
Out of (the) bag—encoding categorical
predictors impacts out-of-bag samples
Helen L. Smith1, Patrick J. Biggs2,3,4, Nigel P. French3,4, Adam N. H.
Smith5 and Jonathan C. Marshall1

1 School of Mathematical and Computational Sciences, Massey University, Palmerston North,
New Zealand

2 School of Food Technology and Natural Sciences, Massey University, Palmerston North,
New Zealand

3 NZ Food Safety and Science Research Centre, Massey University, Palmerston North,
New Zealand

4 School of Veterinary Science, Massey University, Palmerston North, New Zealand
5School ofMathematical and Computational Sciences, Massey University, Auckland, New Zealand

ABSTRACT
Performance of random forest classification models is often assessed and interpreted
using out-of-bag (OOB) samples. Observations which are OOB when a tree is trained
may serve as a test set for that tree and predictions from the OOB observations used
to calculate OOB error and variable importance measures (VIM). OOB errors are
popular because they are fast to compute and, for large samples, are a good estimate
of the true prediction error. In this study, we investigate how target-based vs. target-
agnostic encoding of categorical predictor variables for random forest can bias
performance measures based on OOB samples. We show that, when categorical
variables are encoded using a target-based encoding method, and when the encoding
takes place prior to bagging, the OOB sample can underestimate the true
misclassification rate, and overestimate variable importance. We recommend using a
separate test data set when evaluating variable importance and/or predictive
performance of tree based methods that utilise a target-based encoding method.

Subjects Bioinformatics, Data Mining and Machine Learning, Data Science
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INTRODUCTION
Out-of-Bag sample
Random forest classification is a method of supervised machine learning that creates an
ensemble of classification trees. The individual trees that make up the ensemble differ from
one another because they are each trained on a different random sample of predictor
variables (‘random subspacing’; Amit & Geman, 1997; Breiman, 1996; Ho, 1998). In
addition, each individual tree is trained on a different bootstrap sample of the observations
in the training set (‘bagging’ or ‘bootstrap aggregating’). The bootstrap sample for each tree
(“the bag”) typically contains about two-thirds of the observations in the training data. The
remaining one-third of observations are “out-of-bag” (OOB) and serve as a test set for the
tree. The OOB sample may be used to estimate the predictive performance of the random
forest and variable importance measures (VIM), amongst other things.
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Out-of-Bag error
An OOB prediction for an observation is obtained by aggregating the tree classifications
for the observation from the OOB samples. The misclassification rate of the OOB
predictions from all training observations is the OOB error (Breiman, 2001) (Fig. 1). OOB
errors are popular because they are fast to compute, requiring only a single random forest
to be computed, and have been reported to be a good estimate of the true prediction error
(Adelabu, Mutanga & Adam, 2015; Lawrence, Wood & Sheley, 2006; Mutanga & Adam,
2011). The OOB error may also be used to select appropriate values for tuning parameters,
such as the number of predictor variables that are randomly drawn for a split1. Breiman
(1996, 2001) claimed that the OOB error alleviates the need for cross-validation or setting
aside a separate test set; however, it has been shown that, especially for small samples, the
OOB error can over-estimate the true prediction error (Bylander, 2002; Mitchell, 2011;
Janitza & Hornung, 2018). Methods to address the bias have been proposed (Bylander,
2002; Mitchell, 2011; Janitza & Hornung, 2018), although, when available, a large external
validation data set will provide a more precise error estimate, serving as a gold standard
(Hastie, Tibshirani & Friedman, 2009; Janitza & Hornung, 2018).

Variable importance
OOB samples may also be used to calculate measures of variable importance. VIM can be
used to rank predictor variables according to their degree of influence on the predicted
outcomes. There are two broad measures of variable importance for random forests—the
Mean Decrease in Accuracy (MDA, or permutation importance) (Breiman, 2001); and the
Mean Decrease in Impurity (MDI, or Gini importance) (Breiman, 2002). For both
measures, a high value means that the variable has a positive impact on predictions.

MDA for a given variable is the mean decrease in prediction accuracy of the individual
trees across the forest when the variable is not used for prediction. MDA is obtained by
permuting values of the variable in the OOB sample and computing the difference in the
error rate on the permuted OOB sample from the original OOB sample (Fig. 2). The idea is
that permuting an important variable would result in a large decrease in accuracy while
permuting an unimportant variable would have a negligible effect.

MDI is the weighted mean of the individual trees’ decrease of impurity produced by a
given variable. An important variable is expected to generate a larger decrease of impurity
(i.e. more pure splits) than an unimportant variable. The decrease of impurity is measured
as the difference between a node’s Gini impurity and the weighted sum of the Gini
impurity of the two child nodes, evaluated on the in-bag samples.

Several studies have highlighted issues with these importance measures and have
proposed modifications which may overcome specific undesirable properties (Strobl et al.,
2007, 2008; Sandri & Zuccolotto, 2008; Nicodemus &Malley, 2009; Nicodemus, 2011; Toloşi
& Lengauer, 2011; Janitza, Celik & Boulesteix, 2018; Gregorutti, Michel & Saint-Pierre,
2017;Nembrini, König &Wright, 2018; Benard, Sebastien & Scornet, 2022;Mentch & Zhou,
2022; Wallace et al., 2023; Williamson et al., 2023). Janitza, Celik & Boulesteix (2018)
introduced the Holdout variable importance method which computes MDA using a

1 Referred to as mtry in R packages ran-
ger, randomForest, randomFor-
estSRC, and the tidymodels framework;
or max_features in Python’s sklearn
RandomForestClassifier.
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second cross-validation fold rather than the OOB data and has been adopted as an option
by the ranger and randomForestSRC packages. Also implemented by ranger is the
actual impurity reduction (AIR) importance method (Sandri & Zuccolotto, 2008;
Nembrini, König & Wright, 2018) which adjusts the original impurity by subtracting the

Figure 1 A visual description of the process of obtaining an out-of-bag (OOB) error estimate.
Full-size DOI: 10.7717/peerj-cs.2445/fig-1

Figure 2 A visual description of the process of obtaining permutation importance (MDA) for
variable Xi. Full-size DOI: 10.7717/peerj-cs.2445/fig-2
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impurity importance following random reordering of the variable (Fig. 3). There have been
many other variable importance measures proposed (e.g. Loecher (2022), Epifanio (2017),
Dfuf et al. (2020)), however they have not been widely adopted and MDA is generally
considered the most efficient and accurate measure of variable importance (Ishwaran,
2007; Strobl et al., 2007; Nicodemus et al., 2010; Boulesteix et al., 2012; Ziegler & König,
2014; Szymczak et al., 2016).

Encoding categorical predictors
Categorical variables can, in theory, be used by random forests in their raw state; however
in practice, software will either require them to be numerically encoded (Pedregosa et al.,
2011) or will encode them prior to processing (Wright & Ziegler, 2017; Liaw & Wiener,
2002). There are several methods of encoding categorical variables. Ordinal encoding of
categorical predictors has several benefits, including increased computational efficiency,
evading restrictions on the number of predictor categories2, and managing absent levels
(Au, 2018; Smith et al., 2024). The encoding method can be independent of the response
variable (i.e. target-agnostic methods, such as one-hot encoding, integer encoding, and
PCO-encoding (Smith et al., 2024)) or can incorporate information about the target values
associated with a given level (i.e. target-based methods, such as CA-encoding
(Coppersmith, Hong & Hosking, 1999;Wright & Ziegler, 2017) and CA-unbiased-encoding
(Smith et al., 2024)).

Encoding may be performed at different stages of the algorithm (Fig. 4). The most
computationally efficient method is to encode the predictor variables prior to bagging
(i.e., once on the entire dataset rather than each sub-sample undergoing encoding
independently) (Wright & Ziegler, 2017). Encoding can also take place after bagging
(i.e., on each sub-sample or at each split in the tree (Breiman, 1996; Liaw &Wiener, 2002));
however, this has a much higher computational cost.

Target-based encoding methods necessarily have information leakage from the target
variable to the predictors. If a predictor is encoded prior to splitting into training and test

Figure 3 Illustration of the actual impurity reduction (AIR) calculation. The AIR for variable
Xi for Treej ¼

P
Impurity reductionXi�

P
Impurity reductionreorderedXi , where impurity reduction is

the Gini impurity of the parent node minus the weighted sum of the Gini impurity of the two child nodes.
Full-size DOI: 10.7717/peerj-cs.2445/fig-3

2 When nominal encoding a categorical
variable, each binary node assignment is
saved using the bit representation of a
double integer, which limits this treat-
ment to predictors with fewer than 54
levels (Wright & König, 2019).
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sets, information from the target variable in the test set will leak to the predictors in the
training set by way of the a priori encoding. In the same way, if a predictor is encoded prior
to bagging, information from the target variable in the bootstrap samples will leak to the
predictors in the OOB samples. The OOB observations will not, therefore, behave like fully
independent test data. Target-agnostic encoding methods do not have this issue with
information-leakage because the response class (target) information is not used for the
encoding.

Treating the OOB samples like an independent test set is therefore only reasonable if a
target-agnostic encoding method is used, or if a target-based encoding method is
performed subsequent to bagging. Otherwise, calculating misclassification rates and
measures of variable importance on the OOB sample, or indeed the encoded variables, as
in the case of the Holdout variable importance (Janitza, Celik & Boulesteix, 2018;Wright &
Ziegler, 2017), is likely to underestimate the true error rate and overestimate the variable
importance. The impact of method and timing of encoding has not been explicitly
examined with regards to random forest OOB sample calculations.

Study aims and objectives
Encoding of categorical variables is a necessary preprocessing step for many machine
learning algorithms. The computational benefits of ordinal encoding categorical variables
are well known. To our knowledge, the potential leakage of target information to the OOB
samples as a result of target encoding categorical variables prior to bagging is unreported.
Current debates lie in the accuracy of OOB error estimates and/or VIMs, particularly for

Figure 4 Encoding may take place prior to or after creating the out-of-bag (OOB) samples.
Full-size DOI: 10.7717/peerj-cs.2445/fig-4
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small sample sizes and unbalanced designs, but there appears to be no awareness that OOB
samples may not be as ‘good as an independent test set’ and it remains a commonly held
belief that OOB samples replace the need for separate test data.

For some popular random forest implementations (e.g. the R package ranger (Wright
& Ziegler, 2017)), target encoding of categorical predictors prior to bagging is the
recommended approach (Wright & König, 2019), and is performed internally within the
method, in parallel with OOB error and VIM calculations. This has potentially resulted in
biased and even misleading results in a number of studies.

In this study, we investigate the accuracy of OOB error estimates and variable
importance measures when nominal categorical variables are ordinal encoded prior to
bagging in random forest models. We compare how target-based vs. target-agnostic
encoding of categorical predictor variables can affect the OOB error and estimates of
variable importance using a random noise simulation study. We demonstrate that when
target-based encoding is performed prior to bagging, OOB samples are biased due to
information leakage from the target variable during the encoding process and we
recommend using a separate test set instead of the OOB sample, or else to perform the
encoding after bagging.

Although here we focus on random forest which incorporates bagging as a key
component of the method, these results are generalisable to any applications which employ
bagging (bootstrap aggregating), including other ensemble learning techniques;
classification and regression tasks (Dfuf et al., 2020); outlier predictions (Mohandoss, Shi &
Suo, 2021); feature selection (Deviaene et al., 2019; Calle et al., 2011; Díaz-Uriarte & Alvarez
de Andrés, 2006); model tuning (Adesina, 2022); Gini-OOB index (Chen, Tan & Yang,
2023); and clustering (Schumacher et al., 2016; Bigdeli, Maghsoudi & Ghezelbash, 2022).

The aim of this study is to raise awareness of this simple, yet important and previously
unreported, issue. Specifically, our goals are to:

(i) demonstrate why the common practice of using OOB samples instead of independent
test data can lead to biased and potentially misleading results due to information
leakage from the target variable during the process of encoding categorical predictors;

(ii) investigate via a short simulation study the accuracy of OOB error estimates and
variable importance measures when nominal categorical variables are ordinal
encoded prior to bagging in random forest models;

(iii) highlight the benefits of using independent test data for calculation of error estimates
and variable importance measures; and

(iv) introduce the new ‘Independent Holdout method’ for calculating variable importance.

This article is structured as follows: “Introduction” includes a concise literature review
and highlights the need for this research; “Methods” discusses implementation specific
treatment of categorical variables, and describes the simulation methodology including
data generation; “Results” presents the results of a short simulation study on OOB error
and VIM measurements; “Discussion” answers the research questions and discusses the
implications of our results; “Conclusion” summarises the findings of the study.
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METHODS
Implementation
There are many popular implementations of random forest, including over 20 packages in
R (https://koalaverse.github.io/machine-learning-in-R/random-forest.html#random-
forest-software-in-r) as well as the widely used Python machine learning library scikit-
learn (Pedregosa et al., 2011). There is no single best implementation and most are
optimised for some special property of the data (Wright & Ziegler, 2017). Algorithms do,
however, differ in their treatment of categorical variables, including absent levels (i.e. levels
of a predictor variable that are present in data for prediction that were not present when
the random forest was trained) (Table 1), which may impact predictions (Au, 2018; Smith
et al., 2024) and performance measures calculated from OOB samples.

An unordered (nominal) categorical predictor with k levels has 2k�1 � 1 possible binary
splits. A random forest algorithm may search the set of possible splits, either exhaustively
(e.g. randomForest3 (Liaw & Wiener, 2002) and ranger4 (Wright & König, 2019)), or
partially (e.g. randomForestSRC (https://www.randomforestsrc.org/articles/getstarted.
html#allowable-data-types-and-factors) (Ishwaran & Kogalur, 2023)). As each binary
node assignment is saved using the bit representation of a double integer the exhaustive
search option is limited to predictors with fewer than 54 levels. If the categorical predictor
is defined as a character vector (i.e. rather than an unordered factor) it may, by default, be
encoded alphabetically (e.g. randomForest) rather than converted to a factor (e.g.
ranger). This is problematic if a separate data set (i.e. for prediction) has a different set of

Table 1 Implementation specific treatment of categorical variables.

Implementation Predictor type Predictor treatment Handles absent levels Timing of encoding Maximum levels

ranger character vector converts to unordered factor yes – –

ordered factor treats as ordinal yes – –

unordered factor exhaustive partition yes – 53 levels

orders alphabetically yes before bagging –

target encodes yes before bagging –

randomForest character vector orders alphabetically yes1 before bagging –

ordered factor treats as ordinal yes1 – 53 levels

unordered factor exhaustive partition no – 53 levels

target encodes2 no after bagging 53 levels

randomForestSRC character vector unable to process – – –

ordered factor treats as ordinal yes3 – –

unordered factor partial partition yes3 – –

scikit-learn character vector one hot encoding yes3 before bagging –

ordered factor one hot encoding yes3 before bagging –

unordered factor one hot encoding yes3 before bagging –

Notes:
1 The absent levels need to be ordered last for consistency of encoding with the training set.
2 Optimisation is employed in the case of 2-class classification when there are more than ten levels of a predictor variable.
3 Treats absent levels as missing values.

3 This is the default option for random-
Forest in the case of multi-class classi-
fication or two-class classification with
predictors which have fewer than 10
levels.

4 When the argument respect. unor-

dered. factors is set to “partition”.
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levels to those in the training set, in which case the ordinal encoding of the two sets will not
match. This will occur if the observations for prediction contain only a subset of the levels
from the training set, or if there are absent levels.

An ordered categorical predictor with k levels can be treated the same way as a numerical
predictor with k unique ordered values and, at most, k� 1 possible split points. Again, care
needs to be taken when the levels in the data to be predicted do not match exactly the levels
in the training set as, for some algorithms (e.g. randomForest), the encoding of the levels
may not match. For the case of two-class classification, a nominal predictor variable with k
levels may be ordered by the proportion of observations with the second response class in
each level. The ordering may occur at each split (e.g. randomForest5), or once prior to
growing the forest (e.g. ranger6). Subsequently, treating these variables as ordinal leads to
identical splits in the random forest optimisation as considering all possible 2-partitions of
the k predictor levels (Breiman et al., 1984; Ripley, 1996). For multi-class classifications, an
order may be imposed on a nominal variable alphabetically (e.g. ranger7), or according to
the first principal component of the weighted covariance matrix of class probabilities,
following Coppersmith, Hong & Hosking (1999)8 (e.g. ranger9). Ordering the variables
once on the entire dataset prior to bagging, rather than at each split, is computationally
efficient and negates the upper limit on the number of variable levels (Wright & König,
2019).

Some implementations of random forest require categorical variables to be one-hot
encoded prior to analysis (e.g. Python’s scikit-learn). This means a single predictor
with k levels is replaced by k� 1 indicator variables. Now there will be only a single
possible split point at each node but from k� 1 indicator variables. Using this method,
some of the category levels will be randomly ignored for each split, and so the original
predictor will be represented by j binary predictors, where j � k� 1.

Treatment of absent levels also differs between implementations. Some algorithms are
unable to process absent levels of unordered factors at all (e.g. randomForest). Some treat
absent levels as missing values, or if there are no true missing values will map them to the
child node that has the most samples (e.g. scikit-lear (https://scikit-learn.org/stable/
modules/ensemble.html#random-forests) and randomForestSRC). And some will send
all observations with an absent level to a particular branch at any given node (e.g. ranger
(https://github.com/imbs-hl/ranger/blob/master/R/predict.R#L167)) (Smith et al., 2024).

The method of treatment of categorical variables, including absent levels, by four
popular implementations of random forest is summarised in Table 1.

Simulation study
To investigate the accuracy of internally calculated misclassification rates and variable
importance under null conditions, a set of data was simulated and analysed with random
forest.

The simulated data consisted of n individuals, each with one predictor variable allocated
uniformly and with replacement from k levels. One of three classification labels were
randomly assigned to each individual. There is no relationship between the response and
the predictors. A subset containing 80% of the observations was used for training the

5 This optimisation proceeds when the
predictor variable has more than 10
unordered levels.

6 When the argument respect. unor-

dered. factors is set to “order” or
TRUE.

7 When the argument respect. unor-

dered. factors is set to “ignore” or
FALSE.

8 Coppersmith, Hong & Hosking (1999) use
the first principal component of the
weighted matrix of class probabilities.

9 When the argument respect. unor-

dered. factors is set to “order” or
TRUE.
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random forest, and the remaining 20% of observations were used as the set of testing data.
The process was repeated for each combination of sample size n 2 f20; 50; 100; 150; 200;
400g and number of variable levels k 2 f1; 5; 10; 35; 50; 100; 150; 200g.

For each random forest, the misclassification rate was calculated using each of two
methods:

(i) the OOB sample; and

(ii) the misclassification rate of the observations in the testing data.

In addition, for each random forest, the variable importance was calculated using each
of five methods:

(i) the original MDI method, sensu Breiman (2002);

(ii) the original MDA method, sensu Breiman (2001);

(iii) the Actual Impurity Reduction (AIR) importance (Sandri & Zuccolotto, 2008;
Nembrini, König & Wright, 2018);

(iv) the Holdout variable importance (Janitza, Celik & Boulesteix, 2018); and

(v) the Independent Holdout method which is the Holdout method but using cross-
validation folds which have been separated prior to encoding.

For each combination of parameters, 99 sets of data were generated and a random forest
was trained with 500 trees and the Gini index splitting rule. The levels of the predictor
variables were integer encoded according to the alphabetical ordering of the levels and the
average misclassification rate and VIM were recorded for each method. The process was
then repeated with the levels of the predictor variables being target encoded based on class
probabilities.

The ranger() function from the R package ranger (Wright & Ziegler, 2017) offers
both target-based and target-agnostic encoding options internal to the function and was
used for the analysis; however, analysis by a different implementation using pre-encoded
predictor variables would lead to equivalent results.

Code availability
All analyses were carried out using R version 4.3.1 (R Core Team, 2023) and the ranger
package (“RANdom forest GEneRator”) version 0.15.1 (Wright & Ziegler, 2017). The R
code used in this study is available at https://github.com/smithhelen/OutOfTheBag/
releases/tag/v.1.0.0. This includes the code to generate the simulated data for
reproducibility.

RESULTS
Out-of-bag (OOB) error
In the ideal case of balanced data with random assignment of individuals, the
misclassification rate with simulated data was expected to be 2

3 � 0:67 regardless of the
sample size, number of predictor levels, or method of encoding predictor variables. This
was indeed the case when the misclassification rate was calculated for a fully withheld
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independent test set—except with a small sample size of 20. However, the internally
calculated OOB error rate depended on the method used to encode the levels of the
categorical predictor variables. When predictor levels were integer encoded based on
alphabetical placement, the misclassification rate was 0:67, as expected; however, when the
predictor levels were target encoded based on the first principal component of the
weighted covariance matrix of class probabilities, the misclassification rate decreased with
increasing numbers of factor levels, and this was compounded with smaller sample sizes
(Fig. 5). The bias was further exacerbated with increasing number of predictor variables
(Fig. S1).

Variable importance measures
The average variable importance was also expected to be impervious to the method of
encoding of predictor variables, and, under random assignment of variable levels and of
individuals, the variable importance was expected to be zero. The independent-holdout
method was the only method that returned the expected outcome (i.e. zero importance for
both target-agnostic and target-based encoding methods). The MDI measure, which is
calculated on in-bag samples, was not affected by the choice of encoding; however, MDI
increased with both sample size and number of variables for both target-agnostic and
target-based encoding methods. Each of the other three variable importance measures
were influenced by the choice of encoding method. Although the Holdout method does
not directly use OOB samples for its calculations, because it is performing the predictor
encoding on the entire dataset, prior to splitting into cross-validation folds, it is affected in
the same manner. When predictor levels were integer encoded (i.e., target-agnostic), the
variable importance values were zero as expected; however, when the predictor levels were
target encoded, the average variable importance increased with increasing numbers of
factor levels. For the MDA and Holdout methods, this was compounded with smaller
sample sizes, but the opposite was true for AIR, which showed greater bias for larger
sample sizes (Fig. 6). In contrast with the OOB misclassification rate, the positive bias
diminished with increasing number of predictor variables (Fig. S2).

DISCUSSION
Random forest predictive models are well suited to data sets containing a large number of
categorical predictors and/or predictors containing many levels. Such data presents
challenges for predictive models including absent levels (i.e. levels of a predictor variable
that are present in data for prediction that were not present when the random forest was
trained) and high computational demands. In these cases, one-hot encoding is not
recommended as it frequently leads to a prohibitively large number of binary variables.
Ordinal encoding, however, may improve both predictive performance and efficiency of
models and offers a solution to the ‘absent-levels’ problem (Smith et al., 2024).

Methods of ordinal encoding of categorical predictors may be dependent or
independent of the target variable. Target-based methods of encoding, including the two-
class optimisation employed by randomForest and ranger, and ordering according to
the first principal component of the weighted matrix of class probabilities, as implemented
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in ranger10, use information from the target variable to inform the ordering. When the
encoding is performed prior to bagging, there is leakage of information from the target
variable to the observations in the OOB set. The leakage occurs because, even when the
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Figure 5 Misclassification rates of data simulated with balanced design and random assignment of individuals to one of three classes as calculated
via independent test set (top panel, red circles) and internal OOB sample (bottom panel, blue diamonds) when the method of encoding predictor
variables is target-agnostic (ordered (alpha)numerically, left panel) or target-based (ordered via principal component analysis (PCA) of class
probabilities, right panel). The dotted line indicates the expected misclassification rate under the simulated null conditions.
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10 Also the CA-unbiased variation descri-
bed in Smith et al. (2024).
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observations are out of bag, the encoding of their corresponding levels was informed from
the entire training dataset (i.e., prior to the observations moving OOB) based on the
correct response classes (i.e., the target). This means the OOB observations do not behave
like fully independent test data.

Target-agnostic methods of encoding, such as the naïve alphabetical encoding, or
ordering according to some characteristic of the data (e.g. the PCO-encoding method
(Smith et al., 2024)), are not subject to the issue of data leakage because the levels are
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Figure 6 Average variable importance as calculated using the five methods when the method of encoding predictor variables is target-agnostic
(circles; encoded as integers) or target-based (diamonds; encoded via principal component analysis (PCA) of class probabilities).
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encoded using data on the predictor variables only–the response class (target) information
is not used. Therefore, in these cases, it is entirely appropriate to treat OOB observations
like fully independent test data.

Breiman (1996, 2001) claimed that the out-of-bag sample was as reliable as using an
independent set of data for testing. We found that, for random forests, different methods
of encoding nominal variables had important implications for the accuracy of calculations
performed on out-of-bag samples. We showed that the OOB misclassification rate, and the
variable importance measures which utilise OOB samples (the MDA, Holdout, and AIR
measures), were biased when using a target-based encoding method due to ‘data-leakage’
during the a priori encoding of categorical predictors. When the encoding method is
target-based, and the encoding is performed prior to bagging, the OOB data
underestimates the true rate of misclassification, and overestimates true variable
importance.

In all cases the bias increases with increasing number of factor levels, and is influenced
by sample size. The effect of information leakage on OOB misclassification rates is more
pronounced with smaller sample sizes and leads to lower misclassification rates (higher
accuracy). The information leakage does not affect the permuted variable, as the
relationship with the target is broken, and therefore MDA and Holdout variable
importance measures both increase with decreasing sample size. In contrast, when variable
importance is measured using purity of splits (e.g. the AIR method), rather than
misclassification rates, information leakage has a more pronounced effect when sample
sizes are larger. Although the MDI measure is not affected by method of encoding, it is also
dependent on sample size. For both the MDI and the AIR methods, increasing sample size
results in better purity of splits leading to higher variable importance values. MDI is known
to be biased in favour of variables with many possible split points (Strobl et al., 2007).
Larger sample sizes represent a greater number of factor levels, and therefore split points,
which is artificially inflating variable importance.

A potential solution to the problem of information leakage to the OOB sample is to
order the levels of each bootstrap sample independently (i.e. rather than ordering once on
the entire dataset prior to bagging) (Fig. 4). We note that there are currently no
implementations of random forest which offer encoding after bagging for the multiclass
case. Another option is to calculate misclassification rates and variable importance
measures on truly independent test data.

The findings of our study have several important research and practical implications for
machine learning practitioners. Our aim is not to recommend a particular VIM or error
estimation technique, but rather to discard the belief that OOB samples are a replacement
for independent test data in all instances. This is not an issue for numeric or ordinal data.
But for nominal categorical predictors which are ordinal encoded using a target-based
encoding method, we recommend calculating misclassification rates from a separate, fully
independent, test dataset; and calculating variable importance via MDA using an
independent test set as the holdout sample.
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CONCLUSION
This article highlights how different methods of encoding of categorical predictors can bias
OOB misclassification rates and variable importance measures. For datasets with a high
number of variables and/or variable levels, absent levels are likely and ordinal encoding is a
sensible approach for both speed of analysis and accuracy of predictions. When levels of
categorical predictor variables are target encoded using class probability information and
when encoding occurs prior to bagging, OOB samples suffer information leakage and are
not a replacement for an independent test set. Using OOB data in place of an independent
test set will lead to inflated measures of accuracy and variable importance. These findings
are applicable to random forests and other tree-based methods (e.g., boosted trees) where
OOB misclassification rates and/or variable importance measures are calculated.
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