
Submitted 24 July 2024
Accepted 28 September 2024
Published 25 October 2024

Corresponding author
Bo Wang, wangb@zzuli.edu.cn

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.2439

Copyright
2024 Han et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

GP4ESP: a hybrid genetic algorithm and
particle swarm optimization algorithm
for edge server placement
Fang Han1, Hui Fu1, Bo Wang2, Yaoli Xu2 and Bin Lv3

1Huanghe Science and Technology University, Zhengzhou, China
2 Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou, China
3 Linyi Vocational University of Science and Technology, Linyi, China

ABSTRACT
Edge computing has attracted wide attention due to its ultra-low latency services, as well
as the prevalence of smart devices and intelligent applications. Edge server placement
(ESP) is one of the key issues needed to be addressed for effective and efficient request
processing, by decidingwhich edge stations to equipwith limited edge resources. Due to
NP-hardness of ESP, someworks have designedmeta-heuristic algorithms for solving it.
While these algorithms either exploited only one kind ofmeta-heuristic search strategies
or separately perform two different meta-heuristic algorithms. This can result in limit
performance of ESP solutions due to the ‘‘No Free Lunch’’ theorem. In addition,
existing algorithms ignored the computing delay of edge servers (ESs) on request
process, resulting in overestimation of the service quality. To address these issues, in
this article, we first formulate ESP problem with the objective of minimizing the overall
response time, considering heterogeneous edge servers with various service capacity.
Then, to search effective or even the best ESP solutions, we propose a hybrid meta-
heuristic algorithm (named GP4ESP) by taking advantage of both the powerful global
search ability of genetic algorithm (GA) and the fast convergence of particle swarm
optimization (PSO). GP4ESP effectively fuses the merits of GA and PS by integrating
the swarm cognition of PSO into the evolutionary strategy of GA. At last, we conducted
extensive simulation experiments to evaluate the performance of GP4ESP, and results
show that GP4ESP achieves 18.2%–20.7% shorter overall response time, comparedwith
eleven up-to-date ESP solving algorithms, and the performance improvement is stable
as the scale of ESP is varied.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications,
Distributed and Parallel Computing, Mobile and Ubiquitous Computing, Internet of Things
Keywords Edge computing, Edge deployment, Server placement, Genetic algorithm, Particle
swarm optimization

INTRODUCTION
In the present age, smart devices are increasingly prevalent in all aspects of our lives. Such
as quite a lot of people always has their smartphones in hands. The number of connected
devices will reach 75 billion by 2025 (Kiruthiga Devi & Padma Priya, 2023). On the other
hand, there is an increasing variety of services assessed by various devices everywhere
and anytime, as the development of information and communication technology. Due

How to cite this article Han F, Fu H, Wang B, Xu Y, Lv B. 2024. GP4ESP: a hybrid genetic algorithm and particle swarm optimization al-
gorithm for edge server placement. PeerJ Comput. Sci. 10:e2439 http://doi.org/10.7717/peerj-cs.2439

https://peerj.com/computer-science
mailto:wangb@zzuli.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2439
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2439


to diversity of users, centralised cloud computing can no longer meet their demands,
especially for providing low latency services. Therefore, edge computing has attracted wide
attention as it can provide ultra-low latency services (Dayong et al., 2024).

Edge computing is deploying several edge stations nearby end users. Each station is
equipped with an access point (AP), and some stations with an edge server (ES). Users can
access services provided by edge computing over neighbouring access points, e.g.,micro base
station and wireless router, and their requests are processed by ESs or the centralized cloud
when ESs have inadequate capacities. Due to the limited budget and cost-effectiveness,
there are not enough ESs for all edge stations. In addition, there is very limited distance
for an AP signal, and an edge station can communicate with users not beyond its AP’s
maximal signal distance. Thus, the edge server placement (ESP) heavily influences users’
request processing performance and is one of the key issues needed to be addressed to
decide which edge stations to equip with limited ESs for good cost performance (Asghari
& Sohrabi, 2024).

Given a set of ESs and candidate positions (edge stations), ESP is to decide where
each ES is placed, which plays a big part in service quality and resource efficiency. This
is because unreasonable ESP solution can lead to poor response time for part of requests
while underutilizations of some ESs at the same time. Due to NP-Hard complexity of
ESP (Asghari & Sohrabi, 2024), there are mainly two kinds of methods for solving it,
heuristic and meta-heuristic algorithms. Heuristic algorithms use local search strategies,
which generally produce local optimal solutions with very little overhead. Meta-heuristic
algorithms exploit global search strategies inspired by nature or/and society laws, which
can provide better solutions than heuristic algorithms but have more overhead. ESP is
not time-sensitive as its solutions usually required by service providers for building or
upgrading their edge computing platforms every few months or even years. Thus, in this
article, we focus on meta-heuristic algorithms for finding good or even the best solutions
of ESP.

At present, most of existed ESP solving algorithms considered exploiting only one kind
of meta-heuristic search strategies, e.g., particle swarm optimization (PSO) (Tiwari et
al., 2024; Pandey et al., 2023), Artificial Bee Colony (ABC) (Zhou, Lu & Zhang, 2023),
Whale Optimization Algorithm (WOA) (Moorthy, Arikumar & Prathiba, 2023), etc.
These algorithms provide ESP solutions with limit performance, because of the ‘‘No
Free Lunch’’ theorem (Adam et al., 2019) that no single algorithm performs well all
the time. By combining advantages of two or more algorithms, hybrid meta-heuristic
algorithms can have more powerful global search abilities, and thus achieve better
solutions. There are several existing works focusing on designed hybrid algorithms for
ESP (Ma, 2021; Bahrami, Khayyambashi & Mirjalili, 2024; Asghari, Sayadi & Azgomi, 2023;
Asghari, Azgomi & Darvishmofarahi, 2023). But they only separately perform different
meta-heuristic algorithms, resulting in inefficient hybridization. In addition, these existing
works chose meta-heuristic algorithms at random for hybridizing, without considering the
complementarity of different kinds of algorithms. These lead to an inefficient hybridizing
schemes. In addition, existing works are only concerned about the network transmission

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2439


delay for evaluating the performance of requests, ignoring the computing delay on ESs and
thus leading to overestimation of the service quality for ESP solutions.

In this article, to address the above issues for effectively solving ESP, we design a hybrid
global search strategy with ideas of GA and PSO. These two meta-heuristic algorithms
are both the most representative meta-heuristic algorithms, and they have a strong
advantage mutual-complementarity because GA has powerful global search ability but
slow convergence (Katoch, Chauhan & Kumar, 2021) while PSO has fast convergence but
is easily trapped into local optima (Nayak et al., 2023). The contributions of this article can
be summarized briefly as follows.

• ESP is formulated into a binary linear programming problem in a universal three-layer
device-edge-cloud computing framework, to decide which edge stations for placing fixed
number of edge servers with minimized average response time of all user requests.
• A hybrid meta-heuristic algorithm is designed for solving ESP, with the search strategy
combining evolutionary operators of GA and swarm cognition of PSO.
• Extensive experiments are conducted for evaluating the performance of the designed
hybrid algorithm in effectiveness and efficiency as well as performance stability with
varied problem scale.

In the remainder of this article, we discuss related work in the second section. We
formulate ESP in the third section, and illustrates the proposed meta-heuristic algorithm
in the forth section. In the fifth section, we present the experiment results. And at last, we
conclude our work in the sixth section.

RELATED WORK
As the increasing attention drawn to edge computing, a great deal of work focused on
improving the resource efficiency and the service quality of edge services in various aspects,
e.g., edge station deployment (Xing, Song & Wang, 2023), edge server placement (Bahrami,
Khayyambashi & Mirjalili, 2023; Asghari & Sohrabi, 2024), edge service caching (Barrios &
Kumar, 2023) and edge task offloading (Wang et al., 2023). In this article, we focus on the
ESP problem to optimize the performance of request processing by placing purchased edge
servers on deployed edge stations. Table 1 summarizes the characteristics of related works.

Due to the NP-hardness of ESP problem, most of the works exploited meta-heuristic
algorithms to solve it. Tiwari et al. (2024) first transformed the ESP problem into a 0-1
Knapsack problem, and then proposed to use PSO for solving the Knapsack problem. Zhou,
Lu & Zhang (2023) used ABC to determine the location of edge servers and distributes
requests between ES for load balance. By comparing with K-means clustering method,
ABC achieves better load balance. This work didn’t consider distributing some requests
to the cloud, which can result in a poor performance when the system load is high. Chen
et al. (2023) used the Non-dominated Sorting Genetic Algorithm (NSGA) for solving ESP
problem to improve the average network delay and the processing delay. Pandey et al.
(2023) analysed the performance of three methods (PSO, Top-First and Random) on ESP
in busy hours and non-busy hours, respectively, and results show PSO achieves the best
performance in improving resource utilization, energy consumption and the number of

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 3/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2439


Table 1 Comparison of our proposed method with related works.

Work Objective Edge server Algorithm

Tiwari et al. (2024) load balance and energy heterogeneous PSO
Zhou, Lu & Zhang (2023) delay homogeneous ABC
Chen et al. (2023) delay and queue length heterogeneous NSGA
Pandey et al. (2023) load balance and energy homogeneous PSO
Moorthy, Arikumar &
Prathiba (2023)

latency and energy homogeneous WOA

Zhang et al. (2023) response time homogeneous PSO
Ma (2021) delay, energy and load

balance
heterogeneous GA and PSO sequentially

Bahrami, Khayyambashi &
Mirjalili (2023)

delay, coverage and cost homogeneous NSGA-II and MOPSO
separately

Asghari, Sayadi & Azgomi
(2023)

delay and energy heterogeneous BOA and CRO hierarchically

Asghari, Azgomi & Darvish-
mofarahi (2023)

delay and energy heterogeneous WOA and Game hierarchically

This article response time heterogeneous hybrid GA and PSO

ESs required for meeting requirements. Moorthy, Arikumar & Prathiba (2023) designed
a WOA-based algorithm for solving ESP, and achieved better performance than PSO by
conducted experiment results. While, their experiments are small-scale, where the number
of ESs is at most 30, which leads to unknown efficiency and effectiveness of their proposed
algorithm in large-scale ESP. Zhang et al. (2023) exploited niching technology to improve
PSO on solving ESP as ESP is generally multimodal optimization problem. This work
grouped particles according to their Jaccard similarity coefficients at first in each iteration,
and replaced the global best position with the niche best ones in updating each particle
solution.

All of the above works exploited only one kind of meta-heuristic algorithms, resulting
in limited search ability. Thus, Ma (2021) proposed an algorithm trying to combine GA
and PSO. While, this work was just sequentially performing GA and PSO on the whole
population. Bahrami, Khayyambashi & Mirjalili (2024) considered a multiple objective
ESP for minimizing latency, maximizing coverage and minimizing the cost of rented ESs.
They proposed to combine NSGA-II and Multiple Objective PSO (MOPSO) to solve the
ESP. In this work, the authors conducted NSGA-II and MOPSO on upgrading the two
halves of the whole population, respectively, in each evolutionary iterative time. Asghari,
Sayadi & Azgomi (2023) and Asghari, Azgomi & Darvishmofarahi (2023) first divided the
physical space that the ESP is concerned about into several small zones to decrease the
problem complexity. Then, these two works respectively exploited Butterfly Optimization
Algorithm (BOA) and WOA to search the global optimal solution in the whole space, and
Coral Reefs Optimization (CRO) algorithm and game theory to make the local optimal
decision for each zone. All of these hybridization approaches are conducting different
optimizers separately for solution searching, which cannot effectively fused advantages of
both algorithms.

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2439


Cloud

Edge Station ... Edge Station

Device Device DeviceDevice...

Cloud layer:

Edge layer:

Device layer:

Figure 1 The three-layer device-edge-cloud computing framework.
Full-size DOI: 10.7717/peerjcs.2439/fig-1

All of these above existing works exploited either only one kind of meta-heuristic
algorithms or separately two different meta-heuristic algorithms for solving ESP. This
results in that they hardly effectively fuse advantages of different meta-heuristic algorithms,
leading to limited performance on the global solution search. To overcome these issues,
in this article, we designed a hybrid meta-heuristic algorithm to fuse the advanced search
ideas of GA and PSO for solving ESP with heterogeneous ESs that have various service
capacities.

PROBLEM FORMULATION
In this article, we consider a universal three-layer device-edge-cloud computing framework,
as shown in Fig. 1, composed of the device, edge, and cloud layers. Users initiate their
requests by various devices of the device layer. These requests are directed to their
neighbouring edge station(s) of the edge layer for their processing. When an edge station
has not enough capacity for serving all received requests, it will redirect some requests to
the cloud layer to extend its service capacity. Base on the three-layer framework, we will
formulate ESP problem below. The notations used for our formulation are summarized in
Table 2

Considering an ESP situation, the service provider decides to build or upgrade its
edge computing due to the business growth by purchasing a set of ESs that is represented
by e1,e2,...,eE . For jth ES, ej , its service capacity is µj , that is to say, ej can process µj

requests per unit time on average. There have been S edge stations deployed distributively,
represented as s1,s2,...,sS. The maximum signal distance of the AP on si isDi. The position
of si is (xi,yi) that are horizontal and vertical values in orthogonal plane coordinate system
or latitude and longitude in geographic coordinate.

In the edge service platform, there are U users initiating requests by their respective
devices. On average, λk requests are initiated by the kth user, uk , per unit time, and to be
processed by the edge computing. The location of uk is (lk,mk) that are coordinate values
same to the station position. Then, the distance between every user and each edge station
can be calculated by Eq. (1) when using orthogonal plane coordinate system, or Eq. (2)

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 5/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2439/fig-1
http://dx.doi.org/10.7717/peerj-cs.2439


Table 2 The three-layer device-edge-cloud computing framework.

Notation Description

S Number of edge stations
E Number of purchased edge servers
U Number of users initiating requests
si ith edge station
Di Maximum signal distance of AP in si
(xk,yk) coordinate values of si
ej jth purchased edge server
µj Service rate of ej for request processing
uk kth user
(lk,mk) coordinate values of kth user’s location
λk Number of requests initiated by uk per unit time
di,k Distance between si and uk
ci,k Indicator whether requests of uk can be received by si
ri Average response time of si in processing received requests
ti Average response time of requests received by si and

processed by
edge and cloud collaboration

T Average response time of all requests
zi,j Decision variable indicating whether ej is placed on si
R Earth’s mean radius

approximately if employing geographic coordinate, where R is the earth’s mean radius.

di,k =
√
(xi− lk)2+ (yi−mk)2 (1)

di,k =R∗arccos(coslk ∗cosxi ∗cos(mk−yi)+ sinlk ∗ sinxi). (2)

During the operator, a request can be received by the station that covers its user, i.e.,
the distance from the user to the station is not exceeding the maximum signal distance
of the station’s AP. We use ci,k to represent whether a user’s requests can be received
by a station, which is defined in Eq. (3). Then, we can get the request rate on each edge
station by accumulating request rates of all users that are covered by the station, that is∑U

k=1(ci,k ∗λk) for si.

ci,k =

{
1, if di,k ≤Di

0, if di,k >Di.
(3)

For formulating ESP, we define binary variables zi,j (i= 1,2,...,S; j = 1,2,...,E) to
represent the ESP solution, where zi,j is 1 if ej is placed on si and 0 if not. Then, given
an ESP solution, the service rate of si is

∑E
j=1(zi,j ∗µk), and we can achieve the average

response time of requests received and processed by the station by Eq. (4) based on M/M/1
queue model in queue theory.

ri=
1∑E

j=1(zi,j ∗µk)−
∑U

k=1(ci,k ∗λk)
. (4)

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 6/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2439


When the load, the request rate, is too high for an edge station, the average response
time can be longer than requests processed by the cloud that is assumed as a constant
(τ ) as it generally has abundant resources. In such case, we can offload a portion of
requests to the cloud for improving the overall average response time. At worst, all requests
can be offloaded to the cloud, which produces an average response time of τ . Thus, by
considering the collaboration of edge and cloud computing, the average response time of
requests received by si can be improved from Eq. (4) to Eq. (5). And the overall average
response time of requests in the edge service system can be achieved by Eq. (6), where the
denominator is the accumulated number of requests per unit time, and the numerator is
the accumulated response time of all requests per unit time.

ti=

{
ri, if 0< ri<τ
τ, else

(5)

T =
∑S

i=1(
∑U

k=1(ci,k ∗λk)∗ ti)∑U
k=1λk

. (6)

Based on the above formulations, ESP can be modelled by following optimization
problem. The decision variables include zi,j , i= 1,2,...,S; j = 1,2,...,E , that represent a
ESP solution indicating the station where each ES is placed. The optimization objective
Eq. (7) is minimizing the overall average response time that is directly related to the service
quality, different from other works that use the network delay as the performance indicator.
Constraints Eq. (8) are calculating the overall average response time given a solution by
queuing theory. Constraints Eq. (9) indicate the atomicity of ESs, that every ES cannot be
placed on two or more stations. Constraints Eq. (10) restrict the possible values of decision
variables that are all binary.

minimizing T , (7)

subject to,

Eq. (1)–(6) (8)

S∑
i=1

zi,j ≤ 1,j = 1,2,...,E, (9)

zi,j ∈ {0,1},i= 1,2,...,S,j = 1,2,...,E. (10)

The ESP problem has been proven as NP-hard (Bahrami, Khayyambashi & Mirjalili,
2023), thus no existing method can exactly solve the problem with middle to large scales
by reasonable time. Therefore, in the next section, we design a hybrid meta-heuristic
algorithm to search a good or even the global best solution for ESP with polynomial time.

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 7/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2439


HYBRID META-HEURISTIC EDGE SERVER PLACEMENT
GA and PSO are both the most widely used and representative meta-heuristic algorithms
(Katoch, Chauhan & Kumar, 2021; Nayak et al., 2023). GA is imitating the natural
evolutionary law to design a global search strategy with crossover, mutation, and selection
operators (Katoch, Chauhan & Kumar, 2021; Alhijawi & Awajan, 2023). Benefits from
these three operators, GA achieves a population with high diversity, resulting in a powerful
global search ability. While, every coin has its two sides, and GA is no exception. GA
generally has a slow convergence rate particularly in solving large scale problems. PSO is
designed based on rules of flock feeding, which moves each individual (particle) toward
the local and global best position with self- and social cognitions. Contrary to GA, PSO
has a quick convergence but is easily falling into local positions. Thus, GA and PSO have
complementary advantage, and we consider to effectively fuse their global search ideas for
solving ESP in this section. The framework of the hybrid GA and PSO for ESP is detailed as
follows, named as GP4ESP (hybrid GA and PSO for ESP) in this article, as shown in Fig. 2
and Algorithm 1.

Algorithm 1 GP4ESP: a hybrid GA and PSO for ESP
1: initializing a population randomly;
2: evaluating the fitness for every individual of the initialized population;
3: recording the personal best as the current code for each individual;
4: recording the global best as the individual with the best fitness;
5: while the maximum iterative number is not reached do
6: for each individual do
7: crossing the individual with another random individual; //original GA
8: crossing the individual with its personal best; //self-cognition of PSO
9: crossing the individual with the global best; //social-cognition of PSO
10: evaluating the fitness of offspring produced by lines 7–9;
11: updating the individual as the offspring with the best fitness;
12: updating the personal best as the individual if the latter has better fitness;
13: updating the global best as the individual if the latter has better fitness;
14: mutating the individual;
15: evaluating the fitness of the individual;
16: updating the personal best as the individual if the latter has better fitness;
17: updating the global best as the individual if the latter has better fitness;

18: return decoded global best chromosome;

At first, we should build a solution space, i.e., design a solution encoding/decoding
method, for GP4ESP’s searching according to features of the ESP problem. The solution
space should include all available ESP solutions, with a one-to-one correspondence from
individuals (chromosomes in GA and particle positions in PSO) to ESP solutions generally.
In this article, due to the one-to-many relationship between edge stations and ESs, i.e.,

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 8/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2439


Yes

Building the solution space 
and the fitness function

Initializing population and 
evaluating fitness values

Updating the population by
GA's evolutionary operators
and PSO's swarm cognition

Updating personal best 
solutions and global best 

solution

Recording personal best 
solutions and global best 

solution

decoding and outputting the 
global best solution

Does terminal 
condition fit?

No

Figure 2 The framework of hybrid meta-heuristic algorithm for edge server placement.
Full-size DOI: 10.7717/peerjcs.2439/fig-2

each ES can be placed on at most one edge station while every edge station can be equipped
with two or more ESs, GP4ESP employs an integer coding approach for the map between
individuals and ESP solutions.

In the employed integer coding approach, each individual in the solution space is
represented as a vector with E dimensions corresponding to E ESs. The value in each
dimension represents the NO. of the edge station where the corresponding ES is placed,
which ranges from 1 to S, i.e., Eq. (11) holds for ES ej , where vj is value of an individual in
the jth dimension. By such coding, the atomicity constraints Eqs. (9) and (10) is ensured,
which is very helpful for avoiding to search unavailable solutions caused by constraint

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 9/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2439/fig-2
http://dx.doi.org/10.7717/peerj-cs.2439


Station 1 ES 1

Station 4

Station 5

Station 3

Station 2

Station 6

ES 2

ES 3

1

3

4

An ESP solution The coded solution

Figure 3 An example illustrating the integer coding approach for ESP.
Full-size DOI: 10.7717/peerjcs.2439/fig-3

violations and dramatically reducing the searching space compared with the binary coding
approach.

vj = i⇔ zi,j = 1∧∀i′(i′ 6= i⇒ zi′,j = 0). (11)

For example, as shown in Fig. 3, if there are 3 ESs to be placed on 6 edge stations, an
individual has 3 dimensions each of which has possible values from 1 to 6. The individual
〈1,3,4〉 represents that the three ESs are placed on the first, third and fourth edge stations,
respectively.

Based on the built solution space, GP4ESP needs a fitness function to evaluate the
goodness of individuals, which is the essential foundation for searching when employing
meta-heuristic algorithms. In this article, GP4ESP uses the overall average response time
(T ) of the corresponding ESP solution as the fitness of each individual. For calculating an
individual’s fitness value, GP4ESP first map the individual into the corresponding solution
and achieves values of decision variables, zi,j (i= 1,2,...,S;j = 1 ,2,...,E), by Eq. (11), in
the optimization problem Eq. (7). Then, by Eq. (6), the value of T can be easily got.

Given the solution space and the fitness function, GP4ESP initializes a population
consisting of multiple individuals and evaluates fitness values of all individuals (lines 1
and 2). Then, GP4ESP records the personal best solution as the initialized one for each
individual and the global one as the best individual with the best fitness (the minimum
T ). After these initializations, GP4ESP iteratively evolves the population and updates the
personal and the global best solutions (lines 3 and 4), until the pre-set terminal condition
is reached (line 5). There are generally two methods for setting the terminal condition.
One is setting the maximum number of iterations, and another is the maximum iterative
number that the best fitness is not improved (significantly). The population updating
strategy exploited by GP4ESP is as follows.

For each individual, GP4ESP produces six offspring by combining the crossover operator
and the swarm cognition (lines 7–9). GP4ESP conducts the crossover operator on each
individual with a certain probability three times, where two offspring are produced in each

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 10/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2439/fig-3
http://dx.doi.org/10.7717/peerj-cs.2439


≤0.8

Station 1 ES 1

Station 4

Station 5

Station 3

Station 2

Station 6

ES 2

ES 3

1

3

4

Parent 1

The coded solution

1

3

4

3

6

2

4

2

1

5

0.22

0.91

0.82

0.42

0.59

Parent 2 Random 
values

2

3

4

1

5

1

4

2

3

6

Crossing

Offspring 1 Offspring 2

≤0.1

2

4

2

1

5

0.15

0.24

0.82

0.09

0.54

Parent Random 
values

2

4

2

6

5

Mutating

Offspring

Figure 4 Example illustrating the crossover operator with the crossover probability of 0.8.
Full-size DOI: 10.7717/peerjcs.2439/fig-4

time. First, the individual is crossed with another individual, same to GA (line 7). Then, to
exploit the self-cognition, the individual is crossed with its personal best solution (line 8).
Finally, to take advantage of the social cognition, a crossover operator is conducted on the
individual with the global best solution (line 9). For the produced six offspring, GP4ESP
evaluates their fitness values, and update the individual as the best offspring (lines 10 and
11). After that, if the current individual has better fitness than its personal best solution,
the personal best solution is updated as the current individual (line 12). And the global best
solution is updated as the current individual if the global best solution has worse fitness
(line 13).

To ensure the population diversity for exploiting the huge search spaces of large-scale
ESP problems, GP4ESP employs the uniform crossover operator, as illustrated in Fig. 4.
Given two selected individuals (parents), in each dimension, a random value between 0
and 1 is generated. If the generated random value is smaller than the pre-set crossover
probability, the values of parents are exchanged in the corresponding dimension. After the
same operation on every dimension, two new individuals (offspring) can be generated.

To increase the population diversity further for improving the global search ability,
GP4ESP performs a mutation operator on each individual with a certain probability, same
to GA (line 14). After the individual is mutated, its fitness is evaluated, and the personal
and global best solutions are updated, respectively, if the mutated individual has better
fitness (lines 15–17). In this article, we use the uniform mutation operator, as illustrated
in Fig. 5, which changes the value of an individual (parent) in a dimension into another
random available value if a random value is smaller than the defined mutating probability.

After the above population updating terminates, GP4ESP derives and outputs the best
ESP solution from the global best solution (line 18).

EXPERIMENTAL MEASUREMENT
In this section, we conduct extensive simulated experiments to evaluate the performance
of GP4ESP. We first perform the performance evaluation in an ESP case with fixed system

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 11/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2439/fig-4
http://dx.doi.org/10.7717/peerj-cs.2439


≤0.8

Station 1 ES 1

Station 4

Station 5

Station 3

Station 2

Station 6

ES 2

ES 3

1

3

4

Parent 1

The coded solution

1

3

4

3

6

2

4

2

1

5

0.22

0.91

0.82

0.42

0.59

Parent 2 Random 
values

2

3

4

1

5

1

4

2

3

6

Crossing

Offspring 1 Offspring 2

≤0.1

2

4

2

1

5

0.15

0.24

0.82

0.09

0.54

Parent Random 
values

2

4

2

6

5

Mutating

Offspring

Figure 5 Example illustrating the mutation operator with the mutating probability of 0.1.
Full-size DOI: 10.7717/peerjcs.2439/fig-5

Table 3 The system parameter values in four cases.

Station number (S) ES number (E) Load

Fixed 1000 600 0.5
Varied scale 100, 200, . . . , 1000 0.6 * S 0.5
Varied ES number 1000 100, 200, . . . , 900 0.5
Varied load 1000 600 0.1, 0.2, . . . , 0.9

parameter values, and then, study the performance changes with varied parameters. In
this article, we consider three system parameters that are the number of edge stations, the
number of ESs and the load that is defined as the ratio of the total arrival rate on an edge
station to an ES’s service rate on average. We evaluate the performance variation in three
experiment cases of varied scale, varied ES number and varied load. In the varied scale case,
the numbers of edge stations and ESs are both changed. The system parameter values are
shown in Table 3.

For the first system case with fixed parameter values, the numbers of edge stations and
ESs are set as 1,000 and 60, respectively. The load is set as 0.5, where the service rate of each
ES is randomly set in the range between 0 and 1,000, and the total arrival rate of every edge
station is in the range of 0 to 500 (1,000 * 0.5). The response time of requests offloaded to
the cloud is 50 ms (ms). For the case with varied problem scale, the number of stations is
changed from 100 to 1,000, and the ES number is 0.6 times the station number. For the

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 12/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2439/fig-5
http://dx.doi.org/10.7717/peerj-cs.2439


Table 4 The parameters set for these meta-heuristic algorithms.

Method Parameter: Value

All maximum iterative time: 100; population size: 100
GA, DE, PSOM, GP4ESP crossover probability: 0.8; mutating probability: 0.1
SA initial temperature: 100; termination temperature: 0.01;

termination error: 1×10−4; cooling coefficient: 0.99;
annealing rate: 0.01; inner iterative time: 100

PSO, PSOM, PSOSA, nPSO inertia weight: linearly decreasing from 1.2 to 0.4;
acceleration factors: 2.0

ABC threshold for scout update: 5

varied ES number case, the ES number is changed from 100 to 900. For the varied load
case, the load is changed from 0.1 to 0.9. For the last three cases, the parameters except the
varied ones have the same settings as for the first case. The results of the experiments are
presented in the following subsections.

For verifying the effectiveness and efficiency of GP4ESP, we choose 11 following classical
and up-to-date meta-heuristic algorithms for performance comparison in solving ESP.
The parameters set for these meta-heuristic algorithms are shown in Table 4.

• GA (Genetic Algorithm) evolves the population based on Darwin’s theory of evolution
by crossover, mutation and selection operators, which is one of the most widely used and
representative meta-heuristic algorithms (Katoch, Chauhan & Kumar, 2021). For each
individual in every evolutionary iteration time, GA crosses it with another individual
selected by the selection operator and mutating it.
• DE (Differential Evolution) integrates different between individuals into evolutionary
operators (Mohamed, Hadi & Jambi, 2019). The difference of DE to GA mainly is that
every offspring generated by the mutation is based on the offset calculated by randomly
selected three individuals.
• SA (Simulated Annealing) (Mahjoubi, Grinnemo & Taheri, 2022) is a single-based
solution, which searches with depth-first search idea and the heuristic idea simulating
the physical cooling phenomenon. The evolution of SA consists of two-level nested loop,
where the outer loop is cooling and the inner one is searching the best in the current
temperature. The cooling is decreasing the current temperature by multiplying it with
a defined attenuation coefficient (< 1). The inner loop repeats updating the current
solution by Metropolis principle.
• PSO (particle swarm optimization) (Nayak et al., 2023) is simulating the birds flock’s
looking for food for population updating. PSO updates the velocity based on the current
velocity (inertia), the personal best (self-cognition), and the global best (social-cognition)
for each individual.
• ABC (Artificial Bee Colony) (Zhou, Lu & Zhang, 2023) mimics the honey bee swarms’
foraging for food. In each iterative time, ABC is composed of three phases, employed
bees, onlooker bees and scout bees for balancing the exploitation and exploration. The
first phase generates new individual based on the difference between an individual

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 13/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2439


and randomly selected one. The second phase is to share information (fitness) among
individuals. The last phase is dismissing and re-initiating employed bees with on changed
fitness several times to explore new areas.
• WOA (Whale Optimization Algorithm) (Mirjalili & Lewis, 2016) mimics the social
behaviour of humpback whales’ hunting, which also has three phases of encircling prey,
bubble-net attacking (exploitation) and search for prey(exploration) in searching. The
encircling phase is moving toward the global best(prey). In the exploitation phase,
humpback whales swim around prey in an ever-shrinking circle and following a spiral
path. In the exploration phase, randomly selected humpback whales expand their
searching areas.
• HHO (Harris Hawks Optimization) (Heidari et al., 2019) mimics the social behaviour
of Harris’ Hawks for hunting. The exploitation phase of HHO is using soft surrounding
strategy, hard surrounding strategy and soft surrounding strategy with approaching fast
dive, randomly, for updating positions of Harris’ Hawks. The exploration phase is to
move toward between the best (rabbit position) and the midpoint of Harris’ Hawks.
• GWO (Grey Wolf Optimization) (Mirjalili, Mirjalili & Lewis, 2014) are mimicking
the social behaviour of grey wolfs’ hunting. GWO sets the first three best as α, β, γ
wolves, and others as δ wolves. Then, GWO updates wolves’ positions for prey hunting
(searching), guided by α, β, γ wolves.
• PSOM (PSO with mutation operator) (Hafsi, Gharsellaoui & Bouamama, 2022) is one
of recent hybrid meta-heuristic algorithm. It performs a mutation operator on each
particle in each iteration to improve the population diversity.
• PSOSA (PSO and SA) (Lin et al., 2023) is a hybrid meta-heuristic algorithm proposed
recently. It conducts SA operator on each particle once in each iteration of PSO, which
updates the positions and accepts the update with Metropolis principle.
• nPSO (niching PSO) (Zhang et al., 2023) employs niching technology in PSO to solve
the multimodal ESP problem. This method divides particles into several niches based on
their position similarity, and replaces the global best with the niching best for updating
particles’ velocities.

For each group of experiments that evaluate the performance of all 12 algorithms, we
repeat 11 times. We use the overall average response time as the performance metric.
We also compare the time consumption of these algorithms in solving ESP problems
in the follows. All algorithms are implemented by Python, and is opened in GitHub
(https://github.com/wangXJTU/GP4ESP). The experiments are conducted in the computer
with Windows 11 Home Basic, Intel i7-14700(F) processor, RTX4060Ti graphics card with
8GBGDDR6, 16GBDDR5 5600 RAM, and 1TB PCle 4.0 SSD. The python version is 3.11.7,
and Numpy 1.26.4 is used for operating on matrices and vectors.

Performance comparison
Figure 6 shows the overall average response time achieved by different algorithms in solving
ESP in the first case. From the figure, GP4ESP achieve about 18.2%–20.7% shorter response
time than others, which verifies the high efficiency of GP4ESP for ESP solutions. The main
benefit of GP4ESP is effectively fusing the advantages of GA and PSO. GP4ESP has 18.3%

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 14/24

https://peerj.com
https://github.com/wangXJTU/GP4ESP
http://dx.doi.org/10.7717/peerj-cs.2439


0
5

10
15
20
25
30
35
40

Av
er

ag
e 

re
sp

on
se

 ti
m

e 
(m

s)

Figure 6 The average response time achieved by various ESPmethods.
Full-size DOI: 10.7717/peerjcs.2439/fig-6

and 18.5% better performance than GA and PSO, respectively, as shown in Fig. 6, which
confirms the effectiveness of the fusion scheme exploited by GP4ESP for designing hybrid
meta-heuristic algorithms. In addition, PSOM is also a hybrid PSO and GA algorithm, but
has poorer performance, compared with GP4ESP. Besides, compared with PSOSA, another
hybrid meta-heuristic algorithm, GP4ESP achieves 18.5% better average response time.
These results substantiate the high efficiency of GP4ESP’s fusion scheme. In the Table 5,
we present the numerical results achieved by the first group of experiment that is repeated
11 times. In this table, we can see that GP4ESP always achieves the best performance in
improving response time. This confirms the superior performance and the stability of
GP4ESP.

The performance superior of GP4ESP ismainly coming from the hybridization approach
that integrates the swam intelligence of PSO into the evolutionary process of GA. This not
only improves the exploitation power of GA by the self- and social-cognition to ensure
the convergence, but also guarantees the population diversity by the operators of GA to
ensure the exploration ability. Experiment results verify that GP4ESP achieves a good
balance between exploration and exploitation for searching ESP solutions, where GP4ESP
have better performance than not only GA and PSO but also other hybrid meta-heuristic
algorithms (PSOM and PSOSA).

Figure 7 gives the average time consumption of various algorithms. As shown in the
figure, GP4ESP requires more time for solving ESP, compared with other algorithms
excluding SA. This is because GP4ESP performs two more crossover operators on each
individual in every iteration thanGA, andGAhas comparable time consumptionwith other
algorithms. For SA, it conducts a depth-first search scheme on an individual, which can
be very time-consuming, especially in solving large scale optimization problems. Noticing
that ESP is not time-sensitive, it would be better to achieve a more efficient solution with

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 15/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2439/fig-6
http://dx.doi.org/10.7717/peerj-cs.2439


Table 5 The response time and orders of various algorithms in conducted ‘‘Fixed’’ experiment 11 times.

Time GA DE SA PSO ABC WOA HHO GWO PSOM PSOSA nPSO GP4ESP

1 Delay 32.53 33.33 32.72 32.96 33.14 33.36 34.87 36.67 32.99 33.02 32.72 26.70
Rank 2 9 3 5 8 10 11 12 6 7 4 1

2 Delay 33.45 34.48 33.20 33.48 33.12 33.43 34.00 37.37 33.44 33.39 33.62 27.93
Rank 7 11 3 8 2 5 10 12 6 4 9 1

3 Delay 33.10 34.48 32.92 33.05 33.29 33.97 34.76 38.09 33.38 33.21 33.36 27.92
Rank 4 10 2 3 6 9 11 12 8 5 7 1

4 Delay 32.88 33.33 33.05 33.10 33.00 33.40 33.90 37.34 33.32 33.24 33.22 26.42
Rank 2 9 4 5 3 10 11 12 8 7 6 1

5 Delay 32.64 33.33 32.51 32.62 32.55 32.65 33.48 37.33 32.85 32.53 32.75 26.20
Rank 6 10 2 5 4 7 11 12 9 3 8 1

6 Delay 33.17 33.33 32.70 33.28 32.97 32.96 34.19 37.20 33.20 33.12 33.11 26.67
Rank 7 10 2 9 4 3 11 12 8 6 5 1

7 Delay 33.02 33.33 32.90 33.28 32.91 32.68 33.54 38.00 33.19 33.26 33.24 27.13
Rank 5 10 3 9 4 2 11 12 6 8 7 1

8 Delay 33.15 33.33 32.48 33.17 33.24 33.42 35.00 37.87 33.28 33.24 33.11 26.95
Rank 4 9 2 5 6 10 11 12 8 7 3 1

9 Delay 32.17 32.26 31.82 32.23 32.18 31.53 33.32 36.98 32.04 32.17 32.15 25.78
Rank 7 10 3 9 8 2 11 12 4 6 5 1

10 Delay 33.36 33.33 33.00 33.41 33.44 33.26 34.07 37.01 33.32 33.43 33.54 27.50
Rank 6 5 2 7 9 3 11 12 4 8 10 1

11 Delay 33.12 33.33 32.69 33.19 32.85 32.66 33.53 37.60 33.09 33.24 32.54 27.08
Rank 7 10 4 8 5 3 11 12 6 9 2 1

Average Delay 33.01 33.46 32.73 33.08 32.96 33.00 33.98 37.48 33.11 33.08 33.06 26.96
Rank 5 10 2 7 3 4 11 12 9 8 6 1

some time overhead. Besides, GP4ESP requires only less than 1.5 min for solving ESP with
1,000 edge stations and 600 ESs. These confirm the practicability of GP4ESP in planning
edge computing architecture solutions.

We also perform t -tests to show that The performance differences between GP4ESP
and other algorithms are statistically significant. Table 6 gives the p-values achieved by
t -tests. As shown in the table, all p-values are lower than 0.01, which confirms GP4ESP has
statistically significant better overall average response time than other algorithms, verifying
the high efficiency of GP4ESP again.

Performance varied with system parameters
Figures 8–10 present the average response time achieved by various algorithms for solving
ESP with varied system scale, ES number and load, respectively. As shown in Fig. 8, as
the problem scale is increased, the average response time is stable for all algorithms. This
is because the improvement opportunity on the response time is mainly related to the
load (the ratio of arrival rate to service rate) according to queuing theory and the load is
(almost) not changed with the problem scale. In Fig. 9, we can see that the response time
is decreased linearly with the ES number, which is mainly because the service capacity is

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 16/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2439


0

0.5

1

1.5

2

2.5

3

Ti
m

e 
co

ns
um

pt
io

n 
(m

in
)

Figure 7 The time consumed by various ESPmethods for solving ESP.
Full-size DOI: 10.7717/peerjcs.2439/fig-7

Table 6 p-values achieved by t -test on whether the performance of GP4ESP is different from other al-
gorithms.

Average response time Time consumption

GA 1.47×10−14 5.26×10−15

DE 2.77×10−16 9.01×10−21

SA 3.28×10−14 2.43×10−11

PSO 1.75×10−14 1.61×10−16

ABC 2.79×10−14 5.13×10−15

WOA 1.33×10−15 1.02×10−15

HHO 4.70×10−17 5.49×10−15

GWO 2.61×10−19 7.65×10−16

PSOM 7.60×10−15 3.45×10−16

PSOSA 9.41×10−15 1.32×10−15

nPSO 2.79×10−15 3.57×10−15

increased with the ES number. The response time is increased linearly with the load, shown
in Fig. 10, which is consistent with queuing theory. In all of these cases, GP4ESP always
achieves the best response time, proving the efficiency of GP4ESP further and its general
applicability.

For all of these meta-heuristic algorithms, their time complexities are linearly increased
with the population size, the iterative times, the dimension of each individual (i.e., number
of stations) and the number of ES, due to following reasons. Meta-heuristic algorithms
perform various updating operators on each individual at all dimensions in every iteration
of population updating. Besides, for evaluating the fitness for each individual in every
iteration, the response time of every edge station needs to be calculated based on the

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 17/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2439/fig-7
http://dx.doi.org/10.7717/peerj-cs.2439


0

5

10

15

20

25

30

35

40

100 200 300 400 500 600 700 800 900 1000

Av
er

ag
e 

re
sp

on
se

 ti
m

e 
(m

s)

Problem scale (number of edge stations)

GA
DE
SA
PSO
ABC
WOA
HHO
GWO
PSOM
PSOSA
nPSO
GP4ESP

Figure 8 The average response time achieved by various ESPmethods with varied problem scale.
Full-size DOI: 10.7717/peerjcs.2439/fig-8

0
5

10
15
20
25
30
35
40
45
50

100 200 300 400 500 600 700 800 900

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
(m

s)

Number of edge servers

GA

DE

SA

PSO

ABC

WOA

HHO

GWO

PSOM

PSOSA

nPSO

GP4ESP

Figure 9 The average response time achieved by various ESPmethods with varied number of ESs.
Full-size DOI: 10.7717/peerjcs.2439/fig-9

corresponding ESP solution. The calculation of the response time of edge stations that ESs
are placed in has more time consumption than that of stations that ESs are not placed in,
as the former performs Eq. (5) while the latter only sets the response time as the cloud’s
processing delay. Therefore, all algorithms consume time linearly increased with the
problem scale and the ES number, as shown in Figs. 11 and 12, respectively, and relatively
unchanged with the varied load, as shown in Fig. 13. These experiment results verify the
good scalability of meta-heuristic algorithms.

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 18/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2439/fig-8
https://doi.org/10.7717/peerjcs.2439/fig-9
http://dx.doi.org/10.7717/peerj-cs.2439


0

5

10

15

20

25

30

35

40

45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
(m

s)

Load

GA

DE

SA

PSO

ABC

WOA

HHO

GWO

PSOM

PSOSA

nPSO

GP4ESP

Figure 10 The average response time achieved by various ESPmethods with varied overall load.
Full-size DOI: 10.7717/peerjcs.2439/fig-10

0

0.5

1

1.5

2

2.5

3

100 200 300 400 500 600 700 800 900 1000

T
im

e 
co

ns
um

pt
io

n 
(m

in
)

Problem scale (number of edge stations)

GA

DE

SA

PSO

ABC

WOA

HHO

GWO

PSOM

PSOSA

nPSO

GP4ESP

Figure 11 The time consumptions of various ESPmethods with varied problem scale.
Full-size DOI: 10.7717/peerjcs.2439/fig-11

CONCLUSION
In this article, edge server placement is studied, aiming at making the best decision on the
position where each purchased edge server by the service provider to build or upgrade
its edge computing solution. First, ESP problem is formulated into a binary optimization
problem with the objective of minimizing the overall average response time of all requests.
Then, for solving the ESP problem with a reasonable time for large scale systems, a hybrid
meta-heuristic algorithm is proposed by combining both advanced population evolution
ideas of GA and PSO. At last, extensive experiments are conducted and results verified the

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 19/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2439/fig-10
https://doi.org/10.7717/peerjcs.2439/fig-11
http://dx.doi.org/10.7717/peerj-cs.2439


0

0.5

1

1.5

2

2.5

3

100 200 300 400 500 600 700 800 900

T
im

e 
co

ns
um

pt
io

n 
(m

in
)

Number of edge servers

GA

DE

SA

PSO

ABC

WOA

HHO

GWO

PSOM

PSOSA

nPSO

GP4ESP

Figure 12 The time consumptions of various ESPmethods with varied number of ESs.
Full-size DOI: 10.7717/peerjcs.2439/fig-12

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e 
co

ns
um

pt
io

n 
(m

in
)

Load

GA

DE

SA

PSO

ABC

WOA

HHO

GWO

PSOM

PSOSA

nPSO

GP4ESP

Figure 13 The time consumptions of various ESPmethods with varied overall load.
Full-size DOI: 10.7717/peerjcs.2439/fig-13

performance superiority of the proposed hybrid meta-heuristic algorithm in solving ESP
problems.

In this article, we consider a relatively simple edge computing environment without
considering the cooperation between different edge stations by redistributing some requests
from one station with high load to another one with adequate edge resources. In the future,

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 20/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2439/fig-12
https://doi.org/10.7717/peerjcs.2439/fig-13
http://dx.doi.org/10.7717/peerj-cs.2439


we will expand our hybridization idea for more hybrid meta-heuristic algorithms and
supporting more edge computing scenarios.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research was supported by the National Natural Science Foundation of China (Grant
No. 62102372), the key scientific and technological projects of Henan Province (Grant
No. 232102210078 and 242102210095), the Natural Science Foundation of Henan (Grant
No. 222300420582), the Doctor Scientific Research Fund of Zhengzhou University of
Light Industry (Grant No. 2021BSJJ029) and the Key Scientific Research Project of Higher
Education Institutions in Henan Province (Grant No. 24B413005). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: No. 62102372.
The key scientific and technological projects of Henan Province: No. 232102210078,
242102210095.
Natural Science Foundation of Henan: No. 222300420582.
The Doctor Scientific Research Fund of Zhengzhou University of Light Industry: No.
2021BSJJ029.
Key Scientific Research Project of Higher Education Institutions in Henan Province: No.
24B413005.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Fang Han performed the experiments, analyzed the data, prepared figures and/or tables,
and approved the final draft.
• Hui Fu performed the experiments, analyzed the data, authored or reviewed drafts of
the article, and approved the final draft.
• Bo Wang conceived and designed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.
• Yaoli Xu performed the experiments, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Bin Lv conceived and designed the experiments, performed the computation work,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The source codes and raw data are available in the Supplemental Files.

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 21/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2439#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2439


Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2439#supplemental-information.

REFERENCES
Adam SP, Alexandropoulos S-AN, Pardalos PM, Vrahatis MN. 2019. No free lunch

theorem: a review. In: Approximation and optimization: algorithms, complexity and
applications. Cham: Springer International Publishing, 57–82.

Alhijawi B, Awajan A. 2023. Genetic algorithms: theory, genetic operators, solutions, and
applications. Evolutionary intelligence 8091–8126 In Press
DOI 10.1007/s12065-023-00822-6.

Asghari A, Azgomi H, Darvishmofarahi Z. 2023.Multi-objective edge server place-
ment using the whale optimization algorithm and game theory. Soft Computing
27:16143–16157 DOI 10.1007/s00500-023-07995-3.

Asghari A, Sayadi M, Azgomi H. 2023. Energy-aware edge server placement using
the improved butterfly optimization algorithm. The Journal of Supercomputing
79:14954–14980 DOI 10.1007/s11227-023-05271-7.

Asghari A, Sohrabi MK. 2024. Server placement in mobile cloud computing: a compre-
hensive survey for edge computing, fog computing and cloudlet. Computer Science
Review 51:100616 DOI 10.1016/j.cosrev.2023.100616.

Bahrami B, Khayyambashi M, Mirjalili S. 2023. Edge server placement problem in
multi-access edge computing environment: models, techniques, and applications.
Cluster Computing 26:3237–3262 DOI 10.1007/s10586-023-04025-7.

Bahrami B, Khayyambashi MR, Mirjalili S. 2024.Multiobjective placement of edge
servers in MEC environment using a hybrid algorithm based on NSGA-II and
MOPSO. IEEE Internet of Things Journal 11(18):29819–29837
DOI 10.1109/JIOT.2024.3409569.

Barrios C, KumarM. 2023. Service caching and computation reuse strategies at the edge:
a survey. ACM Computing Surveys 56(2):43 DOI 10.1145/3609504.

Chen Y,Wang D,WuN, Xiang Z. 2023.Mobility-aware edge server placement for mo-
bile edge computing. Computer Communications 208:136–146
DOI 10.1016/j.comcom.2023.06.001.

DayongW, Bakar KBA, Isyaku B, Eisa TAE, Abdelmaboud A. 2024. A comprehensive
review on internet of things task offloading in multi-access edge computing. Heliyon
10(9):e29916 DOI 10.1016/j.heliyon.2024.e29916.

Hafsi H, Gharsellaoui H, Bouamama S. 2022. Genetically-modified multi-objective
particle swarm optimization approach for high-performance computing workflow
scheduling. Applied Soft Computing 122:108791 DOI 10.1016/j.asoc.2022.108791.

Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. 2019.Harris hawks
optimization: algorithm and applications. Future Generation Computer Systems
97:849–872 DOI 10.1016/j.future.2019.02.028.

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 22/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2439#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2439#supplemental-information
http://dx.doi.org/10.1007/s12065-023-00822-6
http://dx.doi.org/10.1007/s00500-023-07995-3
http://dx.doi.org/10.1007/s11227-023-05271-7
http://dx.doi.org/10.1016/j.cosrev.2023.100616
http://dx.doi.org/10.1007/s10586-023-04025-7
http://dx.doi.org/10.1109/JIOT.2024.3409569
http://dx.doi.org/10.1145/3609504
http://dx.doi.org/10.1016/j.comcom.2023.06.001
http://dx.doi.org/10.1016/j.heliyon.2024.e29916
http://dx.doi.org/10.1016/j.asoc.2022.108791
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.7717/peerj-cs.2439


Katoch S, Chauhan SS, Kumar V. 2021. A review on genetic algorithm: past,
present, and future.Multimedia Tools and Applications 80(4):8091–8126
DOI 10.1007/s11042-020-10139-6.

Kiruthiga Devi M, Padma Priya M. 2023. Evolution of next generation networks and its
contribution towards industry 5.0. In: Resource management in advanced wireless net-
works. Hoboken: John Wiley & Sons, Ltd, 45–80 DOI 10.1002/9781119827603.ch3.

Lin S, Liu A,Wang J, Kong X. 2023. An intelligence-based hybrid PSO-SA for mobile
robot path planning in warehouse. Journal of Computational Science 67:101938
DOI 10.1016/j.jocs.2022.101938.

Ma R. 2021. Edge server placement for service offloading in Internet of Things. Security
and Communication Networks 2021(1):5109163 DOI 10.1155/2021/5109163.

Mahjoubi A, Grinnemo K-J, Taheri J. 2022. An efficient simulated annealing-based
task scheduling technique for task offloading in a mobile edge architecture. In: 2022
IEEE 11th international conference on cloud networking (CloudNet). Piscataway: IEEE,
159–167 DOI 10.1109/CloudNet55617.2022.9978900.

Mirjalili S, Lewis A. 2016. The whale optimization algorithm. Advances in Engineering
Software 95:51–67 DOI 10.1016/j.advengsoft.2016.01.008.

Mirjalili S, Mirjalili SM, Lewis A. 2014. Grey wolf optimizer. Advances in Engineering
Software 69:46–61 DOI 10.1016/j.advengsoft.2013.12.007.

Mohamed AW, Hadi AA, Jambi KM. 2019. Novel mutation strategy for enhancing
SHADE and LSHADE algorithms for global numerical optimization. Swarm and
Evolutionary Computation 50:100455 DOI 10.1016/j.swevo.2018.10.006.

Moorthy RS, Arikumar KS, Prathiba BSB. 2023. An improved whale optimization
algorithm for optimal placement of edge server. In: Chinara S, Tripathy AK, Li K-
C, Sahoo JP, Mishra AK, eds. The Fourth international conference on advances in
distributed computing and machine learning (ICADCML 2023). Singapore: Springer
Nature Singapore, 89–100.

Nayak J, Swapnarekha H, Naik B, Dhiman G, Vimal S. 2023. 25 years of particle swarm
optimization: flourishing voyage of two decades. Archives of Computational Methods
in Engineering 30(3):1663–1725 DOI 10.1007/s11831-022-09849-x.

Pandey C, Tiwari V, Pattanaik S, Sinha Roy D. 2023. A strategic metaheuristic edge
server placement scheme for energy saving in smart city. In: 2023 international
conference on artificial intelligence and smart communication (AISC). 288–292
DOI 10.1109/AISC56616.2023.10084941.

Tiwari V, Pandey C, Dahal A, Roy DS, Fiore U. 2024. A knapsack-based metaheuristic
for edge server placement in 5G networks with heterogeneous edge capacities. Future
Generation Computer Systems 153:222–233 DOI 10.1016/j.future.2023.11.028.

Wang B, Zhang Z, Song Y, ChenM, Chu Y. 2023. Application of quantum par-
ticle swarm optimization for task scheduling in device-edge-cloud coopera-
tive computing. Engineering Applications of Artificial Intelligence 126:107020
DOI 10.1016/j.engappai.2023.107020.

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 23/24

https://peerj.com
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.1002/9781119827603.ch3
http://dx.doi.org/10.1016/j.jocs.2022.101938
http://dx.doi.org/10.1155/2021/5109163
http://dx.doi.org/10.1109/CloudNet55617.2022.9978900
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.swevo.2018.10.006
http://dx.doi.org/10.1007/s11831-022-09849-x
http://dx.doi.org/10.1109/AISC56616.2023.10084941
http://dx.doi.org/10.1016/j.future.2023.11.028
http://dx.doi.org/10.1016/j.engappai.2023.107020
http://dx.doi.org/10.7717/peerj-cs.2439


Xing X, Song Y,Wang B. 2023. A hybrid metaheuristic algorithm for edge site
deployment with user coverage maximization and cost minimization. In-
ternational Journal of Advanced Computer Science and Applications 14(10)
DOI 10.14569/IJACSA.2023.01410100.

Zhang X, Zhang J, Peng C,Wang X. 2023.Multimodal optimization of edge server
placement considering system response time. ACM Transactions on Sensor Networks
19:13 DOI 10.1145/3534649.

Zhou B, Lu B, Zhang Z. 2023. Placement of edge servers in mobile cloud computing
using artificial bee colony algorithm. International Journal of Advanced Computer
Science and Applications 14(2):621–637 DOI 10.14569/IJACSA.2023.0140273.

Han et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2439 24/24

https://peerj.com
http://dx.doi.org/10.14569/IJACSA.2023.01410100
http://dx.doi.org/10.1145/3534649
http://dx.doi.org/10.14569/IJACSA.2023.0140273
http://dx.doi.org/10.7717/peerj-cs.2439

