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ABSTRACT
Background. The Zika virus (ZIKV), which is transmitted by mosquito vectors to
nonhuman primates and humans, causes devastating outbreaks in the poorest tropical
regions of the world. Molecular epidemiology, supported by clustering phylogenetic
gold standard studies using sequence data, has provided valuable information for
tracking and controlling the spread of ZIKV. Unsupervised learning (UL), a form of
machine learning algorithm, can be applied on the datasets without the need of known
information for training.
Methods. In this work, unsupervised Random Forest (URF), followed by the applica-
tion of dimensional reduction algorithms such as principal component analysis (PCA),
Uniform Manifold Approximation and Projection (UMAP), t-distributed stochastic
neighbor embedding (t-SNE), and autoencoders were used to uncover hidden patterns
from polymorphic amino acid sites extracted on the proteome ZIKVmulti-alignments,
without the need of an underlying evolutionary model.
Results. The four UL algorithms revealed specific host and geographical clustering
patterns for ZIKV. Among the four dimensionality reduction (DR) algorithms, the
performance was better for UMAP. The four algorithms allowed the identification
of imported viruses for specific geographical clusters. The UL dimension coordinates
showed a significant correlation with phylogenetic tree branch lengths and significant
phylogenetic dependence in Abouheif’s Cmean and Pagel’s Lambda tests (p value
< 0.01) that showed comparable performance with the phylogenetic method. This
analytical strategy was generalizable to an external large dengue type 2 dataset.
Conclusion. These UL algorithms could be practical evolutionary analytical techniques
to track the dispersal of viral pathogens.

Subjects Computational Biology, Algorithms and Analysis of Algorithms, Artificial Intelligence,
Data Mining and Machine Learning
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INTRODUCTION
TheZika virus (ZIKV) illness is a neglected tropical disease that causes devastating outbreaks
in the poorest populations of the world (Sarkar & Gardner, 2016). In humans, ZIKV
infection causes mild or asymptomatic disease; however, the infection has been associated
with miscarriage and congenital microcephaly in the newborns who acquired the virus
in any trimester during the pregnancy of women and associated with the neurological
Guillain Barré syndrome in adults (Rawal, Yadav & Kumar, 2016). ZIKV is transmitted to
nonhuman primate (NHP) and human hosts by different mosquito vectors (Terzian et al.,
2018). In NHP, the virus follows a sylvatic cycle where the primary vectors are arboreal
Aedes spp.; meanwhile, in humans, the virus follows the urban cycle where the primary
vectors are peridomestic/domestic Aedes spp (Vasilakis & Weaver, 2017).

ZIKV is in the Flavivirus genus, together with the type 1–4 dengue virus and yellow
fever virus, which are also transmitted by the vector Aedes aegypti (Souza-Neto, Powell &
Bonizzoni, 2019). The genome is composed of a single-stranded positive RNA of 10,716
nucleotides that encodes a polyprotein of 3,000 amino acids in length. The proteome
comprises the capsid (C), pro-envelope (prM), and envelope (E) structural proteins and
seven non-structural proteins NS 1, 2a, 2b, 3, 4a, 4b, 5. Phylogenetic clustering studies
using these sequence data allowed to trace the evolution of the pathogen and provided
valuable information to monitor the dispersal of the pathogen (Hung & Huang, 2021).

Motivation: Clustering approaches exist, other than phylogenetic methods, such as the
unsupervised learning (UL) algorithms, a subfield of the machine learning study area.
The UL approach facilitates to discover meaningful cluster structures on the data without
the need of training the algorithm with known information. For example, unsupervised
random forest (URF) has been applied successfully in an earlier study to identify clusters
related to human and mouse species using data pertaining to random monoallelic and
long interspersed nuclear element imprinted genomic sequences (Allen et al., 2003). This
approach was also used to distinguish tumor clusters related to immunohistochemistry
expression markers (Shi & Horvath, 2006). Recently, the URF approach was also used to
identify patients with coronary artery disease using clinical data for the learning algorithm
(Zanfardino et al., 2024). Although URF has proved its successful application in different
research areas, this approach is not explored in the analysis of genomic and proteomic
sequence data. The main assumption of the URF approach is its capability of distinguishing
original data from its derived synthetic data, if the results are meaningful, the subsequent
analysis based the production of a proximity matrix that can be used as input to other
dimensionality reduction (DR) should recover hidden structures on the real data (Afanador
et al., 2016). Regarding the DR algorithm, there are several options, of which, principal
component analysis (PCA) is the oldest and most popular DR algorithm, assuming linear
relations on the data. On the contrary, the new DR alternatives such as Uniform Manifold
Approximation and Projection (UMAP), t-distributed stochastic neighbor embedding
(t-SNE), and autoencoders based on deep learning (Lin, Mukherjee & Kannan, 2020)
assumed a nonlinear structure on the data. The final aim of all these DR algorithms is
to reduce the original data to a manageable spatial arrangement of clusters that can be

Lara-Ramírez et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2443 2/18

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2443


visually analyzed in two dimensions or axes. In this work, our objective was to apply these
distinct UL clustering approaches to analyze the evolution of ZIKV at proteome level and
to compare the results with the gold standard clustering phylogenetic methods.

Reproducibility: The R code implementing the unsupervised analysis is available in the
supplementary materials.

MATERIALS & METHODS
Data preprocessing
The whole flow chart is shown in the Fig. 1. It started by retrieving a total of 391
nonredundant ZIKV proteomes along with their metadata (available as Supplementary
Materials) for hosts (human,mosquito, and primate) and geographic regions from the virus
variation database (https://www.ncbi.nlm.nih.gov/genomes/VirusVariation/Database/nph-
select.cgi?cmd=database&, accessed on 08-09-2023) (Brister et al., 2013). After eliminating
proteomes with unambiguous amino acids, the final data set was composed of 293
proteomes. This sequence data was employed to construct multi alignments with the
MAFFT (Multiple Alignment using Fast Fourier Transform) software (Katoh, Rozewicki
& Yamada, 2019) using default options (available as Supplementary Materials). The
proteome phylogenetic tree was constructed from the multi-alignment with IQ-TREE
v. 2.3.6 software, which select the most appropriate amino acid evolution mathematical
model (Minh et al., 2020) (http://www.iqtree.org/). The resulting newick format tree file
was plotted and colored based on the geographic metadata with the iTOL web platform
(https://itol.embl.de/) (Letunic & Bork, 2021) (available Supplementary Materials).

Description of used models
URF: The ML algorithms were implemented in house-scripts running on R 4.2.2 version
(R Development Core Team, 2016) as follows: First the amino acid polymorphic sites were
extracted from the multi-alignments with the function ‘‘alignment2genind’’ from the
adegenet R package (Jombart, Balloux & Dray, 2010), from which 422 polymorphic sites
were determined. Based on these data, a synthetic data set of the same size was produced
by permutating the rows of each column and was then combined with the original data.
This information was used to perform a Random Forest (RF) analysis with the R package
randomForest using the function ‘‘randomForest’’ (Breiman, 2001; Liaw &Wiener, 2002).
The hyperparameters were optimized using a five-fold cross-validation with three-repeat
procedure with the caret R package (Kuhn, 2008). The ‘‘mtry’’ and ‘‘ntree’’ parameters
were settled using grid search, that include the square root (sqrt) of the predictors and 500,
1,000, 1,500, and 2,000 trees. The RF out of bag (OOB) error was used as partial validation
of goodness of fit for the URF. The final best hyperparameters were then used to perform
the URF on the original data by including the parameter proximity = TRUE, which allowed
to obtain the similarity (or proximity) matrix. The produced matrix was converted to
a dissimilarity matrix by subtracting 1 for each data to compress all the information as
previously described (Liaw &Wiener, 2002; Afanador et al., 2016). Then the matrix was
converted to a Euclidean distance matrix to confirm the structure on the data via heatmap
plotting and the Hopkins statistic. Finally, the dissimilarity matrix based on real data
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Figure 1 The analytical workflow of this study.
Full-size DOI: 10.7717/peerjcs.2443/fig-1

was further used as input to the PCA, t-SNE, UMAP, and autoencoders dimensionality
reduction algorithms. The pseudocode that includes the URF and the DR procedures is
shown below.
1. Combined_Data=real_data + synthetic_data,
2. Unsupervised RandomForest(data=combined_data, tree=num_trees,

mtry=min_samples_split, proximity= proximity_matrix):
3. forest = list()
4. proximity = matrix(len(data), len(data))
5. For i in tree do:
6. bootstrap_sample = bootstrap(data)
7. tree = randomForest(bootstrap_sample, mtry)
8. forest.aggregate (tree)
9. For each pair of samples (x_i, x_j) in data do:

If x_i and x_j end up in the same leaf node in the tree then:
proximity_matrix[i][j] += 1
End If
End For
return (forest, proximity_matrix)
return (proximity_matrix/ntree)
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11. evaluate error rate on OOB
12. UnsupervisedRandomForest(data=real_data, tree=num_trees,mtry=min_samples_split,

proximity=TRUE):
13. distance_matrix = 1 - proximity_matrix
14. cluster with PCA(distance_matrix)
15. cluster with t-SNE(distance_matrix)
16. cluster with UMAP(distance_matrix)
17. cluster with Autoencoders(distance_matrix)

PCA: The PCA was applied using the function ‘‘prcomp’’ and the option ‘‘scale=FALSE’’
with the R base package. PCA uses scaled data to calculate the covariance matrix to identify
correlated variables. Then this information is used to derive new uncorrelated variables
called the principal components that retain the variance of the original data into few axes’
coordinates.

t-SNE: The t-SNE algorithm was applied with ‘‘Rtsne’’ function of the Rtsne package by
settling the perplexity parameter at 50 with 1000 step iterations to identify the similar and
dissimilar data points. t-SNE reduces the high dimensional data using a symmetrized cost
function and Student-t distribution to calculate the similarity in the low-dimensional space
of two data points randomizing the initialization (Van der Maaten, 2014; Krijthe, 2015).
To balance local and global features in the data, t-SNE uses the perplexity parameter that
varies in the range of 5 to 50 to guess the closest neighbors for each data point.

UMAP: UMAP was implemented with the ‘‘umap’’ function from the umap R package
that considers 200 epochs and 15 neighbors as cut-off to compute the similarity. TheUMAP
algorithm is similar to the t-SNE and uses the t-distribution to calculate the similarity in
the data except that UMAP initializes in the same data points through spectral embeddings
that allows to move a single or group of data points at once to calculate its similarity,
making it faster than t-SNE (McInnes et al., 2018).

AutoEncoders: Autoencoders neural network was constructed using the Keras package
for R (Chollet, 2015). The neural architecture was designed containing three layers with 12
neurons in the first encoder layer, six in the second bottleneck layer and 12 in the third
decoder layer using the activation hyperbolic tangent function settled with the parameter
‘‘tanh’’. Using these parameters the AE shrinks the data into the bottleneck with 2,000
training iteration epochs.

Validation
External validation was carried visually by labeling the recovered clusters with the metadata
information through two-dimensional plots resolved by each DR; thus, if the clusters
formed according to its geography and host isolation, they were considered true clusters.
In addition, the internal validation was performed through silhouette plots using k-
means and the Euclidean distance in the elbow analysis to identify the number of
suitable groups produced by each DR. The silhouette coefficient was considered the
mean distance between samples in specific groups and other clusters. Thus, the larger
the coefficient, the more consistency is in the cluster distribution. Finally, the whole
unsupervised analysis strategy was applied to a larger dataset retrieved from virus variation
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(https://www.ncbi.nlm.nih.gov/genomes/VirusVariation/Database/nph-select.cgi?cmd=
database&, accessed on 26-07-2024) comprising 1,343 whole dengue type 2 (DENV2)
proteomes isolated from human hosts (available as supplementary materials). As these DR
methods could produce slightly different results in each training test, six test runs were
performed and analyzed to confirm the reproducibility of the cluster patterns.

Phylogenetic correlation and dependence test analysis
The R packages ape and adephylo (Jombart, Balloux & Dray, 2010) were used to read and
merge the axes cluster coordinates with the phylogeny using the function ‘‘phylo4d’’.
Then the phylogenetic correlations and statistical test were calculated with the package
phylosignal (Keck et al., 2016). This package contains several functions to calculate
correlations and statistical test of phylogenetic dependence of continuous trait values with
the phylogenetic branches. The phylogenetic correlogramswere producedwith the function
‘‘phyloCorrelogram’’. The Abouheif’s Cmean and Pagel’s Lambda tests were calculated
with the functions ‘‘phyloSignal’’ specifying the methods ‘‘Cmean’’ and ‘‘Lambda’’ for each
test, respectively. A p value <0.01 was deemed as significant in the phylogenetic statistical
test under the null hypothesis of lack of phylogenetic dependence.

RESULTS
Unsupervised random forest retrieves cluster tendency
Using the best hyperparameters (mtry=10, ntree=1,500, Fig. S1) the RF indicates anOOB of
1.19%, confirming that it can distinguish the real data from its synthetic version. Moreover,
the Hopkins statistic value was of 0.91, indicating the existence of clustering tendency in
the real data. The visual exploration confirmed the cluster tendency which was according
to the geographic origin (Fig. 2). In the heatmap six well-defined blocks are formed, using
the Euclidean distance.

UMAP showed the best performance for cluster separation
To prove the clustering performance for PCA, t-SNE, UMAP and Autoencoders, the
k-means clustering using the elbow curve analysis based on silhouette coefficient was
applied. The analysis of the elbow curve showed similar separation distances (average
silhouette coefficient >0.6, Figs. 3A, 3D, 3E and 3G) among the four tested DRs, but
different number of clusters of k (range 3 to 8). Among them, PCA and UMAP were the
best showing the ability to identify more clusters than the other algorithms (Figs. 3B, 3D,
3F and 3H), but UMAP showed better average silhouette coefficient and cluster separation
than PCA (Figs. 3E and 3F).

Geography is the main factor for cluster separation
After labeling the clusters, the four algorithms showed that ZIKV isolates were grouped
according to their host (Fig. 4). For example, those from arboreal mosquitoes clustered
with NHP ZIKV isolates and the Aedes aegypti isolates clustered mainly with human
isolates. In the cluster analysis, the African ZIKV group was clearly separated from the
other geographical regions, as it consisted of NHP and arboreal mosquitoes and the
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human isolate (virus variation ID AMR68906), supporting the view of limited adaptation
of sylvatic strains compared to endemic urban strains (Beaver et al., 2018). Interestingly,
a clear geographical dispersion pattern was observed for some Asian ZIKV that tend
to migrate into the European, Oceanic, North American, and South American regions.
Furthermore, these Asian isolates tend to mix tightly with some American isolates. The
t-SNE and UMAP and showed the clearest separation within regional clusters, in which
the North American cluster harboring few Asian genomes was of note (Figs. 4D and 5F).
In this cluster, the DR analyzes identified three Asian strains (sequence IDs ASU55505,
ATI21641, and ARI68105), which were previously identified as imported American strains
in Hainan China and Singapore (Tan et al., 2018).

The analytical strategy was generalizable to an external proteome
dataset
To confirm whether the analytical strategy for unsupervised analysis takes a broad view to
other real datasets, we applied the whole analytical strategy to a data matrix of polymorphic
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Figure 3 Internal validation of clustering performance for each of the four DR algorithms. This figure
showed the elbow curves (A, C, E, G) and cluster (B, D, F, H) plots based on k means clustering using
Euclidean distance.

Full-size DOI: 10.7717/peerjcs.2443/fig-3

sites extracted from a multialignment of 1,343 DENV2 proteomes. We found that the
dissimilarity matrix produced by the URF recovers the cluster tendency (Fig. S2) with a
Hopkins statistic of 0.93. The UMAP was also the best DR algorithm compared to the
others (Fig. S3, Fig. 5C). External validation by labeling with metadata also showed that
geography is the main factor shaping the DENV2 dispersion (Figs. 5A, 5B, 5C and 5D), but
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Figure 4 External validation by ZIKVmetadata labeling for the four DR algorithms.On the panels the
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was particularly evident in the UMAP (Fig. 5C). This result confirmed that this analytical
strategy could be generalized to analyze the dispersal of viral pathogens.
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Phylogeny correlates with cluster coordinates
As expected, the phylogeny showed similar clustering tendencies; for instance, the African
ZIKVwere clearly separated from the other groups with a larger branching length. The same
Asian ZIKV were mixed with European, Oceanic, North American, and South American
regions with smaller branching length (Fig. 6).
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Tree scale: 0.01

Figure 6 ZIKV phylogenetic tree produced with the best amino acid evolutionary model HIVb+F+R2
selected by IQ-TREE. The branching lengths reflects the evolutionary distances between the proteomes.
The geographic regions are indicated in colorblind-friendly hex code colors as #332288 (Africa), #117733
(Asia), #CC6677(Europe), #88CCEE (North America), #999933 (Oceania), and #882255 (South America).

Full-size DOI: 10.7717/peerjcs.2443/fig-6

Table 1 Phylogenetic dependence statistic test results and its p value.

Axis ID Abouheif’s Cmean p value Pagel’s Lambda p value

PCA_dim1 0.8655691 0.001 1.010549 0.001
PCA_dim2 0.9582174 0.001 1.003788 0.001
t-SNE_dim1 0.9440515 0.001 1.010642 0.001
t-SNE_dim2 0.9719502 0.001 1.003857 0.001
UMAP_dim1 0.9792323 0.001 1.046470 0.001
UMAP_dim2 0.9763210 0.001 1.110222 0.001
Autoencoders_dim1 0.9050112 0.001 1.001254 0.001
Autoencoders_dim2 0.9417386 0.001 1.022134 0.001

The phylogenetic clustering was related to the first two-dimension coordinates obtained
by the four DRs. A phylogenetic correlogram analysis showed to some extent significant
positive correlations of the coordinates with smaller branch lengths and significant negative
correlations with larger branch length (Figs. 7A, 7B, 7C and 7D). Additionally, the
Abouheif’s Cmean and Pagel’s Lambda tests (Table 1) showed also significant phylogenetic
dependency with the dimension coordinates. These results confirm that UL retains the
evolutionary findings as the phylogenetic gold standard methods without the need of an
underlying evolutionary method.

DISCUSSION
The application of clustering techniques as the phylogenetic trees is the gold standard in the
field of sequence evolution studies. In this work, the utility of UL clustering algorithms in
comparison with the phylogenetic method was explored. The UL approach applied herein
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Figure 7 (A–D) Phylogenetic correlograms of DRs clustering data and the phylogenetic branch
lengths. Each panel showed the correlation values (y-axis) with its confidence interval (dashed lines) in
relation with the branching length (x-axis). The bottom red bar indicates significant positive correlation
meanwhile blue bar indicates negative significant correlation and the black bar means no significant
correlations.

Full-size DOI: 10.7717/peerjcs.2443/fig-7

focuses on the amino acid polymorphic data extracted from the multi-alignments. Firstly,
our URF model was optimized to the data, and the best hyperparameters were searched by
five-fold cross-validation and tree repeats. This procedure is recommended to improve the
parameters for the machine learning algorithm in the further prediction tasks (Bradshaw
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et al., 2023). Thus, the parameter for the number of trees was settled in 1,500, above the
500 trees threshold previously suggested as enough to reduce the computational cost and
maintain the best performance (Oshiro, Perez & Baranauskas, 2012). On the other hand,
the maximum number of predictors to produce the best split in the random forest tree
building process was below the square root of the total predictors, previously suggested to
be sufficient to prevent biased predictions (Afanador et al., 2016). These parameters allow
the application of the URF to produce the dissimilarity matrix in which each covariate
(i.e., the amino acid polymorphic sites) is weighted without the need of data normalization
since it only depends on the feature ranks produced by the RF. Thus, the more correlated
a covariate with the others, the more it will be considered in the forest dissimilarity matrix
(Shi et al., 2005). In this way the dissimilarity matrix inherently allows the mapping of each
proteome as related points in a two-dimensional space through the application of different
DR algorithms.

In a related context, the application of DR algorithms requires two main critical steps to
identify the meaningful hidden structures on the data, the internal and external validation.
The internal validation through the elbow curve analysis using the silhouette coefficients as
score showed consistency with those results of other studies, in which UMAP outperforms
the other DRs (Trozzi, Wang & Tao, 2021; Yang et al., 2021). Thus, UMAP could be the first
option to apply in this type of studies. Remarkably, the four applied DR approaches clearly
showed similar host but particularly geographical clusters in the external validation (Fig. 4).
Phylogenetic analysis suggested that ZIKV originates from Africa. The virus was circulating
in Southeast Asia and the South Pacific regions since the 1960s, and it was hypothesized
that there was acquired adaptive evolution that makes the virus more competent in urban
cycle transmission in the vector Aedes aegypti (Weaver et al., 2016; Hung & Huang, 2021).
From these regions, the virus spread to the other areas with temperate and tropical climates,
such as the Americas. This evolutionary tracking description was also observed in the low
dimensional clustering patterns found by the UL, even the imported viruses were visually
discovered by the UL. All these findings were also detected in a DENV-2 large external
dataset (Fig. 5), confirming the applicability of the unsupervised analysis in evolutionary
bioinformatics studies.

Additionally, to provide an objective comparison of the UL clustering results with the
phylogeny, a statistical correlation analysis was performed. The phylogenetic correlograms
and the statistical test of phylogenetic dependence require external traits for analysis. To
this end, both approaches were applied using the two-dimension coordinates as traits. The
phylogenetic correlograms showed that the first two dimensions correlate with phylogenetic
tree branches. In these analyses, the smaller branch lengths correlate with the tight cluster
coordinates, which resembles the closest geographical terminal branches observed in
the phylogeny. On the contrary, larger terminal branches showed significant negative
correlations with larger cluster coordinates as observed for the dimension coordinates of
the African clusters. Additionally, it tested the null hypothesis of no correlation for the
two-axis coordinates with the phylogeny. The Abouheif’s Cmean and Pagel’s Lambda
tests, which are the best statistical measures for this analysis, were used (Münkemüller et

Lara-Ramírez et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2443 13/18

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2443


al., 2012). Both statistics showed that the coordinates depended on the phylogenetic tree,
confirming the successful application of UL.

Limitations/validity: The visualization and operation of large data sets are known to be
difficult using phylogenetic clustering methods (Menardo et al., 2018). On the contrary, the
UL techniques applied herein have the advantage of their use in both large and small data
sets (Fondrie & Noble, 2020). Thus, these UL could be adequate to study these evolutionary
issues, directing further in-depth manageable phylogenetic datasets. On the other hand,
it is recognized the limitation of UL are the unpredictable results in the absence of data
quality that could lead to inaccuracies in the clustering analysis interpretation (Wang &
Biljecki, 2022). However, the availability of metadata information for geography further
confirmed that our method works.

CONCLUSIONS
In this work we demonstrated the utility of the UL approach to study evolutionary trends
hidden in whole ZIKV proteome sequences. These UL techniques uncover host and
particularly geographical clusters without the need of an underlying evolutionary model
and were significantly comparable to the phylogenetic tree. Therefore, these UL algorithms
could be another practical evolutionary analytical technique to trace the dispersal of viral
pathogens. As the genomic and proteomic data increase, the evolutionary model-based
study could become inefficient. In this scenario, the unsupervised analysis strategies would
be useful. To manage the increasing number of large-scale data, advanced DR adapted
for memory limitations and parallel computing needs to be developed. Moreover, the
algorithm application needs to be user-friendly by developing better visualization-based
exploratory tools that do not require programmatical expertise. Moreover, the inclusion of
evolutionary data in the learning process must be also considered, as the incorporation of
semi-supervised learning algorithms or deep learning algorithms has been recently reported.
(Voznica et al., 2022; Thompson et al., 2024). Hence, curated evolutionary datasets are also
needed to conform their use as benchmarking standards for algorithm performance
evaluation. In this sense, the research area on unsupervised learning could help to study
more complex evolutionary issues.

Abbreviations

DENV2 dengue type 2
DRs Dimensional Reduction
PCA Principal Component Analysis
UMAP Uniform Manifold Approximation and Projection
t-SNE t-distributed Stochastic Neighbor Embedding
UL Unsupervised Learning
URF Unsupervised Random Forest
ZIKV zika virus
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