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ABSTRACT
The global tourism industry is expanding rapidly,making effectivemanagement of hotel
booking cancellations crucial for improving service and efficiency. Existing models,
based on static data assumptions and fixed parameters, fail to capture dynamic changes
and temporal trends. Real-world cancellation decisions are influenced by factors such
as seasonal variations, market demand fluctuations, holidays, and special events, which
cause significant changes in cancellation rates. Traditional models struggle to adjust
dynamically to these changes. This article proposes a novel approach using deep
reinforcement learning techniques for predicting hotel booking cancellations over time.
We introduce a framework that combines dynamic temporal reinforcement learning
with policy-enhancedLSTM, capturing temporal dynamics and leveragingmulti-source
information to improve prediction accuracy and stability. Our results show that the
proposed model significantly outperforms traditional methods, achieving over 95.9%
prediction accuracy, a model stability of 0.98, an F1 Score approaching 1, and a mutual
information score of approximately 0.93. These results validate themodel’s effectiveness
and generalization across diverse data sources. This study provides an innovative
and efficient solution for managing hotel booking cancellations, demonstrating the
potential of deep reinforcement learning in handling complex prediction tasks.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Data Science
Keywords Reinforcement learning, Dynamic temporal prediction, Hotel booking cancellation
probability, Policy enhancement

INTRODUCTION
Background
The hotel industry plays a key role in the global tourism economy, providing
accommodations to travelers around the world. The global hotel industry processes
billions of bookings annually, significantly boosting tourism development and economic
growth, according to the World Tourism Organization (UNWTO) (UN Tourism, 2024).
The increase in booking volumes directly reflects the industry’s vitality and demand growth.
Globally, the travel and tourism sector contributed approximately 7.7 trillion to the gross
domestic product (GDP) in 2022, accounting for 7.6% of the total global GDP (Statista,
2024). However, amid global economic and tourism fluctuations, booking cancellations
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have become a prevalent challenge in hotel operations. Cancellations pose significant
economic losses and operational impacts for hotels. Studies indicate that the global hotel
industry loses billions of dollars annually due to booking cancellations (Matejić et al.,
2022). Cancellations not only disrupt revenue streams but also increase waste in room
resources and management costs. Additionally, they can lead to lower room occupancy
rates, impacting market competitiveness and customer satisfaction, thereby significantly
affecting hotel operations.

Existing traditional time series models often struggle to handle the dynamic changes in
cancellation predictions, especially during holidays or unforeseen events where cancellation
probabilities and patterns may significantly alter. Traditional methods have shown
limitations in capturing such dynamics, as noted in studies by Song et al. (2023) and Ulrich
et al. (2022). Furthermore, existing approaches often overlook the temporal correlations
and trends in data when predicting booking cancellations using time series models, thereby
hindering prediction accuracy for practical applications, as observed in studies by Song
et al. (2021), Alqatawna et al. (2023), Li & Abidin (2023) and Chumiran, Abidin & Kamil
(2020). Lastly, traditional statistical models and machine learning methods often lack the
optimization capabilities of reinforcement learning, failing to effectively adjust prediction
models to maximize long-term profitability or minimize cancellation rates.

This study addresses the challenge of accurately predicting hotel booking cancellations
in dynamic and complex environments. By leveraging dynamic temporal reinforcement
learning, our approach adapts to changing time series data and effectively captures temporal
patterns to improve prediction accuracy. Additionally, we introduce policy-enhanced
reinforcement learning, which optimizes decision-making by adjusting strategies based on
interactions with the environment. Together, these methods aim to maximize long-term
returns or minimize cancellation rates, providing a more robust and adaptable solution for
hotel booking management.

Literature review
In recent years, significant progress has been made in traditional methods for predicting
hotel booking cancellations. Application studies in the hotel industry have demonstrated the
wide-ranging use of these methods in demand forecasting, customer sentiment analysis,
personalized pricing, and anomaly detection. Specifically, Wang & Li (2020) employed
Long Short-Term Memory (LSTM) models for sentiment analysis of hotel customer
reviews, finding that the model effectively analyzes customer feedback to enhance service
quality and customer satisfaction. Smith & Brown (2021) emphasized the importance
of machine learning technologies in improving cancellation prediction, particularly
their ability to handle complex data patterns. While effective in static environments,
the approach’s adaptability in dynamic, real-time scenarios remains limited. Zhang
et al. (2021) studied the effectiveness of LSTM models in hotel demand forecasting,
highlighting their ability to accurately capture complex temporal dependencies in
booking patterns, providing crucial operational optimization tools for the hotel industry.
Nevertheless, LSTM models tend to require large volumes of data and may not adapt
well to sudden shifts in booking trends without retraining. In similar research, Brown
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& Johnson (2022) explored the integration of statistical models with customer behavior
analysis, demonstrating potential improvements in prediction accuracy.Meira et al. (2022)
discussed the application of LSTM models in anomaly detection in hotel operations,
indicating that themodel identifies and addresses operational anomalies through predictive
analysis, effectively improving operational efficiency and security. However, similar to other
LSTM approaches, this method may struggle with real-time adaptability without extensive
retraining. Additionally, Chen (2023) demonstrated the effectiveness of hybrid prediction
methods combining machine learning and traditional statistical methods. Although these
hybrid methods improve prediction accuracy, they often involve high computational
costs and do not fully address the need for real-time adaptability in dynamic booking
environments. Furthermore, Binesh et al., 2024 studied the application of LSTM models in
personalized pricing strategies, noting themodel’s ability to dynamically adjust prices based
on real-time data and customer preferences, significantly enhancing revenue management.
However, this study focuses primarily on pricing strategies, with limited exploration of
booking cancellation prediction in dynamic environments. Reinforcement learning has
made significant advancements in hotel booking prediction and decision optimization in
recent years, with dynamic temporal reinforcement learning showing significant potential
in hotel booking prediction. Chen & Zhang (2021) studied deep reinforcement learning
models for dynamic pricing in hotels, demonstrating their potential in optimizing pricing
strategies. Wang & Li (2021b) analyzed the application of various time-series learning
algorithms in predicting hotel booking demand, emphasizing the superiority of dynamic
reinforcement learning methods.Garcia & Wang (2021) researched optimization strategies
in hotel revenue management, emphasizing the importance of decision optimization in
increasing revenue. Smith & Lee (2022) discussed the application of reinforcement learning
in hotel booking prediction, proposing an effective predictive model capable of optimizing
pricing strategies in a constantly changing market environment. Wilson & Taylor (2022)
discussed the application of predictive analytics and reinforcement learning in hotel
bookings, highlighting the importance of prediction accuracy and decision optimization
in enhancing customer satisfaction and profitability. Garcia & Chen (2022) demonstrated
that integrating time-sensitive features with reinforcement learning techniques effectively
improves hotel booking predictions. Brown & Martinez (2023) explored machine learning
applications in hotel decision optimization, proposing an effective decision model to help
hotel managers better manage resources. Smith & Brown (2023) studied the application of
dynamic temporal reinforcement learning techniques in predicting hotel booking patterns,
significantly improving prediction accuracy compared to traditional methods. While this
approach shows great potential, it does not incorporate policy optimization techniques
to improve long-term decision-making for cancellations. Liu & Hu (2023) compared
the performance of different dynamic temporal models in predicting hotel booking
trends, further confirming the superiority of reinforcement learning-based approaches.
However, this study does not fully address the complexity of real-time cancellation
predictions and decision-making. Zhang & Wang (2024) proposed a novel approach using
temporal reinforcement learning models to robustly predict hotel booking patterns. While
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Table 1 Literature summary of hotel booking prediction and decision optimization.

Research area Key findings Methods & technologies Contributions to the field Possible shortcomings

Various methods applied in demand
forecasting (Wang & Li, 2020; Smith
& Brown, 2021; Zhang et al., 2021;
Brown & Johnson, 2022b).

LSTMmodels, statistical
models, integrated ma-
chine learning

Enhanced operational effi-
ciency, customer satisfaction,
revenue management, opera-
tional security

LSTMmodels require exten-
sive historical data and may
not adapt well to real-time
changes.

Customer sentiment analysis and
service quality improvement (Wang
& Li, 2020;Meira et al., 2022).

LSTMmodels Improved customer satisfac-
tion

Limited focus on real-time
adaptability and dynamic
decision-making.

Optimization of personalized pricing
strategies (Chen, 2023; Binesh et al.,
2024).

LSTMmodels Improved revenue manage-
ment

Focuses on pricing
optimization, but lacks
decision-making integration
for cancellations.Hotel booking predic-

tion

Operational optimization (Brown &
Johnson, 2022b;Meira et al., 2022).

Statistical models, LSTM
models

Increased operational security These methods are limited by
their static nature and lack of
real-time adaptability.

Optimization of dynamic pricing
strategies in hotels (Chen & Zhang,
2021;Wang & Li, 2021b).

Deep reinforcement
learning

Improved pricing strategies Focuses primarily on pricing,
without considering other crit-
ical factors like booking can-
cellations.

Revenue management optimization
strategies (Garcia & Wang, 2021;
Smith & Lee, 2022).

Reinforcement learning,
time-series algorithms

Enhanced revenue manage-
ment

Lacks a comprehensive frame-
work that integrates both dy-
namic booking prediction and
decision-making.

Improved prediction accuracy
(Smith & Brown, 2023; Liu & Hu,
2023).

Reinforcement learning,
temporal models

Enhanced prediction accuracy Focused on accuracy improve-
ments but does not address
long-term decision optimiza-
tion.

Dynamic reinforce-
ment learning & Policy-
Enhanced RL

Decision optimization and market
responsiveness (Wilson & Taylor,
2022; Garcia & Chen, 2022).

Reinforcement learning,
market analysis

Improved decision efficiency Limited adaptability to rapidly
changing market conditions.

the method is effective in temporal predictions, it does not fully incorporate decision
optimization techniques to enhance overall hotel booking management strategies.

Our contributions
Building upon the research basis presented in Table 1, we propose an innovative hotel
booking cancellation prediction framework based on dynamic temporal reinforcement
learning, as depicted in Fig. 1. We demonstrate its unique contributions and advantages
across several key areas:
• Dynamic temporal reinforcement learning prediction model: This study applies
dynamic temporal reinforcement learning to predict hotel booking cancellations.
By integrating time-series models to capture dynamic data changes, the approach
significantly improves the model’s adaptability and accuracy in complex environments.
• Policy-enhanced optimization techniques: We introduce policy-enhanced rein-
forcement learning optimization methods, incorporating a KL divergence-based
regularization term to maintain consistency between current and prior policies.By
optimizing the prediction model’s decision-making strategies, we improve the accuracy
and effectiveness of cancellation predictions.
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Figure 1 Our model framework.
Full-size DOI: 10.7717/peerjcs.2442/fig-1

• Empirical validation and application effectiveness assessment: Extensive testing
on real-world datasets validates the proposed approach’s effectiveness in reducing
booking cancellations and optimizing hotel operations.The study demonstrates not only
performance advantages in real-world scenarios but also the model’s robustness and
reliability under changing market demands and holiday fluctuations.

METHODOLOGY
Problem description
This study proposes a dynamic temporal reinforcement learning framework to accurately
predict hotel booking cancellation probabilities. We explore the use of time-series models,
such as long short-term memory (LSTM), to capture dynamic temporal variations in
booking cancellation probabilities. Additionally, we examine how to dynamically optimize
the decision strategies of the prediction model using policy-enhanced reinforcement
learning to maximize long-term operational benefits. We aim to empirically validate the
proposed approach using real hotel booking datasets, assessing its effectiveness in reducing
cancellations and optimizing hotel operations. Addressing these challenges will lead to an
advanced framework that dynamically adapts, accurately predicts booking cancellations,
and optimizes operational decisions.

P(Cancel Booking)= σ
(
WTX+b

)
. (1)
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Here, X is the input vector containing booking features and time information,W is the
weight matrix, b is the bias term, and σ is the logistic sigmoid function.

J (θ)=Eπθ

[ T∑
t=1

γ t−1rt

]
. (2)

Here, J (θ) represents the objective function to optimize, πθ is the model’s decision
policy, rt is the immediate reward at time step t , and γ is the discount factor.

θ∗= arg max
θ

J (θ). (3)

Ultimately, based on dynamic temporal reinforcement learning for hotel booking
cancellation prediction, our goal is to find the optimal model parameters θ∗ to maximize
long-term operational benefits or minimize cancellation rates.

Dynamic temporal reinforcement learning prediction: motivation and
mathematical foundations
Motivation for dynamic temporal reinforcement learning prediction techniques
• In modern business environments, especially in hotel management, accurate prediction
of booking cancellation probabilities is crucial for optimizing resource allocation
and enhancing customer satisfaction (Wu, Liu & Li, 2021; Song, Chen & Zhang, 2022).
Traditional machine learning methods, such as decision trees, support vector machines,
and basic neural networks, have been applied to address these prediction tasks. However,
these methods often struggle with complex variations and dynamic factors present in
real-world scenarios, necessitating more advanced techniques that can dynamically
adjust decision strategies to better address these challenges (Zhang, Wang & Zhao, 2021;
Ferreira, Silva & Santos, 2023).
• Dynamic temporal reinforcement learning prediction techniques use deep neural
networks (such as multi-layer perceptrons) to approximate state-action value functions,
optimizing decision strategies by minimizing errors. Unlike traditional supervised
learning methods, this approach continually learns from interactions with the
environment, allowing it to adapt to changes in complex environments. By dynamically
adjusting policies to maximize cumulative rewards, it effectively predicts and optimizes
hotel booking cancellation probabilities, outperforming static models in volatile
conditions.

Mathematical derivation of dynamic temporal reinforcement learning
prediction techniques
Firstly, we define the optimization objective of the problem as follows:

θ∗= arg max
θ

J (θ). (4)

Here, J (θ) represents the objective function to optimize, and θ denotes the model
parameters. The objective function J (θ) can be expressed as the expected cumulative
reward in reinforcement learning:

J (θ)=Eπθ
[ T∑
t=1

γ t−1rt +
α

2

T∑
t=1

N∑
i=1

(
∂ logπθ (ai,t |st )

∂θi

)2

Xiao et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2442 6/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2442


−β

T∑
t=1

KL
(
πθ (·|st )||πprior(·|st )

)
+λ

T−1∑
t=1

(
Vφ(st )−

∑
a

πθ (a|st )Qφ(st ,a)

)2]
. (5)

Here, πθ is the model’s decision policy, rt is the immediate reward at time step t , γ is
the discount factor. Our goal is to maximize the cumulative reward J (θ) by optimizing
the decision policy πθ . To achieve dynamic temporal reinforcement learning prediction
techniques, we need to address the key mathematical derivations. Firstly, we consider the
update rule for the state-action value function Q(s,a):

Q(s,a)= Eπθ
[
r+γmax

a′
Eπθ

[
r+γmax

a′′
Eπθ

[
r+γmax

a′′′
Q(s(3),a′′′)

∣∣∣∣s(2),a′′]∣∣∣∣s(1),a′]∣∣∣∣s,a].
(6)

Here, r is the immediate reward at current state s and action a, s′ is the next state, a′

is the next action chosen according to policy πθ . We iteratively update the state-action
value function Q(s,a) to optimize the policy πθ . We consider how to use deep neural
network approximation in deep reinforcement learning algorithms to approximate the
state-action value function Q(s,a) in dynamic temporal reinforcement learning prediction
techniques. We use a multi-layer perceptron (MLP) as a function approximator to learn
the state-action value function Q(s,a;θ):

Q(s,a;θ)≈Q∗(s,a). (7)

Here, θ represents the parameters of the neural network, and Q∗(s,a) denotes the true
value of the state-action value function. We update the neural network parameters θ by
minimizing the mean square error to approximate the true state-action value function.
Problem 1 Our research aims to design a framework for accurately predicting hotel booking
cancellation probabilities using dynamic temporal reinforcement learning techniques in
deep reinforcement learning algorithms. By approximating the state-action value function
Q(s,a;θ) with a multi-layer perceptron (MLP), we need to effectively integrate the following
complex factors during model training:

θ∗= argmax
θ

J (θ)where J (θ)=Eπθ
[ T∑
t=1

γ t−1rt +
α

2

T∑
t=1

N∑
i=1

(
∂ logπθ (ai,t |st )

∂θi

)2

−β

T∑
t=1

KL
(
πθ (·|st )||πprior(·|st )

)
+λ

T−1∑
t=1

(
Vφ(st )−

∑
a

πθ (a|st )Qφ(st ,a)

)2]
. (8)

Here, θ∗ represents the optimal parameters optimizing the objective function J (θ), which
reflects cumulative rewards in reinforcement learning. πθ denotes the model’s decision policy,
rt is the instantaneous reward at time step t , and γ is the discount factor. Our goal is to max-
imize cumulative rewards by optimizing πθ and utilizing dynamic temporal reinforcement
learning prediction techniques to enhance operational decision-making strategies for hotel
booking cancellation predictions.

Finally, by employing policy-enhanced reinforcement learning optimization techniques,
we refine the decision policy πθ . We define the policy gradient update rule as follows:

∇θ J (θ)=Eπθ
[
∇θ logπθ (a|s)Eπθ

[
r+γmax

a′
Eπθ

[
r+γmax

a′′
Eπθ

[
r+γmax

a′′′
Q(s(3),a′′′)
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∣∣∣∣s(2),a′′]∣∣∣∣s(1),a′]∣∣∣∣s,a]

+µ

P∑
p=1

 1
Np

Np∑
q=1

(
fθi(Zi,t+q)− fθi(Zi,t )

)2+ν∫
Xi

R∑
r=1

∣∣∇ψi fr (x;ψi)
∣∣2dx

+ξ

S∑
s=1

(∫
Yi

∣∣∇φigs(y;φi)∣∣2dy)+ζ T∑
t=1

(
1
Nt

Nt∑
u=1

(
fθi(Zi,u+t )− fθi(Zi,u)

)2)
. (9)

By computing the policy gradient ∇θ J (θ), we update the neural network parameters θ
to optimize the decision policy πθ .
Theorem 1 In our Dynamic Temporal Reinforcement Learning Prediction model, the state-
action value function update rule is:

Q(s,a)=Eπθ
[
r+γmax

a′
Q(s′,a′)

∣∣∣∣s,a] (10)

Here, r is the immediate reward at state s and action a, s′ is the next state, a′ is the next
action chosen by policy πθ . We use an MLP to approximate the state-action value function
Q(s,a;θ).

Proof in the appendix.
Lemma 1 In the Dynamic Temporal Reinforcement Learning Prediction framework, we
define the state value function V (s) update rule as follows:

V (s)=Eπθ
[
r+γmax

a′
Q(s′,a′)

]
(11)

Here, r is the immediate reward at current state s, γ is the discount factor, s′ is the next state,
a′ is the action chosen by policy πθ . This recursive approach dynamically updates the state
value function V (s) to better adapt to complex and dynamic environments.

Proof in the appendix.

Policy reinforcement learning optimization: motivation and
mathematical foundations
Motivation for policy reinforcement learning optimization techniques
• Traditional reinforcement learning methods face challenges balancing cumulative
reward optimization and policy stability (Wang & Other, 2021; Xue & Other, 2022).
Maximizing cumulative reward alone often neglects policy gradient variance and model
adaptability in changing environments, which can lead to suboptimal performance in
dynamic settings (Zhang, Wang & Zhao, 2021; Sumiea et al., 2023).
• We introduce regularization based on KL divergence to maintain consistency
between current and prior policies, enhancing model stability and generalization.
By incorporating this regularization into the loss function of the action value network,
we not only promote accurate value function estimation but also strengthen policy
robustness and efficiency in long-term decision-making. This regularization technique
helps mitigate overfitting to transient changes, ensuring that the model maintains both
flexibility and reliability in complex hotel booking environments.
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Mathematical derivation of policy reinforcement learning optimization
We define the optimization objective function J (θ), which encompasses the cumulative
reward and its associated regularization terms:

J (θ)=Eπθ

[ T∑
t=1

γ t−1rt +
α

2

T∑
t=1

N∑
i=1

(
∂ logπθ (ai,t |st )

∂θi

)2
]
. (12)

Here, θ∗ are the parameters that maximize the objective function J (θ), πθ is the decision
policy defined by parameters θ , rt is the immediate reward at time step t , γ is the discount
factor, and α controls the regularization term.We introduce KL divergence regularization
to maintain similarity between the current policy πθ and the prior policy πprior:

−β

T∑
t=1

KL
(
πθ (·|st )||πprior(·|st )

)
. (13)

Here, KL denotes KL divergence, and β is a hyperparameter controlling the importance
of the regularization term.We consider the squared error between the state value function
Vφ(st ) and the action-value function Qφ(st ,a) as an additional loss term to promote
accurate value function estimation:

λ

T−1∑
t=1

(
Vφ(st )−

∑
a

πθ (a|st )Qφ(st ,a)

)2

. (14)

Here, λ is a hyperparameter controlling the weight of the loss.To update the gradient
of the optimization objective function J (θ), we compute the expected policy gradient for
updating the policy parameters θ :

∇θ J (θ)=Eπθ
[ T∑
t=1

γ t−1
∇θ logπθ (at |st )

( T∑
t ′=t

γ t ′−t rt ′

)]

=Eπθ
[ T∑
t=1

γ t−1
∇θ logπθ (at |st ) ·

(
rt +γ rt+1+γ 2rt+2+ ...+γ T−t rT

)]
. (15)

Here, ∇θ denotes the gradient of the objective function with respect to the parameters
θ . In dynamic temporal reinforcement learning, we use the Q function to estimate the
long-term returns for each state-action pair and update the Q function as follows:

Q(st ,at )← (1−α)Q(st ,at )+α

(
rt +γmax

a′
Q(st+1,a′)+

β

2

T∑
t=1

N∑
i=1

(
∂ logπθ (ai,t |st )

∂θi

)2

−γ

T∑
t=1

KL
(
πθ (·|st )||πprior(·|st )

)
+λ

T−1∑
t=1

(
Vφ(st )−

∑
a

πθ (a|st )Qφ(st ,a)

)2

+η

T∑
t=1

(
∇θ logπθ (ai,t |st )

)2
+δ

T−1∑
t=1

(
Vφ(st )−

∑
a

πθ (a|st )Qφ(st ,a)

)3
. (16)

Here, α is the learning rate controlling the weight between old and new Q values. We
update the policy parameters θ using the policy gradient method to maximize the objective
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function J (θ):

θ← θ+η∇θ J (θ)+α
T∑
t=1

N∑
i=1

(
∂ logπθ (ai,t |st )

∂θi

)2

+β

T∑
t=1

N∑
i=1

(
∂ logπθ (ai,t |st )

∂θi

)3

+γ

T∑
t=1

KL
(
πθ (·|st )||πprior(·|st )

)
+δ

T∑
t=1

(
∂2 logπθ (ai,t |st )

∂θ2i

)4

+ε

T∑
t=1

(
∂3 logπθ (ai,t |st )

∂θ3i

)5

.

(17)

Here, η is the learning rate controlling the step size for each update. Policy reinforcement
learning optimization techniques in dynamic temporal reinforcement learning are
particularly adept at optimizing decision policies in complex environments.
Theorem 2 Consider a dynamic temporal reinforcement learning framework aimed at
accurately predicting hotel booking cancellation probabilities. Using a multilayer perceptron
(MLP) to approximate the state-action value function Q(s,a;θ), we define the optimization
objective function as follows:

θ∗= argmax
θ

J (θ)=Eπθ
[ T∑
t=1

γ t−1rt +
α

2

T∑
t=1

N∑
i=1

(
∂ logπθ (ai,t |st )

∂θi

)2

−β

T∑
t=1

KL
(
πθ (·|st )||πprior(·|st )

)
+λ

T−1∑
t=1

(
Vφ(st )−

∑
a

πθ (a|st )Qφ(st ,a)

)2]
(18)

Here, θ∗ represents the optimal parameters maximizing the objective function J (θ), πθ is
the decision policy, rt is the immediate reward at time t , γ is the discount factor, and α, β, λ
are tuning parameters.

Proof is provided in the appendix.
Lemma 2 Consider an optimization objective to maximize cumulative rewards in dynamic
temporal reinforcement learning, where the decision policy has an objective function:

θ∗= argmax
θ

J (θ)=Eπθ
[ T∑
t=1

γ t−1rt +
α

2

T∑
t=1

N∑
i=1

(
∂ logπθ (ai,t |st )

∂θi

)2

−β

T∑
t=1

KL
(
πθ (·|st )||πprior(·|st )

)]
. (19)

where θ∗ denotes the optimal parameters of the objective function J (θ), πθ is the decision
policy, rt is the immediate reward, γ is the discount factor, and α and β are parameters. By
optimizing θ , we aim to maximize cumulative rewards while considering the variance of the
policy gradient and the KL divergence term.

See the appendix for the proof.
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Algorithm and pseudocode

Algorithm 1 Dynamic Temporal Reinforcement Learning Prediction Technique
1: Initialize state s
2: Initialize policy parameters θ
3: Initialize neural network parameters φ
4: Initialize state value function parameters ψ
5: Initialize cumulative reward J (θ)
6: for each training epoch do
7: Observe current state s from the environment
8: Approximate Q(s,a;θ) and V (s;ψ) using neural networks
9: for each time step t do
10: Choose action a according to policy πθ
11: Execute action a, observe reward rt and next state s′

12: Compute target reward Rt = rt +γmaxa′Q(s′,a′;θ)
13: Update state-action value function parameters θ using policy gradient:
14: θ← θ+α∇θ logπθ (a|s)(Rt −Q(s,a;θ))
15: Update state value function parameters ψ :
16: ψ←ψ+β

∑
s
(
V (s)−

∑
aπθ (a|s)Qφ(s,a)

)2
17: Update neural network parameters φ by minimizing mean squared error:
18: φ←φ+γ (Q(s,a;θ)−Q∗(s,a))2

19: Update cumulative reward J (θ):
20: J (θ)← J (θ)+λ

∑T
t=1γ

t−1rt
21: end for
22: Compute policy gradient ∇θ J (θ):
23: ∇θ J (θ)=Eπθ

[
∇θ logπθ (a|s)(Rt −Q(s,a;θ))

]
24: Update policy parameters θ :
25: θ← θ+η∇θ J (θ)
26: end for
27: return Optimal policy parameters θ∗

Dynamic temporal reinforcement learning algorithm
The time complexity mainly depends on the number of training epochs C , time steps
per epoch T , and the size of state and action spaces |S|× |A|, plus the number of neural
network and policy parameters |θ |. Therefore, the total time complexity is approximately
O(C×T × (|S|× |A|+ |θ |)). In terms of space complexity, it primarily involves neural
network and state value function parameters |φ| + |ψ |, state-action values storage
|S|× |A|, and cumulative reward storage T . Thus, the total space complexity is about
O(|φ|+|ψ |+|S|×|A|+T ).
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Algorithm 2 Policy Reinforcement Learning Optimization
1: Randomly initialize policy parameters θ
2: Randomly initialize value function parameters φ
3: Initialize prior policy πprior
4: Initialize learning rates η, α, β, λ, γ
5: Initialize discount factor γ , regularization parameters α, β, λ
6: for each episode do
7: Reset environment state s
8: Reset episode cumulative reward R← 0
9: while episode not finished do
10: Choose action at according to policy πθ
11: Execute action at , observe reward rt and next state st+1
12: Accumulate episode reward: R←R+ rt
13: Update state-action value function:
14: Q(st ,at ) ← (1 − α)Q(st ,at ) + α

(
rt +γmaxa′Q(st+1,a′)

+β
∑N

i=1

(
∂ logπθ (ai,t |st )

∂θi

)2
−γ

∑T
t=1KL

(
πθ (·|st )‖πprior(·|st )

)
+λ
∑T−1

t=1
(
Vφ(st )−

∑
aπθ (a|st )Qφ(st ,a)

)2
15: Update policy parameters θ :

16: θ ← θ + η∇θ J (θ) + α
∑N

i=1

(
∂ logπθ (ai,t |st )

∂θi

)2
+β

∑N
i=1

(
∂ logπθ (ai,t |st )

∂θi

)3
+

γ
∑T

t=1KL
(
πθ (·|st )‖πprior(·|st )

)
+δ
∑T

t=1

(
∂2 logπθ (ai,t |st )

∂θ2i

)4
+ε
∑T

t=1

(
∂3 logπθ (ai,t |st )

∂θ3i

)5
17: if termination condition reached then
18: Terminate episode
19: end if
20: end while
21: end for

Policy reinforcement learning optimization technique algorithm
The time complexity is primarily determined by the number of training episodesR, steps per
episode T , and the number of policy parameter updatesN . Therefore, the time complexity
per episode is approximately O(T × (1+N )). In terms of space complexity, it includes
policy and value function parameters |θ | and |φ|, state-action values storage |S|× |A|,
plus additional storage space O(T ). Hence, the total space complexity is approximately
O(|θ |+|φ|+|S|×|A|+T ).

Model parameters
The model design involves several key parameters listed in Table 2. These parameters play
crucial roles in the performance and stability of the entire model. θinit controls the initial
orthogonal initialization of weight matrices to ensure a good starting state during training.
ηmax and ηmin represent the maximum and minimum coefficients of adaptive learning
rates, adjusting the learning rate during different stages of training to optimize convergence
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Table 2 Model parameter description.

Parameter Description Value/Range

θinit Initial orthogonal initialization parameter for weight
matrices

[0.1, 1.0]

ηmax Maximum adaptive learning rate coefficient [0.01, 0.1]
ηmin Minimum adaptive learning rate coefficient [1e−5, 1e−3]
λreg Regularization coefficient controlling model complexity [0.001, 0.01]
α Perceptual enhancement factor adjusting feature

importance
[0.5, 1.0]

β Recursive revision factor updating historical information [0.1, 0.5]
γ Parameter controlling influence of past predictions [0.1, 0.9]
δmax Maximum threshold for federated learning dynamic

adjustment
[0.01, 0.1]

δmin Minimum threshold for federated learning dynamic
adjustment

[1e−4, 1e−2]

κ Fusion coefficient for integrating multimodal data [0.5, 1.5]
ω Weighting factor for balancing prediction tasks in

integration
[0.1, 0.5]

ρ Learning rate decay factor to adjust learning rate over
iterations

[0.1, 0.9]

ε Convergence threshold for early stopping in optimization [1e−6, 1e−4]
µ Coefficient for momentum in optimization to accelerate

convergence
[0.5, 0.9]

ζ Coefficient for L2 regularization to prevent overfitting [1e−5, 1e−3]
φ Parameter for adjusting the weight of recent observations in

time series
[0.1, 0.5]

performance. λreg is the regularization coefficient that controlsmodel complexity to prevent
overfitting issues. α and β are the perceptual enhancement factor and recursive revision
factor, respectively, used for dynamically adjusting feature importance and updating
historical information to adapt to changes in data streams. γ controls the influence of
past prediction results on current predictions. δmax and δmin define the threshold ranges
for federated learning dynamic adjustment, ensuring model stability across different data
distributions. Finally, κ and ω are the fusion coefficient for integrating multimodal data
and the weighting factor for optimizing the integration and processing of multiple data
sources.

EXPERIMENTAL RESULTS
Experimental framework
The experimental model for predicting hotel booking cancellations is illustrated in Fig. 2.
This model integrates customer hotel booking data as input, including features such as
booking time, customer demographics, and booking behavior. The model architecture
is based on a long short-term memory (LSTM) network, which is capable of capturing
temporal dependencies and patterns in sequential data. The hidden layers in the LSTM
model are designed to process input data over time and improve predictions as the sequence
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Figure 2 Our experimental framework.
Full-size DOI: 10.7717/peerjcs.2442/fig-2

progresses. By using dynamic temporal reinforcement learning, the model can adapt to
real-time changes in booking behavior and optimize its decision-making strategy. At the
output layer, the model predicts whether a booking will result in a successful transaction
or an order cancellation. The prediction is then used to guide hotel management decisions,
such as optimizing resource allocation andminimizing financial losses due to cancellations.
This approach provides a robust framework for handling dynamic, time-sensitive data,
allowing for more accurate and adaptive predictions in volatile environments.

Dataset description
This experiment utilized the hotel booking demand dataset from the Tianchi platform
for experimentation (Tianchi Hotel Booking Demand Dataset: https://tianchi.aliyun.com/
dataset/90442). The dataset contains a comprehensive collection of hotel booking records,
providing a solid foundation for analyzing and predicting hotel booking cancellations. The
dataset consists of various features related to booking and customer behavior, which are
crucial for accurate modeling. Table 3 summarizes the main attributes of the dataset.

The above dataset attributes allow us to analyze customer behaviors and booking
patterns, facilitating the prediction of cancellations. By leveraging these features in machine
learning models, we can optimize hotel management strategies, reducing cancellations and
improving customer satisfaction.

Results analysis
Through the analysis of experimental results, as shown in Fig. 3, we observe the performance
of different methods across multiple iterations. Our proposed model achieved the highest
accuracy throughout the experiment, followed by the model without dynamic temporal
reinforcement learning, and finally the LSTM model. The selection of LSTM as a baseline
method is due to its ability to capture long-term dependencies in sequential data, which
is important for time series prediction tasks like hotel booking cancellations. However,
LSTM lacks adaptability in dynamic environments, which is addressed by the proposed
Dynamic Temporal Reinforcement Learning Prediction (DTRLP) and Policy-Enhanced
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Table 3 Summary of dataset features used in hotel booking cancellation prediction.

Feature Description Feature Description

hotel Type of hotel (e.g., city hotel, resort
hotel).

is canceled Whether the booking was canceled (0
= No, 1 = Yes).

lead time Number of days between booking
and arrival.

arrival date year Year of arrival date.

arrival date month Month of arrival date. arrival date week number Week number of the year corre-
sponding to the arrival date.

arrival date day of month Day of the month of the arrival date. stays in weekend nights Number of weekend nights (Satur-
day and Sunday) the guest stayed.

stays in week nights Number of weekday nights (Monday
to Friday) the guest stayed.

adults Number of adults in the booking.

children Number of children in the booking. babies Number of babies in the booking.

meal Type of meal booked (e.g., BB = Bed
and Breakfast, HB = Half Board).

country Country of origin of the customer.

market segment Market segment designation (e.g.,
online travel agency, corporate).

distribution channel Distribution channel used for book-
ing (e.g., direct, TA/TO).

is repeated guest Whether the customer is a repeated
guest (0 = No, 1 = Yes).

previous cancellations Number of previous bookings that
were canceled by the customer.

previous bookings not canceled Number of previous bookings not
canceled by the customer.

reserved room type Code of the room type reserved by
the customer.

assigned room type Code of the room type assigned to
the customer.

booking changes Number of changes made to the
booking.

deposit type Type of deposit made by the cus-
tomer (e.g., No Deposit, Non Re-
fund).

agent ID of the travel agent or company
that made the booking.

company ID of the company that made the
booking (if applicable).

days in waiting list Number of days the booking was in
the waiting list before confirmation.

customer type Type of customer (e.g., transient,
group, contract).

adr Average daily rate, calculated as the
sum of all lodging transactions di-
vided by the total number of stayed
nights.

required car parking spaces Number of car parking spaces re-
quired by the customer.

total of special requests Number of special requests made by
the customer.

reservation status Reservation status (e.g., Canceled,
Check-Out, No-Show).

reservation status date Date at which the last status of the
reservation was set.

Reinforcement Learning Optimization (PRLO) methods. The comparison with the
proposed methods without DTRLP and PRLO serves as an ablation study to evaluate
the contributions of these components. As shown in Table 4, the full model demonstrated
superior accuracy and stability.
Through stability analysis of themodels, as shown in Fig. 4, we observe their performance

across multiple rounds of experiments. Our proposed model maintained high stability
throughout all rounds, scoring significantly higher than other methods with minimal
fluctuation, demonstrating high stability and consistency. In contrast, Blue’s model
without dynamic temporal reinforcement learning exhibited poor stability in the early
rounds, with significant fluctuations in scores, but stabilized gradually in later rounds.
The model without policy-enhanced reinforcement learning optimization techniques
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Figure 3 Comparison of accuracy among different methods in the experiment.
Full-size DOI: 10.7717/peerjcs.2442/fig-3

Table 4 Comparison of accuracy of proposed model with other methods.

Author Year Method used Accuracy (%)

Hu & Zhang (2022) Random forest and gradient boosting models for predicting
hotel booking cancellations using customer data

96.5

Kim & Lee (2023) Convolutional neural networks (CNN) combined with
LSTM for sequence prediction in hotel booking datasets

95.2

Patel & Gupta (2022) Stacked Ensemble Model combining Random Forest,
AdaBoost, and Gradient Boosting for robust cancellation
prediction

95.8

Wang & Li (2021a) Decision tree-based classifiers using recursive partitioning
for hotel cancellation prediction

96.3

Zhang & Chen (2022) Support vector machines (SVM) optimized with grid search
for customer booking cancellation

95.5

Shah (2024) Predicting booking cancellations using logistic regression,
naive Bayes, KNN, random forest, and decision tree models,
with a focus on seasonal trends and pricing patterns.

96.4

Zhang & Niu (2024) Deep neural network, XGBoost, random forest, and
AdaBoost classifiers for accurate cancellation prediction,
with preprocessing, feature engineering, and model
hyperparameter tuning for improved reliability

96.7

Proposed model Dynamic Temporal Reinforcement Learning and Policy-
Enhanced Reinforcement Learning with LSTM architecture

95.9
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Figure 4 Comparison of model stability among different methods in the experiment.
Full-size DOI: 10.7717/peerjcs.2442/fig-4

showed large fluctuations in accuracy throughout the experiment, particularly unstable in
the mid-term, highlighting the importance of policy-enhanced reinforcement learning in
enhancing model stability. The LSTM model showed the least stability, with significant
fluctuations in scores, and overall scores lower than other methods.
Throughmutual information analysis, as shown in Fig. 5, we observe significant variations

in mutual information values across multiple iterations. Our proposed model consistently
maintained the highest mutual information values across all rounds, indicating significant
advantages in information sharing and utilization across different features. Particularly
from the 3rd to the 8th round, mutual information values rapidly increased and stabilized
at a high level, demonstrating the model’s ability to quickly capture and integrate effective
information in the early stages. In comparison, Blue’s model without dynamic temporal
reinforcement learning followed closely, showing rapid growth in the early stages but
stabilizing with slight fluctuations after the 10th round, indicating the beneficial impact
of dynamic temporal reinforcement learning on enhancing information integration
capabilities. The model without policy-enhanced reinforcement learning optimization
techniques exhibited significant fluctuations in mutual information values throughout
the experiment, particularly unstable in the mid-term, further validating the contribution
of policy-enhanced reinforcement learning to enhancing information sharing and model
stability. The LSTMmodel had the lowest and most fluctuating mutual information values,
reflecting its shortcomings in handling complex feature relationships.

Through F1 score analysis, as shown in Fig. 6, we observe clear differences in F1 score
performance among the methods. Our proposed model consistently maintained the
highest F1 score, stabilizing close to 1.0 after the 3rd round. This demonstrates that the
model effectively balanced precision and recall throughout the experiment. In contrast,

Xiao et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2442 17/25

https://peerj.com
https://doi.org/10.7717/peerjcs.2442/fig-4
http://dx.doi.org/10.7717/peerj-cs.2442


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ut

ua
l I

nf
or

m
at

io
n

The Mutual Information of the whole experiment

Proposed method Proposed method without DTRLP Proposed method without PRLO LSTM

Figure 5 Comparison of mutual information among different methods in the experiment.
Full-size DOI: 10.7717/peerjcs.2442/fig-5

Blue’s model without dynamic temporal reinforcement learning stabilized around 0.8 after
initial rapid growth, highlighting the impact of dynamic temporal reinforcement learning.
The model without policy-enhanced reinforcement learning optimization showed more
fluctuations in F1 Score, particularly in the mid-term, while the LSTM model exhibited
the lowest and most inconsistent performance.

Discussion
From the experimental results of this study, our proposed method demonstrated strong
performance in predicting hotel booking cancellations. Across metrics such as accuracy,
model stability, mutual information, and F1 Score, our model consistently outperformed
comparative methods that did not include dynamic temporal reinforcement learning,
policy-enhanced reinforcement learning optimization techniques, and traditional LSTM
models. These results suggest that the introduction of dynamic temporal reinforcement
learning and policy-enhanced reinforcement learning optimization techniques contributed
to better handling of complex time-series data and dynamic environments.

Additionally, our proposed model exhibited notable advantages in information
sharing and utilization, effectively integrating relevant information to improve predictive
capabilities and decision support. These findings align with the broader literature on
reinforcement learning applications in dynamic environments, where adaptive models
generally perform better than static approaches. Our contribution lies in applying and
refining these techniques for hotel booking cancellations, where dynamic behavior and
time-sensitive decision-making are crucial.

While this study achieved positive results, several limitations should be acknowledged.
Firstly, the dataset used in this research represents specific periods and regions of hotel
bookings, which may affect the generalizability of the results. Future research should
consider incorporating more diverse datasets to better validate the universality of the
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Figure 6 Comparison of F1 score among different methods in the experiment.
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method. Secondly, while dynamic temporal reinforcement learning and policy-enhanced
reinforcement learning optimization improved performance, the high computational
complexity of these techniques could present challenges in real-time applications, as they
require significant computational resources. Future work could focus on optimizing these
models to reduce computational costs and improve real-time applicability.

Furthermore, the study’s analysis underscores the importance of factors such as booking
lead time in predicting customer cancellation behavior. For instance, bookings made more
than a year in advance had a cancellation rate as high as 57.14%, while bookings within a
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week had a much lower rate of 7.73%. These results highlight the critical role of booking
time in predicting cancellations, consistent with the findings from the CatBoost model. The
study also identified important influences of customer nationality, special requests, and lead
time on cancellation probabilities. Our dynamic temporal reinforcement learning model
effectively captured these trends, enhancing both predictive adaptability and accuracy.
The use of mutual information analysis and cross-validation techniques helped ensure the
robustness of the findings.

Moreover, we introduced policy-enhanced reinforcement learning optimization
techniques to further improve the effectiveness of the dynamic temporal reinforcement
learning models. This allowed for better optimization of long-term returns or reductions
in cancellation rates, providing hotel managers with more accurate predictions of
customer behavior and helping to improve resource allocation and customer relationship
management. The combination of dynamic reinforcement learning and policy optimization
represents a novel approach to hotel booking predictions, offering a foundation for future
research in similar applications.

SUMMARY
This study presents an innovative approach within the framework of LSTM, aimed at
addressing complex data relationships and model optimization challenges. The proposed
model demonstrates enhanced predictive capability and stability through dynamic
adjustments and multimodal data fusion. Experimental results showed that the model
performs well in nonlinear and dynamic environments, particularly in handling long
sequence data while maintaining performance stability. Additionally, we explored the
application of deep learning in dynamic temporal reinforcement learning and policy-
enhanced reinforcement learning optimization techniques, providing new insights and
solutions for addressing practical challenges. However, the generalizability of the model
should be further validated with additional datasets and scenarios. Future research could
extend the applicability of these models to broader prediction tasks, enhancing both model
generalization and real-world practicality.

APPENDIX: MATHEMATICAL THEOREMS, INFERENCE
PROOFS
Theorem 3 Assuming our Dynamic Temporal Reinforcement Learning Prediction model
satisfies the update rule for state-action value function:

Q(s,a)=Eπθ
[
r+γmax

a′
Q(s′,a′)

∣∣∣∣s,a] (20)

This equation represents the Bellman update, a recursive formula that optimizes decision-
making by considering both immediate and future rewards. The Bellman Equation is central
to reinforcement learning because it allows us to decompose complex decision processes into
smaller, tractable problems by recursively computing the optimal value function.
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Proof Firstly, according to the Bellman equation in dynamic temporal reinforcement
learning prediction, the update rule for the state-action value function Q(s,a) is as follows:

Q(s,a)=Eπθ
[
r+γmax

a′
Q(s′,a′)

∣∣∣∣s,a] (21)

Here, r denotes the immediate reward under current state s and action a, γ is the discount
factor, s′ is the next state, and a′ is the action chosen under state s′. This equation updates
the value of a state-action pair by considering both the immediate reward and the expected
reward from following the optimal policy in the future.

We utilize a deep neural network (MLP) to approximate the state-action value function
Q(s,a;θ), updating the neural network parameters θ by minimizing the mean square error to
approximate the true state-action value function. The policy gradient update rule is derived to
optimize the decision policy πθ :

∇θ J (θ)=Eπθ
[
∇θ logπθ (a|s)Eπθ

[
r+γmax

a′
Q(s′,a′)

∣∣∣∣s,a]] (22)

Here, J (θ) is the objective function representing the expected cumulative reward, and πθ
is the decision policy parameterized by θ . The gradient ∇θ J (θ) is used to update the policy
parameters to maximize the expected reward. Finally, the update rule for the state value
function V (s) is:

V (s)=Eπθ
[
r+γV (s′)

∣∣∣∣s] (23)

This recursive formulation dynamically adjusts the value of a state by accounting for
both current and future rewards. Through this process, the model can effectively predict and
optimize hotel booking cancellation probabilities in dynamic environments.
Lemma 3 In the framework of dynamic temporal reinforcement learning prediction
technology, we define the update rule for the state value function V (s) as follows:

V (s)=Eπθ

[
r+γmax

a′
Eπθ

[
r+γmax

a′′
Eπθ

[
r+γmax

a′′′
Eπθ

[
r+γmax

a′′′′
V (s(4))

∣∣∣∣s(3),a′′′]∣∣∣∣s(2),a′′]∣∣∣∣s(1),a′] (24)

This is an expanded form of the Bellman Equation, representing the recursive update of the
state value function V (s). It captures how future rewards, discounted by γ , are recursively
propagated back to the current state, allowing the model to predict long-term rewards.
Proof Firstly, according to the Bellman equation, we have:

Q(s,a)=Eπθ
[
r+γmax

a′
Q(s′,a′)

∣∣∣∣s,a] (25)

This equation is the foundation of reinforcement learning, as it balances immediate
rewards and future returns. The expanded form:

Q(s,a)=Eπθ
[
r+γmax

a′
Eπθ

[
r+γmax

a′′
Eπθ

[
r+γmax

a′′′
Q(s(3),a′′′)

∣∣∣∣s(2),a′′]∣∣∣∣s(1),a′] (26)

captures a multi-layer recursive form, which is used to handle complex, dynamic environ-
ments by propagating value updates across multiple decision steps. This allows the model to
learn optimal actions over long time horizons.
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In the training process of dynamic temporal reinforcement learning, we use a multi-layer
perceptron (MLP) to approximate the state value function V (s). The approximation helps to
generalize the learning process over large and complex state spaces.

V (s)=Eπθ

[
r+γmax

a′
Eπθ

[
r+γmax

a′′
Eπθ

[
r+γmax

a′′′
Eπθ

[
r+γmax

a′′′′
V (s(4))

∣∣∣∣s(3),a′′′]∣∣∣∣s(2),a′′]∣∣∣∣s(1),a′] (27)

This recursive approach allows the model to predict and optimize long-term outcomes,
adapting to complex dynamics and improving decision-making strategies in real-world tasks
like hotel booking cancellations.
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