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Assessing levels of standing genetic variation within species requires a robust sampling for the purpose
of accurate specimen identification using molecular techniques such as DNA barcoding; however,
statistical estimators for what constitutes a robust sample are currently lacking. Moreover, such
estimates are needed because most species are currently represented by only one or a few sequences in
existing databases, which can safely be assumed to be undersampled. Unfortunately, sample sizes of
5-10 specimens per species typically seen in DNA barcoding studies are often insufficient to adequately
capture within-species genetic diversity.

Here, we introduce a novel iterative extrapolation simulation algorithm of haplotype accumulation
curves, called HACSim (Haplotype Accumulation Curve Simulator) that can be employed to calculate
likely sample sizes needed to observe the full range of DNA barcode haplotype variation that exists for a
species. Using uniform haplotype and non-uniform haplotype frequency distributions, the notion of
sampling sufficiency (the sample size at which sampling accuracy is maximized and above which no new
sampling information is likely to be gained) can be gleaned.

HACSim can be employed in two primary ways to estimate specimen sample sizes: (1) to simulate
haplotype sampling in hypothetical species, and (2) to simulate haplotype sampling in real species mined
from public reference sequence databases like the Barcode of Life Data Systems (BOLD) or GenBank for
any genomic marker of interest. While our algorithm is globally convergent, runtime is heavily dependent
on initial sample sizes and skewness of the corresponding haplotype frequency distribution.
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Abstract10

Assessing levels of standing genetic variation within species requires a robust11

sampling for the purpose of accurate specimen identification using molecular techniques12

such as DNA barcoding; however, statistical estimators for what constitutes a robust13

sample are currently lacking. Moreover, such estimates are needed because most species14

are currently represented by only one or a few sequences in existing databases, which15

we can safely assume are undersampled. Unfortunately, sample sizes of 5-10 specimens16

per species typically seen in DNA barcoding studies are often insufficient to adequately17

capture within-species genetic diversity.18

Here, we introduce a novel iterative extrapolation simulation algorithm of haplotype19

accumulation curves, called HACSim (Haplotype Accumulation Curve Simulator) that20

can be employed to calculate likely sample sizes needed to observe the full range of21

DNA barcode haplotype variation that exists for a species. Using uniform haplotype22

and non-uniform haplotype frequency distributions, the notion of sampling sufficiency23

θ (the sample size at which sampling accuracy is maximized and above which no new24

sampling information is likely to be gained) can be gleaned.25

HACSim can be employed in two primary ways to estimate specimen sample sizes:26

(1) to simulate haplotype sampling in hypothetical species, and (2) to simulate27

haplotype sampling in real species mined from public reference sequence databases like28

the Barcode of Life Data Systems (BOLD) or GenBank for any genomic marker of29

interest. While our algorithm is globally convergent, runtime is heavily dependent on30

initial sample sizes and skewness of the corresponding haplotype frequency distribution.31

1 Introduction32

1.1 Background33

Earth is in the midst of its sixth mass extinction event and global biodiversity is declining34

at an unprecedented rate (Ceballos et al., 2015). It is therefore important that species genetic35
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diversity be catalogued and preserved. One solution to address this mounting crisis in a36

systematic, yet rapid way is DNA barcoding (Hebert et al., 2003a). DNA barcoding relies on37

variability within a small gene fragment from standardized regions of the genome to identify38

species, based on the fact that most species exhibit a unique array of barcode haplotypes39

that are more similar to each other than those of other species (e.g., a barcode “gap”). In40

animals, the DNA barcode region corresponds to a 648 bp fragment of the 5’ terminus of41

the cytochrome c oxidase subunit I (COI) mitochondrial marker (Hebert et al., 2003a,b).42

A critical problem since the inception of DNA barcoding involves determining appropriate43

sample sizes necessary to capture the majority of existing intraspecific haplotype variation44

for major animal taxa (Hebert et al., 2004; Meyer and Paulay, 2005; Ward et al., 2005).45

Taxon sample sizes currently employed in practice for rapid assignment of a species name46

to a specimen, have ranged anywhere from 1-15 specimens per species (Matz and Nielsen,47

2005; Ross et al., 2008; Goodall-Copestake et al., 2012; Jin et al., 2012; Yao et al., 2017);48

however, oftentimes only 1-2 individuals are actually collected. This trend is clearly reflected49

within the Barcode of Life Data Systems (BOLD) (Ratnasingham and Hebert, 2007), where50

an overwhelming number of taxa have only a single record and sequence.51

A fitting comparison to the issue of adequacy of specimen sample sizes can be made to52

the challenge of determining suitable taxon distance thresholds for species separation on the53

basis of the DNA barcode gap (Meyer and Paulay, 2005). It has been widely demonstrated54

that certain taxonomic groups, such as Lepidoptera (butterflies/moths), are able to be55

readily separated into distinct clusters largely reflective of species boundaries derived using56

morphology (Čandek and Kuntner, 2015). However, adoption of a fixed limit of 2% difference57

between maximum intraspecific distance and minimum interspecific (i.e, nearest-neighbour)58

divergence is infeasible across all taxa (Hebert et al., 2003b; Collins and Cruickshank, 2013).59

Species divergence thresholds should be calculated from available sequence data obtained60

through deep sampling of taxa across their entire geographic ranges whenever possible (Young61

et al., 2017). There is a clear relationship between specimen sample sizes and observed62
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barcoding gaps: sampling too few individuals can give the impression of taxon separation,63

when in fact none exists (Meyer and Paulay, 2005; Hickerson et al., 2006; Wiemers and64

Fiedler, 2007; Dasmahapatra et al., 2010; Čandek and Kuntner, 2015), inevitably leading to65

erroneous conclusions (Collins and Cruickshank, 2013). It is thus imperative that barcode66

gap analyses be based on adequate sample sizes to minimize the presence of false positives.67

Introducing greater statistical rigour into DNA barcoding appears to be the clear way68

forward in this respect (Nielsen and Matz, 2006; Čandek and Kuntner, 2015; Luo et al.,69

2015; Phillips et al., 2019). The introduction of computational approaches for automated70

species delimitation such as Generalized Mixed Yule Coalescent (GMYC) (Pons et al., 2006;71

Monaghan et al., 2009; Fujisawa and Barraclough, 2013), Automatic Barcode Gap Discovery72

(ABGD) (Puillandre et al., 2011) and Poisson Tree Processes (PTP; (Zhang et al., 2013)) has73

greatly contributed to this endeavour in the form of web servers (GMYC, ABGD, PTP) and74

R packages (GMYC: Species’ LImits by Threshold Statistics, splits (Ezard et al., 2017)).75

Various statistical resampling and population genetic methods, in particular coalescent76

simulations, for the estimation of sample sizes, have been applied to Lepidoptera (Costa77

Rican skipper butterflies (Astraptes fulgerator)) (Zhang et al., 2010) and European diving78

beetles (Agabus bipustulatus) (Bergsten et al., 2012). Using Wright’s equilibrium island79

model (Wright, 1951) and Kimura’s stepping stone model (Kimura and Weiss, 1964) under80

varying effective population sizes and migration rates, Zhang et al. (2010) found that between81

156-1985 specimens per species were necessary to observe 95% of all estimated COI variation82

for simulated specimens of A. fulgerator. Conversely, real species data showed that a sample83

size of 250-1188 individuals is probably needed to capture the majority of COI haplotype84

variation existing for this species (Zhang et al., 2010). A subsequent investigation carried85

out by Bergsten et al. (2012) found that a random sample of 250 individuals was required86

to uncover 95% COI diversity in A. bipustulatus ; whereas, a much smaller sample size of87

70 specimens was necessary when geographic separation between two randomly selected88

individuals was maximized.89
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Others have employed more general statistical approaches. Based on extensive simulation90

experiments, through employing the Central Limit Theorem (CLT), Luo et al. (2015)91

suggested that no fewer than 20 individuals per species be sampled. Conversely, using92

an estimator of sample size based on the Method of Moments, an approach to parameter93

estimation relying on the Weak Law of Large Numbers (Pearson, 1894), sample sizes ranging94

from 150-5400 individuals across 18 species of ray-finned fishes (Chordata: Actinopterygii)95

were found by Phillips et al. (2015).96

Haplotype accumulation curves paint a picture of observed standing genetic97

variation that exists at the species level as a function of expended sampling effort (Phillips98

et al., 2015, 2019). Haplotype sampling completeness can then be gauged through measuring99

the slope of the curve, which gives an indication of the number of new haplotypes likely to100

be uncovered with additional specimens collected. For instance, a haplotype accumulation101

curve for a hypothetical species having a slope of 0.01 suggests that only one previously102

unseen haplotype will be captured for every 100 individuals found. This is strong evidence103

that the haplotype diversity for this species has been adequately sampled. Thus, further104

recovery of specimens of such species provide limited returns on the time and money invested105

to sequence them. Trends observed from generated haplotype accumulation curves for the106

18 actinopterygian species assessed by Phillips et al. (2015), which were far from reaching107

an asymptote, corroborated the finding that the majority of intraspecific haplotypes remain108

largely unsampled in Actinopterygii for even the best-represented species in BOLD. Estimates109

obtained from each of these studies stand in sharp contrast to sample sizes typically reported110

within DNA barcoding studies.111

Numerical optimization methods are required to obtain reasonable approximations to112

otherwise complex questions. Many such problems proceed via the iterative method, whereby113

an initial guess is used to produce a sequence of successively more precise (and hopefully114

more accurate) approximations. Such an approach is attractive, as resulting solutions can115

be made as precise as desired through specifying a given tolerance cutoff. However, in116
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such cases, a closed-form expression for the function being optimized is known a priori.117

In many instances, the general path (behaviour) of the search space being explored is the118

only information known, and not its underlying functional form. In this paper, we take119

a middle-ground approach that is an alternative to probing sampling completeness on the120

basis of haplotype accumulation curve slope measurement. To this end, iteration is applied to121

address the issue of relative sample size determination for DNA barcode haplotype sampling122

completeness, a technique suggested by Phillips et al. (2019). Given that specimen collection123

and processing is quite a laborious and costly endeavour (Cameron et al., 2006; Stein et al.,124

2014), the next most direct solution to an otherwise blind search strategy is to employ125

computational simulation that approximates specimen collection in the field. The main126

contribution of this work is the introduction of a new, easy-to-use R package implementing127

a novel statistical optimization algorithm to estimate sample sizes for assessment of genetic128

diversity within species based on saturation observed in haplotype accumulation curves. Here,129

we present a novel nonparametric stochastic (Monte Carlo) iterative extrapolation algorithm130

for the generation of haplotype accumulation curves based on the approach of Phillips et al.131

(2015). Using the statistical environment R (R Core Team, 2018), we examine the effect of132

altering species haplotype frequencies on the shape of resulting curves to inform on likely133

required sample sizes needed for adequate capture of within-species haplotype variation.134

Proof-of-concept of our method is illustrated through both hypothetical examples and real135

DNA sequence data.136

1.2 Motivation137

Consider N DNA sequences that are randomly sampled for a given species of interest138

across its known geographic range, each of which correspond to a single specimen. Suppose139

further that H * of such sampled DNA sequences are unique (i.e., are distinct haplotypes).140

This scenario leads naturally to the following question: What is N *, the estimated total141

number of DNA sequence haplotypes that exist for a species? Put another way, what sample142
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size (number of specimens) is needed to capture the existing haplotype variation for a species?143

The näıve approach (adopted by Phillips et al. (2015)) would be to ignore relative144

frequencies of observed haplotypes; that is, assume that species haplotypes are equally145

probable in a species population. Thus, in the absence of any information, the best one146

can do is adopt a uniform distribution for the number of sampled haplotypes. Such a path147

leads to obtaining gross overestimates for sufficient sampling (Phillips et al., 2015). A much148

better approach uses all available haplotype data to arrive at plausible estimates of required149

taxon sample sizes. This latter method is explored here in detail.150

2 Methods151

2.1 Haplotype Accumulation Curve Simulation Algorithm152

2.1.1 Algorithm Functions153

Our algorithm, HACSim (short for Haplotype Accumulation Curve Simulator), consisting154

of two user-defined R functions, HAC.sim() and HAC.simrep(), was created to run155

simulations of haplotype accumulation curves based on user-supplied parameters. The156

simulation treats species haplotypes as distinct character labels relative to the number157

of individuals possessing a given haplotype. The usual convention in this regard is that158

Haplotype 1 is the most frequent, Haplotype 2 is the next most frequent, etc. (Gwiazdowski159

et al., 2013). A haplotype network represents this scheme succinctly (Fig. 1).160
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Figure 1: Modified haplotype network from Phillips et al. (2019). Haplotypes are labelled
according to their absolute frequencies such that the most frequent haplotype is labelled
“1”, the second-most frequent haplotype is labelled “2”, etc. and is meant to illustrate that
much species locus variation consists of rare haplotypes at very low frequency (typically only
represented by 1 or 2 specimens). Thus, species showing such patterns in their haplotype
distributions are probably grossly under-respresented in public sequence databases like BOLD
and GenBank.

Such an implementation closely mimics that seen in natural species populations, as each161

character label functions as a unique haplotype linked to a unique DNA barcode sequence.162

The algorithm then randomly samples species haplotype labels in an iterative fashion with163

replacement until all unique haplotypes have been observed. This process continues until all164

species haplotypes have been sampled. The idea is that levels of species haplotypic variation165

that are currently catalogued in BOLD can serve as proxies for total haplotype diversity that166
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may exist for a given species. This is a reasonable assumption given that, while estimators167

of expected diversity are known (e.g., Chao1 abundance) (Chao, 1984), the frequencies of168

unseen haplotypes are not known a priori. Further, assuming a species is sampled across169

its entire geographic range, haplotypes not yet encountered are presumed to occur at low170

frequencies (otherwise they would likely have already been sampled).171

Because R is an interpreted programming language (i.e., code is run line-by-line), it172

is slow compared to faster alternatives which use compilation to convert programs into173

machine-readable format; as such, to optimize performance of the present algorithm in174

terms of runtime, computationally-intensive parts of the simulation code were written in175

the C++ programming language and integrated with R via the packages Rcpp (Eddelbuettel176

and François, 2011) and RcppArmadillo (Eddelbuettel and Sanderson, 2014). This includes177

function code to carry out haplotype accumulation (via the function accumulate(), which178

is not directly called by the user). A further reason for turning to C++ is because some R179

code (e.g. nested ‘for’ loops) is not easily vectorized, nor can parallelization be employed180

for speed improvement due to loop dependence. The rationale for employing R for the181

present work is clear: R is free, open-source software that it is gaining widespread use within182

the DNA barcoding community due to its ease-of-use and well-established user-contributed183

package repository (Comprehensive R Archive Network (CRAN)). As such, the creation and184

disemination of HACSim as a R framework to assess levels of standing genetic variation within185

species is greatly facilitated.186

A similar approach to the novel one proposed here to automatically generate haplotype187

accumulation curves from DNA sequence data is implemented in the R package spider188

(SPecies IDentity and Evolution in R; (Brown et al., 2012)) using the haploAccum() function.189

However, the approach, which formed the basis of earlier work carried out by Phillips et al.190

(2015), is quite restrictive in its functionality and, to our knowledge, is currently the only191

method available to generate haplotype accumulation curves in R because spider generates192

haplotype accumulation curves from DNA sequence alignments only and is not amenable to193
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inclusion of numeric inputs for specimen and haplotype numbers. Thus, the method could not194

be easily extended to address our question. This was the primary reason for the proposal of a195

statistical model of sampling sufficiency by Phillips et al. (2015) and its extension described196

herein.197

2.1.2 Algorithm Parameters198

At present, the algorithm (consisting of HAC.sim() and HAC.simrep()) takes 13199

arguments as input (Table 1).200

Table 1: Parameters inputted (first 7) and outputted (last six) by HAC.sim() and
HAC.simrep(), along with their definitions. Range refers to plausible values that each
parameter can assume within the haplotype accumulation curve simulation algorithm. [ and
] indicate that a given value is included in the range interval; whereas, ( and ) indicate that a
given value is excluded from the range interval. Simulation progress can be tracked through
setting progress = TRUE within HACHypothetical() or HACReal(). Users can optionally
specify that a file be created containing all information outputted to the R console (via the
argument filename, which can be named as the user wishes).

Parameter Definition Range
N total number of specimens/DNA sequences (1, ∞)
H * total number of unique haplotypes (1, N ]

probs haplotype probability distribution vector (0, 1)
p proportion of haplotypes to recover (0, 1]

perms total number of permutations (1, ∞)
input.seqs analyze FASTA file of species DNA sequences TRUE, FALSE
conf.level desired confidence level for confidence interval calculation (0, 1)

H cumulative mean number of haplotypes sampled [1, H∗]
H∗ −H cumulative mean number of haplotypes not sampled [0, H∗)
R = H

H∗
cumulative mean fraction of haplotypes sampled (0, 1]

H
∗
−H

H∗
cumulative mean fraction of haplotypes not sampled [0, 1)

N∗ mean specimen sample size corresponding to H∗ [N , ∞)
N∗ −N mean number of individuals not sampled [0, N ]

A user must first specify the number of observed specimens/DNA sequences (N) and the201

number of observed haplotypes (i.e., unique DNA sequences) (H *) for a given species. Both202

N and H * must be greater than one. Clearly, N must be greater than or equal to H *.203

Next, the haplotype frequency distribution vector must be specified. The probs argument204
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allows for the inclusion of both common and rare species haplotypes according to user interest205

(e.g., equally frequent haplotypes, or a single dominant haplotype). The resulting probs206

vector must have a length equal to H *. For example, if H * = 4, probs must contain four207

elements. The total probability of all unique haplotypes must sum to one.208

The user can optionally input the fraction of observed haplotypes to capture p. By209

default, p = 0.95, mirroring the approach taken by both Zhang et al. (2010) and Bergsten210

et al. (2012) who computed intraspecific sample sizes needed to recover 95% of all haplotype211

variation for a species. At this level, the generated haplotype accumulation curve reaches212

a slope close to zero and further sampling effort is unlikely to uncover any new haplotypes.213

However, a user may wish to obtain sample sizes corresponding to different haplotype recovery214

levels, e.g., p = 0.99 (99% of all estimated haplotypes found). In the latter scenario, it can215

be argued that 100% of species haplotype variation is never actually achieved, since with216

greater sampling effort, additional haplotypes are almost surely to be found; thus, a true217

asymptote is never reached. In any case, simulation completion times will vary depending218

on inputted parameter values, such as probs, which controls the skewness of the observed219

haplotype frequency distribution.220

The perms argument is in place to ensure that haplotype accumulation curves “smooth221

out” and tend to H * asymptotically as the number of permutations (replications) is222

increased. The effect of increasing the number of permutations is an increase in statistical223

accuracy and consequently, a reduction in variance. The proposed simulation algorithm224

outputs a mean haplotype accumulation curve that is the average of perms generated225

haplotype accumulation curves, where the order of individuals that are sampled is226

randomized. Each of these perms curves is a randomized step function (a sort of random227

walk), generated according to the number of haplotypes found. A permutation size of 1000228

was used by Phillips et al. (2015) because smaller permutation sizes yielded non-smooth229

(noisy) curves. Permutation sizes larger than 1000 typically resulted in greater computation230

time, with no noticeable change in accumulation curve behaviour (Phillips et al., 2015). By231
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default, perms = 10000 (in contrast to Phillips et al. (2015)), which is comparable to the232

large number of replicates typically employed in statistical bootstrapping procedures needed233

to ensure accuracy of computed estimates (Efron, 1979). Sometimes it will be necessary234

for users to sacrifice accuracy for speed in the presence of time constraints. This can be235

accomplished through decreasing perms. Doing so however will result in only near-optimal236

solutions for specimen sample sizes. In some cases, it may be necessary to increase perms237

to further smooth out the curves (to ensure monotonicity), but this will increase algorithm238

runtime substantially.239

Should a user wish to analyze their own intraspecific COI DNA barcode sequence data240

(or sequence data from any single locus for that matter), setting input.seqs = TRUE allows241

this (via the read.dna() function in ape). In such a case, a pop-up file window will prompt242

the user to select the formatted FASTA file of aligned/trimmed sequences to be read into R.243

When this occurs, arguments for N , H * and probs are set automatically by the algorithm via244

functions available in the R packages ape (Analysis of Phylogenetics and Evolution) (Paradis245

et al., 2004) and pegas (Population and Evolutionary Genetics Analysis System) (Paradis,246

2010). Users must be aware however that the number of observed haplotypes treated by pegas247

(via the haplotype() function) may be overestimated if missing/ambiguous nucleotide data248

are present within the final alignment input file. Missing data are explicitly handled by249

the base.freq() function in the ape package. When this occurs, R will output a warning250

that such data are present within the alignment. Users should therefore consider removing251

sequences or sites comprising missing/ambiguous nucleotides. This step can be accomplished252

using external software such as MEGA (Molecular Evolutionary Genetics Analysis; (Kumar253

et al., 2016)). The BARCODE standard (Hanner, 2009) was developed to help identify254

high quality sequences and can be used as a quality filter if desired. Exclusion of low-quality255

sequences also has the advantage of speeding up compution time of the algorithm significantly.256

Options for confidence interval (CI) estimation and graphical display of haplotype257

accumulation is also available via the argument conf.level, which allows the user to specify258
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the desired level of statistical confidence. CIs are computed from the sample α

2
100% and259

(1 − α

2
)100% quantiles of the haplotype accumulation curve distribution. The default is260

conf.level = 0.95, corresponding to a confidence level of 95%. High levels of statistical261

confidence (e.g., 99%) will result in wider confidence intervals; whereas low confidence leads262

to narrower interval estimates.263

2.1.3 How does HACSim Work?264

Haplotype labels are first randomly placed on a two-dimensional spatial grid of size265

perms × N (read perms rows by N columns) according to their overall frequency of266

occurrence (Fig. 2).267

Figure 2: Schematic of the HACSim optimization algorithm (setup, initialization and
iteration). Shown is a hypothetical example for a species mined from a biological sequence
database like BOLD or GenBank with N = 5 sampled specimens (DNA sequences) possessing
H * = 5 unique haplotypes. Each haplotype has an associated numeric ID from 1-H * (here,
1-5). Haplotype labels are randomly assigned to cells on a two-dimensional spatial array
(ARRAY) with perms rows and N columns. All haplotypes occur with a frequency of 20%,
(i.e., probs = (1/5, 1/5, 1/5, 1/5, 1/5)). Specimen and haplotype information is then fed
into a black box to iteratively optimize the likely required sample size (N *) needed to capture
a proportion of at least p haplotypes observed in the species sample.

The cumulative mean number of haplotypes is then computed along each column (i.e., for268
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every specimen). If all H* haplotypes are not observed, then the grid is expanded to a size269

of perms × N * and the observed haplotypes enumerated. Estimation of specimen sample270

sizes proceeds iteratively, in which the current value of N * is used as a starting value to271

the next iteration (Fig. 2). An analogy here can be made to a game of golf: as one aims272

towards the hole and hits the ball, it gets closer and closer to the hole; however, one does273

not know the number of times to hit the ball before it lands in the hole. It is important to274

note that since sample sizes must be whole values, estimates of N * found at each iteration275

are rounded up to the next whole number. Even though this approach is quite conservative,276

it ensures that estimates are adequately reflective of the population from which they were277

drawn. HAC.sim(), which is called internally from HAC.simrep(), performs a single iteration278

of haplotype accumulation for a given species. In the case of real species, resulting output279

reflects current levels of sampling effort found within BOLD (or another similar sequence280

repository such as GenBank) for a given species. If the desired level of haplotype recovery is281

not reached, then HAC.simrep() is called to perform successive iterations until the observed282

fraction of haplotypes captured (R) is at least p. This stopping criterion is the termination283

condition necessary to halt the algorithm as soon as a “good enough” solution has been found.284

Such criteria are widely employed within numerical analysis. At each step of the algorithm, a285

dataset, in the form of a dataframe (called “d”) consisting of the mean number of haplotypes286

recovered (called means), along with the estimated standard deviation (sd) and the number287

of specimens sampled (specs) is generated. The estimated required sample size (N *) to288

recover a given proportion of observed species haplotypes corresponds to the endpoint of the289

accumulation curve. An indicator message is additionally outputted informing a user as to290

whether or not the desired level of haplotype recovery has been reached. The algorithm is291

depicted in Fig. 3.292
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Figure 3: Iterative extrapolation algorithm pseudocode for the computation of taxon
sampling sufficiency employed within HACSim. A user must input N , H * and probs to
run simulations. Other function arguments required by the algorithm have default values
and are not necessary to be inputted unless the user wishes to alter set parameters.

In Fig. 3, all input parameters are known a priori except Hi, which is the number of293

haplotypes found at each iteration of the algorithm, and Ri = Hi

H∗
, which is the observed294

fraction of haplotype recovery at iteration i. The equation to compute N *295

N∗

i+1 = Ni +
Ni

Hi

(H∗ −Hi) =
NiH

∗

Hi

=
Ni

Ri

(1)

is quite intuitive since as Hi approaches H *, H∗ −Hi approaches zero, Ri =
Hi

H∗
approaches296

one, and consequently, Ni approaches N *. In the first part of the above equation, the quantity297

Ni

Hi

(H∗ −Hi) is the amount by which the haplotype accumulation curve is extrapolated, which298

incorporates random error and uncertainty regarding the true value of θ in the search space299

being explored. Nonparametric estimates formed from the above iterative method produce300

a convergent monotonically-increasing sequence, which becomes closer and closer to N * as301

the number of iterations increase; that is,302

N∗

1 ≤ N∗

2 ≤ ... ≤ N∗

i
≤ N∗

i+1 → N∗ (2)

which is clearly a desirable property. Since haplotype accumulation curves are bounded below303
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by one and bounded above by H *, then the above sequence has a lower bound equal to the304

initial guess for specimen sampling sufficiency (N) and an upper bound of N *.305

Along with the iterated haplotype accumulation curves and haplotype frequency barplots,306

simulation output consists of the five initially proposed “measures of sampling closeness”,307

the estimate of θ (N *) based on Phillips et al. (2015)’s sampling model, in addition to the308

number of additional samples needed to recover all estimated total haplotype variation for a309

given species (N∗ −N ; Fig. 4) (Table 1).310

Figure 4: Graphical depiction of the iterative extrapolation sampling model as described
in detail herein. The figure is modified from Phillips et al. (2019). The x -axis is meant
to depict the number of specimens sampled, whereas the y-axis is meant to convey the
cumulative number of unique haplotypes uncovered for every additional individual that is
randomly sampled. Ni and Hi refer respectively to specimen and haplotype numbers that
are observed at each iteration (i) of HACSim for a given species. N * is the total sample size
that is needed to capture all H * haplotypes that exist for a species.

These five quantities are given as follows: (1) Mean number of haplotypes sampled: Hi, (2)311

Mean number of haplotypes not sampled: H∗ − Hi, (3) Proportion of haplotypes sampled:312

Hi

H∗

, (4) Proportion of haplotypes not sampled:
H∗ −Hi

H∗

, (5) Mean number of individuals not313
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sampled: N∗−Ni =
Ni

Hi

(H∗ −Hi) and are analogous to absolute and relative approximation314

error metrics seen in numerical analysis. It should be noted that the mean number of315

haplotypes captured at each iteration, Hi, will not necessary be increasing, even though316

estimates of the cumulative mean value of N * are. It is easily seen above that Hi approaches317

H* with increasing number of iterations. Similarly, as the simulation progresses, H∗ − Hi,318

H∗ −Hi

H∗

and N∗ − Ni =
Ni

Hi

(H∗ −Hi) all approach zero, while
Hi

H∗

approaches one. The319

rate at which curves approach H * depends on inputs to both HAC.sim() and HAC.simrep().320

Once the algorithm has converged to the desired level of haplotype recovery, a summary of321

findings is outputted consisting of (1) the initial guess (N) for sampling sufficiency; (2) the322

total number of iterations until convergence and simulation runtime (in seconds); (3) the final323

estimate (N *) of sampling sufficiency, along with an approximate (1 − α)100% confidence324

interval (see next paragraph); and, (4) the number of additional specimens required to be325

sampled (N∗ −N) from the initial starting value. Iterations are automatically separated by326

a progress meter for easy visualization.327

An approximate symmetric (1 − α)100% CI for θ is derived using the (first order) Delta328

Method (Casella and Berger, 2002). This approach relies on the asymptotic normality result329

of the CLT and employs a first-order Taylor series expansion around θ to arrive at an330

approximation of the variance (and corresponding standard error) of N *. Such an approach is331

convenient since the sampling distribution of N * would likely be difficult to compute exactly332

due to specimen sample sizes being highly taxon-dependent. An approximate (large sample)333

(1 − α)100% CI for θ is given by334

N∗ ± z1−α

2

(

σ̂H

H

√
N∗

)

(3)

where z1−α

2
denotes the appropriate critical value from the standard Normal distribution and335

σ̂H is the estimated standard deviation of the mean number of haplotypes recovered at N *.336

The interval produced by this approach is quite tight, shrinking as Hi tends to H *. By337
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default, HACSim computes 95% confidence intervals for the abovementioned quantities.338

It is important to consider how a confidence interval for θ should be interpreted. For339

instance, a 95% CI for θ of (L, U), where L and U are the lower and upper endpoints of the340

confidence interval respectively, does not mean that the true sampling sufficiency lies between341

(L, U) with 95% probability. Instead, resulting confidence intervals for θ are themselves342

random and should be interpreted in the following way: with repeated sampling, one can343

be (1 − α)100% confident that the true sampling sufficency for p% haplotype recovery for a344

given species lies in the range (L, U) (1 − α)100% of the time. That is, on average,345

(1 − α)100% of constructed confidence intervals will contain θ (1 − α)100% of the time. It346

should be noted however that as given computed confidence intervals are only approximate347

in the limit, desired nominal probability coverage may not be achieved. In other words, the348

proportion of times calculated (1 − α)100% intervals actually contain θ may not be met.349

HACSim has been implemented as an object-oriented framework to improve modularity350

and overall user-friendliness. Scenarios of hypothetical and real species are contained within351

helper functions which comprise all information necessary to run simulations successfully352

without having to specify certain function arguments beforehand. To carry out simulations353

of sampling haplotypes from hypothetical species, the function HACHypothetical() must354

first be called. Similarly, haplotype sampling for real species is handled by the function355

HACReal(). In addition to all input parameters rquired by HAC.sim() and HAC.simrep()356

outlined in Table 1, both HACHypothetical() and HACReal() take further arguments. Both357

functions take the optional argument filename which is used to save results outputted to358

the R console to a CSV file. When either HACHypothetical() or HACReal() is invoked359

(i.e., assigned to a variable), an object herein called HACSObj is created containing the 13360

arguments employed by HACSim in running simulations. Note the generated object can have361

any name the user desires. Further, all simulation variables are contained in an environment362

called ‘envr’ that is hidden from the user.363
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3 Results364

Here, we outline some simple examples that highlight the overall functionality of HACSim.365

When the code below is run, outputted results will likely differ from those depicted here366

since our method is inherently stochastic. Hence, it should be stressed that there is not one367

single solution for the problem at hand, but rather multiple solutions (Spall, 2012). This is in368

contrast to a completely deterministic model, where a given input always leads to the same369

unique output. To ensure reproducibility, the user can set a random seed value using the370

base R function set.seed() prior to running HAC.simrep(). It is important that a user set371

a working directory in R prior to running HACSim, which will ensure all created files (‘seqs.fas’372

and ‘output.csv’) are stored in a single location for easy access and reference at a later time.373

In all scenarios, default parameters were unchanged (perms = 10000, p = 0.95).374

3.1 Application of HACSim to Hypothetical Species375

3.1.1 Equal Haplotype Frequencies376

Fig. 5 shows sample graphical output of the proposed haplotype accumulation curve377

simulation algorithm for a hypothetical species with N = 100 and H * = 10. All haplotypes378

are assumed to occur with equal frequency (i.e., probs = 0.10). Algorithm output is shown379

below.380

## Set parameters for hypothetical species ##381

> N <- 100 # total number of sampled individuals382

> Hstar <- 10 # total number of haplotypes383

> probs <- rep(1/Hstar, Hstar) # equal haplotype frequency384

### Run simulations ###385

> HACSObj <- HACHypothetical(N = N, Hstar = Hstar, probs = probs) # call helper function386

# set seed here if desired, e.g., set.seed(12345)387

> HAC.simrep(HACSObj)388

Simulating haplotype accumulation...389

|==============================================================================| 100%390
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--- Measures of Sampling Closeness ---391

Mean number of haplotypes sampled: 10392

Mean number of haplotypes not sampled: 0393

Proportion of haplotypes sampled: 1394

Proportion of haplotypes not sampled: 0395

Mean value of N*: 100396

Mean number of specimens not sampled: 0397

Desired level of haplotype recovery has been reached398

---------- Finished. ----------399

The initial guess for sampling sufficiency was N = 100 individuals400

The algorithm converged after 1 iterations and took 3.637 s401

The estimate of sampling sufficiency for p = 95% haplotype recovery is N* = 100 individuals402

( 95% CI: 100-100 )403

The number of additional specimens required to be sampled for p = 95% haplotype recovery is404

N* - N = 0 individuals405

Figure 5: Graphical output of HAC.sim() for a hypothetical species with equal haplotype
frequencies. A: Iterated haplotype accumulation curve. B: Corresponding haplotype
frequency barplot. For the generated haplotype accumulation curve, the 95% confidence
interval for the number of unique haplotypes accumulated is depicted by gray error bars.
Dashed lines depict the observed number of haplotypes (i.e., RH *) and corresponding number
of individuals sampled found at each iteration of the algorithm. The dotted line depicts the
expected number of haplotypes for a given haplotype recovery level (here, p = 95%) (i.e.,
pH *). In this example, R = 100% of the H * = 10 estimated haplotypes have been recovered
for this species based on a sample size of only N = 100 specimens.
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Algorithm output shows that R = 100% of the H * = 10 haplotypes are recovered from406

the random sampling of N = 100 individuals, with lower and upper 95% confidence limits407

of 100-100. No additional specimens need to be collected (N∗ − N = 0). Simulation408

results, consisting of the six “measures of sampling closeness” computed at each iteration,409

can be optionally saved in a comma-separated value (CSV) file called ‘output.csv’ (or another410

filename of the user’s choosing). Fig. 5 shows that when haplotypes are equally frequent in411

species populations, corresponding haplotype accumulation curves reach an asymptote very412

quickly. As sampling effort is increased, the confidence interval becomes narrower, thereby413

reflecting one’s increased confidence in having likely sampled the majority of haplotype414

variation existing for a given species. Expected counts of the number of specimens possessing415

a given haplotype can be found from running max(envr$d$specs) * envr$probs in the416

R console once a simulation has converged. However, real data suggest that haplotype417

frequencies are not equal.418

3.1.2 Unequal Haplotype Frequencies419

Fig. 6 and Fig. 7 show sample graphical output of the proposed haplotype420

accumulation curve simulation algorithm for a hypothetical species with N = 100 and421

H * = 10. All haplotypes occur with unequal frequency. Haplotypes 1-3 each have a frequency422

of 30%, while the remaining seven haplotypes each occur with a frequency of c. 1.4%.423

## Set parameters for hypothetical species ##424

> N <- 100425

> Hstar <- 10426

> probs <- c(rep(0.30, 3), rep(0.10/7, 7)) # three dominant haplotypes each with 30% frequency427

### Run simulations ###428

> HACSObj <- HACHypothetical(N = N, Hstar = Hstar, probs = probs)429

> HAC.simrep(HACSObj)430

Simulating haplotype accumulation...431

|==============================================================================| 100%432

--- Measures of Sampling Closeness ---433
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Mean number of haplotypes sampled: 8.3291434

Mean number of haplotypes not sampled: 1.6709435

Proportion of haplotypes sampled: 0.83291436

Proportion of haplotypes not sampled: 0.16709437

Mean value of N*: 120.061438

Mean number of specimens not sampled: 20.06099439

Desired level of haplotype recovery has not yet been reached440

|==============================================================================| 100%441

--- Measures of Sampling Closeness ---442

Mean number of haplotypes sampled: 9.2999443

Mean number of haplotypes not sampled: 0.7001444

Proportion of haplotypes sampled: 0.92999445

Proportion of haplotypes not sampled: 0.07001446

Mean value of N*: 179.5718447

Mean number of specimens not sampled: 12.57182448

Desired level of haplotype recovery has not yet been reached449

|==============================================================================| 100%450

--- Measures of Sampling Closeness ---451

Mean number of haplotypes sampled: 9.5358452

Mean number of haplotypes not sampled: 0.4642453

Proportion of haplotypes sampled: 0.95358454

Proportion of haplotypes not sampled: 0.04642455

Mean value of N*: 188.7623456

Mean number of specimens not sampled: 8.762348457

Desired level of haplotype recovery has been reached458

---------- Finished. ----------459

The initial guess for sampling sufficiency was N = 100 individuals460

The algorithm converged after 6 iterations and took 33.215 s461

The estimate of sampling sufficiency for p = 95% haplotype recovery is N* = 180 individuals462

( 95% CI: 178.278-181.722)463

The number of additional specimens required to be sampled for p = 95% haplotype recovery is464

N* - N = 80 individuals465
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Figure 6: Initial graphical output of HAC.sim() for a hypothetical species having three
dominant haplotypes. In this example, initially, only R = 83.3% of the H * = 10 estimated
haplotypes have been recovered for this species based on a sample size of N = 100 specimens.

Figure 7: Final graphical output of HAC.sim() for a hypothetical species having three
dominant haplotypes. In this example, upon convergence, R = 95.4% of the H * = 10
estimated haplotypes have been recovered for this species based on a sample size of N = 180
specimens.

Note that not all iterations are displayed above for the sake of brevity; only the first and466

last two iterations are given. With an initial guess of N = 100, only R = 83.3% of all467
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H* = 10 observed haplotypes are recovered. The value of N * = 121 in the first iteration468

above serves as an improved initial guess of the true sampling sufficiency, which is an unknown469

quantity that is being estimated. This value is then fed back into the algorithm and the470

process is repeated until convergence is reached.471

Using Equation (1), the improved sample size was calculated as472

N∗ = 100 + 100

8.3291
(10− 8.3291) = 120.061. After one iteration, the curve has been473

extrapolated by an additional N∗−Ni = 20.06099 individuals. Upon convergence, R = 95.4%474

of all observed haplotypes are captured with a sample size of N * = 180 specimens, with a475

95% CI of 178.278-181.722. Given that N = 100 individuals have already been sampled,476

the number of additional specimens required is N∗ − N = 80 individuals. The user can477

verify that sample sizes close to that found by HACSim are needed to capture 95% of existing478

haplotype variation. Simply set N = N * = 180 and rerun the algorithm. The last iteration479

serves as a check to verify that the desired level of haplotype recovery has been achieved.480

The value of N * = 188.7623 that is outputted at this step can be used as a good starting481

guess to extrapolate the curve to higher levels of haplotype recovery to save on the number482

of iterations required to reach convergence. To do this, one simply runs HACHypothetical()483

with N = 189.484

3.2 Application of HACSim to Real Species485

Because the proposed iterative haplotype accumulation curve simulation algorithm simply486

treats haplotypes as numeric labels, it is easily generalized to any biological taxa and genetic487

loci for which a large number of high-quality DNA sequence data records is available in public488

databases such as BOLD. In the following examples, HACSim is employed to examine levels489

of standing genetic variation within animal species using 5’-COI.490
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3.2.1 Lake Whitefish (Coregonus clupeaformis)491

An interesting case study on which to focus is that of Lake whitefish (Coregonus492

clupeaformis). Lake whitefish are a commercially, culturally, ecologically and economically493

important group of salmonid fishes found throughout the Laurentian Great Lakes in Canada494

and the United States, particularly to the Saugeen Ojibway First Nation (SON) of Bruce495

Peninsula in Ontario, Canada, as well as non-indigenous fisheries (Ryan and Crawford, 2014).496

The colonization of refugia during Pleistocene glaciation is thought to have resulted in497

high levels of cryptic species diversity in North American freshwater fishes (Hubert et al.,498

2008; April et al., 2011, 2013a,b). Overdyk et al. (2015) wished to investigate this hypothesis499

in larval Lake Huron lake whitefish. Despite limited levels of gene flow and likely formation500

of novel divergent haplotypes in this species, surprisingly, no evidence of deep evolutionary501

lineages was observed across the three major basins of Lake Huron despite marked differences502

in larval phenotype and adult fish spawning behaviour (Overdyk et al., 2015). This may be503

the result of limited sampling of intraspecific genetic variation, in addition to presumed504

panmixia (Overdyk et al., 2015). While lake whitefish represent one of the most well-studied505

fishes within BOLD, sampling effort for this species has nevertheless remained relatively506

static over the past few years. Thus, lake whitefish represent an ideal species for further507

exploration using HACSim.508

In applying the developed algorithm to real species, sequence data preparation509

methodology followed that which is outlined in Phillips et al. (2015). Curation included the510

exclusion of specimens linked to GenBank entries, since those records without the BARCODE511

keyword designation lack appropriate metadata central to reference sequence library512

construction and management (Hanner, 2009). Our approach here was solely to assess513

comprehensiveness of single genomic sequence databases rather than incorporating sequence514

data from multiple repositories; thus, all DNA barcode sequences either originating from, or515

submitted to GenBank were not considered further. As well, the presence of base ambiguities516

and gaps/indels within sequence alignments can lead to bias in estimate haplotype diversity517
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for a given species.518

Currently (as of November 28, 2018), BOLD contains public (both barcode and519

non-barcode) records for 262 C. clupeaformis specimens collected from Lake Huron in520

northern parts of Ontario, Canada and Michigan, USA. Of the barcode sequences, N = 235521

are of high quality (full-length (652 bp) and comprise no missing and/or ambiguous nucleotide522

bases). Haplotype analysis reveals that this species currently comprises H * = 15 unique COI523

haplotypes. Further, this species shows a highly-skewed haplotype frequency distribution,524

with a single dominant haplotype accounting for c. 91.5% (215/235) of all individuals (Fig.525

8).526

Figure 8: Initial haplotype frequency distribution for N = 235 high-quality lake whitefish
(Coregonus clupeaformis) COI barcode sequences obtained from BOLD. This species displays
a highly-skewed pattern of observed haplotype variation, with Haplotype 1 accounting for c.
91.5% (215/235) of all sampled records.

The output of HACSim is displayed below.527

### Run simulations ###528

> HACSObj <- HACReal()529

> HAC.simrep(HACSObj)530

Simulating haplotype accumulation...531

|==============================================================================| 100%532

26
PeerJ Comput. Sci. reviewing PDF | (CS-2019:06:38474:1:1:NEW 25 Oct 2019)

Manuscript to be reviewedComputer Science



--- Measures of Sampling Closeness ---533

Mean number of haplotypes sampled: 11.0705534

Mean number of haplotypes not sampled: 3.9295535

Proportion of haplotypes sampled: 0.7380333536

Proportion of haplotypes not sampled: 0.2619667537

Mean value of N*: 318.4138538

Mean number of specimens not sampled: 83.4138539

Desired level of haplotype recovery has not yet been reached540

|==============================================================================| 100%541

--- Measures of Sampling Closeness ---542

Mean number of haplotypes sampled: 13.8705543

Mean number of haplotypes not sampled: 1.1295544

Proportion of haplotypes sampled: 0.9247545

Proportion of haplotypes not sampled: 0.0753546

Mean value of N*: 603.439547

Mean number of specimens not sampled: 45.43895548

Desired level of haplotype recovery has not yet been reached549

|==============================================================================| 100%550

--- Measures of Sampling Closeness ---551

Mean number of haplotypes sampled: 14.3708552

Mean number of haplotypes not sampled: 0.6292553

Proportion of haplotypes sampled: 0.9580533554

Proportion of haplotypes not sampled: 0.04194667555

Mean value of N*: 630.4451556

Mean number of specimens not sampled: 26.44507557

Desired level of haplotype recovery has been reached558

---------- Finished. ----------559

The initial guess for sampling sufficiency was N = 235 individuals560

The algorithm converged after 8 iterations and took 241.235 s561

The estimate of sampling sufficiency for p = 95% haplotype recovery is N* = 604 individuals562

( 95% CI: 601.504-606.496 )563

The number of additional specimens required to be sampled for p = 95% haplotype recovery is564

N* - N = 369 individuals565
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From the above output, it is clear that current specimen sample sizes found within BOLD566

for C. clupeaformis are probably not sufficient to capture the majority of within-species COI567

haplotype variation. An initial sample size of N = 235 specimens corresponds to recovering568

only 73.8% of all H * = 15 unique haplotypes for this species (Fig. 9).569

Figure 9: Initial graphical output of HAC.sim() for a real species (Lake whitefish, C.

clupeaformis) having a single dominant haplotype. In this example, initially, only R =
73.8% of the H * = 15 estimated haplotypes for this species have been recovered based on a
sample size of N = 235 specimens. The haplotype frequency barplot is identical to that of
Fig. 8.

A sample size of N * = 604 individuals (95% CI: 601.504-606.496) would likely be needed to570

observe 95% of all existing genetic diversity for lake whitefish (Fig. 10).571
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Figure 10: Final graphical output of HAC.sim() for Lake whitefish (C. clupeaformis) having
a single dominant haplotype. Upon convergence, R = 95.8% of the H * = 15 estimated
haplotypes for this species have been uncovered with a sample size of N = 604 specimens.

Since N = 235 individuals have been sampled previously, only N∗ − N = 369 specimens572

remain to be collected.573

3.2.2 Deer tick (Ixodes scapularis)574

Ticks, particularly the hard-bodied ticks (Arachnida: Acari: Ixodida: Ixodidae), are575

well-known as vectors of various zoonotic diseases including Lyme disease (Ondrejicka et al.,576

2014). Apart from this defining characteristic, the morpohological identification of ticks at577

any lifestage, by even expert taxonomists, is notoriously difficult or sometimes even impossible578

(Ondrejicka et al., 2017). Further, the presence of likely high cryptic species diversity in this579

group means that turning to molecular techniques such as DNA barcoding is often the only580

feasible option for reliable species diagnosis. Lyme-competent specimens can be accurately581

detected through employing a sensitive quantitative PCR (qPCR) procedure (Ondrejicka582

et al., 2017). However, for such a workflow to be successful, wide coverage of within-species583

haplotype variation from across broad geographic ranges is paramount to better aid design of584

primer and probe sets for rapid species discrimination. Furthermore, the availability of large585
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specimen sample sizes for tick species of medical and epidemiological relevance is necessary586

for accurately assessing the presence of the barcode gap.587

Notably, the deer tick (Ixodes scapularis), native to Canada and the United States, is588

the primary carrier of Borrelia burgdorferi, the bacterium responsible for causing Lyme589

disease in humans in these regions. Because of this, I. scapularis has been the subject of590

intensive taxonomic study in recent years. For instance, in a recent DNA barcoding study of591

medically-relevant Canadian ticks, Ondrejicka et al. (2017) found that out of eight specimens592

assessed for the presence of B. burgdorferi, 50% tested positive. However, as only exoskeletons593

and a single leg were examined for systemic infection, the reported infection rate may be a594

lower bound due to the fact that examined specimens may still harbour B. burgdorferi in595

their gut. As such, this species is well-represented within BOLD and thus warrants further596

examination within the present study.597

As of August 27, 2019, 531 5’-COI DNA barcode sequences are accessble from BOLD’s598

Public Data Portal for this species. Of these, N = 349 met criteria for high quality outlined in599

Phillips et al. (2015). A 658 bp MUSCLE alignment comprised H * = 83 unique haplotypes.600

Haplotype analysis revealed that Haplotypes 1-8 were represented by more than 10 specimens601

(range: 12-46; Fig. 11).602
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Figure 11: Initial haplotype frequency distribution for N = 349 high-quality deer tick
(Ixodes scapularis) COI barcode sequences obtained from BOLD. In this species, Haplotypes
1-8 account for c. 51.3% (179/349) of all sampled records.

Simulation output of HACSim is depicted below.603

### Run simulations ###604

> HACSObj <- HACReal()605

> HAC.simrep(HACSObj)606

Simulating haplotype accumulation...607

|==============================================================================| 100%608

--- Measures of Sampling Closeness ---609

Mean number of haplotypes sampled: 65.3514610

Mean number of haplotypes not sampled: 17.6486611

Proportion of haplotypes sampled: 0.7873663612

Proportion of haplotypes not sampled: 0.2126337613

Mean value of N*: 443.2499614

Mean number of specimens not sampled: 94.24988615

Desired level of haplotype recovery has not yet been reached616

|==============================================================================| 100%617

--- Measures of Sampling Closeness ---618

Mean number of haplotypes sampled: 78.3713619

Mean number of haplotypes not sampled: 4.6287620
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Proportion of haplotypes sampled: 0.9442325621

Proportion of haplotypes not sampled: 0.05576747622

Mean value of N*: 802.7684623

Mean number of specimens not sampled: 44.76836624

Desired level of haplotype recovery has not yet been reached625

|==============================================================================| 100%626

--- Measures of Sampling Closeness ---627

Mean number of haplotypes sampled: 79.2147628

Mean number of haplotypes not sampled: 3.7853629

Proportion of haplotypes sampled: 0.954394630

Proportion of haplotypes not sampled: 0.04560602631

Mean value of N*: 841.3716632

Mean number of specimens not sampled: 38.37161633

Desired level of haplotype recovery has been reached634

---------- Finished. ----------635

The initial guess for sampling sufficiency was N = 349 individuals636

The algorithm converged after 8 iterations and took 1116.468 s637

The estimate of sampling sufficiency for p = 95% haplotype recovery is N* = 803 individuals638

( 95% CI: 801.551-804.449 )639

The number of additional specimens required to be sampled for p = 95% haplotype recovery is640

N* - N = 454 individuals641

The above results clearly demonstrate the need for increased specimen sample sizes in642

deer ticks. With an initial sample size of N = 349 individuals, only 78.7% of all observed643

haplotypes are recovered for this species (Fig. 12).644
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Figure 12: Initial graphical output of HAC.sim() for a real species (Deer tick, I. scapularis)
having eight dominant haplotypes. In this example, initially, only R = 78.7% of the H * =
83 estimated haplotypes for this species have been recovered based on a sample size of N =
349 specimens. The haplotype frequency barplot is identical to that of Fig. 11.

N * = 803 specimens (95% CI: 801.551-804.449) is necessary to capture at least 95% of645

standing haplotype variation for I. scapularis (Fig. 13) .646

Figure 13: Final graphical output of HAC.sim() for deer tick (I scapularis) having eight
dominant haplotypes. Upon convergence, R = 95.4% of the H * = 83 estimated haplotypes
for this species have been uncovered with a sample size of N = 803 specimens.
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Thus, a further N * − N = 454 specimens are required to be collected.647

3.2.3 Scalloped hammerhead (Sphyrna lewini)648

Sharks (Chondrichthyes: Elasmobranchii: Selachimorpha) represent one of the most649

ancient extant lineages of fishes. Despite this, many shark species face immediate extinction650

as a result of overexploitation, together with a unique life history (e.g., K-selected,651

predominant viviparity, long gestation period, lengthy time to maturation) and migration652

behaviour (Hanner et al., 2016). A large part of the problem stems from the increasing653

consumer demand for, and illegal trade of, shark fins, meat and bycatch on the Asian market.654

The widespread, albeit lucrative practice of “finning”, whereby live sharks are definned and655

immediately released, has led to the rapid decline of once stable populations (Steinke et al.,656

2017). As a result, numerous shark species are currently listed by the International Union for657

the Conservation of Nature (IUCN) and the Convention on International Trade in Endangered658

Species of Wild Fauna and Flora (CITES). Interest in the molecular identification of sharks659

through DNA barcoding is multifold. The COI reference sequence library for this group660

remains largely incomplete. Further, many shark species exhibit high intraspecific distances661

within their barcodes, suggesting the possibility of cryptic species diversity. Instances of662

hybridization between sympatric species has also been documented. As establishing663

species-level matches to partial specimens through morphology alone is difficult, and such a664

task becomes impossible once fins are processed and sold for consumption or use in traditional665

medicine, DNA barcoding has paved a clear path forward for unequivocal diagnosis in most666

cases.667

The endangered hammerheads (Family: Sphyrnidae) represent one of the most well-668

sampled groups of sharks within BOLD to date. Fins of the scalloped hammerhead (Sphyrna669

lewini) are especially highly prized within IUU (Illegal, Unregulated, Unreported) fisheries670

due to their inclusion as the main ingredient in shark fin soup.671

As of August 27, 2019, 327 S. lewini specimens (sequenced at both barcode and non-672
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barcode markers), collected from several Food and Agriculture Organization (FAO) regions,673

including the United States, are available through BOLD’s Public Data Portal. Of these, all674

high-quality records (N = 171) were selected for alignment in MEGA7 and assessment via675

HACSim. The final alignment was found to comprise H * = 12 unique haplotypes, of which676

three were represented by 20 or more specimens (range: 28-70; Fig. 14).677

Figure 14: Initial haplotype frequency distribution for N = 171 high-quality scalloped
hammerhead (Sphyrna lewini) COI barcode sequences obtained from BOLD. In this species,
Haplotypes 1-3 account for c. 87.7% (150/171) of all sampled records.

HACSim results are displayed below.678

### Run simulations ###679

> HACSObj <- HACReal()680

> HAC.simrep(HACSObj)681

Simulating haplotype accumulation...682

|==============================================================================| 100%683

--- Measures of Sampling Closeness ---684

Mean number of haplotypes sampled: 9.9099685

Mean number of haplotypes not sampled: 2.0901686

Proportion of haplotypes sampled: 0.825825687

Proportion of haplotypes not sampled: 0.174175688

Mean value of N*: 207.0657689
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Mean number of specimens not sampled: 36.06566690

Desired level of haplotype recovery has not yet been reached691

|==============================================================================| 100%692

--- Measures of Sampling Closeness ---693

Mean number of haplotypes sampled: 11.3231694

Mean number of haplotypes not sampled: 0.6769695

Proportion of haplotypes sampled: 0.9435917696

Proportion of haplotypes not sampled: 0.05640833697

Mean value of N*: 413.3144698

Mean number of specimens not sampled: 23.31438699

Desired level of haplotype recovery has not yet been reached700

|==============================================================================| 100%701

--- Measures of Sampling Closeness ---702

Mean number of haplotypes sampled: 11.4769703

Mean number of haplotypes not sampled: 0.5231704

Proportion of haplotypes sampled: 0.9564083705

Proportion of haplotypes not sampled: 0.04359167706

Mean value of N*: 432.8695707

Mean number of specimens not sampled: 18.8695708

Desired level of haplotype recovery has been reached709

---------- Finished. ----------710

The initial guess for sampling sufficiency was N = 171 individuals711

The algorithm converged after 9 iterations and took 174.215 s712

The estimate of sampling sufficiency for p = 95% haplotype recovery is N* = 414 individuals713

( 95% CI: 411.937-416.063 )714

The number of additional specimens required to be sampled for p = 95% haplotype recovery is715

N* - N = 243 individuals716

Simulation output suggests that only 82.6% of all unique haplotypes for the scalloped717

hammerhead have likely been recovered (Fig. 15) with a sample size of N = 171.718
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Figure 15: Initial graphical output of HAC.sim() for a real species (Scalloped hammerhead,
S. lewini) having three dominant haplotypes. In this example, initially, only R = 82.6% of
the H * = 12 estimated haplotypes for this species have been recovered based on a sample
size of N = 171 specimens. The haplotype frequency barplot is identical to that of
Fig. 14.

Further, HACSim predicts that N * = 414 individuals (95% CI: 411.937-416.063) probably719

need to be randomly sampled to capture the majority of intraspecific genetic diversity within720

5’-COI (Fig. 16).721
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Figure 16: Final graphical output of HAC.sim() for scalloped hammerhead (S. lewini)
having three dominant haplotypes. Upon convergence, R = 95.6% of the H * = 12 estimated
haplotypes for this species have been uncovered with a sample size of N = 414 specimens.

Since 171 specimens have already been collected, this leaves an additional N * − N = 243722

individuals which await sampling.723

4 Discussion724

4.1 Initializing HACSim and Overall Algorithm Behaviour725

The overall stochastic behaviour of HACSim is highly dependent on the number of726

permutations used upon algorithm initialization. Provided that the value assigned to the727

perms argument is set high enough, numerical results ouputted by HACSim will be found728

to be quite consistent between consecutive runs whenever all remaining parameter values729

remain unchanged. It is crucial that perms not be set to too low a value to prevent the730

algorithm from getting stuck at local maxima and returning suboptimal solutions. This is731

a common situation with popular optimization algorithms such as hill-climbing. Attention732

therfore must be paid to avoid making generalizations based on algorithm performance and733

obtained simulation results (Spall, 2012).734
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In applying the present method to simulated species data, it is important that selected735

simulation parameters are adequately reflective of those observed for real species. Thus,736

initial sample sizes should be chosen to cover a wide range of values based on those currently737

observed within BOLD. Such information can be gauged through examining species lists738

associated with BOLD records, which are readily accessible through Linnean search queries739

within the Taxonomy browser.740

As with any iterative numerical algorithm, selecting good starting guesses for741

initialization is key. While HACSim is globally convergent (i.e., convergence is guaranteed for742

any value of N ≥ H *), a good strategy when simulating hypothetical species is to start the743

algorithm by setting N = H *. In this way, the observed fraction of haplotypes found, R,744

will not exceed the desired level of haplotype recovery p, and therefore lead to overestimation745

of likely required specimen sample sizes. Setting N high enough will almost surely result746

in R exceeding p. Thus, arbitrarily large values of N may not be biologically meaningful747

or practical. However, in the case of hypothetical species simulation, should initial sample748

sizes be set too high, such that R > p, a straightforward workaround is to observe where749

the dashed horizontal line intersects the final haplotype accumulation curve (i.e., not the750

line the touches the curve endpoint). The resulting value of N at this point will correspond751

with p quite closely. This can be seen in Fig. 5, where an eyeball guess just over N * = 20752

individuals is necessary to recover p = 95% haplotype variation. A more reliable estimate can753

be obtained through examining the dataframe “d” outputted once the algorithm has halted754

(via envr$d). In this situation, simply look in the row corresponding to755

pH * ≥ 0.95(10) ≥ 9.5. The required sample size is the value given in the first column (specs).756

This is accomplished via the R code757

envr$d[which(envr$d$means >= envr$p * envr$Hstar), ][1, 1].758

The novelty of HACSim is that it offers a systematic means of estimating likely specimen759

sample sizes required to assess intraspecific haplotype diversity for taxa within large-scale760

genomic databases like GenBank and BOLD. Estimates of sufficient sampling suggested761
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by our algorithm can be employed to assess barcode coverage within existing reference762

sequence libraries and campaign projects found in BOLD. While comparison of our method763

to already-established ones is not yet possible, we anticipate that HACSim will nevertheless764

provide regulatory applications with an unprecedented view and greater understanding of765

the state of standing genetic diversity (or lack thereof) within species.766

4.2 Additional Capabilities and Extending Functionality of HACSim767

In this paper, we illustrate the application of haplotype accumulation curves to the768

broad assessment of species-level genetic variation. However, HACSim is quite flexible in769

that one can easily explore likely required sample sizes at higher taxonomic levels (e.g.770

order, family, genus) or specific geographic regions (e.g., salmonids of the Great Lakes)771

with ease. Such applicability will undoubtedly be of interest at larger scales (i.e.. entire772

genomic sequence libraries). For instance, due to evidence of sampling bias in otherwise773

densely-sampled taxa housed in BOLD (e.g., Lepidoptera), D’Ercole et al. (J. D’Ercole,774

2019, unpublished data) wished to assess whether or not intraspecific haplotype variation775

within butterfly species remains unsampled. To test this, the authors employed HACSim to776

examine sampling comprehensiveness for species comprising a large barcode reference library777

for North American butterflies spanning 814 species and 14623 specimens.778

We foresee use of HACSim being widespread within the DNA barcoding community. As779

such, improvements to existing code in terms of further optimization and algorithm runtime,780

as well as implementation of new methods by experienced R programmers in the space of781

DNA-based taxonomic identification, seems bright.782

Potential extensions of our algorithm include support for the exploration of genetic783

variation at the Barcode Index Number (BIN) level (Ratnasingham and Hebert, 2013), as784

well as high-throughput sequencing (HTS) data for metabarcoding and environmental DNA785

(eDNA) applications. Such capabilities are likely to be challenging to implement at this786

stage until robust operational taxonomic unit (OTU) clustering algorithms are developed787
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(preferably in R). One promising tool in this regard for barcoding of bulk samples of real788

species and mock communities of known species composition is JAMP (Just Another789

Metabarcoding Pipeline) devised for use in R by Elbrecht and colleagues (Elbrecht et al.,790

2018). JAMP includes a sequence read denoising tool that can be used to obtain haplotype791

numbers and frequency information (H * and probs). However, because JAMP relies on792

third-party software (particularly USEARCH (Edgar, 2010) and VSEARCH (Rognes et al.,793

2016)), it cannot be integrated within HACSim itself and will thus have to be used externally.794

In extending HACSim to next-generation space, two issues arise. First, it is not immediately795

clear how the argument N , is to be handled since multiple reads could be associated with796

single individuals. That is, unlike in traditional Sanger-based sequencing, there is not a797

one-to-one correspondence between specimen and sequence (Wares and Pappalardo, 2015;798

Adams et al., 2019). Second, obtaining reliable haplotype information from noisy HTS799

datasets is challenging without first having strict quality filtering criteria in place to minimize800

the occurrence of rare, low-copy sequence variants which may reflect artifacts stemming from801

the Polymerase Chain Reaction (PCR) amplification step or sequencing process (Elbrecht802

et al., 2018; Braukmann et al., 2019; Turon et al., 2019). Turning to molecular population803

genetics theory might be the answer (Adams et al., 2019). Wares and Pappalardo (2015)804

suggest three different approaches to estimating the number of specimens of a species that805

may have contributed to a metabarcoding sample: (1) use of prior estimates of haplotype806

diversity, together with observed number of haplotypes; (2) usage of Ewens’ sampling formula807

(Ewens, 1972) along with estimates of Watterson’s θ (not to be confused with the θ denoting808

true sampling sufficency herein) (Watterson, 1975), as well as total number of sampled809

haplotypes; and (3) employment of an estimate of θ and the number of observed variable810

sites (S) within a multiple sequence alignment. A direct solution we propose might be to811

use sequencing coverage/depth (i.e., the number of sequence reads) as a proxy for number812

of individuals. The outcome of this would be an estimate of the mean/total number of813

sequece reads required for maximal haplotype recovery. However, the use of read count as a814
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stand-in for number of specimens sampled would require the unrealistic assumption that all815

individuals (i.e., both alive and dead) shed DNA into their environment at equal rates. The816

obvious issue with extending HACSim to handle HTS data is computing power, as such data817

typically consists of millions of reads spanning multiple gigabytes of computer memory.818

4.3 Summary819

Here, we introduced a new statistical approach to assess specimen sampling depth within820

species based on existing gene marker variation found in public sequence databanks such821

as BOLD and GenBank. HACSim is both computationally efficient and easy to use. We822

show utility of our proposed algorithm through both hypothetical and real species genomic823

sequence data. For real species (here, lake whitefish, deer tick and scalloped hammerhead),824

results from HACSim suggest that comprehensive sampling for species comprising large barcode825

libraries within BOLD, such as Actinopterygii, Arachnida and Elasmobranchii is far from826

complete. With the availability of HACSim, appropriate sampling guidelines based on the827

amount of potential error one is willing to tolerate can now be established. For the purpose828

of addressing basic questions in biodiversity science, the employment of small taxon sample829

sizes may be adequate; however, this is not the case for regulatory applications, where greater830

than 95% coverage of intraspecific haplotype variation is needed to provide high confidence831

in sequence matches defensible in a court of law.832

Of immediate interest is the application of our method to other ray-finned fishes, as well833

as other species from deeply inventoried taxonomic groups such as Elasmobranchii (e.g.834

sharks), Insecta (e.g. Lepidoptera, Culicidae (mosquitoes)), Arachnida (e.g., ticks) and835

Chiroptera (bats) that are of high conservation, medical and/or socioeconomic importance.836

Although we explicitly demonstrate the use of HACSim through employing COI, it would be837

interesting to extend usage to other barcode markers such as the ribulose-1,5-bisphosphate838

carboxylase/oxygenase large subunit (rbcL) and maturase K (matK) chloroplast genes for839

land plants, as well as the nuclear internal transcribed spacer (ITS) marker regions for840

42
PeerJ Comput. Sci. reviewing PDF | (CS-2019:06:38474:1:1:NEW 25 Oct 2019)

Manuscript to be reviewedComputer Science



fungi. The application of our method to non-barcode genes routinely employed in specimen841

identification like mitochondrial cytochrome b (cytb) in birds for instance (Baker et al., 2009;842

Lavinia et al., 2016), nuclear rhodopsin (rho) for marine fishes (Hanner et al., 2011) or the843

phosphoenolpyruvate carboxykinase (PEPCK) nuclear gene for bumblebees (Williams et al.,844

2015) is also likely to yield interesting results since sequencing numerous individuals at several845

different genomic markers can often reveal evolutionary patterns not otherwise seen from846

employing a single-gene approach (e.g., resolution of cryptic species or confirmation/revision847

of established taxonomic placements) (Williams et al., 2015).848

While it is reasonable that HACSim can be applied to genomic regions besides 5’-COI,849

careful consideration of varying rates of molecular evolution within rapidly-evolving gene850

markers and the effect on downsteam inferences is paramount, as is sequence quality. Previous851

work in plants (Genus: Taxus) by Liu et al. (2012) has found evidence of a correlation between852

mutation rate and required specimen sampling depth: genes evolving at faster rates will853

likely require larger sample sizes to estimate haplotype diversity compared to slowly-evolving854

genomic loci. We simply focused on 5’-COI because it is by far the most widely sequenced855

mitochondrial locus for specimen identification, owing to its desirable biological properties as856

a DNA barcode for animal taxa and because it has an associated data standard to help857

filter out poor-quality data. (Phillips et al., 2019). However, it should be noted that858

species diagnosis using COI and other barcode markers is not without its challenges. While859

COI accumulates variation at an appreciable rate, certain taxonomic groups are not readily860

distinguished on the basis of their DNA barcodes (e.g., the so-called “problem children”, such861

as Cnidaria, which tend to lack adequate sequence divergence (Bucklin et al., 2011)). Other862

taxa, like Mollusca, are known to harbour indel mutations (Layton et al., 2014). Introns863

within Fungi greatly complicate sequence alignment (Min and Hickey, 2007). Thus, users864

of HACSim must exercise caution in interpreting end results with other markers, particularly865

those which are not protein-coding.866

It is necessary to consider the importance of sampling sufficiency as it pertains to867
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the myriad regulatory applications of specimen identification established using DNA868

barcoding (e.g., combatting food fraud) in recent years. It since has become apparent that869

the success of such endeavours is complicated by the ever-evolving state of public reference870

sequence libraries such as those found within BOLD, in addition to the the inclusion of871

questionable sequences and lack of sufficent metadata for validation purposes in other genomic872

databases like GenBank (e.g., Harris (2003)). Dynamic DNA-based identification systems873

may produce multiple conflicting hits to otherwise corresponding submissions over time.874

This unwanted behaviour has led to a number of regulatory agencies creating their own875

static repositories populated with expertly-identified sequence records tied to known voucher876

specimens deemed fit-for-purpose for molecular species diagnosis and forensic compliance877

(e.g. the United States Food and Drug Administration (USFDA)’s Reference Standard878

Sequence Library (RSSL) employed to identify unknown seafood samples from species of879

high socioeconomic value). While such a move has partially solved the problem of dynamism880

inherent in global sequence databases, there still remains the issue of low sample sizes that881

can greatly inflate the perception of barcode gaps between species. Obtaining adequate882

representation of standing genetic variation, both within and between species, is therefore883

essential to mitigating false assignments using DNA barcodes. To this end, we propose the884

use of HACSim to assess the degree of saturation of haplotype accumulation curves to aid885

regulatory scientists in rapidly and reliably projecting likely sufficient specimen sample sizes886

required for accurate matching of unknown queries to known Linnean names.887

A defining characteristic of HACSim is its convergence behaviour: the method converges888

to the desired level of haplotype recovery p for any initial guess N specified by the user.889

Based on examples explored herein, it appears likely that already-sampled species within890

repositories like BOLD are far from being fully characterized on the basis of existing891

haplotype variation. In addition to this, it is important to consider the current limitations892

of our algorithm. We can think of only one: it must be stressed that appropriate sample size893

trajectories are not possible for species with only single representatives within public DNA894
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sequence databases because haplotype accumulation is unachievable with only one DNA895

sequence and/or a single sampled haplotype. Hence, HACSim can only be applied to species896

with at least two sampled specimens. Thus, application of our method to assess necessary897

sample sizes for full capture of extant haplotype variation in exceedingly rare or highly elusive898

taxa is not feasible. Despite this, we feel that HACSim can greatly aid in accurate and rapid899

barcode library construction necessary to thoroughly appreciate the diversity of life on Earth.900

5 Conclusions901

Herein, a new, easy-to-use R package was presented that can be employed to estimate902

intraspecific sample sizes for studies of genetic diversity assessment, with a particular focus903

on animal DNA barcoding using the COI gene. HACSim employs a novel nonparametric904

stochastic iterative extrapolation algorithm with good convergence properties to generate905

haplotype accumulation curves. Because our approach treats species’ haplotypes as numeric906

labels, any genomic locus can be targeted to probe levels of standing genetic variation within907

multicellular taxa. However, we stress that users must exercise care when dealing with908

sequence data from non-coding regions of the genome, since these are likely to comprise909

sequence artifacts such as indels and introns, which can both hinder successful sequence910

alignment and lead to overestimation of existing haplotype variation within species. The911

application of our method to assess likely required sample sizes for both hypothetical and912

real species produced promising results. We argue the use of HACSim will be of broad913

interest in both academic and industry settings, most notably, regulatory agencies such as914

the Canadian Food Inspection Agency (CFIA), Agriculture and Agri-Food Canada (AAFC),915

United States Department of Agriculture (USDA), Public Health Agency of Canada (PHAC)916

and the USFDA. While HACSim is an ideal tool for the analysis of Sanger sequencing reads,917

an obvious next step is to extend usability to Next-Generation Sequencing (NGS), especially918

HTS applications. With these elements in place, even the full integration of HACSim to assess919
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comprehensiveness of taxon sampling within large sequence databases such as BOLD seems920

like a reality in the near future.921
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