of pairwise exchanges. The total number of
swaps for this algorithm is equal to ðpÞðn� pÞ per iteration, where n is the total number of
destinations and p is the required number of facilities. For each swap, the facility being
introduced is tested as a candidate for each destination, therefore each iteration is Oðpn2Þ.
Overall complexity of the algorithm is Oðtpn2Þ where t is the number of iterations required
for convergence/termination. The value of t depends on the initial solution. Other
common heuristic algorithms include the Global/Regional Interchange Algorithm (GRIA)
(Densham & Rushton, 1992), the greedy addition algorithm (Kuehn & Hamburger, 1963)
and the alternate selection and allocation algorithm (Maranzana, 1964). These algorithms
are discussed and evaluated in detail in Gwalani, Tiwari & Mikler (2021).

Several meta-heuristic algorithms have also been proposed in the literature to improve
the cost function values over those obtained from the interchange based algorithms. The
most common meta-heuristics like genetic algorithms (Osman, Erhan & Zvi, 2003), tabu
search (Rolland, Schilling & Current, 1997; Loranca, Velázquez & Analco, 2015) and
simulated annealing (Chiyoshi & Galvão, 2000; Murray & Church, 1996) have been
formulated and implemented for the p-median problem. Most of these meta-heuristic
algorithms focus on improving the solutions obtained from local search or exchange
algorithms in terms of the cost function value. The gains over the cost function value when
compared to the classic exchange heuristics, however, are not substantial. The time
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required to compute the solutions on the other hand, is much higher. These methods do
not scale well with respect to time as the numbers of destinations and facilities increase.

Taillard presents two decomposition methods to reduce run time, local optimization
(LOPT) and decomposition (DEC) in Taillard (2003). The LOPT algorithm selects p
destinations as facilities randomly as the current solution. These facilities are added to a
candidate list for subproblem creation. A subproblem is created in each iteration by
selecting a facility i at random, and its r � 1 closest facilities from the candidate list. These
r facilities and demand points assigned to them form a subproblem that is solved using an
interchange algorithm. The facilities selected from solving the subproblem are added to the
candidate list if the solution (for the subproblem) has improved, else the original facility i is
removed from the candidate list. The algorithm terminates when the candidate list is
empty. The DEC algorithm breaks the original problem into t subproblems by selecting t
facilities in the original problem using an interchange algorithm. The service areas created
for each of these t facilities serve as the regions for the subproblems. The number of
facilities, to be selected in each subproblem is equal to intðp=tÞ. The value of t or the
number of subproblems is set to b ffiffiffi

p
p c in this algorithm. It is shown in the study that the

LOPT algorithm works better than DEC, however, it is sensitive to the initial solution and
requires a considerable amount of time for termination. The results for large-scale
problems (n ¼ 85,900) in the study are shown relative to the best solution obtained from
multiple runs of DEC, LOPT, and the ALT procedure. The ALT procedure is a variant of
Maranzana’s alternate selection and allocation algorithm. The performance of these
algorithms for large-scale problems was not compared with algorithms that have been
known to produce close to optimal results. The decomposition into subproblems in the
LOPT algorithm does not take into account the spatial distribution of the demand points.
Therefore, the solutions to the subproblem may not solve the original problem optimally
particularly for smaller values of r, and it becomes time prohibitive for larger values of r.
The LOPT algorithm was shown to produce near-optimal solutions for small scale
problems in their study. These decomposition-based techniques have the following
limitations: (1) the number of subproblems is calculated using a formula that does not take
into account the spatial configuration of the region, (2) the number of facilities to be
selected in each subproblem is not demand weighted, and (3) the subproblems are
generated by solving a p-median problem which may not successfully identify clusters in
the region. The decomposition methods described in this study do not utilize the inherent
clustering in the region, hence they can be improved upon both with respect to the cost
function value and execution time.

METHODOLOGY
We propose to decompose large-scale p-median problems into subproblems based on the
spatial distribution of the demand points in the region. The inherent demand point
clusters (denser regions) present in the region serve as good candidates for the
independent subproblems. These clusters can be identified by detecting changes in the
spatial distribution of demand points scattered in the region.
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The steps involved in the decomposition of ðn; pÞ problem into subproblems and the
combination of the subproblem solutions to create a solution for the original problem are
described in the following sections. The density-based decomposition process is explained
in “Density-based Decomposition”. All subregions created by density-based
decomposition may not represent clustered or heterogeneous regions of demand points, so
we merge the homogeneous/sparse (non-clustered) subregions into the denser subregions
to reduce the subproblems to clustered subregions only in a merge step (“Density-Based
Decomposition: Merge Step”). The divide-conquer step is executed after the merge step to
obtain a solution to the original problem (“Divide and Conquer”). The flowchart for the
entire algorithm is described in Fig. 3.

Density-based decomposition
Clusters in a region can be identified by detecting changes in the spatial distribution of
demand (population) in the region. The central place theory dictates that consumer
preferences in any geographic area will lead to centers of various sizes to emerge in a region
(Daniels, 2017). Therefore, any region is likely to have population centers with different
population densities. Behavioral patterns also often lead to formation of clusters in a
spatial region (Rushton, 1969). The goal of the density based decomposition is to identify
these centers and assign the demand points to its corresponding center. We model any
region as being composed of different sub-regions with corresponding mean and standard
deviation of population points distributed normally around the mean and standard
deviation. This Gaussian mixture model (GMM) captures the inter and intra subregion
density variation adequately as it is simpler and faster than other density based clustering
algorithms while performing well in identifying the dense regions. The expectation-
maximization (EM) clustering algorithm (Dempster, Laird & Rubin, 1977) has been known
to yield good results for detecting Gaussian clusters with different parameters in a dataset.
It is an iterative method that attempts to predict parameters for statistical models in two
steps: (1) expectation, which calculates the log-likelihood corresponding to the current
estimates for the parameters, and (2) maximization, in which the model changes the
parameters to increase the log-likelihood value. Since the number of clusters is an input to
the algorithm, EM can be tried to fit models with a varying number of clusters and each fit
can then be evaluated using the Bayesian information criterion (BIC). BIC can be used to
identify the minimum descriptor length that can describe the data (Wikipedia.org, 2019). It
penalizes the addition of new parameters to the model to avoid overfitting. We use
expectation-maximization to fit the data in a GMM with c components, starting from

c ¼ 2 to c ¼ cmax. Each demand point, di, represents a vector of size two, xi
!¼ ½xdi; ydi�.

The objective of the Expectation-Maximization algorithm is to obtain a GMM for the data

Figure 3 Solving a large-scale p-median problem by decomposition: flow chart.
Full-size DOI: 10.7717/peerj-cs.2446/fig-3
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that represents the normally distributed sub-populations in the overall population
(Brilliant.org, 2019). The population refers to the set of all demand points in the region,
while each sub-population is a set of demand points that belong to the same bivariate
normal distribution according to the model. Each component of the GMM has a mean
vector, li

! and a covariance matrix �i. The probability distribution for the model is given
by Brilliant.org (2019):

pð~xÞ ¼ �c
i¼1hiNð~xjli!;�iÞ (1)

whereNð~xjli!;�iÞ represents a bi-variate Gaussian distribution (Eq. (2)) corresponding to
the component i with parameters, ðli!;�iÞ. The sum of the component weights
corresponding to each component, hi is equal to one, �c

i¼1hi ¼ 1.

Nð~xjli!;�iÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞcj�ij

p e�
1
2ð~x�li

!Þ
T
��1

i ð~x�li
!Þ (2)

Given a starting value for parameters, ðhi;li;�iÞ for each component in the model, the
expectation step calculates the probabilities/expectation that a data point belongs to that
component. The maximization step updates the parameters to maximize the overall
expectation or likelihood value. Equation (3) shows the calculation of BIC for a model
(Wikipedia.org, 2019; Neath & Cavanaugh, 2012).

BIC ¼ lnðnÞcm � 2lnððbLÞÞ (3)

ðbLÞ is the maximized value of the likelihood function after the EM algorithm converges,
n is the number of data points, cm is the total number of model parameters. To detect the
high demand point density sub-regions in the area, each demand point coordinate is input
to the EM algorithm. The EM algorithm is executed for c ¼ 2 to c ¼ cmax, and the model
corresponding to each MðcÞ is evaluated using BIC. It was observed that BIC analysis
becomes unreliable for higher values of c. The gain in the maximum likelihood
optimization function is higher than the penalty corresponding to the increase in the
number of parameters. This results in decomposition of regions into independent
components that maybe served by a common facility which is detrimental to the p-median
objective function. To avoid this over decomposition, the cmax value was set at 20 in these
experiments.

Models with lower BIC values are better than models with higher BIC values, hence the
value of c for which the minimum value of BIC is reported is selected as the number of
clusters, k, for the region. The region is decomposed into k subregions or components
using the EM algorithm. Each subregion has a different ~l and ~� corresponding to the
positions of demand points. Each of these subregions, however, may not represent a dense
or clustered region as the EM detects changes in distribution. These distributions could be
homogeneous or non-homogeneous. A homogeneous distribution represents a random
scatter of demand points in the region. A heterogeneous distribution is a significant
deviation from a homogeneous distribution of points in the region. Figure 4 shows an
example of the creation of subproblems using the EM algorithm. The initial demand
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points, membership of demand points to their corresponding Gaussian component, and
the corresponding subregions are shown in Figs. 4A–4C respectively. The destinations are
distributed in 20 components based on the BIC analysis. The subregions are created by
unionizing the geometries corresponding to the demand points.

Density-based decomposition: merge step
It can be seen in Fig. 4 that 10 out the 20 subregions do not represent clustered or dense
areas in terms of the demand point distribution, and therefore may not be good candidates
for an independent subproblem. We propose a merge step to merge the sparser and/or
homogeneous regions into denser ones, thereby preventing them from being solved
independently.

Figure 4 (A–D) The decomposition of a region into subregions and corresponding subproblems
using Expectation-Maximization based on a Bayesian information criteria analysis.

Full-size DOI: 10.7717/peerj-cs.2446/fig-4

Gwalani et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2446 10/24

http://dx.doi.org/10.7717/peerj-cs.2446/fig-4
http://dx.doi.org/10.7717/peerj-cs.2446
https://peerj.com/computer-science/


A subregion is labeled sparse if the demand density in the subregion is less than the
demand density of the entire region. Demand density is defined as the total demand per
unit area. The total demand in a subregion is calculated by aggregating the demand at all of
its demand points. The heterogeneity (or homogeneity) of the spatial distribution of points
in a region can be detected by comparing the existing distribution of the subregion with the
expected binomial distribution using a v2 test. The details of heterogeneity detection are
explained in the appendix “Detecting Heterogeneity in a Region”. Once the non-clustered
(homogeneous or sparse) subregions have been identified, the demand points
corresponding to these subregions are reassigned to the remaining dense subregions. Each
demand point in a non-clustered subregion is assigned to its closest dense subregion. The
distance to a dense subregion is measured as the distance between the demand point to be
reassigned and the centroid of the subregion. Thus, the non-clustered regions are dissolved
in this way reducing the number of subregions and subproblems from k to q. Figure 4D
shows the subregions corresponding to Fig. 4C after the demand points corresponding to
the non-clustered subregions are merged into the dense subregions. We propose to use
these subregions as independent subproblems.

If the distribution of demand points in the original problem is completely
homogeneous, the merge step will lead to a single subproblem corresponding to the
original problem, hence the decomposition will not succeed. This limitation of the
algorithm is discussed more in “Challenges and Distance-based Decomposition”.

Divide and conquer
The distribution or density-based decomposition of the region yields q subregions after the
merge step is employed. The number of facilities to be selected in these subregions is
determined based on the proportion of the population in the subregion with respect to the
entire population. The facilities are assigned to each subregion proportional to the total
demand in the subregion (integer division). The remaining facilities are assigned to the
subregions in a round-robin fashion in decreasing order of demand at subregions. These
subproblems are then solved exactly using MILP2 solver if possible. If the scale of the
subproblem is too large to solve using MILP, then the subproblem is solved approximately
using FI. Scale based memory profiling was conducted to determine the threshold values of
n and p to employ FI instead of MILP. The subproblem solutions are combined to obtain a
global solution in the reduce step. The union of facilities selected in each subproblem forms
the current solution, X, for the original problem. The n demand points in the original
problem are assigned to their closest facility in the current solution. This solution then can
be further improved by applying an exchange based search algorithm (FI/GRIA) to this
solution. Since the solution is near the optima, the search takes much less time than when
used on a randomly chosen initial solution.

Time complexity
The time complexity for a serial version of FI is Oðp2n2Þ, assuming t, the number of
iterations, t ¼ cp, for some constant c; where c < 1. This assumption is based on
experimental analysis on the change in number of iterations with change in initial solution

2 Python MILP (Mixed-Integer Linear
Programming) Tools: https://pypi.org/
project/mip/.
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in Gwalani, Tiwari & Mikler (2021). If the problem is decomposed into q parts, then on
average each subproblem is of scale (n=q; p=qÞ, hence the complexity reduces to p2n2=q4

for all problems which are solved concurrently. The expectation maximization step is
Oðnð2þ 3þ . . . cmaxÞÞ ¼ OðnÞ, for cmax << n (the number of iterations needed for
convergence are much smaller than n, hence that factor is neglected). The reassignment
step is another OðnÞ operation. The improvement step at the end is again Oðtpn2Þ but the
number of iterations required for convergence is much smaller, hence the improvement
term reduces to Oðpn2Þ. We show in the article, that a reasonably good solution can be
obtained even without the improvement step by using distributed computing.

RESULTS
We compare the EM-FI algorithm to the serial implementation of the FI algorithm with
respect to the cost function value and execution time for each run for synthetic and real
problem sets. We evaluate two versions of the EM-FI algorithm. In “EM-FI:Reassignment”,
the demand points are reassigned to the facilities selected in the subproblems in the conquer
step, while in “EM-FI:Improvement”, the solution is further improved by using FI globally
with these facilities as the initial solution. The cost function values are shown relative to the
best-known solution for the problem. The best-known cost function value was calculated as
the minimum of values computed using a MILP solver (time limit = 100 h), and cost values
corresponding to three heuristic approaches across 30 executions. The execution time is the
CPU time required to obtain the solution in each run. The execution time includes the time
required to perform the density-based decomposition (with the merge step) for the EM-FI
algorithm. The experiments were performed on an Intel Core i7 CPU @ 3.60 GB�8 (32 GB
RAM, 64-bit) machine for proof of concept, and the program allowed for solving four FI
subproblems concurrently and two MILP subproblems concurrently on this machine. The
numbers of subproblems should be set based on the computing resources at hand. The code
for EM-FI, FI, and MILP was implemented in python. We used the python libraries, sklearn
(https://scikit-learn.org/stable/modules/clustering.html) for Gaussian Mixture Models and
BIC Analysis, and Scipy (https://docs.scipy.org) for chi squared tests. The FI algorithm was
implemented based on the pseudo code in Hansen & Mladenović (1997). The source code
for existing heuristics for p-median problem along with this distributed algorithm is being
made available via a public git repository.

Synthetic datasets
We compare the performance of the discussed algorithm on synthetic datasets with
varying scale and spatial distributions. In the synthetic datasets, the number of demand
points is varied by changing the total demand in the region. All demand units are scattered
in the region grid depending on the required spatial distribution. These demand units are
then combined to create destinations. Each destination is assumed to have a demand
selected from a normal distribution,N(1,500, 400). These values were chosen to replicate
the creation of census block groups, a census geographic unit in USA. The centroid of the
merged demand units for a destination defines the coordinates of the demand point.
Because of the stochastic nature of the this process, not all points on the fine grid get
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Figure 5 (A–C) Synthetic datasets: demand points and results. Full-size DOI: 10.7717/peerj-cs.2446/fig-5
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assigned to a demand unit and in turn to a destination, this results in the blank unoccupied
islands within the region. The process is explained in detail in Gwalani, Tiwari & Mikler
(2021). The value of p is chosen to be approximately equal to n=4 to create large-scale
problems.

We used three synthetic datasets to evaluate the EM-FI algorithm for proof of concept.
Figure 5 shows the demand distribution in these datasets, the cost function and execution
time results obtained for these datasets using the three heuristic approaches. It can be seen
that the cost function values are reasonably good (within 2% of the best-known solution)
for EM-FI even when a global improvement is not employed in the reduce step for the
datasets with multiple clusters. Additionally, the EM-FI strategy is at least five-eight times
faster than FI. The EM-FI:Reassignment does not perform as well for Dataset III because it
contains only one large cluster and the decomposition breaks it into multiple parts even
when they belong to the same GMM component which results in the poorer results. Using
EM-FI:Improvement however, yields results that are within 0.5% of the best-known
solution with a much lower execution time than the stochastic version of FI. In fact,
statistical analyses using the Man-Whitney U test3 showed that the cost function values
obtained from EM-FI:Improvement are statistically significantly lower than the cost
function values obtained using FI.

Real datasets
We use response planning in preparation for bio-emergencies as an application of the p-
median location model to evaluate the algorithm on real datasets. Public health
emergencies can be catastrophic to the health and well-being of local communities. These
emergencies require a timely and well-planned response from the local public health
authorities to minimize casualties. The Centers for Disease Control and Prevention
recommends setting up ad-hoc clinics or dispensing locations to distribute supplies and
medical countermeasures (MCMs) to the affected population within a stipulated time
frame (Centers for Disease Control and Prevention, 2006). We formulate this problem as
the p-median problem where census block group centroids in the region represent
population centers or demand points in the region, and the dispensing locations are the
facilities that need to be located. The results are demonstrated for three regions in the
United States with varying spatial distribution of the census block group centroids, 1)
Dallas County, Texas, 2) Texas Department of State Health Services Region 6, Texas and 3)
Los Angeles County, California. Figure 6 shows the demand point distributions, problem
scales and results for these datasets. It can be seen that since there are more obvious
distribution changes and the clusters are more spread out and distinct for Dallas and Los
Angeles counties, EM-FI:Reassignment is able to produce reasonably good results (within
5% of the best-known solutions) with respect to the cost function values for these datasets.
EM-FI:Improvement reduces the cost function values further for these datasets with
relatively low execution time gain. The block group centroids in Region 6 are mostly
centered around the city of Houston (Fig. 6B). The minimum BIC value was obtained for
18 components for this region. Figure 7A shows the decomposition of block groups in
Region 6 into 18 parts. The components after the merge step is performed on the sparser

3 The Mann-Whitney U rank test (Mann
& Whitney, 1947) can be used to test if a
randomly selected value from one
population distribution is likely to be
larger (or smaller) than a random value
from another population distribution.
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and homogeneous regions are shown in Fig. 7B. EM-FI:Reassignment produces poorer
results because of the decomposition of the single large component in the center into
subregions. Consequently, this causes the EM-FI:Improvement algorithm to take more

Figure 6 (A–C) Real datasets: demand points and results. Full-size DOI: 10.7717/peerj-cs.2446/fig-6
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time as the initial solution in the reduce step is not that close to the optimal solutions
(local or global). Despite this limitation, the EM-FI:Improvement algorithm
outperforms FI with respect to both execution time and cost function values. Table 2 shows
the comparison of results with respect to both execution time and cost function values
between FI and EM-FI:Reassignment for these datasets. It can be seen that the
execution time is almost two orders of magnitude less for the EM-FI:Reassignemnt when
compared to FI even on a personal quad core machine. The execution time column in the
table shows the average time across 30 runs and the first and third quartile values. The
EM-FI:reassignment produces reasonably good solutions for clustered datasets even with
respect to the cost function values (within 4% of the best solution). The cost column in the

Figure 7 (A and B) Density-based decomposition for Region 6, Texas.
Full-size DOI: 10.7717/peerj-cs.2446/fig-7

Table 2 Comparison of EM-FI:Reassignment with FI on an i7 dual quad core 32 GB machine. The values in (Q1–Q3) represent the first and
third quartile values of the relative cost values across multiple runs.

Problem scale (n; p) EM-FI:Reassignment:
Cost

EM-FI:Reassignment:
Time

FI: Final cost FI: Time

Dallas County, Tx (1,669, 400) 102.46% (102.46–102.86)% 0.011 (0.011–0.011) h 100.44% (100.69–100.87)% 0.529 (0.521–0.539) h

Region 6, Tx (3,148, 512) 107.66% (108.86–110.97)% 0.063 (0.042–0.078) h 100.00% (100.08–100.16)% 3.293 (3.235–3.347) h

Los Angeles County, CA
(6,425, 1,600)

102.22% (103.02–104.85)% 0.124 (0.100–0.140) h 100.19% (100.47– 100.57)% 16.571 (16.42–16.71) h
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table shows the minimum relative cost and the first and third quartiles values for
relative costs.

Challenges and distance-based decomposition
There are three drawbacks for using the EM-FI:Improvement algorithm for any general
large-scale problem. (1) Over decomposition of a region with a single large cluster into
subregions as a result of the EM-BIC analysis. The merge step may not combine the
subregions belonging to the same dense cluster and lead to over-decomposition, as
illustrated in Fig. 7. This over-decomposition yields to poorer results for this kind of
distribution for EM-FI:Reassignment and increases the run time for EM-FI:Improvement.
(2) Additionally, even for a multi-clustered, large problem, the final step in EM-FI
improvement can prove to be a bottleneck in terms of execution time because of the size of
the problem, even if the solution after EM-FI reassignment is close to the optimal solution.
(3) For an entirely homogeneous distribution, the density based decomposition yields the
original problem after the merge step, hence there are no time gains.

These three problems can be resolved by replacing the EM-FI improvement step with
another decomposition step. The objective of this level of decomposition is to divide the
current sources selected after the divide and conquer step (EM-FI reassignment) into k
parts using a distance based clustering algorithm like k-means. The idea behind this
decomposition is that the destinations that are far away from a source are unlikely to be
served by it given the distance based optimization function. The value of k is determined by
using the cluster quality criterion, Davies–Bouldin Index (Davies & Bouldin, 1979), on
clusters created for k ¼ 2 to k ¼ kmax. The Davies–Bouldin Index selects the clustering
solution that minimizes the ratio of intra-cluster dissimilarity (scatter) and inter-cluster
dissimilarity. The index evaluates the ratio, Rij, for all pairs of clusters, Ci and Cj, i 6¼ j, in
the solution. The intra-cluster scatter or the numerator of Rij is the sum of the average
distance between all members in cluster Ci to the centroid of Ci and the average distance
between all members in cluster Cj to the centroid of Cj. While the inter-cluster dissimilarity
between Ci and Cj is the distance between the two cluster centroids. For each cluster Ci, the
maximum value of Rij is selected as its index, the Davies–Bouldin measure for the solution
is the average index value across all clusters. A lower value of this index indicates better
clustering. Each part is treated as an independent subproblem with the sources in that part
as the initial solution to the subproblem for serving the union of destinations assigned to
them. These subproblems are solved using FI concurrently, and since the initial solutions
are already close to the optima these subproblems converge sooner. This step of distance
based decomposition is repeated for k ¼ k� 1 (until k ¼ 1) by clustering the sources
obtained from solving the subproblems created in the previous iteration. If the objective
cost function value remains unchanged across two consecutive distance based
decomposition iterations, then the process is terminated before k ¼ 1. The final step in this
process for k ¼ 1 (if the algorithm does not terminate before that) is identical to the EM-FI
Improvement step, however, the initial solution is now even closer to the optimum because
of the previous decompositions, and hence it is much faster. We conducted experiments
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for the real dataset problems (10 runs for each dataset) on a Google compute machine (n1-
highmem-16, 16 vCPUs, 104 GB RAM) employing the iterative distance based
decomposition after EM-FI:Reassignment instead of the improvement step. We
executed six MILP problems and 10 FI subproblems concurrently on this machine
because of higher memory and CPU capabilities. Figure 8 shows the changes in
execution time and relative cost function values with each iteration of distance based
decomposition, after the reassignment step in a single execution for Region 6. Table 3
shows the cost and execution time results for these experiments and compares them with
the results obtained from EM-FI:Improvement on the i7 dual quad core machine. The
time gains from both the use of a more powerful machine and distance-based
decomposition are shown in the table. Additionally, we solved a p-median problem to
select 2,500 facilities in the entire state of Texas on the Google machine. There are 15,811
census block groups in the state of Texas. A problem of this scale would have taken days to
execute if solved using the serial implementation of FI. A solution within 4% of the
final solution was obtained in about 1.5 h for this problem and the final solution was
obtained in less than 9 h.

If the density based decomposition yields the original problem because of the absence of
clusters, the region can be divided into k subproblems using the distance-based
decomposition strategy described above. The first iteration solution can be improved by
dividing the sources obtained from the first iteration into k ¼ k� 1 parts iteratively. These
decomposition strategies, however, may yield a single large subproblem that becomes the
bottleneck to obtain a solution. This was observed in the case of the Texas dataset which

Figure 8 Increase in execution time and decrease in cost function value for each iteration of distance-
based decomposition after EM-FI:Reassignment for Region 6, Texas.

Full-size DOI: 10.7717/peerj-cs.2446/fig-8
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caused the execution time to increase. The algorithm can be used recursively to overcome
this problem.

Another challenge with the EM-FI decomposition algorithm is the unreliable nature of
the BIC criterion. Higher numbers of clusters seemed to yield lower BIC values and lead to
over-decomposition, especially in case of centered distributions. There are many cluster
quality metrics and criteria that measure the intra-cluster similarity and the inter-cluster
similarity in different ways. These metrics include cluster validation indexes such as
Calinski and Harabasz score (Caliński & Harabasz, 1974), Dunn’s Index (Dunn, 1973),
Davies–Bouldin index (Davies & Bouldin, 1979), and silhouette coefficient (Rousseeuw,
1987), if the ground truth is not known. It was observed that these indexes yield vastly
different results with varying distributions. BIC seemed to yield the best results for
identifying density-based clusters and the Davies–Bouldin Index was selected to evaluate
distance-based clusters. For a given region, denser regions can be identified by using
DBSCAN without the dependence on the number of clusters, but this algorithm requires
two additional parameters, minimum number of neighbors and the radius of
neighborhood, which are not generalizable across problems as density is a relative concept.
Additionally, the EM algorithm is faster than DBSCAN, hence more suitable for efficiency
gains. The algorithm can be made even more efficient by employing parallel versions of
expectation-maximization (Lee, Leemaqz & McLachlan, 2016) if necessary, although the
expectation maximization step in the algorithm is much faster than the p-median steps,
therefore the time gains are expected to be minimal.

DISCUSSION
A novel distributed algorithm to solve large-scale p-median problems efficiently is
presented in this article. The algorithm, EM-FI, utilizes the spatial configuration and the
density distribution of demand points to decompose the region into subregions, and
corresponding subproblems that can be solved concurrently without the loss in quality of
the solution. The EM-FI:Reassignment heuristic, in which the union of the facilities
selected in the subproblems is the solution to the original problem is at least five-eight
times faster than FI and produces close to optimal solutions for datasets with distinct
clusters. Performing FI on the EM-FI:Reassignment solution further improves the solution
and yields better results than the FI heuristic both with respect to time and cost function

Table 3 Comparison of cost function values and execution time for results on a dual quad core machine (PC) and a Google compute machine
(GCP). The values in (Q1–Q3) represent the first and third quartile values of the relative cost values across multiple runs.

Problem scale (n; p) PC: Final cost PC: Time GCP: Final cost GCP: Time

Dallas, Tx (1,669, 400) 100.11% (100.32–100.34)% 0.092 (0.090–0.094) h 100.33% (100.34–100.37)% 0.057 (0.053–0.059) h

Region 6, Tx (3,148, 512) 100.00% (100.14–100.33)% 1.64 (1.349–1.868) h 100.00% (100.08–100.16)% 0.403 (0.357–0.448) h

Los Angeles, CA (6,425, 1,600) 100.00% (100.02–100.07)% 5.22 (5.03–5.42) h 100.01% (100.05–100.10)% 1.87 (1.77–1.96) h

Texas, USA (15,811, 2,500)* – – 100.00 % 8.56 (8.56–8.56) h

Note:
* Single run on Google Compute Engine.
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values. We solved p-median problems of much larger scales (n> 3,000, p > 500) than
presented in existing research in less than 1 h on a personal computer. This research paves
the way for solving nationwide/statewide location-allocation problems, such as the
selection of Amazon inventory centers, or electric vehicle charging stations, across the
country or state optimally in a reasonable amount of time.

The experiments for this study were performed without using a high performance
cluster. The algorithm was distributed across cores/CPUs on the same machine. The
run time can be reduced further by using a cluster of compute machines. The cluster
can be set up in a way that enables the solution of a subproblem by MILP or parallel FI or
EM-FI depending on the scale of the subproblem. This setup will ensure that no
subproblem is a bottleneck. In the parallel version of FI, the swaps can be evaluated faster
by comparing the exchange of an existing facility with all candidate facilities at the same
time. Furthermore, better resources may enable solving all subproblems exactly using
MILP solvers. Additionally, there is ongoing research on finding scalable methods to
parallelize MIP solvers (Ralphs et al., 2018). Existing methods do not scale well enough for
the original p-median problems, but these methods can be explored to solve the
subproblems faster, if the resources are available. There is additional potential
to compare the decomposition discussed in this study with the Bender’s
decomposition approach shared in Duran-Mateluna, Ales & Elloumi (2023) to create
and solve p-median subproblems. Furthermore, there is scope to improve this study by
extending the model to use real traffic data, accounting for the distance to raw materials
(Church, Drezner & Kalczynski, 2023), and the exact locations of facilities (Croci, Jabali &
Malucelli, 2023).

APPENDIX
Detecting heterogeneity in a region
The heterogeneity (or homogeneity) of the spatial distribution of points in a region is
identified by overlaying a fine grid over the region. Let the number of demand points in the
subregion be nsub. The expected distribution for the number of cells in the grid with i
(0 � i � nsub) demand points is compared with the obtained frequency distribution using
the v2-statistic. The probability that a demand point is located in any cell in a
homogeneous distribution is pcell ¼ 1=N , N is the total number of equal-sized cells in the
grid. The probability that a cell will be occupied by i demand points, pðiÞ is equal to
pðiÞ ¼ nsub

i

� �
picellð1� pcellÞnsub�i. Therefore, the expected number of cells with i demand

points is EðiÞ ¼ NpðiÞ. This distribution is compared with the actual number of cells with i
demand points, FðiÞ, in the subregion to check for deviation from a random distribution.

The v2 statistic can then be calculated as v2 ¼ �nsub
i¼0

ðEðiÞ�FðiÞÞ2
EðiÞ . This v2 probability

distribution has nsub degrees of freedom. The homogeneity hypothesis is evaluated by
calculating the probability that the v2 value lies on the chi-square distribution function. We
use the significance level of 5% for this analysis (a ¼ 0:05).
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