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ABSTRACT
Advancements in multimodal biometrics, which integrate multiple biometric traits,
promise to enhance the accuracy and robustness of identification systems. This study
focuses on improving multimodal biometric identification by using fingerprint and
finger vein images as the primary traits. We utilized the “NUPT-FPV” dataset, which
contains a substantial number of finger vein and fingerprint images, which
significantly aided our research. Convolutional neural networks (CNNs), renowned
for their efficacy in computer vision tasks, are used in our model to extract distinct
discriminative features. Specifically, we incorporate three popular CNN
architectures: ResNet, VGGNet, and DenseNet. We explore three fusion strategies
used in security applications: early fusion, late fusion, and score-level fusion. Early
fusion integrates raw images at the input layer of a single CNN, combining
information at the initial stages. Late fusion, in contrast, merges features after
individual learning from each CNN model. Score-level fusion employs weighted
aggregation to combine scores from each modality, leveraging the complementary
information they provide. We also use contrast limited adaptive histogram
equalization (CLAHE) to enhance fingerprint contrast and vein pattern features,
improving feature visibility and extraction. Our evaluation metrics include accuracy,
equal error rate (EER), and ROC curves. The fusion of CNN architectures and
enhancement methods shows promising performance in identifying multimodal
biometrics, aiming to increase identification accuracy. The proposed model offers a
reliable authentication system using multiple biometrics to verify identity.
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INTRODUCTION
In recent decades, the use of biometric systems for authentication has increased
significantly in daily applications due to technological advancements. This rise is
particularly driven by the digital era, which has seen an increase in fraud, necessitating
reliable authentication systems to control transaction frauds and enhance security for
accessing digital or physical systems like mobile phones and institutions. Traditional
methods such as passwords and PINs are more susceptible to duplication and theft
compared to biometric-based systems. Biometrics offer a unique identification for each
individual, making them an efficient alternative as they are difficult to replicate or steal
(Daas et al., 2020; Alay & Al-Baity, 2020).

Various biometric systems are available for authentication, including fingerprint, voice
recognition, gait analysis, palm print, and iris recognition. Each method has its own
advantages and limitations. Fingerprint or thumb-based systems are widely adopted due to
the ease of collecting data during registration; however, their reliability can be affected by
factors such as skin conditions or poor image quality (Rajasekar et al., 2022). Conversely,
iris recognition provides higher accuracy but requires complex capturing devices during
registration, which is a significant disadvantage.

Enhancing the security of the biometric systems to identify the particular person to
provide the authenticated data can be achieved through multimodal biometric methods.
The accuracy of biometric systems can be enhanced by merging two or more biometric
features, as the advantages of both features can be combined and the limitations of both
methods can be overlooked (Bala, Gupta & Kumar, 2022; Ren et al., 2022). In spite of the
advantages of multi-model biometric systems, they have several challenges to implement.
The first challenge to achieving effective performance is selecting the optimum input-
capturing technique during registration when two biometric-capturing devices are alike.
This article focuses on the implementation of the authentication system, which makes use
of the fingerprint and veins of the finger to identify the person. Due to the merging of two
biometrics, we can call the proposed model the multimodal biometric authentication
system. The base reason for choosing these two biometric features is because of their
opposite attribute characteristics or patterns. The fingerprint-based authentication system
is widespread as it provides higher accuracy in detection and is cost-effective (Boucherit
et al., 2022; Wang, Shi & Zhou, 2022). On the other hand, veins in the finger can’t be
duplicated, and they are robust to several conditions. Hence, combining the features of
fingerprints and veins gives novelty to the proposed model in terms of accuracy in
identification.

To carry out any machine learning or deep learning-based system, there is a need for a
dataset that contains a larger number of samples and high-quality images. NUPT-FPV
(Ren et al., 2022) is one of the datasets that possesses high-quality images of the vein of a
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finger and its prints as per the survey conducted. As the dataset has diversity and
high-quality images, it is easier to test and evaluate the proposed model. The proposed
convolutional neural network (CNN) architecture-based model is efficient in collecting the
dominant or useful patterns or features from the input images from the NUPT-FPV
dataset. We had selected the three CNN-based architectures, such as ResNet, VGGNet, and
Densenet, as these three modules show excellent performance in solving computer vision
real-time problems. The collected features from the three different modules need to be
merged, and for performing this task, we have chosen the merging methods, namely early,
late, and score-level-based fusion techniques.

These merging techniques find the unique and best integration features that could be
extracted from both the fingerprint and veins of the finger, which helps the three
models in the identification of the person through biometrics. The accuracy of the
biometric models is dependent on the quality of the input images that are used to feed the
model. Hence, to enhance the quality of the image, we employed the CLAHE (contrast
limited adaptive histogram equalization) method. The objective of the CLAHE is to
enhance the accuracy of identification. To achieve this, there is a need to increase the
visibility of the veins and other local regions of the subject. The performance metrics
chosen to evaluate the proposed model are accuracy, equal error rate (EER), and
receiver operating characteristic (ROC) curves. A comparative analysis will be performed
on the various architectures of the CNN and fusion methods to determine their
performance in identifying the person. This analysis will not only give the conclusion of
the combination of the chosen dataset but also shed light on the efficient discrimination
between the classes when the combination of the CNN architecture and fusion techniques
can make wonders.

The current research is going to contribute to the field of multimodal biometric systems
by providing a combination of methods such as feature extraction, fusion techniques, and
enhancement techniques to enhance accuracy. In addition, the comparative study and
suggested methodology pave the way for the development of reliable identification systems
that make use of multimodal biometric features. The key contributions of our study are as
follows:

1. We have proposed a novel approach that integrates both fingerprint and finger vein
modalities, enhancing the accuracy and reliability of biometric identification systems.

2. The study introduces the use of CLAHE and other preprocessing methods to improve
image quality, ensuring more robust feature extraction from biometric images.

3. We have employed and evaluated three state-of-the-art CNN architectures—VGGNet,
ResNet, and DenseNet—demonstrating their effectiveness in extracting discriminative
features from biometric data.

4. The study explores three different fusion strategies—early fusion, late fusion, and score-
level fusion—to combine information from multiple biometric modalities, showing the
benefits of each approach in enhancing identification performance.
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5. We have conducted a thorough evaluation of the proposed methods using standard
metrics such as accuracy, equal error rate (EER), and area under the curve—receiver
operating characteristic (AUC-ROC), providing a comprehensive analysis of the
system’s performance under various configurations.

6. By achieving a high accuracy of 97% and demonstrating low error rates, our study
showcases the practical applicability of the proposed multimodal biometric system in
real-world security and identification scenarios.

The “Related Work” provides an overview of the previous works carried out by the
research scholars on the fingerprint, finger vein, and combinations of the two using
convolutional neural network architectures. We discuss the pivotal developments in
feature extraction methods and fusion techniques, thus establishing the foundation for our
proposed approach. In “Materials and Methods”, we elaborate on our proposed
methodology for multimodal biometric identification. This section is divided into
subsections detailing the procurement of the NUPT-FPV dataset, data preprocessing,
feature extraction using the selected CNN architectures, and fusion techniques. In
“Results and Discussions”, we present the results procured from our experiments. We
deliver a thorough analysis of the performance of the different CNN architectures
and fusion techniques, both with and without the application of CLAHE. The effect
of the CLAHE method on the precision of identification is also assessed. “Rationale
for Model Selection and Experimental Results” is the last part of the study which
summarises our results and discusses their impact on the field and suggests directions for
future studies.

RELATED WORK
Kumar & Zhou (2011) has introduced novel feature extraction methods for the biometric-
based authentication system by combining the two feature extraction methods, namely
morphological operators and the Gabor filter. The employed filter is widely adopted by
many researchers as it performs edge detection, orientation of the image, analysis of the
texture of the image, and differentiating the various regions based on similar
characteristics. When these filters are applied to the biometric images, the resultant images
are going to detect distinct patterns, such as valleys and ridges, of the individuals. The
manipulation of the image is performed by the morphological operators; these methods
are going to differentiate the images based on the shapes, and they are going to help
improve the collected feature sets. By using these methods in the feature extraction steps
on the image, it is going to accelerate or de-emphasise specific aspects of the biometric
traits. The author also employed the performance metric for evaluation, which is X-OR,
which is going to compare the testing image with the stored images and generate the score.
The score is high if the features between them are matched. It is also called an “exclusive
or” operation, which is going to return the score when both the test and the stored images
show similar patterns or features, which increases the robustness of the comparison
between the biometric features.

Alshardan et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2440 4/42

http://dx.doi.org/10.7717/peerj-cs.2440
https://peerj.com/computer-science/


Another novel proposed by Liu et al. (2014) involves combining local binary patterns
(LBP) and singular value decomposition (SVD) as the feature extraction method. The
primary components from the complex dataset are extracted by using the mathematical
equations from the SVD. By using SVD, one can extract the bifurcations and ridges of the
fingers. However, false minutiae, which are noise artefacts, often get captured as well,
which is the disadvantage. To avoid this problem, the LBP has been employed by Liu et al.
(2014) which is able to identify between true and false minutiae based on the local texture
patterns. These combined true minutiae were then passed to further classification by using
the Euclidean and hamming distance measurements. The spatial distribution of the
minutiae is identified by the Euclidian distance through geometrical properties. The
Hamming distance, a measure of the difference between feature descriptors, caters to the
bit-wise pattern differences, which is going to provide the balance between the two feature
spaces.

Van, Thai & Le (2015) combined the two feature extraction methods, such as GridPCA
and Multiscale Feature Replication Transfer (MFRAT). The boundary structure and the
fine details that are present in the image are captured by the MFRAT method, and to
postprocess these extracted details, the GridPCA is employed. It is the advanced version of
principal component analysis (PCA). When applied to specific regions of images, such as
overlapping regions (usually at the boundary of two regions), it efficiently extracts the
features from the local regions while keeping the global context intact. The localised PCA
components were categorised using the Euclidean distance metric after feature extraction.
In this case, the use of Euclidean distance for classification is appropriate since it takes into
account the structure of the data and efficiently compares the similarity of the GridPCA
features.

Lu et al. (2013) proposed feature extraction methods from the biometric images that
employed the polydirectional local line binary pattern. The speciality of this method is that
it intelligently collects line information from the ridges, vascular patterns, and valleys,
which are essential during the identification based on the biometric. The last step is the
classification, and for this step, the authors have chosen the method called histogram
intersection, which is going to provide the classification based on the distribution of the
line patterns from the image, which is going to help in obtaining accurate results.

Conversely, Ong et al. (2013) elected for a conventional minutiae-based methodology
for feature extraction, centred on ridge bifurcations and endings in biometric images. To
increase the accuracy of the model, they used the genetic algorithm matched with the K-
modified Hausdorff distance measure. This integration optimises the matching process by
considering varied combinations of feature matching while accounting for potential non-
linear transformations between biometric images, ensuring robust classification despite
variations. The result shows that the combination of the above-stated methods is going to
provide robustness in the classification by achieving potential non-linear transformations
between images.

Several feature extraction methods, such as pseudo-elliptical transformers, dual sliding
window localization, and PCA (2D), are combined by Qiu et al. (2016). The authors
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succeeded in the extraction of both local and global features. Standardising these features
and extracting the principal components in a two-dimensional space provided a detailed
representation of images. The Euclidian distance is employed to classify people into
different groups. Another feature extraction method is proposed by Xie et al. (2014), where
they are going to extract the features from the image by using the block-based average
absolute deviation (AAD) feature. This feature extraction concentrates only on the local
blocks of images to capture the patterns inside the blocks (Xie et al., 2014). Later, they
made use of several learning methods to improve predicted performance, which is often
called ensemble, while the latter is known for the fast learning speed of the extreme
learning machine (ELM).

For feature extraction, Banerjee et al. (2018) used a combination of CLAHE, fuzzy
contrast enhancement, and directional dilation. CLAHE is used to improve the contrast of
the images; fuzzy contrast enhancement further intensifies the important features; and
directional dilation expands the biometric traits in a specific direction, collectively
reducing the impact of noise and enhancing the visibility of key features. Their
classification method was an affine registration-based template matching algorithm, which
matches the enhanced biometric features with a stored template while considering possible
affine transformations, such as rotation and scaling. The preceding discussion
encompasses pioneering works in the realm of multimodal biometrics, particularly
focusing on fingerprint and finger vein recognition. These studies significantly contribute
to the realm of biometric identification, revealing the potential of various feature extraction
methods, classifiers, and fusion techniques. However, a noticeable commonality is the
exploration of a singular biometric modality, with few studies incorporating a multimodal
approach.

In this context, our work takes a step further by focusing on integrating the
strengths of both fingerprint and finger vein modalities using state-of-the-art
convolutional neural network architectures. The uniqueness of this work lies in the use of
the NUPT-FPV dataset, the evaluation of multiple CNN architectures and fusion
techniques, and the application of the CLAHE technique for image quality enhancement.
It is envisioned that the proposed methodology and findings will offer valuable insights
into the interplay of CNN architectures, fusion techniques, and multimodal
biometrics. The best-suited combination revealed through comparative analysis is
expected to contribute to the development of more robust and accurate biometric
identification systems. Looking ahead, future studies can explore additional fusion
techniques and extend them to other biometric modalities for a more comprehensive
multimodal biometric system. Furthermore, evaluations using larger and more
diverse datasets are recommended to ensure the generalizability of the proposed approach.
By pushing the boundaries of multimodal biometric research, we anticipate
contributing significantly to the creation of robust, accurate, and reliable identification
systems for a secure future. We expanded the literature comparison table to include 15
relevant studies (Table 1). This extended table provides a detailed view of the current
landscape in multimodal biometric identification, emphasizing how our research
stands out.
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. Unlike other studies that typically focus on a single CNN model, our research
incorporates and compares three popular CNN architectures (ResNet, VGGNet,
DenseNet). This allows for a more comprehensive understanding of the strengths
and weaknesses of each architecture in the context of multimodal biometric
identification.

Table 1 Comparison of proposed work with relevant studies.

Study Dataset Methods Data
preprocessing

Results Positive aspects Negative aspects

Das et al. (2018) Custom dataset of
finger vein and
knuckle print
images

Deep learning, CNN Normalization Accuracy: 91% Uses multimodal
biometrics

Limited dataset size, lacks
diversity

Alay & Al-Baity
(2020)

Public dataset (iris,
face, finger vein)

Deep learning, CNN Histogram
equalization

Accuracy: 88% High accuracy across
modalities

High computational cost,
not focused on
fingerprints and veins
only

Rajasekar et al.
(2022)

Public dataset Optimized fuzzy genetic
algorithm

None Accuracy: 85% Innovative optimization
technique

Complexity in algorithm

Bala, Gupta &
Kumar (2022)

Synthetic dataset Fusion techniques None Accuracy: 84% Extensive analysis of
fusion techniques

Reliance on synthetic data

Guo et al. (2022) NUPT-FPV dataset CNN (ResNet) CLAHE Accuracy: 89% Use of CLAHE for contrast
enhancement

Limited fusion techniques
explored

Boucherit et al.
(2022)

Finger vein dataset Deep CNN Median filtering Accuracy: 86%,
EER: 7%

Robust to noise, good
accuracy

Single modality focus

Wang, Shi &
Zhou (2022)

Public dataset (face,
finger vein)

CNN, Fusion of face and
finger vein features

Normalization Accuracy: 90% Good multimodal
performance

Limited to face and vein,
not fingerprint

Veluchamy &
Karlmarx
(2017)

Custom dataset Gabor filters,
Morphological
operators

Gabor filtering High feature
extraction
accuracy

Complexity in feature
extraction

High computational
requirement, prone to
noise

Das et al. (2018) Public dataset SVD, Local binary
patterns

None Accurate minutiae
extraction

Prone to noise Sensitive to lighting
conditions, complex
processing

Van, Thai & Le
(2015)

Finger vein dataset Discriminant orientation
feature

Histogram
Equalization

Improved
orientation
feature
extraction

Limited to finger vein Not applicable to
multimodal biometrics

Lu et al. (2013) Public dataset Polydirectional local line
binary pattern

None Good line pattern
detection

Specific to finger vein
patterns

Limited generalizability to
other biometrics

Ong et al. (2013) Custom dataset Minutiae matching Normalization Accurate minutiae
matching

Custom dataset, limited
generalizability

High computational
complexity

Qiu et al. (2016) Public dataset Dual-sliding window,
Pseudo-elliptical
transformer

Histogram
Equalization

Accurate
localization and
feature
transformation

Complex feature
extraction method

Difficult to implement,
requires precise
alignment

Xie et al. (2014) Finger vein dataset Extreme learning machine CLAHE Fast learning, high
accuracy

Specific to finger vein, not
multimodal

Limited to finger vein
biometrics, not scalable

Banerjee et al.
(2018)

Public dataset ARTeM system for vein
images

Median filtering High accuracy for
vein patterns

Not multimodal Narrow focus on vein
patterns, lacks diversity

This study NUPT-FPV dataset CNN (ResNet, VGGNet,
DenseNet) + Early, Late,
Score-level fusion

CLAHE,
Normalization

Accuracy: 97%,
EER: 4.5%

High accuracy, robust
fusion techniques,
multiple CNN
architectures

Higher model size,
computationally
demanding
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. While most studies explore a limited number of fusion strategies, our study uniquely
evaluates early fusion, late fusion, and score-level fusion. This extensive analysis helps
identify the most effective fusion strategy, leading to significant improvements in
identification accuracy.

. Although some studies use CLAHE, our study systematically evaluates its impact on
different CNN architectures and fusion techniques, demonstrating that CLAHE
significantly enhances feature extraction and improves overall system robustness.

. By leveraging the NUPT-FPV dataset, our study takes advantage of high-quality images
of both fingerprints and finger veins, providing a rich source of data for evaluating
multimodal biometric systems. This comprehensive use of data contrasts with studies
using either synthetic datasets or focusing on a single modality.

. Our study emphasizes the practical applicability of the proposed system by making the
code and models publicly available on GitHub (provided as Supplemental Material).
This focus on reproducibility and transparency sets our work apart from many other
studies where implementations are not shared.

. Achieving a 97% accuracy with a low EER of 4.5% is a notable improvement over
existing studies, highlighting the effectiveness of our integrated approach. These results
set a new benchmark for multimodal biometric identification systems.

. The use of multiple preprocessing steps (CLAHE, normalization) and fusion techniques
provides a systematic approach to handling common issues such as noise, varying
lighting conditions, and image quality, which are often not comprehensively addressed
in other studies.

MATERIALS AND METHODS
To enhance clarity and provide a clear understanding of our proposed approach, we have
outlined the steps of our method sequentially as follows:

1. Dataset acquisition: We utilized the NUPT-FPV dataset, which includes high-
resolution images of fingerprints and finger veins, to develop our multimodal biometric
identification system.

2. Preprocessing: To improve image quality and feature extraction, several preprocessing
techniques were applied:

. Noise removal: Median filtering was used to eliminate noise from the images,
preserving essential details.

. Normalization: The images were normalized to maintain uniform pixel intensity,
enhancing consistency across different lighting conditions.

. Image enhancement: CLAHE was employed to improve the visibility of fine details in
the images.

3. Feature extraction using CNN architectures: We implemented three well-known CNN
architectures—ResNet, VGGNet, and DenseNet—to extract discriminative features
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from the preprocessed images. Each model was trained separately on both fingerprint
and finger vein images.

4. Fusion techniques: To combine the strengths of both biometric modalities, three fusion
strategies were employed:

. Early fusion: Combined raw images from both modalities before input into the CNN,
enabling joint learning from the initial stages.

. Late fusion: Integrated features after individual learning from each modality, allowing
independent learning followed by merging.

. Score-level fusion: Aggregated matching scores from each modality using weighted
averaging, providing a comprehensive assessment of both biometric traits.

5. Model evaluation: The performance of the models was evaluated using metrics such as
accuracy, equal error rate (EER), and AUC-ROC. These metrics provided insights into
the model’s ability to correctly classify and differentiate between biometric samples.

6. Results and analysis: We compared the performance of different CNN architectures
and fusion techniques, both with and without the application of CLAHE. The results
demonstrated the effectiveness of the proposed methods in enhancing identification
accuracy.

Acquisition of the NUPT-FPV dataset
Using suitable and high-quality data is the first step in implementing any machine learning
research. The NUPT-FPV collection, which contains several high-resolution images of
fingerprints and finger veins, was used in this investigation. The collected dataset of the
NUPT-FPV is in a controlled environment; hence, it has various attributes such as age, sex,
and occupation of the volunteers who took part in the preparation of the dataset (Ren et al.,
2022). Table 2 below summarizes the rationale for choosing the NUPT-FPV dataset and
the reasons for not using other datasets, as well as the justification for using a single dataset
in the study.

Preprocessing techniques
Once the data collection process is finished, a series of pre-processing methods are
pipelined on the images in order to enhance the contrast and vein visibility, which helps in
efficient feature extraction. The first step in the pre-processing is the noise removal, which
is going to eliminate the noises, unwanted speckles, or random pixels that are present in
the image. All these noises are removed from the image by using the median filters. The
next step is normalization, where the intensity of the pixels is confined to a specific range,
which helps eliminate the illumination, scale, and orientation of the images. The objective
here was to standardise all the images, ensuring that the ensuing learning process is not
unfairly influenced by these factors.

Noise removal via median filtering
The recognition rate of the model is badly affected by the presence of the noise in the image
such as speckles, random fluctuations. The noise can be added to the image during the
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capturing process of the image, such as sensor irregularities, environmental conditions, or
interference during transmission from the input devices.

To remove the salt and pepper noise, which is the hard noise as both white and black
pixels are randomly added, it can be removed by using the median filters (Huang, Ma &
Wang, 2023; Rajasekar, 2023). These filters are not going to touch the edges but efficiently
reduce the noise in the image; hence, they are widely employed in computer vision
problems. The idea behind median filtering is not complicated at all. An individual
neighbourhood is seen around each pixel in the image. The window size is often chosen as
odd, which is going to delineate the neighbourhood. The next step is to compute the
median of the collected pixels from the sliding window and store that value at the central
pixel. For a given pixel I (i, j) in an image I, the median filtering operation can be
described as:

I0ði; jÞ ¼medianfIðp;qÞ : ði�m=2Þ <¼ p <¼ ðiþm=2Þ;ðj�m=2Þ <¼ q <¼ ðjþm=2Þg(1)

Here, I’(i, j) denotes the intensity value of pixel (i, j) in the resultant (filtered) image, and
the median operation is executed on all pixels (p, q) within the m × m window centered at
(i, j). As the median is a more robust measure compared to the mean, it is less influenced
by extreme values (noise). Therefore, if the window contains noise pixels, their effect is
minimized as the median is calculated, effectively reducing the noise in the image. At the
same time, since the median of a set of numbers is a member of that set, the edges

Table 2 Dataset selection and rationale.

Aspect Details

Chosen dataset NUPT-FPV

Reasons for preferring
NUPT-FPV

. Provides high-resolution images of both fingerprints and finger veins, essential for accurate feature extraction.

. Contains both biometric modalities (fingerprints and finger veins), aligning perfectly with study objectives.

. Used in prior research, enabling comparison with existing methods and demonstrating improvements over state-of-
the-art techniques.

. Openly available and widely used, ensuring transparency and reproducibility.

Status of other datasets . Many datasets focus on single modalities (e.g., CASIA, SDUMLA-HMT), lacking the combined fingerprint and finger
vein data required.

. Other datasets may have inconsistencies due to different sensors, resolutions, and capture conditions, affecting model
performance.

. Some datasets have licensing restrictions or limited availability, making them less suitable for open academic research.

Why a single dataset . Ensures that results are due to model performance, not dataset variations, providing a clear evaluation of fusion
techniques and CNN architectures.

. Concentrating on one comprehensive dataset allows for focused development and refinement of new methods.

. Establishing robust findings on a well-regarded dataset like NUPT-FPV provides a solid basis for extending research to
other datasets.

Future work . Plans to validate and generalize findings by testing on additional datasets in subsequent research to ensure robustness
and applicability across different scenarios.
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(transitions in intensity) are preserved, maintaining the essential structure of the images.
Algorithm 1 explains the procedure of noise removal using median filtering. The filter
operates on a sliding window that moves across the image, and for each position of the
window, the median pixel value is computed and used to replace the central pixel value.
The median is a robust measure that reduces the impact of noise or outliers, providing a
denoised version of the original image while preserving its essential structures, particularly
the edges. Figure 1 represents the process of image processing. It starts with a set of images,

Algorithm 1 Noise removal via median filtering

Inputs:

1. Set of images I ¼ fI; I2; . . . ; Ing from the NUPT-FPV dataset, where each image Ii is of size wx h.

2. Filter window size m�m.

Outputs:

Set of denoised images I0 ¼ I01; I02; . . . ; I0nf g
Procedure:

1. For each image li in I:

2. Create a new image l’i of the same size as li.

3. For each pixel li ðx; yÞ in li:
. Extract the mxm window W centered at ðx; yÞ. The window W is defined as fllðp; qÞ:
ðx �m=2Þ <¼ p <¼ ðx þm=2Þ; ðy �m=2Þ <¼ q <¼ ðy þm=2Þg.

. Compute the median value M of the pixel intensities in W, given by M ¼ medianðWÞ.

. Replace the value of the corresponding pixel in l’i by M, i.e., l’i(x, yÞ ¼ M.

4. Append I ’i to the set I ’.

Figure 1 Median filtering in image processing. Full-size DOI: 10.7717/peerj-cs.2440/fig-1
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selects an image, selects a pixel from the image, extracts a window around the pixel,
computes the median of the pixel values in the window, replaces the pixel value with the
computed median, and finally appends the new image to the set of images.

Image normalization
The purpose of normalization, which is a preprocessing method, is to maintain uniform
pixel intensity throughout the histogram of the image. This comes in handy, especially
when working with images taken under varied lighting or other settings that could have
drastically varying exposure, contrast, or brightness levels. A more stable learning process
can be achieved during CNN training, and, in the end, a more robust multimodal
biometric identification system may be achieved by normalising the brightness of these
pixels (Wang, Shi & Zhou, 2022; Shaheed et al., 2022). Typically, an image’s pixel
intensities might be anywhere from zero to two hundred and fifty (for an 8-bit image).
These values are often rescaled to a new range, [0, 1] or Daas et al. (2020), during the
normalization procedure. Here is a basic linear transformation that may be used to
accomplish this scaling: We may calculate the normalised image I’ with pixel intensity
values x’ given an image I with pixel intensity values x by:

x0 ¼ ðx �minðxÞÞ=ðmaxðxÞ �minðxÞÞ (2)

where min(x) is the lowest pixel intensity value in image I and max(x) is the highest pixel
intensity value. With this adjustment, the normalised image’s pixel intensities will always
be between zero and one. Before utilising CNNs for feature extraction, all of the images in
the NUPT-FPV dataset undergo this normalising technique (Yang et al., 2018; Fenu,
Marras & Boratto, 2018). This produces a collection of normalized images. There are
several benefits to normalising images before training neural networks. For example, it
makes the dynamic range of pixel intensities consistent, which improves fingerprint and
finger vein image comparison and fusion. (ii) It helps to reduce the impact of lighting
variations, which is useful for feature extraction from finger vein images. Lastly,
normalised images often lead to faster and more stable convergence (Boucherit et al., 2022;
Anusha, Thenmozhi & Sivaranjani, 2023). In Algorithm 2, min (x) and max (x) represent
the minimum and maximum pixel intensity values present in the image I’i, respectively.
The normalization operation transforms the original intensity value of a pixel x to a
normalized value x’ that falls in the range [0, 1]. The whole procedure is carried out for
every image in the set I’, resulting in a set of normalized images I”. The sequence of
operations involved in the process of image normalization is depicted in Fig. 2.

Image enhancement using contrast limited adaptive histogram
equalization (CLAHE)
Following the normalization step, the next preprocessing step was image enhancement,
which was performed to increase the visibility of fine details and improve the overall
quality of the images. For this purpose, we used the CLAHE method. CLAHE is an
enhanced version of the histogram equalization method commonly used to improve image
contrast (Banerjee et al., 2018; Ahmed, Roushdy & Salem, 2022; Al-Waisy, 2022). While
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histogram equalization spreads the most frequent intensity values in an image, it may
overamplify the contrast in some regions, causing certain areas to be over-brightened or
over-darkened. CLAHE circumvents this issue by applying histogram equalization
adaptively across small, distinct regions (or tiles) within the image and limits the contrast
amplification using a predefined threshold. Figure 3 illustrates the steps of the CLAHE
process. An input image is divided into tiles. For each tile, the histogram is computed, and
histogram equalization is applied. The histogram is then clipped at a predefined threshold

Algorithm 2 Image normalization

Inputs:

1. Set of denoised images I0 ¼ I01; I02; . . .f , I’n} from the median filtering process, where each image l’i is of size wxh.

2. Original intensity range ½0; 255� for 8-bit images.

Outputs:

Set of normalized images I00 ¼ I001; I002; . . . ; Ing:f
Procedure:

1. For each image l’i in I’:

2. Create a new image I’i of the same size as l’i.

3. For each pixel I’i ðx; yÞ in I’i:
a) Extract the pixel intensity value x in l’i at location (x; y).

b) Compute the normalized pixel intensity value x0 using the following equation:
x0 ¼ ðx�minðxÞÞ=ðmaxðxÞ �minðxÞÞ
where minðxÞ and maxðxÞ are the minimum and maximum pixel intensity values in the image l’i respectively.

c) Replace the value of the corresponding pixel in I’i by x0, i.e., I00iðx; yÞ ¼ x0.

4. Append I′′i to the set I′′

Figure 2 Image normalization process. Full-size DOI: 10.7717/peerj-cs.2440/fig-2
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before calculating the CDF. The intensity values of these tiles are transformed and merged
using bilinear interpolation, resulting in the final enhanced image.

The CLAHE process involves the following steps:
1. The image is divided into small, non-overlapping regions, referred to as tiles.

Typically, these tiles are 8 � 8 pixels.
2. We use histogram equalization after computing the histogram of pixel intensities for

each tile. To do this, we take the histogram and use it to calculate a cumulative distribution
function (CDF). Then, we use this CDF to map the intensities of the pixels in the tile.

The equalised pixel intensity values x’ for a certain tile T with intensity values x are
simply:

x0 ¼ CDFðxÞ (3)

CDF(x), which stands for the cumulative distribution function of the pixel intensities x,
is calculated in this way:

CDFðxÞ ¼
X

P x0ð Þ for all x0 <¼ x (4)

The likelihood of a tile pixel intensity value x’ is denoted by P(x’) in the aforementioned
equation. It is determined by dividing the total number of pixels in the tile by the number
of pixels with intensity x’.

Figure 3 Process flow of image enhancement. Full-size DOI: 10.7717/peerj-cs.2440/fig-3
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3. The contrast enhancement in traditional histogram equalization tends to stretch the
histogram to cover the entire intensity range, leading to over-enhancement. To prevent
this in CLAHE, the histogram is clipped at a predefined threshold before calculating the
CDF. This implies that the contrast enhancement for any given region is restrained,
mitigating over-brightening or over-darkening.

4. Once the intensity values of these tiles have been transformed, they are merged using
bilinear interpolation. This technique removes artificially induced boundaries, resulting in
the final enhanced image.

Following the application of the CLAHE technique, the images from the NUPT-FPV
dataset exhibited a higher degree of contrast and presented more detailed features. This
improved representation of image features is beneficial for subsequent feature extraction
processes using CNNs. Algorithm 3 provides a step-by-step procedure to implement
CLAHE on an image dataset. Smaller tiles may be used for more detailed images, while a
lower contrast limit might be useful to prevent excessive contrast enhancement. The
resulting images have improved contrast and better visibility of details, which will be useful
for subsequent feature extraction tasks. Figure 4 illustrates the proposed methodology for
multimodal biometric identification using CNN architectures and different fusion
techniques.

Fusion techniques
The objective of this phase is to effectively combine the extracted features from the
fingerprint and finger vein modalities to enhance the performance of the biometric
identification system. This is a crucial phase as the manner in which information from
different modalities is fused can significantly influence the overall system performance.

Algorithm 3 Contrast limited adaptive histogram equalization (CLAHE)

Inputs:

1. Set of normalized images I00 ¼ fI001; I002; . . . ; Inng from the previous step.

2. Tile size t � t (e.g., t ¼ 8 for 8� 8 tiles).

3. Contrast limit CL.

Outputs:

Set of enhanced images EIMG = {EIMG1, EIMG2,… EIMGn }

Procedure:

1. For each image I” i in I”:

2. Divide I”i into non-overlapping tiles T ¼ fT1; T2; . . . ;Tmg, each of size t� t.

3. For each tile Tj in T:
a) Compute the histogram H of pixel intensities in TJ.

b) Clip the histogram H at the contrast limit CL to obtain the clipped histogram H0.
c) Compute the cumulative distribution function (CDF) for H0, given by: CDFðxÞ ¼ P

P x0ð Þ for all x0 <¼ x, where P x0ð Þ ¼ H0 x0ð Þ= t�tð Þ.
d) Transform the pixel intensities x in Tj according to the CDF to obtain the equalized tile T0j, i.e., x0 ¼ CDFðxÞ.

4. Combine the equalized tiles T 0 ¼ T 01;T 02; . . . ;T 0mf g using bilinear interpolation to create the enhanced image EIMGi.

5. Append EIMGi to the set EIMG.
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Early fusion
In the context of the proposed multimodal biometric identification system, early fusion is
one of the employed fusion techniques. It is also known as feature-level fusion, where
information from both fingerprint and finger vein images is merged prior to the main
processing stage (Tyagi et al., 2022; El-Rahiem, El-Samie & Amin, 2022). Given the
enhanced fingerprint images as FIMG = {FIMG1, FIMG2,…, FIMGn} and enhanced finger
vein images as VIMG = {VIMG1, VIMG2,…, VIMGn} after the preprocessing stage, early
fusion creates a new set of images by combining each corresponding pair of fingerprint and
finger vein images into a stacked image. The input to the CNN model is going to be this
merged image.

If we define a set of stacked images S = {S1, S2,…, Sn}, where each stacked image Si is a
combination of corresponding fingerprint and finger vein image. Therefore, Si =
concatenate(FIMGi, VIMGi) for every i from 1 to n. Then, the CNN models are trained
using these stacked images S. In the forward propagation stage of training, the pixel
intensities of these images are fed into the CNN as follows:

X0 ¼ CNNðSiÞ;where X0 is the vector of extracted features for each image Si in S: (5)

During backpropagation, the weights of the CNN are updated to minimize the loss
between the predicted and actual class labels. By implementing early fusion, the CNN
model learns to capture the combined information from both modalities right from the
initial stages. This process utilizes the inherent correlation between the two modalities,
potentially enhancing the discriminatory power and robustness of the system. In the
experimental evaluation, the effectiveness of early fusion is tested with each of the three
CNN architectures—ResNet, VGGNet, and DenseNet. The performance of each setup is
then evaluated using metrics such as accuracy, equal error rate (EER), and receiver
operating characteristic (ROC) curves. By comparing the performances, the most suitable

Figure 4 Biometric identification process using fingerprint and finger vein images.
Full-size DOI: 10.7717/peerj-cs.2440/fig-4
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architecture for early fusion in this multimodal biometric identification system can be
determined. Algorithm 4 encapsulates the procedure for implementing early fusion in the
proposed multimodal biometric identification system. The evaluation of its effectiveness,
as compared to late fusion and score-level fusion, will be carried out in the subsequent
stages of the project. Figure 5 illustrates the early fusion technique in the proposed
multimodal biometric identification system.

Late fusion

Late fusion, also known as decision-level fusion, involves combining the outputs or high-
level features extracted by individual CNN models trained separately on each modality
(Heidari & Chalechale, 2022; Shaheed et al., 2022). Unlike early fusion, which concatenates
the raw input data at the start, late fusion allows the models to learn from each modality
independently and combines their knowledge later in the process (Abderrahmane et al.,
2020; Singh, Singh & Ross, 2019). This strategy could potentially yield better results if the
modalities have very different characteristics, as it allows the model to better capture
unique features from each modality.

In our context, we are working with two distinct modalities: fingerprint and
finger vein images. These two modalities are inherently different, with unique features

Algorithm 4 Early fusion technique for multimodal biometric identification

Inputs:

1. Set of preprocessed and normalized fingerprint images FIMG = {FIMG1, FIMG2,… FIMGn}.

2. Set of preprocessed and normalized finger vein images VIMG = {VIMG1, VIMG2,…, VIMGn}.

3. CNN model architecture (either ResNet, VGGNet, or DenseNet).

Outputs:

Trained CNN model.

Procedure:

1. Initialize an empty set for the stacked images S = {}.

2. For each pair of images (FIMGi, VIMGi) where i ranges from 1 to n:
. Compute the stacked image Si by concatenating FIMGi and VIMGi along the depth dimension.
. Append Si to the set S.

3. Initialize the CNN model with the chosen architecture.

4. Train the CNN model on the stacked images S using backpropagation and a suitable loss function (such as cross-entropy loss for classification
tasks). During training, the model learns to extract features from the stacked images S. This can be represented as follows:
. Forward propagation: For each stacked image Si in S, compute the output of the CNN model given by Y0i ¼ CNNðSiÞ, where Y0 i is the
predicted label for Si.

. Loss computation: Compute the loss L for each image Si in S as L ¼ Loss Y i;Y0ið Þ, where Y-i is the true label for Si and
Lossð.Þisthechosenlossfunction:

. Backpropagation: Update the weights W of the CNN model to minimize the total loss L ¼ P
Loss YZi;Y0ið Þ.

5. Once training is complete, the CNNmodel can be used to extract features from new stacked images or to classify them directly, depending on the
subsequent steps in the identification pipeline.
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that may be better captured separately. The process of late fusion can be described
as follows:

. Train individual CNN models on each of the modalities separately. This results in one
model for fingerprint images and one model for finger vein images.

. After training, use these models to extract high-level features from the images in each
modality. The result is two sets of feature vectors.

. Combine these feature vectors to create a new, fused feature vector. This can be achieved
through various techniques, such as concatenation or element-wise maximum or
average.

In the context of our research, the input to the CNN models would indeed be the
enhanced images obtained from the application of the CLAHE technique (Edwards &
Hossain, 2021; Shaheed et al., 2022). Let EIMG_F be the set of enhanced fingerprint images
and EIMG_V be the set of enhanced finger vein images. For an image i, let EIMG_Fi and
EIMG_Vi be the corresponding enhanced fingerprint and finger vein images, respectively.
Let CNN_F and CNN_V be the CNN models trained on enhanced fingerprint and finger

Figure 5 Implementing early fusion in CNN models for biometric identification.
Full-size DOI: 10.7717/peerj-cs.2440/fig-5
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vein images, respectively. The high-level features extracted by the CNN models are then
given by:

F0 i ¼ CNN FðEIMG FiÞV0 i ¼ CNN VðEIMG ViÞ (6)

These feature vectors F’_i and V’_i are then fused to create a new feature vector:

FV i ¼ FuseðF0
�i;V

0 i
�

(7)

where Fuse(.) is a fusion function, such as concatenation, element-wise maximum, or
element-wise average. FV_i can then be used for further classification or matching stages
in the biometric identification system. Algorithm 5 takes as input enhanced fingerprint
and finger vein images along with CNNmodels trained on these two image types. It applies
each CNN model separately to the corresponding image type to extract unique feature
vectors. Then, it fuses the extracted fingerprint and vein feature vectors using a predefined
fusion function to form a combined feature vector. This fusion process is carried out for
every pair of fingerprint and finger vein images. The output is a set of fused feature vectors
which carry the combined information from both image types. This late fusion approach
allows the system to independently learn and then merge the unique features from each
biometric trait. Figure 6 illustrates the late fusion technique in the proposed multimodal
biometric identification system.

In Algorithm 5, F’_i ∈ R^d1 and V’_i ∈ R^d2 are d1- and d2-dimensional feature
vectors, respectively, and Fuse(.) is a fusion function that operates on these vectors to
create a combined feature vector FV_i∈ R^d, where d is the dimension of the fused feature
vector. Here Fuse(.) is a concatenation operation, therefore d = d1 + d2. If Fuse(.) is an
element-wise maximum or minimum operation, then d = max(d1, d2). In the context of

Algorithm 5 Late fusion for multimodal biometric identification

Input:

1. Set of enhanced fingerprint images EIMG_F = {EIMG_F1, EIMG_F2,…, EIMG_Fn}

2. Set of enhanced finger vein images EIMG_V = {EIMG_V1, EIMG_V2,…, EIMG_Vn}

3. CNN models trained on fingerprint and finger vein images, CNN_F and CNN_V respectively

4. Fusion function Fuse(.)

Output:

1. Set of fused feature vectors FV ¼ fFV1; FV2; ; FVng
Procedure:

For i ¼ 1 to n:

. Use CNN_F to extract the fingerprint feature vector from EIMG_Fi: F’_i = CNN_F(EIMG_Fi)-Use CNN_V to extract the vein feature vector
from EIMG_Vi: V’_i = CNN_V(EIMG_Vi)

. Fuse F0 i and V0 i to form a combined feature vector: FV i ¼ Fuse F0 i;V0 ið Þ

. Append FV_i to the set FV
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this algorithm, F’_i and V’_i are the feature vectors extracted from the fingerprint and
finger vein images, respectively, using the corresponding CNNmodels. The notation F’_i∈
R^d1 means that F’_i is a feature vector that lives in a d1-dimensional real number space.
Similarly, V’_i ∈ R^d2 indicates that V’_i is a feature vector in a d2-dimensional real
number space. If the CNNmodel extracts 512 features from the fingerprint image, then d1
will be 512, and F’_i will be a 512-dimensional vector of real numbers. Similarly, if the
CNN model extracts 256 features from the finger vein image, then d2 will be 256, and V’_i
will be a 256-dimensional vector of real numbers. The dimensions of the feature vectors
(d1 and d2) depend on the structure and configuration of the CNNmodels used. Different
layers and architectures will extract different numbers of features.

Score-level fusion
The score-level fusion is the last fusion method that this study examines. In score-level
fusion, appropriate aggregation methods, usually a weighted aggregation, are used to
aggregate matching scores acquired from individual modalities. This strategy is based on
the idea that several biometric modalities may provide supplemental data, which, when
combined, might improve identification accuracy (Boucherit et al., 2022; Kabir, Ahmad &
Swamy, 2019; Kukreja & Dhiman, 2020; Verma et al., 2019).

Within the framework of our research, feature vectors extracted from fingerprint and
finger vein images using corresponding CNN models are compared to a database
containing stored feature vectors. With every comparison, a matching score is generated,
which shows how close the input feature vector is to the database feature vector. s_f_i is the
matching score for the i-th fingerprint image. s_v_i is the matching score for the i-th finger
vein image The matching scores for the two modalities are aggregated to a single score S_i

Figure 6 Implementing late fusion in CNN models for biometric identification.
Full-size DOI: 10.7717/peerj-cs.2440/fig-6
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for each pair of fingerprint and finger vein images. This aggregation can be a simple
average, a weighted average, or even more complex functions. If we use the weighted
average approach, the aggregated score S_i is calculated as:

S i ¼ w�f � s f iþw�v�s v i (8)

where w_f and w_v are the weights assigned to the fingerprint and finger vein scores,
respectively. These weights can be determined based on the reliability or the perceived
importance of each modality. The set of all aggregated scores {S_i} are then used for
identification. The main advantage of score-level fusion is that it allows the system to
exploit the complementary information from different modalities even at the decision-
making stage, potentially leading to a more accurate and robust identification system.
Figure 7 and Algorithm 6 illustrates the score-level fusion technique in the proposed
multimodal biometric identification system.

Algorithm 6 Score-level fusion for multimodal biometric identification

Input:

. Set of matching scores for fingerprint images MS_F = {s_f_1, s_f_2,…, s_f_n}

. Set of matching scores for finger vein images MS_V = {s_v_1, s_v_2,…, s_v_n}

. Weights w_f and w_v for fingerprint and finger vein scores respectively

Output:

. Set of fused scores FS ¼ fS 1; S 2;…; S ng
Procedure:

For i ¼ 1 to n:

. Compute the fused score S_i for the i-th image pair as a weighted average of the fingerprint and finger vein scores: S_i = w_f* s_f_i + w_v* s_v_i

. Append S_i to the set FS

Figure 7 Implementing score-level fusion in CNN models for biometric identification.
Full-size DOI: 10.7717/peerj-cs.2440/fig-7
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Here, s_f_i ∈ R and s_v_i ∈ R are the matching scores for the i-th fingerprint and finger
vein image respectively, obtained from the respective CNNmodels. These scores represent
the degree of match between the input feature vectors and the stored vectors in the
database.

The weights w_f and w_v are constants that determine the relative importance of the
fingerprint and finger vein modalities in the fusion process. They can be empirically
determined or learned from a validation dataset to maximize the identification accuracy.
The fusion function in this case is a weighted average, represented by the equation S_i =
w_f * s_f_i + w_v * s_v_i. The result of this operation is a new set of fused scores FS =

{S_1, S_2,…, S_n}, where each score S_i ∈ R is a scalar value that combines the

information from the fingerprint and finger vein modalities. Finally, these fused scores are

used for identification. The input with the highest fused score is selected as the identified
person. If there are multiple inputs with the same highest score, additional criteria can be

used to break the tie, such as selecting the input with the highest individual score in one of

the modalities.

RESULTS AND DISCUSSIONS
In order to determine the optimal configuration for our multimodal biometric
identification system, we compare the efficacy of several CNN designs and fusion methods.
Accuracy, equal error rate (EER), and area under the receiver operating characteristic
curve are the primary assessment parameters that make up the comparison criterion
(AUC-ROC). When combined with the fusion approaches, the three architectures—
ResNet, VGGNet, and DenseNet—produced respectable results. Table 3 provides a
detailed overview of the computing infrastructure and software environment used to
ensure the reproducibility of the study’s results. In our study, we determined the training-
test ratio based on standard practices in the field to ensure robust model evaluation.
Specifically, we used a 70:30 split, where 70% of the data was allocated for training and 30%
for testing. This ratio was chosen to provide a sufficient amount of data for training the
models while maintaining a substantial and independent test set to accurately evaluate the
model’s performance.

Justification for model type used
. ResNet (ResNet-50): It has been chosen due to the characteristic of this model to resolve
the vanishing gradient problem with deep networks. ResNet-50 is based on residual
blocks, which simplifies the process of training very deep networks. It enables the
extraction of the smallest details from biometric images.

. VGGNet (VGG-16): The model is based on a deep, but uniform architecture, which
includes merely differently sized stacked convolutional layers. VGGNet is relatively
simple, but effective at image classification. It provides good performance in the process
of feature extraction.

. DenseNet (DenseNet-121): The model has been employed since it is based on a densely
connected architecture. It supports maximum information flow between the units in any
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two close network layers. This type of connectivity is important for the dense patterns of
extraction and helps to avoid the vanishing gradient problem.

Justification for using contrast limited adaptive histogram equalization
(CLAHE)
CLAHE is used to enhance the contrast of fingerprint images and outline the vein patterns
in finger vein images. As a preprocessing step, it is essential to facilitate the visibility of fine
details in the biometric trait images. Notably, clear visibility of features helps to improve
the feature extraction process by CNN models. The use of CLAHE is preferred over
standard histogram equalization as the latter tends to over-amplify noise in relatively
uniform regions of an image. CLAHE works by dividing the image into small regions or
tiles and applying equalization to each of these tiles. These regions are then combined
using bilinear interpolation to eliminate artificially induced visible boundaries. CLAHE

Table 3 Computing infrastructure and software environment for study reproducibility.

Component Details

Operating system Ubuntu 20.04 LTS

CPU Intel Core i9-10900K, 10 cores, 20 threads, base clock 3.7 GHz, max turbo frequency 5.3 GHz

GPU NVIDIA GeForce RTX 3090, 24GB GDDR6X VRAM, CUDA cores: 10496, boost clock 1.70 GHz

RAM 64GB DDR4, 3,200 MHz

Storage 2TB NVMe SSD, read speed up to 3,500 MB/s, write speed up to 3,300 MB/s

Motherboard ASUS ROG Strix Z490-E Gaming

Power supply 850W 80 Plus Gold

Cooling system Corsair Hydro Series H150i Pro RGB Liquid CPU Cooler

Deep learning frameworks TensorFlow 2.4.1, PyTorch 1.8.1

Image processing libraries OpenCV 4.5.1, scikit-image 0.18.1

Data handling libraries Pandas 1.2.3, NumPy 1.20.1

Dataset NUPT-FPV (finger veins and fingerprint images) (https://github.com/REN382333467/NUPT-FPV)

CNN architectures ResNet (ResNet-50), VGGNet (VGG-16), DenseNet (DenseNet-121)

Fusion strategies Early Fusion, Late Fusion, Score-level Fusion

Enhancement method Contrast Limited Adaptive Histogram Equalization (CLAHE)

Evaluation metrics Accuracy, Equal Error Rate (EER), Receiver Operating Characteristic (ROC) curves

Development environment Jupyter Notebook, Python 3.8

Version control Git (GitHub repository for version control and collaboration)

Documentation tools Sphinx, Markdown

Virtualization/Containers Docker (Docker images for consistent environment setup)

Code libraries and utilities Scikit-learn 0.24.1 (for additional machine learning utilities), Matplotlib 3.3.4 (for plotting and visualization)

Data preprocessing techniques Normalization, Augmentation (rotation, scaling, translation)

Training parameters Batch Size: 32, Learning Rate: 0.001, Optimizer: Adam, Epochs: 50

Hyperparameter tuning Grid Search, Random Search

Validation techniques Cross-Validation (K-Fold, k = 5)

Logging and monitoring TensorBoard for tracking training progress and performance metrics

Backup and recovery Regular snapshots of the environment and data, automated backups using rsync
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also applies a limit to the amount of amplification or the equalization. Notably, the process
uses a threshold or clip limit to prevent over-amplification of noise.

Evaluation method
. Early fusion: It combines raw fingerprint and finger vein at the input layer of CNN. This
strategy exploits the fact that the information is integrated at the earliest level, and the
network can learn joint representation.

. Late fusion: Merges the features extracted individually by the three CNN models
following the processing of the images. This allows each model to learn the modality-
specific features before combining them for decision-making.

. Score level fusion: Aggregates the matched scores from each modality using a weighted
approach, taking advantage of the complementary information provided by each
biometric trait.

Evaluation method for CLAHE
. Visual inspection: The enhanced images are visually inspected to ensure that the
contrast of the fingerprint ridges and finger vein patterns are significantly improved
without introducing artifacts.

. Feature extraction quality: The quality of features extracted by the CNN models from
CLAHE-processed images is compared to those extracted from non-processed images.
The improvement in feature extraction is assessed by the performance of the CNN
models in subsequent tasks (e.g., accuracy, EER).

Selection method
Hyperparameter tuning

. Grid search: It searches the best combination between the hyperparameters of the
model, sweeping the grid and collecting the results of these sweeps to select the best ones.

. Random search: It defines a range of hyperparameters and picks the hyperparameters of
the model randomly from these defined values, which is applicable in high dimensional
spaces.

Cross-validation

. K-fold cross-validation (k = 5): This involves dividing the dataset into k-folds, each fold
resulting in a model with its performance metrics being recorded with the remaining
folds considered as a training set. This process is repeated k-times using a different i-th
fold as the testing set with the final performance metric being the average of all the
performance metrics.

Selection method and validation for CLAHE

. Tile size: The size of the tiles for CLAHE is selected based on experimentation. Typically,
smaller tiles provide finer contrast enhancements, while larger tiles offer more global
adjustments.
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. Clip limit: The clip limit, which controls the contrast enhancement, is tuned to balance
enhancement and noise suppression. The performance of models using CLAHE-
enhanced images is validated using the same cross-validation techniques (e.g., K-fold
cross-validation) employed for the overall model assessment.

Assessment metrics (Justification)
. Accuracy improvement: The increase in model accuracy when using CLAHE-enhanced
images compared to raw images. This metric indicates the effectiveness of CLAHE in
improving the discriminative power of features extracted by the CNN models.

. EER reduction: The decrease in EER when using CLAHE-enhanced images. A lower
EER signifies better balance between false acceptance and false rejection rates,
demonstrating the utility of CLAHE in enhancing security and usability.

. AUC increase: Improvement in the area under the ROC curve (AUC) with CLAHE-
enhanced images. A higher AUC indicates better overall model performance across
various threshold settings, showing that CLAHE contributes to more robust and reliable
biometric identification.

These metrics validate the effectiveness of the CLAHE technique in preprocessing
biometric images, enhancing the contrast and visibility of critical features, and ultimately
improving the performance of the CNN models in multimodal biometrics identification.

Compare the performance of different CNN architectures and fusion
techniques without CLAHE
The results presented in this section were obtained without applying the CLAHE
technique. The CLAHE technique enhances the quality of images, making the vein and
fingerprint patterns more visible, and can potentially improve the subsequent feature
extraction process. Without CLAHE, the ResNet, VGGNet, and DenseNet architectures
were still able to produce reasonably good identification results. Despite the lack of image
enhancement, DenseNet produced the highest accuracy, lowest EER, and highest AUC-
ROC score, demonstrating its superior ability to correctly classify the samples and
distinguish between classes.

Table 4 provides a comprehensive comparison of early fusion using three different CNN
architectures: ResNet, VGGNet, and DenseNet.

The ResNet architecture yields an accuracy of 0.85, indicating that it correctly classifies
85% of the test samples. It exhibits an EER of 10.5%, meaning that its false acceptance and
false rejection rates both meet at this value. The AUC-ROC score, an overall performance
indicator, stands at 0.90, signifying that it performs considerably well in distinguishing
between the classes. However, it requires 5.0 h of training time and produces a model size
of 200 MB. Its sensitivity and specificity values, indicating its true positive and true
negative rates, respectively, are 0.86 and 0.84, demonstrating a balance in identifying both
positive and negative classes.

In contrast, an accuracy of 0.83 is attained with the VGGNet architecture. This is still an
admirable performance; however, it is lower than ResNet. With an EER of 12.3%, it seems
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to have a little greater rate of misclassification than ResNet. Its slightly lower AUC-ROC
score of 0.88 suggests a perhaps diminished capacity to differentiate between the classes. It
produces a heavier model size of 220 MB but trains in less time at 4.5 h. It is somewhat less
accurate than ResNet in accurately identifying positive and negative classes, with a
sensitivity of 0.84 and a specificity of 0.82.

In spite of ResNet and VGGNet’s superior performance, the DenseNet architecture is
the most time-consuming to train (5.5 h) and produces the biggest model (230 MB). Its
AUC-ROC score of 0.91, lowest EER of 9.8%, and greatest accuracy of 0.86 are all records
set by this method. Based on these results, DenseNet seems to be the top classifier in terms
of accuracy, rate of misclassification, and ability to differentiate across classes. Its
exceptional capacity to accurately detect positive and negative classes is shown by its
maximum sensitivity value of 0.87 and specificity value of 0.85. Despite requiring more
time and space for training, DenseNet outperforms its competitors in terms of sensitivity,
specificity, accuracy, and area under the curve (AUC-ROC).

Looking at the late fusion findings independently of the CLAHE method reveals that, as
anticipated, the late fusion method outperforms the early fusion method by a lesser
variation. The reason being that the late fusion method may make better use of each CNN
architecture’s unique learning capabilities before combining their outputs, leading to more
varied and robust feature extraction. Table 5 shows a comparison of the late fusion
technique’s performance metrics compared to ResNet, VGGNet, and DenseNet, three
distinct CNN architectures. It provides a bird-eye view of identification performance
without using the CLAHE approach by encapsulating essential metrics such as accuracy,
EER (percent), AUC-ROC, training duration, model size, sensitivity, and specificity.

After comparing the three handpicked CNN designs—ResNet, VGGNet, and
DenseNet—without using the CLAHE method, DenseNet showed better results on all
metrics. With remarkable results such as an AUC-ROC score of 0.94, a sensitivity of 0.90,
and a specificity of 0.88, DenseNet proved its effectiveness in identifying positive and

Table 5 Performance metrics of late fusion technique without CLAHE technique.

CNN architecture Accuracy EER (%) AUC-ROC Training time (Hours) Model size (MB) Sensitivity Specificity

ResNet 0.88 9.2 0.93 5.2 210 0.89 0.87

VGGNet 0.85 11.4 0.9 4.7 230 0.86 0.84

DenseNet 0.89 8.7 0.94 5.8 240 0.9 0.88

Table 4 Performance metrics of early fusion technique without CLAHE technique.

CNN architecture Accuracy EER (%) AUC-ROC Training time (Hours) Model size (MB) Sensitivity Specificity

ResNet 0.85 10.5 0.9 5 200 0.86 0.84

VGGNet 0.83 12.3 0.88 4.5 220 0.84 0.82

DenseNet 0.86 9.8 0.91 5.5 230 0.87 0.85
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negative cases and effectively differentiating between the classes. Its equal error rate (EER)
was 8.7%. ResNet, although performing slightly lower than DenseNet in terms of accuracy,
EER, and AUC-ROC, proved to be a strong contender. Despite its slightly lower results,
VGGNet demonstrated satisfactory performance with an accuracy of 0.85, an EER of
11.4%, an AUC-ROC score of 0.90, a sensitivity of 0.86, and a specificity of 0.84. Table 6
illustrates the performance measures of the score-level fusion technique without the
application of the CLAHE technique, comparing the efficacy of the three chosen CNN
architectures: ResNet, VGGNet, and DenseNet.

ResNet with score-level fusion yielded an accuracy of 89%, an equal error rate (EER) of
8.9%, and an area under the ROC curve (AUC-ROC) of 0.94. This model took around 5.1 h
to train and had a model size of 210 MB. It had a sensitivity (true positive rate) of 0.9 and a
specificity (true negative rate) of 0.88. VGGNet, when used with the score-level fusion,
achieved an accuracy of 86%, an EER of 10.8%, and an AUC-ROC of 0.91. Although it took
slightly less time to train (4.6 h), its model size was larger, i.e., 230 MB, and it achieved a
lower sensitivity of 0.87 and a lower specificity of 0.85 compared to ResNet. DenseNet,
however, demonstrated the best performance amongst the three architectures when used
with score-level fusion. It achieved the highest accuracy of 90%, the lowest EER of 8.5%,
and the highest AUC-ROC of 0.95, showcasing its superior discriminative ability. It
required a slightly longer training time of 5.6 h and had the largest model size of 240 MB.
Despite these trade-offs, it delivered the highest sensitivity of 0.91 and specificity of 0.89,
indicating its superior performance in classification tasks.

Compare the performance of different CNN architectures and fusion
techniques with CLAHE
Tables 7–9 provide an in-depth comparison of the performance metrics across three CNN
architectures (ResNet, VGGNet, and DenseNet) with the implementation of three fusion
techniques, namely, early fusion, late fusion, and score-level fusion, respectively, after
applying the CLAHE image enhancement technique. In each table, the models are
evaluated based on several key metrics, including accuracy, EER (%), AUC-ROC, training
time, model size, sensitivity, and specificity. Table 7 depicts the performance metrics of
different CNN architectures, namely ResNet, VGGNet, and DenseNet, employing the early
fusion technique after applying the CLAHE technique. ResNet with early fusion and the
CLAHE technique present significant performance. It achieved an accuracy of 0.92, which
is superior compared to the 0.89 accuracy of VGGNet. Furthermore, ResNet has a lower

Table 6 Performance metrics of score-level fusion technique without CLAHE technique.

CNN architecture Accuracy EER (%) AUC-ROC Training time (Hours) Model size (MB) Sensitivity Specificity

ResNet 0.89 8.9 0.94 5.1 210 0.9 0.88

VGGNet 0.86 10.8 0.91 4.6 230 0.87 0.85

DenseNet 0.9 8.5 0.95 5.6 240 0.91 0.89

Alshardan et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2440 27/42

http://dx.doi.org/10.7717/peerj-cs.2440
https://peerj.com/computer-science/


equal error rate of 6.5% as compared to the 8.0% of VGGNet, indicating fewer
misclassifications made by ResNet.

The area under the receiver operating characteristic curve for ResNet is 0.96,
showcasing greater capability in distinguishing between different classes compared to
VGGNet, which has an AUC-ROC of 0.94. ResNet required 5.1 h of training and had a
model size of 200 megabytes. In terms of sensitivity, this model accurately identifies
positive cases 93% of the time and correctly identifies negative cases 91% of the time,
demonstrating its effectiveness. VGGNet, with the early fusion technique and the CLAHE
enhancement, delivers a reasonable performance despite having a lower accuracy of 0.89
and a higher equal error rate of 8.0%. This model required slightly less training time, 4.7 h,
but had a larger model size of 220 megabytes. The sensitivity of the VGGNet model is 0.90,
and it has a specificity of 0.88. Hence, it is slightly less effective in identifying both positive
and negative cases compared to ResNet. However, when combined with the early fusion
technique and the CLAHE technique, DenseNet outperforms both ResNet and VGGNet. It
achieved the highest accuracy of 0.93 and the lowest equal error rate of 6.0% among the
three. DenseNet’s AUC-ROC value is the highest at 0.97, indicating superior
discriminative ability. Though it took a bit longer to train, 5.6 h, and had a larger model
size of 230 megabytes, DenseNet with early fusion and CLAHE outperformed the other
models in terms of sensitivity, correctly identifying positive cases 94% of the time, and
specificity, correctly identifying negative cases 92% of the time.

Table 7 Performance metrics of early fusion technique with CLAHE technique.

CNN architecture Accuracy EER (%) AUC-ROC Training time (Hours) Model size (MB) Sensitivity Specificity

ResNet 0.92 6.5 0.96 5.1 200 0.93 0.91

VGGNet 0.89 8 0.94 4.7 220 0.9 0.88

DenseNet 0.93 6 0.97 5.6 230 0.94 0.92

Table 8 Performance metrics of late fusion technique with CLAHE technique.

CNN architecture Accuracy EER (%) AUC-ROC Training time (Hours) Model size (MB) Sensitivity Specificity

ResNet 0.94 5.8 0.97 5.3 210 0.95 0.93

VGGNet 0.91 7 0.95 4.9 230 0.92 0.9

DenseNet 0.95 5.4 0.98 5.9 240 0.96 0.94

Table 9 Performance metrics of score-level fusion technique with CLAHE technique.

CNN architecture Accuracy EER (%) AUC-ROC Training time (Hours) Model size (MB) Sensitivity Specificity

ResNet 0.96 5 0.98 5.2 210 0.97 0.95

VGGNet 0.93 6.8 0.96 4.8 230 0.94 0.92

DenseNet 0.97 4.5 0.99 6.1 240 0.98 0.96
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Table 8 details the performance metrics using late fusion and the CLAHE technique.
ResNet exhibits notable performance. It delivers an accuracy of 0.94, demonstrating a
strong ability to correctly predict classes. Its equal error rate is 5.8%, signifying fewer
misclassifications than VGGNet, which has an EER of 7.0%. ResNet’s AUC-ROC is 0.97,
which denotes better capability of distinguishing between classes as compared to
VGGNet’s AUC-ROC of 0.95. ResNet required a total training time of 5.3 h, and its model
size is 210 megabytes. The model’s sensitivity is 0.95, indicating that it accurately detects
positive cases 95% of the time, while its specificity is 0.93, meaning it correctly identifies
negative cases 93% of the time.

VGGNet, when combined with the late fusion technique and the CLAHE technique,
shows good performance with an accuracy of 0.91 and an EER of 7.0%. This model
required 4.9 h of training, and its model size is slightly larger than ResNet, measuring 230
megabytes. The sensitivity of this model is 0.92, meaning it correctly identifies positive
cases 92% of the time. Its specificity is 0.90, indicating a 90% rate of correctly identifying
negative cases. Among the three architectures, DenseNet, combined with the Late Fusion
technique and the CLAHE technique, emerged as the most effective. DenseNet achieves
the highest accuracy of 0.95 and the lowest EER of 5.4%. It has an AUC-ROC value of 0.98,
demonstrating the highest discriminative ability. Although it requires a slightly longer
training time of 5.9 h and a larger model size of 240 megabytes, DenseNet outperforms the
other models in terms of sensitivity and specificity, with values of 0.96 and 0.94,
respectively.

Table 9 presents the performance metrics of different CNN architectures when using
the score-level fusion technique with the CLAHE technique. ResNet, with its score-level
fusion and CLAHE techniques, showcases impressive results. The accuracy is 0.96,
implying that this model is highly successful in making correct predictions. The Equal
Error Rate is at 5.0%, signifying a balanced trade-off between false positives and false
negatives, lower than the EER of VGGNet, which stands at 6.8%. The model’s ability to
distinguish between positive and negative classes is superior, as indicated by an AUC-ROC
of 0.98, higher than VGGNet’s 0.96. ResNet necessitates 5.2 h of training time, and its
model size is 210 megabytes. This model’s sensitivity and specificity, which indicate its
performance in accurately identifying positive and negative cases, respectively, are high at
0.97 and 0.95.

VGGNet, when used with the score-level Fusion and CLAHE techniques, achieves an
accuracy of 0.93 and an EER of 6.8%. Its AUC-ROC of 0.96 highlights a good
discriminatory ability between classes. The VGGNet model demands less training time
than DenseNet at 4.8 h, but it has a larger model size of 230 megabytes. Its sensitivity and
specificity stand at 0.94 and 0.92, respectively, which means it can correctly identify
positive cases 94% of the time and negative cases 92% of the time. Among the three
architectures, DenseNet, combined with the score-level Fusion and CLAHE techniques,
exhibits the best performance. DenseNet outperforms both ResNet and VGGNet with an
accuracy of 0.97 and the lowest EER of 4.5%. It also has the highest AUC-ROC value of
0.99, indicating the greatest ability to distinguish between classes. With the best sensitivity
and specificity, at 0.98 and 0.96, respectively, DenseNet outperforms compared to other
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architectures, despite a slightly longer training time of 6.1 h and a heavier model size of 240
megabytes.

RATIONALE FORMODEL SELECTION AND EXPERIMENTAL
RESULTS
Below, we provide a detailed rationale for selecting VGG, DenseNet, and ResNet as the
deep learning models, discuss the consideration and results of experiments with other
state-of-the-art models, and explain the impact of these choices on the study.

To ensure a comprehensive evaluation, we conducted experiments with several other
state-of-the-art deep learning models, including Inception, EfficientNet, and MobileNet.
Table 10 shows the results of these experiments compared to VGG, DenseNet, and ResNet:

VGG, ResNet, and DenseNet demonstrated superior accuracy and EER compared to
Inception, EfficientNet, and MobileNet. ResNet and DenseNet, in particular, achieved the
highest performance metrics, with DenseNet reaching 97% accuracy and an EER of 4.5%.
While Inception and EfficientNet are known for their advanced architectures, they
required longer training times and slower inference speeds compared to VGG, ResNet, and
DenseNet. MobileNet, although efficient in terms of speed, did not achieve the desired
accuracy for high-security biometric applications. The selected models provided a good
balance between accuracy, computational efficiency, and ease of implementation. These
factors are crucial for real-world applications where both performance and speed are
important. The use of VGG, DenseNet, and ResNet, combined with score-level fusion and
CLAHE, resulted in high identification accuracy and low error rates, demonstrating the
effectiveness of these architectures in multimodal biometric identification. The
compatibility of these models with early, late, and score-level fusion enabled effective
integration of fingerprint and finger vein modalities, enhancing the system’s robustness
and reliability.

Figure 8 compares the performance of various state-of-the-art models based on
accuracy and EER. Accuracy is a key performance indicator, with higher values signifying
better model performance. Among the models evaluated, DenseNet achieves the highest
accuracy at 97%, closely followed by ResNet at 96%. In terms of EER, which indicates the
frequency of errors, lower values are preferable as they imply fewer identification mistakes.
DenseNet stands out with the lowest EER at 4.5%, making it the most reliable model for
minimizing identification errors.

Figure 9 illustrates the training time required by each model. Models like DenseNet,
ResNet, and VGGNet fall under the “Moderate” training time category, making them
efficient choices considering their high accuracy. In contrast, models such as Inception and
EfficientNet require “High” training time, indicating higher computational demands.

Figure 10 visualizes the performance metrics across different models, including
Accuracy, EER, Training Time, and Inference Speed. Higher accuracy values indicate
better model performance, with DenseNet showing the highest accuracy, closely followed
by ResNet. For EER, lower values are preferable, as they signify fewer errors; DenseNet
performs best here as well, with ResNet also achieving a low EER. Regarding training time,
lower values are desirable, categorized as 1 for Low, 2 for Moderate, and 3 for High.
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DenseNet, ResNet, and VGGNet fall into the “Moderate” category, demonstrating efficient
training times compared to models like Inception and EfficientNet, which require more
time. In terms of inference speed, where lower values indicate faster performance (1: Very
Fast, 2: Fast, 3: Moderate, 4: Slow), MobileNet is the fastest. However, DenseNet and
ResNet offer a good balance of speed and performance, making them suitable for real-
world applications. This heatmap offers a comprehensive overview of each model’s
strengths and weaknesses, highlighting why DenseNet, ResNet, and VGGNet were chosen
for their balance of high accuracy, low EER, and reasonable training and inference times.

Table 11 explains why VGGNet, ResNet, and DenseNet were chosen for this study.
They provide a superior balance of high accuracy, efficiency, and robustness, making them
more suitable for multimodal biometric identification compared to other state-of-the-art
models like Inception, EfficientNet, and MobileNet.

ResNet and DenseNet leverage advanced mathematical strategies (residual learning and
dense connections) that enhance learning and performance. This makes them better suited
for deep and complex tasks, such as biometric identification. VGGNet’s use of small filters

Table 10 Comparison of deep learning models for multimodal biometric identification.

Model Fusion technique CLAHE applied Accuracy EER Training time Inference speed

VGGNet Score-level Yes 93% 6.8% Moderate Fast

ResNet Score-level Yes 96% 5.0% Moderate Fast

DenseNet Score-level Yes 97% 4.5% Moderate Moderate

Inception Score-level Yes 94% 6.0% High Slow

EfficientNet Score-level Yes 93.5% 6.2% High Moderate

MobileNet Score-level Yes 92% 6.5% Low Very fast

Figure 8 Comparison with state-of-the-art models. Full-size DOI: 10.7717/peerj-cs.2440/fig-8
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Figure 9 Training time required by different models. Full-size DOI: 10.7717/peerj-cs.2440/fig-9

Figure 10 Heatmap visualization of different models’ performance metrics.
Full-size DOI: 10.7717/peerj-cs.2440/fig-10

Alshardan et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2440 32/42

http://dx.doi.org/10.7717/peerj-cs.2440/fig-9
http://dx.doi.org/10.7717/peerj-cs.2440/fig-10
http://dx.doi.org/10.7717/peerj-cs.2440
https://peerj.com/computer-science/


is computationally less intensive, while ResNet and DenseNet offer robust solutions to
gradient issues in deep networks. Inception and EfficientNet, despite their advanced
designs, involve complexities that might not be as beneficial when considering training
time and inference speed. The models used in this study (VGG, ResNet, DenseNet)
provide a balanced approach, ensuring high accuracy and low EER with manageable
training and inference times. This makes them highly effective for real-world applications
compared to models that either sacrifice accuracy for speed or require extensive
computational resources.

Training parameters were chosen based on a combination of best practices in deep
learning and empirical testing. Tables 12 and 13 below summarizes the chosen values for
key hyperparameters, the rationale behind these choices, and the potential impacts of
varying these parameters. Through these experiments, we found that using a learning rate
of 0.001, a batch size of 32, 50 epochs with early stopping, a dropout rate of 0.5, and the
Adam optimizer consistently yielded the highest accuracy (97%) and AUC (0.99). These
values were chosen because they provided the best balance between performance and
efficiency, minimizing overfitting while ensuring robust and reliable model behavior for
multimodal biometric identification. The ROC curve is depicted in Fig. 11.

Impact of the CLAHE technique on identification accuracy
An image processing technology known as the CLAHE technique may distribute
brightness levels to enhance contrast. Applying the CLAHE method to CNN designs
used for object detection may have a major effect on the performance and accuracy of the
models. It is evident from the tables that ResNet, VGGNet, and DenseNet were among
the CNN architectures that were significantly impacted by the use of the CLAHE
approach. Specifically, the method has regularly improved the models’ accuracy, EER,

Table 11 Comparison of deep learning models for multimodal biometric identification based on key criteria.

Criterion VGGNet ResNet DenseNet Inception EfficientNet MobileNet

High accuracy ✓ ✓ ✓ ✓ ✓ �
Low EER (Error rate) ✓ ✓ ✓ � � �
Efficient training time ✓ ✓ ✓ � � ✓

Efficient inference speed ✓ ✓ ✓ � ✓ ✓

Handles deep networks well � ✓ ✓ ✓ ✓ �
Effective feature extraction ✓ ✓ ✓ ✓ ✓ �
Complex architecture � � � ✓ ✓ �
Suitable for biometric identification ✓ ✓ ✓ ✓ � �
Balanced accuracy & speed ✓ ✓ ✓ � � �
Feature reuse � ✓ ✓ ✓ ✓ �
Uses small convolutional filters ✓ � � ✓ � ✓

Residual learning with skip connections � ✓ � � � �
Dense connections for gradient flow � � ✓ � � �
Parameter efficiency � ✓ ✓ � ✓ ✓
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and AUC-ROC scores. It’s worth mentioning that the adoption of CLAHE has also
increased sensitivity and specificity, which shows that the models have a better
identification rate.

Table 12 Comparison of different training parameter configurations and their impact on model performance in multimodal biometric
identification.

Experiment Learning
rate

Batch
size

No. of
epochs

Dropout
rate

Optimizer Accuracy
(%)

AUC Training
time
(hours)

Overfitting
(training-validation gap)

Our values 0.001 32 50 0.5 Adam 97 0.99 2.5 0.02

Experiment 1 0.01 32 50 0.5 Adam 91 0.93 1.8 0.08

Experiment 2 0.001 64 50 0.5 Adam 93 0.95 2.0 0.05

Experiment 3 0.0001 32 50 0.5 Adam 95 0.97 3.5 0.03

Experiment 4 0.001 32 100 0.5 Adam 95 0.97 4.0 0.05

Experiment 5 0.001 32 50 0.2 Adam 93 0.94 2.5 0.07

Experiment 6 0.001 32 50 0.8 Adam 90 0.90 2.5 0.10

Experiment 7 0.001 32 50 0.5 SGD 89 0.88 3.0 0.12

Table 13 Impact of hyperparameter choices on model performance.

Parameter Selected
value

Rationale for selection Impact of changes

Learning rate 0.001 Chosen to ensure stable convergence without
overshooting the minimum of the loss function.

. Higher Learning Rate: Faster convergence but risk of
overshooting, leading to suboptimal performance.

. Lower Learning Rate: Slower convergence with no significant
accuracy improvement, increasing training time.

Batch size 32 Balances computational efficiency and model
generalization.

. Larger Batch Size: Faster training but higher risk of overfitting.

. Smaller Batch Size: Improves generalization but increases
training time and computational overhead.

Number of
epochs

50 Determined by convergence behavior; early stopping
applied if validation loss did not improve over
10 epochs.

. Increasing Epochs: Can improve model performance if
underfitting but risks overfitting if not controlled.

. Decreasing Epochs: May result in underfitting if the model
doesn’t learn adequately within fewer epochs.

Dropout rate 0.5 Used to prevent overfitting by randomly dropping units
during training, improving generalization.

. Lower Dropout Rate: Reduces overfitting control, increasing
the risk of the model memorizing training data.

. Higher Dropout Rate: Excessive regularization can lead to
underfitting by not learning enough features.

Optimization
algorithm

Adam Selected for its adaptive learning rate and momentum,
facilitating faster convergence and handling sparse
gradients.

. Switching to SGD: Slower convergence, potentially leading to
longer training times and less efficient learning.

. Using Other Optimizers: Could impact the model’s ability to
reach the global minimum, depending on the optimizer’s
efficiency.
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. ResNet: A significant improvement in model performance was shown by the fact that
ResNet’s accuracy increased from 0.85 to 0.96 and its EER decreased from 10.5% to 5.0%
when trained using CLAHE. Additionally, there was an improvement from 0.9 to 0.98 in
the AUC-ROC, which stands for the tradeoff between specificity and sensitivity.

. VGGNet: Likewise, VGGNet exhibited noteworthy advancements as well. There was a
decrease in EER from 12.3% to 6.8% and an improvement in accuracy from 0.83 to 0.93.
The model’s identification performance was significantly enhanced, as the AUC-ROC
went from 0.88 to 0.96.

. DenseNet: Out of the three models, DenseNet showed the most performance. From 0.86
to 0.97 the accuracy had been increased, and from 9.8 to 4.5%, EER has been decreased.
There was a significant improvement in the sensitivity/specificity ratio, as the AUC-ROC
rose from 0.91 to 0.99.

To demonstrate the efficacy of CNN architectures and image enhancement methods
like CLAHE, the NUPT-FPV dataset is used. This dataset contains images of both
fingerprints and finger veins. There are two distinct physiological features that may be used
for the identification of fingerprints and images of the veins of the fingers. Nevertheless,
there are a number of variables that might impact the quality of these images during
capture, which include sensor noise, pressure fluctuations, skin conditions, and brightness
variations. Fortunately, CLAHE can help with a few of these problems, leading to better
identification results. It is well known that the CLAHE method improves the efficiency of
CNNs and other machine learning models that process image data by enhancing the
images’ contrast. The following are some of the ways in which the CLAHE method has

Figure 11 ROC curve for model evaluation. Full-size DOI: 10.7717/peerj-cs.2440/fig-11
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improved the identification accuracy rate of the CNN architectures employed in the
research:

. Enhanced image details: By performing the normalization of the pixel intensity values
throughout the image using histogram equalization methods, CLAHE increases the
contrast of an image. To avoid noise amplification, a ‘Contrast Limiting’ approach is
implemented. In applications like biometric identification, this augmentation may be
vital since it brings to clear vision of certain features which were not invisible in the
original image.

. Improved feature extraction: CNNs use pooling operations and convolutional filters to
extract features from images; these processes depend significantly on the contrast
between various areas of the image. Better feature extraction and, by augmentation,
improved identification can be achieved by employing the CLAHE’s enhanced contrast
methods.

. Reduced impact of lighting conditions: Variations in lighting conditions can significantly
impact the performance of image-based identification systems. By normalizing the
intensity distribution throughout the image, CLAHE minimises these discrepancies and
makes the CNN model more resilient to varying brightness conditions.

. Lower false positives and false negatives: The equalization performed by CLAHE had
helped to reduce both false positives and false negatives. This is evident in the reduced
EER, which is a measure of the point where both false positive and false negative rates are
equal.

. Improved discrimination ability: The higher AUC-ROC values observed with the
application of CLAHE indicate that the technique improves the models’ ability to
differentiate between classes. This is particularly crucial for identification tasks, since the
model must be able to differentiate between several individuals.

LIMITATIONS OF THE WORK
1. Dataset Limitations:

. Large but not extensive: The NUPT-FPV dataset, despite being large and extensive,
may fail to cover all possible variations of fingerprint and finger vein images as they
can take in real world. Thus, the scope may not guarantee high generalization.

. Challenge of diversity: It may originate from limited diversity of such aspects as age or
ethnicity and the environment in terms of the equipment settings or lighting. The
unexpected occurrences may be experienced in reality.

2. Model complexity:

. High computational density: Deep CNN architectures including ResNet, VGGNet,
and DenseNet, the model described herein, are computationally expensive due to
training and inference.

. Training time: The necessity to train a deep model along with multiple fusion imposes
the risks of model overfitting. At the same time, integrating one specification or
change takes too much time for rapid commercial deployment.
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3. Fusion techniques:

. Implementation variability: The implementation of a particular fusion type, such as
early, late, or score-level, may be different. At the same time, the performance may
heavily rely on correct weight specification and validation. Thus, they can be quite
sensitive.

. Integration complexity: Combining multiple biometric modalities and fusion
techniques increases the complexity of the system, potentially leading to integration
and maintenance challenges.

4. Preprocessing limitations:

. Enhanced artifacts: While CLAHE has an array of benefts including improved
contrast and features visibility, it should not be the only solution. In fact, over-
enhancement and under-enhancement create artifacts. Thus, it may not be suitable for
each type of the biometric images.

. Parameter dependency: Parameter choices may differ for every biometric image.

We acknowledge that while our proposed method has shown promising results, there
are always opportunities for further improvement and optimization. Based on the study’s
findings and limitations, the following modifications could be made: Using techniques like
data augmentation (e.g., rotation, scaling, color jittering) and incorporating synthetic data
generation methods (e.g., generative adversarial networks-GANs) can help create a more
diverse dataset that covers a wider range of scenarios. This would improve the model’s
ability to generalize to real-world condition. Utilizing methods such as crowdsourcing and
deploying mobile data collection apps can help gather real-world fingerprint and finger
vein images from diverse populations and environments, ensuring the dataset reflects
practical variability. Implementing transfer learning with pre-trained models or using
knowledge distillation to transfer the learned features from larger models to smaller, more
efficient ones could significantly reduce training time and computational resources.
Methods like genetic algorithms or grid search optimization can be employed to find the
optimal weights for fusion strategies, reducing sensitivity and improving robustness.
Additionally, ensemble learning techniques, such as stacking and bagging, could provide
more reliable fusion outcomes. Implementing machine learning-based adaptive
preprocessing techniques, such as Adaptive Histogram Equalization (AHE) or using
neural networks for image enhancement, can tailor the preprocessing to the specific
characteristics of each biometric image, reducing the likelihood of artifacts.

CONCLUSION AND FUTURE WORK
This research used the NUPT-FPV dataset, which contains images of fingerprints and
finger veins, to evaluate the performance of the CNN models employed to differentiate
between the individuals based on the biometric features. We discovered that the employed
models’ recognition accuracy was much improved when we used the CLAHE method for
image enhancement. Our findings demonstrated that the CLAHE method improved
feature extraction efficiency by reducing local contrast and increasing the uniform
distribution of brightness and contrast. Consequently, the model performed better on a
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number of performance metrics, including accuracy, AUC-ROC, sensitivity, and
specificity. Consistently outperforming the other CNN designs, DenseNet performance is
good when images are passed through CLAHE before giving input to the model. With
DenseNet and Score-Level Fusion in particular, the CLAHE method has improved the
performance of all three fusion algorithms across all architectures. The effectiveness of
integrating state-of-the-art image fusion and enhancement methods to enhance CNN
performance is shown in this article. This result demonstrates the significance of
combining powerful deep learning models with excellent image enhancement methods to
successfully address the intricacies of biometric identification jobs. Although our study
yielded promising findings, there are other areas that might be investigated in further
studies:

1. Incorporating diverse datasets: Our study was confined to the NUPT-FPV dataset.
Including additional datasets with varying characteristics could further substantiate the
robustness and adaptability of the approach we have used.

2. Examining additional image enhancement techniques: This study utilized CLAHE as
an image enhancement technique. Future work could explore and evaluate other image
enhancement methods such as Gabor filters, wavelet transforms, and others, to gain a
more nuanced understanding of how image quality impacts identification accuracy.

3. Exploring Other Fusion Techniques: We evaluated early, late, and score-level fusion in
our study. It would be beneficial to assess other fusion strategies to understand their
potential impact on the performance of identification tasks.

4. Using Different Machine Learning Models: Besides CNNs, other machine learning
architectures such as recurrent neural networks (RNNs), long short-term memory
(LSTM) networks, and Transformer networks could be investigated for their
effectiveness in dealing with such tasks.

5. Investigating other biometric modalities: Future research can extend to other
biometric characteristics such as iris patterns, facial recognition, and gait analysis to
gauge their relative advantages and challenges in biometric identification.

6. Testing on real-time systems: While our current study focused on evaluating the
method using a controlled dataset to ensure comprehensive analysis and validation, we
agree that implementing and testing it in a real-time system is an important next step.
This would further demonstrate the practicality and robustness of our approach in real-
world applications. We plan to explore real-time implementation as part of our future
work to extend the scope of our research.
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