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ABSTRACT

As the population ages, the increase in the number of middle-aged and older adults
with diabetes poses new challenges to the allocation of resources in the healthcare
system. Developing accurate diabetes prediction models is a critical public health
strategy to improve the efficient use of healthcare resources and ensure timely and
effective treatment. In order to improve the identification of diabetes in middle-aged
and older patients, a Bagging-RF model is proposed. In the study, two diabetes datasets
on Kaggle were first preprocessed, including unique heat coding, outlier removal, and
age screening, after which the data were categorized into three age groups, 50—60,
60-70, and 70-80, and balanced using the SMOTE technique. Then, the machine
learning classifiers were trained using the Bagging-RF integrated model with eight
other machine learning classifiers. Finally, the model’s performance was evaluated by
accuracy, F1 score, and other metrics. The results showed that the Bagging-RF model
outperformed the other eight machine learning classifiers, exhibiting 97.35%, 95.55%,
95.14% accuracy and 97.35%, 97.35%, 95.14% F1 Score at the Diabetes Prediction
Dataset for diabetes prediction for the three age groups of 50-60, 60-70, and 70—80;
and 97.03%, 94.90%, 93.70% accuracy and 97.03%, 94.90%, 93.70% F1 Score at the
Diabetes Prediction Dataset. 95.55%, 95.13% F1 Score; and 97.03%, 94.90%, 93.70%
accuracy; and 97.03%, 94.89%, 93.70% F1 Score at Diabetes Prediction Dataset. In
addition, while other integrated learning models, such as ET, RF, Adaboost, and XGB,
fail to outperform Bagging-RF, they also show excellent performance.

Subjects Data Mining and Machine Learning, Data Science
Keywords Diabetes, Healthcare, Middle-aged and elderly people, SMOTE

INTRODUCTION

Motivation

Diabetes mellitus, as a chronic metabolic disease, has become one of the most significant
challenges to global public health. With the aging of the population, the prevalence of
diabetes in the middle-aged and elderly population, a group with a high prevalence of
diabetes, is significantly higher than that of other age groups (WHO, 2024a; WHO, 2024b;
WHO, 2024c). Type 1 diabetes is caused by insulin destruction, while type 2 diabetes is
caused by insufficient insulin secretion, leading to elevated blood glucose. Type 1 diabetes
is an autoimmune disease that usually develops in childhood or adolescence and results
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in insufficient insulin production. Type 2 diabetes, on the other hand, is related to age,
weight, and lifestyle and is the most common type of diabetes among older people, mainly
due to the body’s weakened response to insulin. Both types of diabetes, if left uncontrolled,
can lead to serious complications such as heart disease, stroke, kidney disease, and vision
loss. Chronic poor blood sugar control may also increase the risk of amputation and nerve
damage.

Middle-aged and older adults are more likely to have a high prevalence of diabetes due to
physiological decline and a poor diet. With the aging of the population, the growing group
of middle-aged and elderly diabetics poses new challenges to the allocation of resources
in the healthcare system. The development of accurate diabetes prediction models not
only improves the efficiency of healthcare resource use and ensures that resources are
prioritized and allocated to the neediest patients but also provides timely and effective care
and treatment for middle-aged and older adults, which is a critical strategy in public health
to address the challenges of aging.

Therefore, it is crucial to predict and manage diabetes in middle-aged and older adults.
In recent years, machine learning technology has been increasingly used in healthcare, and
its powerful data processing capabilities and pattern recognition functions have provided
new perspectives and tools for disease prediction.

Machine learning has achieved remarkable results in predicting diabetes and middle-aged
and elderly diseases, and current research mainly uses integrated models, neural networks,
and deep learning to improve prediction accuracy. However, current research focuses on
predicting the whole population and neglects the particular diabetes prediction of high-risk
groups such as middle-aged and older adults. Therefore, future research should pay more
attention to high-risk groups and try to use more kinds of classifiers for prediction.

Objective

This study focuses on the high prevalence of diabetes, i.e., the middle-aged and elderly
population aged 50-80, and proposes the Bagging-RF integrated learning model. The
Diabetes Simple Diagnosis and Diabetes Prediction Dataset datasets from the Kaggle
website were selected for the experiment (Kaggle, 2023; Kaggle, 2024).

The data were first preprocessed, including uniquely hot coding, outlier removal, and
age screening, to categorize the dataset into three age groups according to age: 50—60 years,
60-70 years, and 70-80 years. Due to the uneven distribution of the preprocessed data, the
dataset was balanced by a few synthetic class samples using the SMOTE technique. Then,
it was trained using the Bagging-RF integrated model and RF, GNB, LR, KNN, DT, ET,
Adaboost, XGB, and eight machine-learning classifiers. The performance of each classifier
is compared by metrics such as accuracy, precision, recall, specificity, AUC, and F1 score.

The results showed that the Bagging-RF integrated model demonstrated excellent
performance in predicting diabetes in three age groups: 5060, 60-70, and 70-80 years old.
The study can effectively help community physicians identify high-risk individuals so as to
take precautionary measures and make early diagnoses in advance, reducing the incidence
of diabetes mellitus and the occurrence of complications.

Shi and Sun (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2436 2/35


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2436

PeerJ Computer Science

Strengths and weaknesses of this study

The main contributions of this study are as follows:

1. An integrated Bagging-DT-RF model is proposed, which shows excellent performance
in predicting diabetes in all three age groups: 50-60, 60-70, and 7080 years.

2. Experiments were conducted on the Diabetes Simple Diagnosis and Diabetes Prediction
Dataset using KNN, LR, GNB, RF, ET, DT, Adaboost, and XGB machine learning
classifiers, where the integrated models such as RF, ET, Adaboost, and XGB performed
well.

3. Key metrics such as accuracy, precision, recall, specificity, F1 score, confusion matrix,
ROC curve, and AUC are comprehensively applied to evaluate the performance of each
machine learning classifier in the diabetes classification task.

4. The effect of the SMOTE data balancing technique in diabetes prediction models was
analyzed to assess its impact on model performance.

The shortcomings of this study are as follows:

1. The proposed model’s performance still needs improvement. Although the model
performs well in predicting diabetes in 50-60-year-olds, there is still room for
improvement in the accuracy of diabetes prediction in 60—70-year-olds and 70—
80-year-olds.

2. The proposed model could be more interpretable, making it difficult for healthcare
professionals and patients to understand its decision logic and prediction results.

3. The SMOTE technique may introduce noise that negatively affects the model’s
performance.

Synopsis of the remaining chapters

The rest of the article is as follows: the literature review reviews the research of previous
authors in machine learning diabetes prediction. The research methodology section
describes the process and methodology used in this study. The experimental results section
discusses the experimental results. The results discussion section discusses and analyses the
experimental results. The summary section summarises the paper.

LITERATURE REVIEW

The application of machine learning in diabetes and disease prediction in middle-aged
and older adults has received much attention and has achieved significant results. The
research mainly uses integrated models, neural networks, deep learning, data balancing
techniques, and feature engineering to improve prediction accuracy, which is valuable for
clinical practice.

The integrated learning model again shows excellent performance in diabetes prediction.
Tripathi et al. (2023) trained on the PIMA dataset using the integrated model along with
soft polling for diabetes prediction. When comparing five machine learning models, such
as LR, KNN, SVC, DT, AdaBoost, and GradientBoosting, the performance is higher, up to
82.8% accuracy. However, there is still room for improvement with 82.8% accuracy, and
more models such as XGB, RF, and LGBM can be introduced for performance comparison.
Modak & Jha (2023) comprehensively evaluated the model performance on the Diabetic2
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dataset using nine models: an integrated model, a linear model, and a nonlinear model.
CatBoost performed the best, achieving 95.4% accuracy. The performance of the models
on other datasets still needs to be evaluated. Oliullah et al. (2024) achieved 92.91% accuracy
in predicting diabetes using an integrated model on the PIMA dataset. The introduction
of Shapley enhances the interpretability of the machine learning model at the same
time. However, all the machine learning classifiers compared are integrated models, and
linear and nonlinear models can be added appropriately to compare the results. Dogru,
Buyrukoglu ¢ Ari1(2023) proposed a super learner model to determine cardinality as the
optimal feature selection technique from five types of feature engineering. Then, three
different datasets were used to measure the robustness of the proposed model, and 99.6%,
92%, and 98% accuracy were obtained, respectively. The study can appropriately increase
the interpretability of the model. Xu et al. (2022) Prediction using clinical data from
2015-2021 in Chonggqing tertiary hospital. LR, CART, XGB, and RF were used for diabetes
prediction, where RF had the best performance with a diabetes classification accuracy of
73.5%. The study can be appropriate for adding more machine learning algorithms for
prediction. At the same time, model accuracy needs to be improved. Wu et al. (2022) on
the NHANES dataset, using RF classification accuracy of 92% accuracy, also increases
the interpretability of the model by explaining the main features that affect diabetes
prediction. However, the number of classifiers used in it is low, which can be increased
appropriately for comparative analysis. Liu et al. (2022) trained using LR, DT, RF, and XGB
models with the best accuracy of 75.03% for XGB model performance on the Wuhan City
2019-2020 follow-up dataset, which has 127,031 samples and a large sample size, also still
with the use of Shapley additive interpretation (SHAP) to calculate and visualize feature
importance. However, the study only used four machine learning models, which can be
increased appropriately. Qin et al. (2022) used five machine learning classifiers for diabetes
prediction on the NHANES data computer, of which the CATBoost classifier performed
best, with an accuracy of 82.1%. Among the five machine learning models, dietary intake
levels of energy, carbohydrates, and fat contributed the most to the prediction of diabetic
patients. Modak ¢» Jha (2023) used a range of machine learning techniques, including
linear models, nonlinear models, integrated models, efc., to predict diabetes on Kaggle’s
real-world dataset data machine. CatBoost performed the best, with an accuracy of 95.4%.
However, the study was conducted only on a single dataset, and the robustness of the model
can be subsequently verified on multiple datasets. Amima (2024) proposed the En-RfRsK
model. The model consists of three machine-learning techniques: RF, SVM, and KNN.
Experiments were conducted on the PIMA dataset with an accuracy of 88.89%. For the
En-RfRsK model, the interpretability of the model can be increased appropriately, and the
robustness of the model can be verified on multiple datasets. Ahmed et al. (2022) proposed
SVM-ANN model with 94.87 prediction accuracy on the UCI Machine Learning Repository
data machine. Jiang et al. (2023) designed a diabetes risk assessment model based on an
RF classifier. The accuracy rate was 95.15% on the dataset of diabetic patients’ follow-up
records from 2016-2023 in Haizhu District, Guangzhou City, China. The study dataset
has a large amount of data and a high accuracy rate. Still, the limitation is that the data
features need to be more comprehensive, which may affect the accuracy of disease risk
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prediction to some extent. Jannoud et al. (2024) proposed a hybrid multi-layer algorithm
(MLHA) model. The first layer of the model consists of three different SVC, RF, and KNN.
They operate in parallel and then output data. The output data is used as the input data

for XGBoost and then added to the prediction. The accuracy is 86.5%, respectively.

In exploring the field of diabetes risk prediction, in addition to integrated learning as a
technique, neural networks and deep learning algorithms have been used in academia. Zhao
et al. (2024) conducted diabetes prediction experiments using clinical data from electronic
data of patients attending the metabolic disease clinic at the Affiliated Hospital of Qingdao
University. Five machine learning algorithms, artificial neural network (ANN), decision
tree (DT), random forest (RF), support vector classification (SVC), and Gaussian Naive
Bayes (GNB), were chosen to predict diabetes, and the results showed that ANN had the best
performance, achieving an accuracy of 92.47%. This study can add more machine learning
algorithms for diabetes prediction as appropriate. Olisah, Smith ¢ Smith (2022) proposed
a deep learning model, 2GDNN, for diabetes mellitus classification using Spearman
correlation and polynomial regression for feature selection and missing value interpolation,
respectively. Experiments were carried out on the PIMA and LMCH data computers, with
accuracy of 97.34% and 97.28% model performance, respectively. Chowdhury, Ayon ¢
Hossain (2024) used four data enhancement techniques, SMOTE-N, SMOTE-Tomek, and
SMOTE-ENN, to improve the performance of machine learning algorithms using data
enhancement techniques on the BRFSS-2021 data computer. Gradient Boost performs the
best with an AUC of 0.789. This study only used descriptive statistics to describe the effect
of the four data enhancement techniques on model performance, and it is recommended
to include judgemental statistics such as paired samples ¢-tests to comprehensively evaluate
the impact of the four data enhancement techniques on model performance.

In addition, the use of data balancing techniques and feature engineering techniques
can significantly improve the performance of machine learning models when it comes
to diabetes prediction. Uddin et al. (2024) used the 2019 diabetes and PIMA datasets for
the study, one balanced and the other imbalanced. The imbalanced dataset was processed
using the SMOTE technique. Then six machine learning models, logistic regression (LR),
k-nearest neighbor, naive Bayes, RF, SVC, and DT, were selected for experimentation,
which showed 97% accuracy on the 2019 diabetes dataset and 80% on the PIMA dataset.
The results show that balancing the dataset significantly reduces the number of false
negative tests. Bhat, Ansari ¢» Ansari (2024) explored the effect of three feature engineering
methods, CFS, SES, and information gain, on the performance of machine learning models
on the T2DM dataset. Diabetes prediction is done using six machine learning models: LR,
SVC, GNB, DT, RF, and KNN. Finally, the best DT performance is 96.10%. The machine
learning algorithms in this study are less and should be increased appropriately. Wagqas
Khan et al. (2024) used Chi-square, SFS, and mutual information for feature selection
on the PIMA and Early Risk Diabetes datasets and RF, GB, ANN, Tab-Net, and SVC for
predicting diabetes. RF and Tab-Net achieved 99.35% and 99.36% accuracy, respectively,
and excellent model performance. Shaukat et al. (2023) selected KNN, RF, SVC, and LR
classifiers and experimented with WEKA 3.8.1 and Python 3.10. Finally, the LR classifier
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performed best with 81% accuracy. As appropriate, this experiment can be predicted by
adding integrated models like XGB, light gradient-boosting machine, bagging, etc.

Summarising the existing studies, it is found that most of the current research strategies
chosen by authors for diabetes research are integrated models, neural network and deep
learning models, data balancing techniques, and feature engineering to improve prediction
accuracy, with the use of integrated learning models accounting for a higher percentage.
The vast majority of authors choose PIMA, NHANES, etc. as the training datasets, which
are the classic datasets for diabetes research, but the sample size is small. Some authors also
choose the dataset of hospital patients, which is characterised by a large sample size and wide
age range, and the collection of patient data takes a long time. Current research has some
shortcomings in the prediction of diabetes mellitus, mainly due to an overconcentration on
the prediction of the population as a whole without giving enough attention to high-risk
groups, such as middle-aged and older adults. In addition, most researchers have chosen
a small number of control classifiers for classification prediction of diabetes mellitus,
which limits the comprehensive assessment and demonstration of the performance of the
classifiers. Relevant presentations are summarised in Table 1.

MATERIALS & METHODS

The Diabetes Simple Diagnosis (Kaggle, 2024) and Diabetes Prediction Dataset (Kaggle,
2023) datasets from the Kaggle website were selected for testing. The data were first
preprocessed, including solo heat coding, outlier removal, and age screening. The dataset
was categorised into age groups: 50-60, 60—70, and 70-80. The dataset was then balanced
using a few class samples synthesised using the SMOTE technique.

Then, it is trained using the Bagging-DT-RF integrated model and RF, GNB, LR,
KNN, DT, ET, Adaboost, XGB, and 8 machine learning classifiers as controls. Finally, the
performance of each classifier is compared using metrics such as accuracy, precision, recall,
AUC, and F1 score. The research roadmap is shown in Fig. 1.

Data

Two datasets, the Diabetes Simple Diagnosis and Diabetes Prediction datasets, were used
for diabetes prediction in this study. The Diabetes Simple Diagnosis dataset consists of
88,380 samples with seven input features, of which 35,892 are over 50 years of age.

The target attributes were binary and included 8424 diabetic and 79,956 non-diabetic
patients, with 6696 diabetic and 29,196 non-diabetic patients in the 50+ sample. For
detailed data information, please refer to Table 2.

The Diabetes Prediction Dataset consists of 100,000 samples of eight input features, with
39,918 samples over 50 years old. The target attributes are binary and include 8,500 diabetic
and 91,500 non-diabetic patients, with 6790 diabetic and 33,127 non-diabetic patients in
the 50+ sample. Please refer to Table 3 for detailed data information.

Data preprocessing
The input categorical variables were first preprocessed, i.e., they were subjected to one-hot
encoding. The gender variable on the Diabetes Simple Diagnosis dataset and the gender
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Table 1 Summary of relevant studies.

Data set

Methodologies

Vintage

Drawbacks

Performances

1 Tripathi et al.
(2023)

2 Modak ¢ Jha
(2023)

3 Uddin et al.
(2024)

4 Oliullah et al.
(2024)

5 Zhao et al.
(2024)

PIMA

Diabetic2

2019 Diabetes
Dataset, PIMA

PIMA

Electronic data
of patients in
the Metabolic
Disease Spe-
cialist Clinic
of the Affili-
ated Hospi-

tal of Qingdao
University

Ensemble
Methods—
Soft voting

CatBoost

SMOTE-RF

Ensemble
model

ANN

Predictions were made
using the integrated
model in conjunction
with soft voting, while
performance was com-
pared with six machine
learning models, with
higher performance
reaching 82.8% accu-
racy.

Multiple machine learn-
ing models, such as LR,
KNN, XGB, LGBM, and
CatBoost, are used to
predict heart disease,
and various metrics are
used to measure model
performance.

SMOTE-RF achieved
97% and 80% accuracy.

Exploring the effect of
balanced and unbal-
anced datasets on the
experimental results
showed that balanced
datasets can significantly
reduce the number of
false negative tests.

Diabetes prediction us-
ing integrated models
and selecting XGB, Bag-
ging, LGBM, and Ad-
aBoost as base models
achieved 92.91% accu-
racy.

The introduction of
Shapley facilitated the
interpretation of ma-
chine learning models.

The selected dataset is
from accurate clinical
data, which is authentic
and reliable. The ANN
classifier performance
is excellent, reaching
92.47% accuracy.

The accuracy of 82.8% is
relatively low; while the
PIMA dataset samples
are all female, there are
fewer machine learning
classifiers for compar-
ison, and XGB, R, and
LGBM models can be
added appropriately for
contrast.

Only one dataset, Di-
abetic2, was selected

for training and testing,
and the model’s perfor-
mance on other diabetes
datasets was not tested.

A detailed explanation
of how the SMOTE
technique impacts the
performance of machine
learning models is not

provided.

All the machine learning
classifiers compared are
integrated models, and
linear and non-linear
models can be added as
appropriate to compare
results.

Only five machine learn-
ing algorithms, ANN,
DT, RF, SVC, and GNB,
were selected to predict
diabetes; more machine
learning algorithms can
be added appropriately.

82.8%

95.4%

97%, 80%.

92.91%

92.47%

(continued on next page)
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Table 1 (continued)

Data set Methodologies

Vintage

Drawbacks Performances

6 Bhat, Ansari
& Ansari
(2024)

7 Dogru,
Buyrukoglu &
Ar1(2023)

8 Xu et al.
(2022)

9 Wu et al.
(2022)

T2DM Feature
engineering-

DT

Early Diabetes
Risk Predic-
tion, PIMA,
Diabetes 130-
US Hospitals

The hybrid
super ensem-
ble learning
model

2015-2021 RF
Chongging

Tertiary Hos-

pital Data

NHANES RF

To explore the effect of
three feature engineer-

ing methods, CFS, SFS,
and Information Gain,

on the performance of

machine learning mod-
els.

Predictions are made us-

ing six machine learn-
ing models, namely LR,
SVC, GNB, DT, RF,

and KNN, with the final
best DT performance of

96.10%.

A super learner model
is proposed, and three
different datasets are
used to measure its ro-
bustness. The proposed
model obtained 99.6%,

92%, and 98% accuracy,

respectively.

Determine the cardinal-

ity as the optimal feature
selection technique from

five types of feature en-
gineering.

Prediction using hos-
pital clinical data. Di-
abetes prediction was
made using LR, CART,
XGB, RF, etc., where RF
performed the best with
a diabetes classification
accuracy of 73.5%.

RF classification was
929% accurate with high
accuracy.

Increased the inter-
pretability of the model
to recognize the most
critical risk factors asso-
ciated with diabetes.

More machine learning 96.10%
algorithms can be added
for prediction as appro-

priate.

The interpretability of 99.6%, 92%, 98%
the model can be in-

creased appropriately.

More machine learn- 81.4%
ing algorithms could be
added for prediction as

appropriate.

Model accuracy needs to
be improved.

More machine learning 92%
algorithms can be added

for prediction as appro-

priate.

(continued on next page)
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Table 1 (continued)

Data set Methodologies  Vintage Drawbacks Performances
10 Liu et al. 2019-2020 XGBoost On the Wuhan City Only four machine 75.03%
(2022) follow-up 2019-2020 follow-up learning models are
dataset dataset, LR, DT, RF, and used, and additional ma-
XGB models were used chine learning models
for training, and the can be added as appro-
XGB model performed priate.
with the best accuracy of
75.03%.
Feature significance was
calculated and visualized
using Shapley additive
interpretation (SHAP).
11 Wagqgas Khan PIMA, Early RF, Tab-Net The study used Chi- The machine learning 99.35%, 99.36%
etal. (2024) Risk Diabetes square, SFS, and mutual used in this study uses
Dataset information for feature fewer machine learning
selection and used RF, models, and more ma-
GB, ANN, Tab-Net, and chine learning classifiers
SVC to predict diabetes could be added for con-
mellitus. RF and Tab- trol.
Net achieved 99.35%
and 99.36% accuracy,
respectively.
12 Qinetal. NHANES CATBoost CATBoost classifier, Prediction accuracy 82.1%
(2022) which had an accuracy needs to be improved.
of 82.1%.
Among the five machine Fewer of its learning
learning models, the models are used.
dietary intake levels of
energy, carbohydrates,
and fats contributed the
most to the prediction of
diabetic patients.
13 Olisah, Smith PIMA, LMCH 2GDNN Spearman correlation The interpretability of 97.34%, 97.28%
& Smith and polynomial regres- the model can be in-
(2022) sion are used for feature creased appropriately.
selection and missing
value interpolation.
Proposed deep learning
model 2GDNN model
for diabetes classifica-
tion
14 Modak & Jha Kaggle’s Real CatBoost Using a range of ma- The robustness of the 95.4%
(2023) World Dataset chine learning tech- model can be verified on

niques, including lin-
ear models, non-linear
models, integrated mod-
els, etc., CatBoost per-
formed best with an ac-
curacy of 95.4%.

multiple datasets.

(continued on next page)
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Table 1 (continued)

Data set Methodologies  Vintage Drawbacks Performances
15 Amma (2024) PIMA En-RfRsK The En-RfRsK model, The interpretability of 88.89%.
which consists of three the model can be in-
machine learning tech- creased appropriately.
niques: RF, SVM, and
KNN, is proposed.
The En-RfRSK method The robustness of the
then obtained an accu- model can be verified on
racy of 88.89% on the multiple datasets.
PIMA data machine.
16 Ahmed et al. UCI Machine SVM-ANN The prediction accuracy The interpretability of 94.87%
(2022) Learning of the proposed SVM- the model can be in-
Repository ANN model is 94.87. creased appropriately.
17 Shaukat et al. PIMA LR KNN, RF, SVC, and LR Integrated models such 81%
(2023) and classifiers were selected, as XGB, LGBM, and
Wagqas Khan and experiments were Bagging can be added
etal. (2024) carried out using WEKA for prediction as appro-
3.8.1 and Python 3.10. priate.
finally, the LR classifier
performed the best with
81% accuracy.
18 Jiang et al. Records RF A diabetes risk assess- The limitation of less 95.15%
(2023) of diabetic ment model based on comprehensive data
patients’ an RF classifier was de- characterization may
follow-up signed. The accuracy somewhat affect the ac-
in Haizhu was 95.15 percent. curacy of disease risk
District, prediction.
Guangzhou
City, China,
2016-2023,
252176 records
A method applicable to
community-based mass
screening for diabetes
risk is provided.
19 Jannoud et al. PIMA Hybrid The first layer consists Only classifiers like RF, 86.5%
(2024) multi-layer of three different SVC, LR, SVC, and ANN were
algorithm RF, and KNN. They op- selected for this experi-
(MLHA) erate in parallel and then ment to compare results.

output the data; the out-
put data is used as input
data for XGBoost and
then into prediction.
The accuracy is 86.5%,
respectively.

(continued on next page)
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Table 1 (continued)

Data set Methodologies  Vintage Drawbacks Performances
20 Chowdhury, BRFSS-2021 Gradient Four data enhancement Only descriptive statis- 0.789 (AUC)
Ayon & Hos- Boost techniques, SMOTE- tics were used to de-

sain (2024)

N, SMOTE-Tomek,

and SMOTE-ENN, are
used to improve the per-
formance of machine
learning algorithms us-
ing data enhancement
techniques. Gradient
Boost has the best per-
formance, with an AUC
of 0.789.

scribe the effects of the
four data enhancement
techniques on model
performance, and it

is recommended that
judgment line statistics
such as paired samples
t-tests be added to com-
prehensively evaluate
the effects of the four

data enhancement tech-
niques on model perfor-
mance.
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Figure 1 Flow chart of the study.
Full-size Gal DOI: 10.7717/peerjcs.2436/fig-1

and smoking history variables on the Diabetes Prediction Dataset were subjected to the
one-hot encoding process to turn them into 0s and 1s.

In the outlier detection and removal stage, outliers that are beyond the range of plus or
minus two standard deviations from the mean are removed, which can effectively reduce
the impact of noise in the data on the performance of the machine learning model.

Outliers were detected for BMI, HbAlc level, and blood glucose level variables in the
Diabetes Simple Diagnosis dataset. The mean and standard deviation were calculated first,
then outliers outside the range of plus or minus 2 standard deviations from the mean were
removed as shown in Egs. (1) and (2). The mean BMI was 27.07 with a standard deviation
of 13.22, and samples less than 13.22 and more excellent than 40.92 were removed. The

Shi and Sun (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2436

11/35


https://peerj.com
https://doi.org/10.7717/peerjcs.2436/fig-1
http://dx.doi.org/10.7717/peerj-cs.2436

PeerJ Computer Science

Table 2 Diabetes simple diagnosis dataset details.

Feature Description Numerical value

F1 Age Age of the sample 0-80

F2 Gender Gender refers to the biological sex of the individual Female, Male

F3 BMI Body Mass Index 10-95

F4 High BP Whether suffering from high blood pressure, 1 means 0,1
yes, 0 means no 0.

F5 FBS Fasting blood glucose levels after overnight. 80-300

F6 HbAIc level Indicators of the average blood glucose level of the 3.5-12
sample over the past 2-3 months.

F7 Smoking Smoking, 1 means yes, 0 means no. 0,1

F8 Diagnosis Whether suffering from diabetes, 1 means suffering 0,1

from diabetes, 0 means no.

Table 3 Diabetes prediction dataset details.

Feature Description Numerical value
F1 Gender Gender refers to the biological sex of the indi- Female, Male
vidual
F2 Age Age of the sample 0-80
F3 Hypertension Whether the sample has hypertension, 1 means 0,1
yes, 0 means no.
F4 Heart disease Whether suffering from heart disease, 1 means 0,1
suffering from heart disease, 0 means no.
F5 Smoking history Smoking history Current, No Info, Ever,
Former, Never, Not current
F6 BMI Body Mass Index 10-96
F7 HbAlc level Indicators of the average blood glucose level of 3.5-9
the sample over the past 2—3 months.
F8 Blood glucose level Glucose content in blood. 80-300
F9 Diabetes Whether suffering from diabetes, 1 means suf- 0,1

fering from diabetes, 0 means no.

mean HbAIc level was 5.53 with a standard deviation of 1.07; samples less than 3.39 and
more significant than 7.68 were removed. The mean of FBS was 137.05 with a standard
deviation of 1.07, and samples less than 3.39 and more significant than 7.68 were removed.
The mean value for FBS was 137.05 with a standard deviation of 39.63, deleting samples
less than 57.79 and greater than 216.31.

Outlier tests were performed on the BMI, HbAlc level, and blood glucose level variables
in the Diabetes Prediction Dataset. The mean BMI was 28.93 with a standard deviation
of 5.77, and samples smaller than 17.40 and larger than 40.46 were removed. The mean
HbA1c level was 5.64 with a standard deviation of 1.14, and samples smaller than 3.36 and
more significant than 7.92 were removed. The mean value of the HbAlc level was 5.64
with a standard deviation of 1.14, and samples less than 3.36 and more significant than
7.92 were removed. The mean blood glucose level was 140.87 with a standard deviation
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Table4 Mean and standard deviation analysis table.

Mean (x) Standard deviation (o) Lower bound Upper bound
Diabetes simple diagnosis
BMI 27.07 13.22 13.22 40.92
HbA1lc level 5.53 1.07 3.39 7.68
FBS 137.05 39.63 57.79 216.31
Diabetes prediction dataset
BMI 28.93 5.77 17.40 40.46
HbA1lc level 5.64 1.14 3.36 7.92
Blood glucose level 140.87 43.32 54.24 227.50

of 43.32, and samples less than 54.24 and more excellent than 227.50 were removed. The
table of means and standard deviations is shown in Table 4.

Lower bound =x—2x o (1)

Upper bound =x+2xo. (2)
The test set was age-stratified into three specific age groups:

e Age 50—60: between the ages of 50 and 60, in the transition from late middle age to early
old age.

e Age 60-70: between the ages of 60 and 70, in the early stages of old age, this age group
may face more age-related health challenges, such as chronic diseases and a gradual
decline in physical functioning.

e Age 70-80: between the ages of 70 and 80, the advanced stage of ageing, individuals in
this age group focus on manageing chronic disease and maintaining quality of life.

This stratification strategy aims to provide insight into the performance and applicability
of machine learning classifiers in different age groups of the senior population. By
subdividing the test set into these specific age intervals, the classifiers’ diagnostic accuracy

and predictive power can be more precisely assessed across age groups.

Data balancing processing

Unbalanced data distribution may negatively affect the predictive performance of machine
learning models. To improve the generalisation ability and accuracy of the model, an
SMOTE strategy is adopted to balance the dataset and solve the problem of unbalanced
data distribution. SMOTE increases the number of minority class samples by generating
synthetic data points between the minority class samples, which reduces the degree of
unbalance in the dataset (Arafa et al., 2022).

The mechanism of action for generating synthetic samples in SMOTE is to create new
data points by linearly interpolating the space between a small number of class samples
and their immediate neighbours.

Firstly, identify the classes that have a small number of samples in the classification
problem. After that, the nearest neighbours of each minority class sample were found
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using Euclidean distance. These nearest neighbours should also be minority-class samples
to ensure the relevance and quality of the synthetic samples. Then, n samples (7 less than
or equal to k) are randomly selected from the k nearest neighbours of each minority
class sample, and then linear interpolation is performed between the original sample and
these selected nearest neighbours; for each selected nearest neighbour sample x, the
vector difference between the original sample and it is computed and then multiplied
by a random number between 0 and 1 §, which determines the correlation of the newly
synthesised sample xsmote with the vector difference in the original sample x and the
relative position between the nearest neighbours xn. The calculation formula is given in
Eq. (3).

Xsmote =X +8 X (x, —x). (3)

There are many other variants of the SMOTE technique from which it is derived, such
as Borderline-SMOTE, ADASYN, SMOTE-Tomek, and so on (Li et al., 2022; Mostafaei,
Ahmadi & Shahrabi, 2023; Munshi, 2024). With these methods, data from different age
groups can be better balanced to optimise model training and prediction.

Looking at the data distribution for age 50-60, age 60-70, and age 70-80 on both
datasets, it was observed that the data distribution needed to be balanced among the three
age groups. Before the balancing process of the dataset, it was observed that the ratio of
people without diabetes to people with diabetes was 10:1 in the six datasets, and by applying
the SMOTE technique, the data distribution was adjusted so that the ratio of people without
diabetes to people with diabetes reached a balanced state. The data distribution before and
after balancing is shown in Fig. 2.

Bagging-RF integrated learning classifier

A bagging classifier with DT as the base model is first configured. A grid search algorithm
combined with 5-fold cross-validation is used to explore different hyperparameter
combinations to optimise its performance systematically. The optimal parameter settings
for the bagging classifier were determined through a grid search, including parameters
such as the number of DTs, the size of each subsample, and the maximum depth of the
decision tree. Using these optimal hyperparameters, the Bagging classifier was trained,
and subsequently, its predictions on the training set were fed into the RF classifier as new
training data.

Combining the advantages of the two integrated learning methods improves the accuracy
and stability of the prediction of unknown data. The training process of the Random Forest
classifier utilises the output of the Bagging classifier, thus integrating more decision tree
prediction information, with the expectation of achieving better performance in all types
of classification evaluation metrics. The mechanism of bagging-RF action is shown in the
pseudo-code below.

Figure 3 shows the Bagging-RF flowchart. This multi-level integrated learning strategy
effectively incorporates the advantages of multiple models to achieve better classification
results on complex datasets.
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Figure 2 Data distribution before and after balancing. (A) Diabetes Prediction Dataset 50—60 years
of age. (B) Diabetes Prediction Dataset 60—70 years old. (C) Diabetes Prediction Dataset 70—80 years of
age. (D) Diabetes Simple Diagnosis Dataset 50—60 years old. (E) Diabetes Simple Diagnosis 60—70 years
dataset. (F) Diabetes Simple Diagnosis Dataset 70—80 years old.
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Figure 3 Bagging-RF flow chart.
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Algorithm: Bagging-RF
Require
X training features, y training label
Ensure
Trained Bagging-RF model and evaluation metrics
1. Importing the processed diabetes dataset:
X: Predictor variables indicative of diabetes mellitus
y: Binary outcome indicating the presence or absence of diabetes
mellitus

2. Split dataset into training and testing sets:
Xirains Xtest» Yirain» Yiest <— train_test_split(X, y, test_size = 0.2, ran-
dom_state = 42)

3. Train Bagging model:
Bagging model < BaggingClassifier(random_state = 42)
Bagging model.fit(Xtrin,Virain)
Bagging predictions <— bagging model.predict(Xest)

4. Prepare new feature sets for Random Forest:
Bagging predictions_train < bagging model.predict(X;ain).reshape(—1,1)
Bagging predictions_test <— bagging predictions.reshape(—1,1)
Xirain_rf < np.hstack((Xipin, bagging predictions_train))
Xiest_rf < np.hstack((Xest, baggin_ predictions_test))

5. Train Random Forest model:
rf_model <— RandomForestClassifier(n_estimators =
100,random_state = 42)

rf_model.fit(Xirain_rf> Yerain)
rf_predictions < rf_model.predict(Xest_rf)
6. Evaluate model performance:
accuracy <— accuracy_score(Vies, rf_predictions)
precision <— precision_score(yest, rf_predictions,)
recall < recall_score(yies, rf_predictions)
f1 < f1_score(yies, rf_predictions)
conf_matrix <— confusion matrix(yies,rf_predictions)
TN <«—conf_matrix[0,0]
FN <«—conf_matrix[1,0]
FP <—conf_matrix[0,1]
TP <—conf_matrix[1,1]

Machine learning classifiers

This section describes eight machine learning classifiers that will be used for diabetes
risk prediction in the middle-aged and elderly populations. The selected classifiers
include GNB, KNN, LR, RF, ET, DT, AdaBoost, and XGB. These classifiers cover several
different domains, such as integrated learning (Buyrukoglu ¢ Savas, 2022; Buyrukoglu,
2021), Bayesian methods, and linear and nonlinear models. They are intended to ensure
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that this study is able to comprehensively assess the performance of the different types
of classifiers on diabetes risk prediction. These eight classifier models are analysed for
performance comparison against the Bagging-RF model as a control group. Next, the
principles and applications of each classifier are briefly described.

K-nearest neighbors (KNN): The K-nearest neighbors algorithm is instance-based
learning that predicts the category of a new data point by finding the k closest points in the
dataset to the latest data point. This algorithm relies on a distance metric (e.g., Euclidean
distance). It assigns the new data point category based on majority voting on the categories
of its k nearest neighbours.

Logistic regression (LR): Logistic regression is a statistical model for solving binary
classification problems. The model represents the likelihood that an outcome belongs to
a particular category by applying a logistic function that transforms the output value of a
linear regression into a probability value between 0 and 1. This method is applicable when
the data set is linearly differentiable (Biesheuvel et al., 2008).

Random forest (RF): Random forest is an integrated learning model that constructs
multiple decision trees and aggregates their predictions to improve prediction accuracy by
averaging or majority voting. Random Forest increases the variability between models by
using a different subset of data and a randomly selected subset of features for each decision
tree, thus improving overall generalisation.

Extra trees classifier (ET): The extra trees classifier is a variant of random forest that
employs more randomness in pruning decision trees. Specifically, extra trees creates more
decision trees by randomly selecting the features to be segmented and the cut points to
increase the integration’s diversity further (Geurts, Ernst & Wehenkel, 2006).

Decision tree (DT): A decision tree classifier is a recursive tree structure used to partition
data into different classes or make regression predictions based on the value of features.
Each internal node represents a feature, each branch represents a decision rule, and the leaf
nodes represent the final predicted output.

AdaBoost: The AdaBoost classifier is an adaptive boosting algorithm that integrates
multiple weak classifiers into one robust classifier through a weighted voting mechanism.
AdaBoost adaptively adjusts the weights of the training samples and the error rate of
the weak classifiers during the training process so that in each iteration, samples that
the previous classifiers have misclassified will be given higher weights, thus forcing the
subsequent classifiers to pay more attention. Weights, thus forcing the subsequent classifiers
to pay more attention.

XGBoost: The XGBoost classifier is an optimised distributed gradient-boosting library
designed to achieve high-speed and high-performance gradient-boosting decision trees.
XGBoost provides several tunable parameters to control the complexity of the model
and prevent overfitting. It also uses techniques such as parallel processing and systematic
optimisation to speed up the model’s training. The classifier has achieved excellent results
in many machine learning competitions (Chen & Guestrin, 2016).

GNB: A Gaussian naive Bayes classifier is a probabilistic-based classification technique
that belongs to the class of simple Bayesian algorithms. This algorithm is particularly
suitable for dealing with classification problems where the feature data exhibit Gaussian
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Table 5 Hyperparameter settings.

Classifier Hyperparameters

GNB var_smoothing: le—9

DT max_depth: [None, 10, 20, 30], min_samples_split: [2, 4, 6], min_samples_leaf: [1, 2, 4], criterion: [gini, en-
tropy]

LR C:[0.1, 1, 10, 100], penalty: [11, 12], solver: [liblinear, saga]

KNN n_neighbors: [3, 5, 7, 9], weights: [uniform, distance], metric: [euclidean, manhattan, minkowski]

ET n_estimators: [50, 30, 10], max_depth: [None, 10, 20, 30], min_samples_split: [2, 4, 6], min_samples_leaf: [1,
2, 4], bootstrap: [True, False]

RF n_estimators: [50, 30, 10], max_depth: [None, 10, 20, 30], min_samples_split: [2, 4, 6], min_samples_leaf: [1,
2, 4], bootstrap: [True, False]

Adaboost n_estimators: [50, 30, 10], learning_rate: [1.0, 0.5, 0.1], algorithm: [SAMME, SAMME.R],
base_estimator__max_depth: [1, 2, 3]

XGB max_depth: [3, 4, 5], learning_rate: [0.01, 0.05, 0.1], n_estimators: [50, 30, 10], subsample: [0.7, 0.8, 0.9], col-
sample_bytree: [0.7, 0.8, 0.9]

Bagging-RF n_estimators: [10, 50, 100, 200], max_samples: [0.5, 0.7, 1.0], base_estimator__max_depth: [None, 10, 20, 30],

bootstrap: [True, False], oob_score: [True, False]

distribution characteristics. Its strength lies in its simple and efficient model structure,
which predicts the class attribution of the samples by calculating the Gaussian distribution
parameters of the features. This algorithm demonstrates excellent performance and
scalability when dealing with large-scale datasets (Alanazi ¢ Alanazi, 2024).

Grid search

Optimising the performance of classifiers often involves adjusting the model’s
hyperparameters. Grid search is a commonly used method for hyperparameter optimisation
that searches for the optimal combination of parameters by traversing a given grid of
parameters. In this study, 5K cross-validation using grid search classes was used to optimise
the hyperparameters of the machine learning classifier.

First, define the range of hyperparameter values for each classifier. The hyperparameter
ranges are shown in Table 5. Launch the grid search algorithm to traverse each set of
parameters in the grid and evaluate their performance through cross-validation. This
experiment used a five-fold cross-validation strategy to divide the dataset into four parts.
In each iteration, four parts of the data were selected as the training set, and the remaining
parts were used as the validation set. 4/5 of the data were used for model training, and
the remaining 1/5 was used as the validation set to compute the model’s performance.
Accuracy was chosen as a measure of model performance on the validation set. All possible
combinations of parameters were evaluated using a grid search algorithm. Finally, based
on the evaluation results, the best combination of hyperparameters is selected for each
model.

The experimental setup details are shown in Table 6.

Evaluation indicators
This section discusses the ML model evaluation metrics used in this study. We used
accuracy, precision, recall, and F1 score as evaluation metrics for our ML model
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Table 6 Experimental setup detail.

S.No. Components Detail

1 Hardware AMD R55600G

2 Operating system Windows 11

3 Primary storage 16 GB RAM

4 Data file storage MS Excel

5 Programming language Python

6 Python required libraries Pandas, numpy, sklearn, xgboost, time, seaborn, Matplotlib
7 IDE Jupyter Notebook

(Naidu, Zuva ¢ Sibanda, 2023; Panesar, 2021; Rainio, Teuho & Klén, 2024). Below is a
brief description of each evaluation metric and its significance in the classification of
diabetes.

Accuracy: Accuracy is the number of correctly predicted samples as a proportion of the
total number of samples. In diabetes classification, accuracy provides an overall perspective,
telling us the proportion of all test samples the model correctly classifies. A model with a
high accuracy rate correctly distinguishes people with diabetes from non-diabetics in most
cases. It is shown in Eq. (4), where TP (true positives) is the number of confirmed cases,
i.e., the number of samples correctly predicted by the model to be in the positive category,
TN (true negatives) is the number of true negatives, i.e., the number of samples correctly
predicted by the model to be in the harmful category, FP (false positives) is the number of
false positives, i.e., the number of samples incorrectly predicted by the model to be in the
positive category, and FN (false negatives) are false negatives, i.e., the number of samples
that the model incorrectly predicts as antagonistic classes (Bingol et al., 2023; Kiziloluk et
al., 2024).

TP+TN
TP+TN+FP+EN’

Precision: Precision, also known as the accuracy of optimistic class predictions, measures

Accuracy =

(4)

the proportion of all samples predicted by the model to be in the positive class that are
actually in the positive class and is an essential metric in the performance evaluation of
classification models, especially in binary classification problems. In diabetes classification,
accuracy is concerned with the probability that when the model predicts that an individual
has diabetes, this prediction is accurate. In other words, it measures the proportion of all
individuals diagnosed with diabetes who do have the disease. The formula for this is shown
in Eq. (5).
.. TP
Precision = ————. (5)
TP+ FP

Recall: Recall measures the proportion of all samples in the positive class that are
correctly predicted to be in the positive class by the model. In diabetes classification,
recall is concerned with the ability of the model to identify all actual diabetic patients. It
represents the proportion of all diabetic patients that are correctly diagnosed. A high recall
rate implies a low rate of missed diagnoses, which is essential in areas such as medical
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diagnosis, where missed diagnoses may lead to untreated diseases. Its formula is shown in
Eq. (6).

TP
Recall = ——. (6)
TP+FN

F1 score: The F1 score is a classification model performance metric that combines
precision and recall. It provides a single metric to evaluate a model’s performance in terms
of both precision and recall. The F1 score suffers when there is a large gap between precision
and recall, forcing the model to strike a balance between the two metrics. Its formula is
shown in Eq. (7).

(7)

Precision x Recall
F1 Score=2 x .

Precision + Recall

Specificity: Specificity measures a model’s ability to correctly identify negative samples
in binary classification, with higher values near 1 indicating better performance. It is
vital in areas where false positives are detrimental, such as medical screening. Used
alongside metrics like precision and F1 scores, specificity offers a broader evaluation of
model effectiveness. Its formula is commonly presented with recall to assess a model’s
performance on both classes. The formula is shown in Eq. (8).

TN
TN+FP’

ROC curve: The ROC curve evaluates the performance of a binary classification model.

Specificity = (8)

It demonstrates the model’s ability to identify positive classes by plotting the relationship
between the recall and the value of 1 minus specificity at different thresholds. The closer
the curve is to the upper left corner, the better the model performance is, while the area
under the curve (AUC) quantifies the overall effectiveness of the model, and the closer the
AUC value is to 1, the better the model’s classification ability is.

RESULTS

Experimental results on the diabetes prediction dataset

Table 7 and Fig. 4 show the prediction results of each machine learning model on the
Diabetes Prediction Dataset dataset before and after data balancing for three age groups:
50-60 years, 60—70 years, and 70—80 years. Figure 4 is divided into six subfigures, a, b, c,
d, e, and f, which show the prediction analysis results before and after the data balancing
process for three different age groups (50-60 years old, 60-70 years old, and 70-80 years
old). Subfigures a, ¢, and e correspond to the prediction results for ages 50-60, 60-70,
and 70-80 before data balancing, while subfigures b, d, and f correspond to the prediction
results for ages 50-60, 60-70, and 70-80 after data balancing.

Referring to Table 7 and Fig. 4, the Bagging-RF classifier before data balancing achieved
96.59% and 95.94% accuracy and F1-Score for diabetes detection in the 50—60-year-olds;
93.41% and 91.90% accuracy and F1-Score in the 60-70-year-olds; 91.69% and 89.83%
accuracy and F1-Score in the 70—-80-year-olds; and 91.69% and 89.83% performance of
the integrated learning model ET, RF, AdaBoost, and XGB classifiers. In addition, the
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Table 7 Experimental data table for diabetes prediction dataset dataset.
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ML Data balancing No data balancing
ML Accuracy F1 score Specificity Precision Recall Accuracy F1 score Specificity Precision Recall
Age 50-60
GNB 73.98% 72.27% 49.1% 82.4% 74.0% 79.42% 84.40% 79.9% 92.9% 79.4%
DT 95.94% 95.94% 96.3% 95.9% 95.9% 95.86% 95.10% 99.6% 95.5% 95.9%
LR 90.55% 90.53% 94.4% 90.8% 90.6% 94.92% 93.68% 99.5% 94.1% 94.9%
KNN 95.33% 95.33% 91.7% 95.6% 95.3% 94.74% 92.86% 100.0% 94.8% 94.7%
ET 97.57% 97.57% 98.5% 97.6% 97.6% 95.33% 94.04% 99.9% 95.3% 95.3%
RF 97.35% 97.35% 98.8% 97.4% 97.4% 96.03% 95.16% 99.9% 96.1% 96.0%
ADB 97.33% 97.33% 100.0% 97.5% 97.3% 96.07% 95.17% 100.0% 96.2% 96.1%
XGB 95.96% 95.96% 98.2% 96.1% 96.0% 96.10% 95.22% 100.0% 96.3% 96.1%
Bagging-RF 97.35% 97.35% 98.4% 97.4% 97.3% 96.59% 95.94% 99.9% 96.6% 96.6%
Age 60-70
GNB 80.89% 80.87% 77.0% 81.2% 80.9% 87.96% 87.98% 93.4% 88.0% 88.0%
DT 93.47% 93.47% 94.5% 93.5% 93.5% 93.09% 91.90% 98.9% 92.2% 93.1%
LR 88.14% 88.11% 91.8% 88.3% 88.1% 91.44% 89.46% 98.6% 89.4% 91.4%
KNN 93.14% 93.13% 89.0% 93.5% 93.1% 91.53% 88.97% 99.3% 89.6% 91.5%
ET 95.58% 95.58% 97.3% 95.6% 95.6% 92.91% 91.27% 99.4% 92.2% 92.9%
RF 95.60% 95.60% 97.5% 95.7% 95.6% 93.64% 92.10% 99.9% 93.8% 93.6%
ADB 95.53% 95.52% 99.9% 95.9% 95.5% 93.41% 91.94% 99.6% 93.1% 93.4%
XGB 94.13% 94.13% 95.2% 94.2% 94.1% 93.50% 91.98% 99.8% 93.4% 93.5%
Bagging-RF 95.55% 95.55% 97.1% 95.6% 95.6% 93.41% 91.90% 99.6% 93.2% 93.4%
Age 70-80
GNB 79.00% 79.00% 76.6% 79.1% 79.0% 84.58% 84.53% 91.4% 84.5% 84.6%
DT 94.61% 94.60% 95.4% 94.6% 94.6% 91.82% 90.63% 98.6% 91.1% 91.8%
LR 86.72% 86.71% 89.1% 86.8% 86.7% 90.02% 88.25% 98.1% 88.5% 90.0%
KNN 92.21% 92.20% 87.5% 92.6% 92.2% 89.25% 86.42% 98.8% 87.2% 89.3%
ET 94.36% 94.36% 95.6% 94.4% 94.4% 92.25% 90.72% 99.7% 92.4% 92.3%
RF 94.97% 94.97% 96.8% 95.0% 95.0% 92.63% 91.14% 100.0% 93.1% 92.6%
ADB 94.90% 94.88% 99.8% 95.3% 94.9% 92.63% 91.17% 99.9% 93.1% 92.6%
XGB 93.78% 93.78% 95.2% 93.8% 93.8% 92.42% 91.05% 99.5% 92.4% 92.4%
Bagging-RF 95.14% 95.13% 97.7% 95.3% 95.1% 91.69% 89.83% 100.0% 92.3% 91.7%
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Figure 4 Experimental chart of diabetes prediction dataset. (A) Age 5060 groups without balanced
data sets. (B) Age 50—60 groups balanced data sets. (C) Age 60—70 groups without balanced data sets. (D)
Age 60-70 groups balanced data sets. (E) Age 70-80 groups without balanced data sets. (F) Age 70-80
groups balanced data sets. Note: Bagging-RF is abbreviated to B-RF.

Full-size &4 DOI: 10.7717/peerjcs.2436/fig-4

integrated learning models ET, RF, AdaBoost, and XGB classifiers all perform well. It is
worth mentioning that on the dataset before data balancing, all machine learning classifiers’
specificity is higher than 98% except the GNB classifier.

After the data balancing process, the performance of the Bagging-RF classifier was
improved, achieving 97.35% and 97.35% accuracy and F1-score in the detection of
diabetes in the 50—60-year-old population and 95.55% and 95.55% accuracy and F1-score
in the 60-70-year-old population sample. The accuracy and F1-score of 94.61% and
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94.60% were achieved in the sample of the 70-80-year-old population. After the data
balancing process, the performance of all the models except the LR classifier was improved,
and the accuracy of the integrated learning models, ET, RF, AdaBoost, and XGB, were all
kept above 94%. Furthermore, the specificity of all classifiers decreased to varying degrees
following the data balancing process, which could be due to a reduction in the proportion of
non-diseased samples in the overall population, weakening the model’s ability to recognise
such categories.

Compared with the eight base classifiers, the Bagging-RF integrated learning classifier
demonstrates optimal performance before and after the data balancing process. The
confusion matrix of the Bagging-RF model is shown in Fig. 5. It is worth noting that the
overall performance of the RF, AdaBoost, and XGB classifiers before and after the data
balancing process, although not as good as that of the Bagging-RF integrated learning
classifier, is always tiny, which shows the excellent performance of the integrated learning
classifier. The ROC curves are shown in Fig. 6. By observing the ROC curves of each
model, it is found that the AUC values of each model are significantly improved after data
balancing treatment, among which the Bagging-RF, ET, RF, AdaBoost, and XGB models
after data balancing treatment are shown in Fig. 5. AdaBoost and XGB integrated models
all perform well.

Experimental results on diabetes simple diagnosis

Table 8 and Fig. 7 show the prediction results of each machine learning model on the
Diabetes Simple Diagnosis dataset for the three age groups of 50-60, 60-70, and 70—80
years of age for the dataset before balancing versus after balancing the data. Figure 5 is
divided into six subfigures, a, b, ¢, d, e, and f, which show the predictive analysis results for
three different age groups (50-60, 60-70, and 70-80) before and after the data balancing
process. Subfigures a, ¢, and e correspond to the predicted results for ages 5060, 60-70,
and 70-80 before data balancing, while subfigures b, d, and f correspond to the predicted
results for ages 50-60, 60—70, and 70-80 after data balancing.

Referring to Table 8 and Fig. 7, before data balancing, the Bagging-RF classifier achieved
95.63% and 94.42% accuracy and F1-score for diabetes detection in the 5060 year old
population; 93.48% and 92.07% accuracy and F1-score in the 60-70 year old population
sample; and 91.45% and 89.52% accuracy and F1-score in the 70-80 year old population
sample. All the models except LR, KNN, and GNB were above 90% accuracy and F1-score.
Accuracy and F1-Score of 91.45% and 89.52% were achieved in the population sample
of 70-80 years old; accuracy and F1-Score of 93.48% and 92.07% were achieved in the
population sample of 60-70 years old; and 91.45% and 89.52% were achieved in the
population sample of 70-80 years old. Except for GNB, which exhibited a specificity of
approximately 95%, the other models had specificity scores of greater than 98%.

After the data were balanced, the performance of the Bagging-RF classifier was improved,
achieving 97.03% and 97.03% accuracy and F1-score for diabetes detection in the 50—60-
year-olds; 94.90% and 94.89% accuracy and F1-score in the 60—70-year-olds; and 93.70%
and 93.70% accuracy and F1-score in the 70—-80-year-olds. Of the eight models after data
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Figure 5 Diabetes Prediction Dataset confusion matrix. (A) Age 50-60 groups without balanced confu-
sion matrix. (B) Age 50-60 groups balanced confusion matrix. (C) Age 60-70 groups without confusion
matrix. (D) Age 60-70 groups balanced confusion matrix. (E) Age 70-80 groups without confusion ma-
trix. (F) Age 70-80 groups balanced confusion matrix.

Full-size G4l DOI: 10.7717/peerjcs.2436/fig-5

balancing, only the DT model reached 97.03% accuracy and F1-score in the 50—60-year-
olds. 94.89%, 93.70%, and 93.70% for accuracy and F1-score in the sample of people aged
70—80. After data balancing, only the performance of the DT classifier was improved in the

eight models, while the performance of the rest of the base classifiers decreased to different

degrees. Additionally, the specificity scores of the models were decreased to varying degrees.

In comparison with the remaining eight models, the Bagging-RF integrated learning

classifiers again show optimal performance, both before and after the data balancing
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Figure 6 Diabetes Prediction Dataset ROC curve. (A) Age 50-60 groups without a balanced ROC curve.
(B) Age 50-60 groups balanced ROC curve. (C) Age 60-70 groups without a balanced ROC curve. (D)
Age 60-70 groups balanced ROC curve. (E) Age 70-80 groups without a balanced ROC curve. (F) Age 70—
80 groups balanced ROC curve.

Full-size Gal DOI: 10.7717/peerjcs.2436/fig-6

process. The Bagging-RF model confusion matrix is shown in Fig. 8, and the ROC curves
of each model are shown in Fig. 9. By observing the ROC curves of each model, it is found
that after the data balancing process, the AUC values of all models are improved, among
which the integrated models such as Bagging-RF, ET, RF, Adaboost, and XGB are all
excellent. By observing the ROC curves of each model, it is found that the AUC values of
each model are improved after the data balancing process, and the integrated models such
as Bagging-RF, ET, RF, Adaboost, and XGB perform well after the data balancing process.
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Table 8 Experimental data table for Diabetes Simple Diagnosis dataset.
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ML Data balancing No data balancing
ML Accuracy F1 Score Specificity Precision Recall Accuracy F1 Score Specificity Precision Recall
Age 50-60
GNB 79.35% 79.05% 67.2% 81.3% 79.4% 91.72% 91.36% 96.1% 91.0% 91.7%
DT 96.04% 96.04% 96.2% 96.0% 96.0% 95.01% 94.05% 99.2% 94.1% 95.0%
LR 78.65% 78.60% 73.5% 79.0% 78.7% 94.47% 92.71% 99.6% 93.2% 94.5%
KNN 89.57% 89.52% 82.1% 90.5% 89.6% 94.08% 91.43% 99.9% 92.5% 94.1%
ET 93.55% 93.55% 91.5% 93.6% 93.6% 95.47% 94.19% 100.0% 95.6% 95.5%
RF 94.52% 94.52% 94.2% 94.5% 94.5% 95.59% 94.36% 100.0% 95.8% 95.6%
ADB 94.42% 94.41% 97.5% 94.6% 94.4% 95.59% 94.36% 100.0% 95.8% 95.6%
XGB 92.73% 92.72% 94.5% 92.8% 92.7% 95.59% 94.36% 100.0% 95.8% 95.6%
Bagging-RF 97.03% 97.03% 98.0% 97.0% 97.0% 95.63% 94.42% 100.0% 95.8% 95.6%
Age 60-70
GNB 78.23% 77.94% 66.2% 80.4% 78.2% 88.10% 86.86% 95.4% 86.0% 88.1%
DT 94.54% 94.54% 94.5% 94.5% 94.5% 92.63% 91.63% 98.4% 91.7% 92.6%
LR 77.32% 77.30% 73.4% 77.6% 77.3% 91.83% 89.78% 99.3% 90.9% 91.8%
KNN 87.58% 87.51% 78.8% 89.0% 87.6% 89.74% 86.31% 98.8% 85.3% 89.7%
ET 91.42% 91.42% 88.2% 91.6% 91.4% 93.33% 91.90% 99.7% 93.3% 93.3%
RF 91.39% 91.39% 89.4% 91.5% 91.4% 93.53% 92.08% 99.9% 93.9% 93.5%
ADB 92.80% 92.78% 96.0% 93.0% 92.8% 93.48% 91.97% 100.0% 93.9% 93.5%
XGB 89.93% 89.93% 90.6% 89.9% 89.9% 93.48% 91.97% 100.0% 93.9% 93.5%
Bagging-RF 94.90% 94.89% 95.4% 94.9% 94.9% 93.48% 92.07% 99.8% 93.6% 93.5%
Age 70-80
GNB 79.01% 78.66% 66.3% 80.9% 79.0% 87.27% 85.69% 95.6% 84.7% 87.3%
DT 92.74% 92.74% 93.5% 92.8% 92.7% 91.14% 89.47% 98.7% 90.1% 91.1%
LR 76.41% 76.39% 73.5% 76.5% 76.4% 89.15% 86.94% 97.8% 86.7% 89.2%
KNN 86.30% 86.19% 77.9% 87.3% 86.3% 88.49% 84.99% 98.6% 84.6% 88.5%
ET 89.74% 89.74% 89.0% 89.7% 89.7% 91.40% 89.23% 99.7% 91.3% 91.4%
RF 91.62% 91.61% 89.5% 91.7% 91.6% 91.65% 89.48% 99.9% 92.1% 91.7%
ADB 91.36% 91.33% 97.7% 92.1% 91.4% 91.70% 89.61% 99.8% 92.0% 91.7%
XGB 90.43% 90.43% 92.9% 90.5% 90.4% 91.70% 89.57% 99.9% 92.1% 91.7%
Bagging-RF 93.70% 93.70% 94.9% 93.7% 93.7% 91.45% 89.52% 99.4% 91.0% 91.4%
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Figure 7 Experimental chart of Diabetes Simple Diagnosis dataset. (A) Age 50—60 groups without bal-
anced data sets. (B) Age 50-60 groups balanced data sets. (C) Age 60—70 groups without balanced data
sets. (D) Age 60-70 groups balanced data sets. (E) Age 70—80 groups without balanced data sets. (F) Age
70-80 groups balanced data sets. Note: Bagging-RF is abbreviated to B-RF.

Full-size Gl DOI: 10.7717/peerjcs.2436/fig-7

Summary of experimental results

According to the above results, the data-balanced Bagging-RF integrated learning classifier
demonstrates superior performance in diabetes prediction on the Diabetes Simple Diagnosis
and Diabetes Prediction Dataset for all three age groups: 50-60 years, 60—70 years, and 70—80
years. This not only validates the effectiveness of Bagging-DT-RF in handling unbalanced
datasets but also highlights its robustness and superiority in predicting different age groups.
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Figure 8 Diabetes Simple Diagnosis confusion matrix. (A) Age 5060 groups without balanced confu-
sion matrix. (B) Age 50-60 groups balanced confusion matrix. (C) Age 60-70 groups without confusion
matrix. (D) Age 60—70 groups balanced confusion matrix. (E) Age 70-80 groups without confusion ma-
trix. (F) Age 70-80 groups balanced confusion matrix.
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After balancing with the SMOTE technique, the AUC values of each model increased
to different degrees, indicating that the SMOTE technique effectively increased the
representation of a few classes, thus improving the model’s performance in recognising
samples from other classes. The increase in AUC usually implies that the overall
classification ability of the model is enhanced, especially in distinguishing samples from
positive and negative classes. The percentage of non-diseased samples in the total population
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Figure 9 Diabetes Simple Diagnosis ROC curve. (A) Age 50—-60 groups without a balanced ROC curve.
(B) Age 50-60 groups balanced ROC curve. (C) Age 60—70 groups without a balanced ROC curve. (D)
Age 60-70 groups balanced ROC curve. (E) Age 70-80 groups without a balanced ROC curve. (F) Age 70—
80 groups balanced ROC curve.

Full-size Gl DOI: 10.7717/peerjcs.2436/fig-9

reduced following the data balancing process, which may be the reason why the specificity
values of the models decreased to varied degrees following treatment with the SMOTE
technique.

Except for the Bagging-RF model, the integrated learning models ET, RF, Adaboost, and
XGB performed well, demonstrating the significant advantages of the integrated learning
techniques in predicting diabetes.
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DISCUSSION

Exploration of experimental results

An analysis of the performance of the machine learning classifiers in the two datasets
for the three age groups found that the classifiers generally outperformed in predicting
people in the 50-60 age group than they did for the 60-70 and 70-80 age groups. This
suggests that the data in the 50-60 age group may have less noise or that the data in that
age group is more abundant or of higher quality, making it easier for the classifiers to learn
distinguishing features.

The performance of the Bagging-RF integrated learning model and the DT model
was significantly improved after the data balancing process. This suggests that these two
models can benefit from data balancing because they are better adapted to the adjusted
data distribution, improving classification accuracy. Thus, the impact of data balancing
treatments on classifier performance is complex and varied and needs to be carefully
analysed and adapted to specific situations.

All models’ specificity values declined, albeit to different degrees, following the data
balancing procedure. This is because the balancing process grew proportionately to the
dataset’s original lower number of diseased samples and decreased proportionately to
the initially higher number of non-diseased samples. This change in ratio from 1:10 to
1:1 changes the distribution of categories in the dataset, affecting the model’s ability to
recognise the non-diseased category and decreasing its specificity. Although data balancing
may improve the model’s identification of a few categories, it may also negatively affect the
model’s ability to identify the original majority of categories.

Comparison with existing studies

The comparison of the proposed methodology with existing studies is detailed in Table 9.
The table compares our study with previous studies in terms of accuracy, sample size, and
research focus. Most of the earlier studies relied on the PIMA dataset, which contains only
female samples, and the UCI-ERD dataset. Although the optimal classifiers on these datasets
had accuracies of up to 99%, their studies focused mainly on the female population, and
the sample sizes of the middle-aged and elderly populations were generally small. Fewer
studies have been conducted in the field of diabetes detection for middle-aged and older
adults, with only three related papers collected, and the datasets used in each of these
studies vary. Comparing the accuracy of the models in these studies, the model proposed
in this study demonstrated superior performance in predicting diabetes in middle-aged

and older adults compared to the previous three studies.

CONCLUSIONS

Early detection of diabetes mellitus in middle-aged and older adults can help with timely
intervention, reduce the risk of complications, improve health and quality of life, and, at
the same time, reduce the burden of medical care on individuals and society.

The Bagging-RF model proposed in this study was used to predict diabetes on the
Diabetes Prediction Dataset and Diabetes Simple Diagnosis dataset for the middle-aged
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Table 9 Comparison of the proposed methodology with existing diabetes studies.

Method Accuracy Samplesize  Research focus Dataset
Logistic Regression (Shaukat et al., 2023) 81.0% 768 Females PIMA
DNN+ autoencoder 86.3% 768 Females PIMA
(Kannadasan, Edla & Kuppili, 2019)
Fuzzy-KNN (Haritha, Babu & Sammulal, 2018) 80.3% 768 Females PIMA
ANN (Wagas Khan et al., 2024) 99.3% 520 Everyone PIMA
98.9% 768 Females UCI- ERD
Neural network (Ma, 2020) 96.2% 520 Everyone UCI-ERD
SVM + ANN (Ahmed et al., 2022) 94.9% 520 Everyone UCI-ERD
XGBoost (Liu et al., 2022) 75.0% 127,031 Older people 2019-2020 follow-up dataset
RF (Wu et al., 2022) 92.0% 17,833 Older people NHANES
Proposed model 93.8%-97.5% 36,843 Middle-aged and Older people ~ Diabetes Prediction Dataset
32,778 Diabetes Simple Diagnosis

and elderly age groups of 50-60, 60—70, and 70-80 years old, and the results showed
excellent performance of the model. The results of this study will not only help individuals
receive the necessary medical interventions in a timely manner to reduce the incidence
of diabetes mellitus and its complications, but will also have a significant impact on the
health and quality of life of the entire middle-aged and elderly population. While fully
recognising the positive significance of this study, there are also limitations. First, there is
still room for improvement in the performance of the proposed model. Although the model
performs well in the prediction of 50-60-year-olds, there is still room for improvement in
the accuracy of diabetes prediction for 60-70-year-olds and 70-80-year-olds. Second, the
proposed model could be more interpretable, making it difficult for healthcare professionals
and patients to understand its decision logic and prediction results. Third, the use of the
SMOTE technique may introduce noise that negatively affects the model’s performance.
In future research, the accuracy of machine learning models for diabetes prediction
can be improved by investigating the following three aspects: First, feature engineering
techniques such as PCA, SFS, or genetic algorithms can be applied to select critical features
that significantly improve model performance. In this way, the model’s feature set can be
optimised, which, in turn, substantially improves the model’s prediction accuracy. Second,
hyper-parametric tuning techniques such as Bayesian optimisation and metaheuristics can
be used to optimise the model parameters, thereby significantly improving the accuracy
and reliability of the model in diabetes prediction tasks. Third, the SHAP model can
be integrated into the diabetes prediction model to enhance its interpretability. The
SHAP model can quantify each feature’s contribution to the model’s prediction results,
which provides strong support for further optimisation of the model and the clinical
decision-making of doctors.

Abbreviations
KNN K-Nearest Neighbours
LR Logistic Regression
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RF Random Forest

ET Extra Trees

DT Decision Tree

Adaboost  Adaptive Boosting

XGB XGBoost

GNB Gaussian Naive Bayes

SMOTE Synthetic Minority Over-sampling Technique
TP true positives

TN true negatives

FP false positives

FN false negatives

ROC Receiver Operating Characteristic
AUC Area Under the Curve
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