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ABSTRACT
Centrifugal compressors are widely used in the petroleum and natural gas industry
for gas compression, reinjection, and transportation. Early fault identification and
fault evolution prediction for centrifugal compressors can improve equipment safety
and reduce maintenance and operating costs. This article proposes a dynamic process
monitoring method for centrifugal compressors based on long short-term memory
(LSTM) and principal component analysis (PCA). This method constructs a sliding
window for monitoring at each sampling point, which contains 100 data from the
past and current time points, and uses LSTM to predict 30 future data points. At the
same time, this method is also combined with the PCA threshold process monitoring
method to construct a new LSTM-PCA monitoring algorithm. And the method was
validated using centrifugal compressor process data. The results show that this method
can effectively detect process anomalies, The improvements significantly reduced the
false positive rate of detected anomalies, and can make multi-step advance predictions
of system behavior after faults occur.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning, Scientific Computing and Simulation
Keywords Centrifugal compressor, Condition monitoring, Fault identification, Machine
learning, Evolutionary prediction

INTRODUCTION
As an indispensable core equipment in the petrochemical industry, the centrifugal
compressor’s ability to operate stably at rated power is directly related to the quality
of the product, the economic benefits of the company, and the safety of personnel. In
actual production activities, it is difficult to avoid system failures due to internal factors
(parts damage) or environmental factors (such as ventilation, sealing). The compressor
system consists of a lubricating oil system, cooling system, power system, etc. Once
these complex systems, which are composed of many units with different relationships,
malfunction, it will usually affect the normal operation of the system and even cause
immeasurable losses. Although the equipment can maintain short-term operation in a
critical safety state, the potential risk of mechanical failure is still huge. Once a failure
occurs, it may deteriorate rapidly, causing the system to fail to be repaired in time and
causing serious problems. In addition, traditional monitoring systems are susceptible to
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data outliers, resulting in frequent false alarms, further increasing the complexity and cost
of operation and maintenance. Therefore, how to accurately and timely monitor the status
of centrifugal compressors has become a key issue to ensure the smooth progress of the
production process and improve the level of safe production.

In recent years, with the rapid development of artificial intelligence and deep learning
technology, research on compressor fault diagnosis hasmade significant progress, providing
new solutions for equipment monitoring under complex working conditions. For example,
multi-segmented attention-based long short-term memory networks (MA-LSTMs) are
used for reciprocating compressor operation diagnostics on offshore oil platforms (Tian &
Li, 2022). A composite model combining a deep convolutional autoencoder and a balanced
sparse sampling informer (MCA-BS Informer) is used to solve the problem of long-
term accurate health monitoring of compressors (Tian, Ju & Feng, 2023). An optimized
probabilistic signal reconstruction method is proposed to address these challenges in fault
prediction of rotating electrical machines using multivariable vibration signals (Jiang et
al., 2022). Meanwhile, hybrid multimodal machine learning strategies are used to develop
a data-driven system health monitoring framework (Shen & Khorasani, 2020). Artificial
neural network (ANN) technology has successfully identified degradation of gas turbine
engines due to erosion and fouling (Giorgi, Ficarella & Carlo, 2019). Self-powered fault
diagnosis systems based on vibration energy harvesting have also achieved remarkable
results (Sato et al., 2022). Classical dimensionality reduction methods, such as principal
component analysis (PCA) (Cheng, Xianwen & Yuan, 2020), Independent Component
Analysis (ICA) (Yous & Hung, 2020), and partial least squares analysis (PLS) (Aminu
& Ahmad, 2023), have been widely used in compressor monitoring. Application and
classification of PCA for troubleshooting the installation of MABs in petrochemical plant
process facilities. Analyze root cause of failures using degree of variation and average
variable threshold limits (Shahid et al., 2024). Combining multiscale principal component
analysis with signature-based directed graph methods for process monitoring and fault
diagnosis (Ali et al., 2022). Threshold recurrence graph-based and texture analysis applied
to diagnose stiction in process control loops (Kok et al., 2022). A multi kernel support
vector machine (MK-SVM) algorithm has been proposed to diagnose simultaneous faults
in distillation columns (Taqvi et al., 2022). Combine multivariate exponentially weighted
moving average (MEWMA) monitoring schemes with PCA modeling to improve anomaly
detection performance (Harrou et al., 2016). Single-class support vector machine (KPCA-
OCSVM) based on kernel principal component analysis and various kernels to learn an
anomaly-free training set, then classify the test set (Cheng et al., 2019), among others. In
addition, techniques based onbig datamachine learning, such as k-means clustering analysis
based on big data machine learning of fault cases, study fault identification of rotating
machinery without the support of external experts (Wang et al., 2020); The application of
modular ensemble deep neural network (CC-MIDNN) for predicting flight data based on
cluster clustering has also achieved good results (Deng, Li & Zhao, 2024). However, existing
methods still have shortcomings in processingmulti-dimensional feature data, dealing with
noise interference, and reducing false alarm rates, and cannot fully meet the needs in actual
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production. Therefore, further research and improvement of compressor fault detection
technology have important academic value and practical application significance.

In order to solve the above problems, this paper proposes a monitoring method
combining long short-term memory network (LSTM) and PCA. This method can not
only capture the complex correlation of different characteristic data of the centrifugal
compressor during operation, but also effectively deal with the interference of noise and
abnormal values on the monitoring system, improving the accuracy of fault warning and
the reliability of monitoring.

Specifically, the method in this paper comprehensively considers the past and future
state change trends at each sampling point, making it possible to review the previous
operating state and predict possible future changes. The time series correlation of the data
is captured through the LSTM network, and the PCA dimensionality reduction is used to
reduce the feature redundancy, which effectively improves the computing efficiency and
monitoring ability of the model. This innovative method can significantly reduce the false
alarm rate, especially under complex working conditions, identify potential failure risks
more accurately and ensure the stable operation of the compressor system.

Through the application of this method, this article not only solves the unavoidable false
alarm problem of traditional monitoring systems in critical safety states, but also provides
enterprises with a more reliable equipment status monitoring solution, further ensuring
the safe production and safety of the petrochemical industry.

In summary, the main contributions of this study are as follows:
(1) Based on the sample data obtained through sliding window processing, multi-step

forecasting of data with multiple features was implemented.
(2) At each monitoring point, we have constructed a monitoring indicator that integrates

both forecasted and historical data, and introduced a monitoring method based on
LSTM-PCA. This method not only displays the past trends at each sampling point but
also predicts future trends, thereby significantly enhancing the information content at
each monitoring point.

(3) The method was analyzed and validated using process data from centrifugal
compressors. The results demonstrate that this method can significantly improve
issues related to false detections and critical safety insecurities.

LSTM-PCA ALGORITHM DESIGN AND MODELING
In this paper, a fault-tolerant filtering algorithm (Shaolin, Na & Wenming, 2016) is used
to filter and denoise the monitoring indicators. At the same time, in view of the large
amount of data, the number of variables, and the strong coupling between the variables,
principal component analysis is used to reduce the dimensionality of the data to shorten the
training or optimization time of the model while ensuring the accuracy. Considering that
monitoring data may be near critical states or contain anomalies, this study has designed a
monitoring indicator for each monitoring point, which combines forecasted and historical
data. By employing an improved LSTM-PCA algorithm, we are able to achieve real-time
monitoring and fault prediction for compressors, thereby enhancing the accuracy and
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Figure 1 Compressor condition monitoring and fault prediction structure diagram.
Full-size DOI: 10.7717/peerjcs.2433/fig-1

reliability of fault detection. Figure 1 shows the condition monitoring and fault prediction
structure of LSTM-PCA-based compressor proposed in this paper.

Construction of monitoring indicators and threshold setting
In this paper, the training sample is 1,500 samples, and the monitoring sample window
is a large sample of 131 data, and the two samples are independent of each other and
conform to the normal distribution. We use a PCA-based process monitoring method to
make judgments using the Hotelling-statistic and the square prediction error (SPE) statistic
(Bakdi & Kouadri, 2017). The process is as follows:

Build a sampling matrix Yt with future and past data at each sampling point.
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Yt by sliding window for 100 past and current moment data fragments { x(ti)... x(ti−100)}
and 30 predicted snippets of future data {y(ti)... y(ti+30)} Compose.

Yt =



x1(ti−100) x2(ti−100) ··· x12(ti−100)
...

...
. . .

...

x1(ti−1) x2(ti−1) ··· x12(ti−1)
x1(ti) x2(ti) ··· x12(ti)
y1(ti+1) y2(ti+1) ··· y12(ti+1)
...

...
. . .

...

y1(ti+30) y2(ti+30) ··· y12(ti+30)


where x(ti)...x(ti−100) are the 100 historical data before the current moment and
y(ti+1)...y(ti+30) are the 30 future data predicted at the current moment.

Then, the data is filtered by fault-tolerant filtering (Shaolin, Na & Wenming, 2016) to
obtain the matrix Y ′t . Secondly, the data is normalized. The mean variance uses the mean
variance of the training data, and the data in each column of the matrix Y ′t is normalized
to data with a mean value of 0 and a root mean square of 1, and the matrix Ŷt is obtained.

Firstly, according to the offline data, the normal data H is selected, and the H is
{H (t1)...H (t1500) }, and the dimension is the same as that of the monitoring matrix. Then,
the matrix is filtered for fault tolerance (Shaolin, Na & Wenming, 2016), and normalized
to obtain the matrix H̃ The matrix X̂ is obtained by normalizing the data in each column
of the matrix H̃ to data with a mean value of 0 and a root mean square of 1.

Calculate the covariance matrices of the filtered and normalized training data and
monitoring data respectively:

Rta=
1

n−1
X̂T X̂ (1)

Rts=
1

h−1
Ŷ T
t Ŷt (2)

where n is the number of training samples, h is the number of monitoring samples, and
the resulting covariance matrix is a feature 12*12-dimensional matrix.

The eigenvalues were sorted from large to small, and the top k features with a sum of
more than 85% of the eigenvalues were selected for PCA dimensionality reduction, which
was the eigenvalue.∑k

i=1λi∑m
i=1λi

≥ 0.85. (3)

Let the first k eigenvalues from large to small formadiagonalmatrix, and k corresponding
eigenvectors form a matrix. Namely:

The diagonal matrix and the corresponding eigenvectors of the training set form a
matrix:

Sk1∗k1 = diag
(
λ1,λ2,...,λk1

)
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Pm∗k1 =
[
p1,p2,...,pk1

]
. (4)

The diagonal matrix of the monitoring set and the corresponding eigenvectors form the
matrix:

Ŝk2∗k2 = diag
(
λ̂1,λ̂2,...,λ̂k2

)
P̂m∗k2 =

[
p̂1,p̂2,...,p̂k2

]
. (5)

For X̂ ,Ŷt , the number of samples is still n samples, but the number of features becomes
K, and after the dimensionality reduction, it is:

X̃n∗k1= X̂n∗m ∗Pm∗k1 (6)

Ỹh∗k2 = Ŷt ∗ P̂m∗k2 . (7)

The formula for calculating the matrix of X̆ ,Y̆ obtained by reconstructing X̂ and Ŷt is as
follows:

X̆ = x̃n∗k1P
T
m∗k1 = X̂n∗mPm∗k1P

T
m∗k1 (8)

Y̆ = Ỹh∗k2 P̂
T
m∗k2 = Ŷt P̂m∗k2 P̂

T
m∗k2 (9)

where n is the number of rows in the training set, h is the number of rows in the monitoring
set, m is the number of corresponding key variables, and k is the number of corresponding
variables after dimension reduction.

Utilize PCA-based process monitoring methods for fault monitoring and fault trend
prediction. There are two traditional statistical indices: the Hotelling-T2 index and
the square prediction error (SPE) statistical index Q. Establish improved T2 statistical
monitoring indices for Y̆ , specifically constructing T2 statistics for Y̆i,: (i= 1,2...h), with
the calculation formula as follows:

T 2
= Y̆i,: ∗ P̂m∗k2 ∗ Ŝ

−1
k2∗k2 ∗ P̂

T
m∗k2 ∗ Y̆

T
i,: (10)

where Imm is the unit matrix and m is the dimension of the monitoring data. Y̆i,: represents
the ith row vector of Y̆ .

Since X̆ ,Y̆ obeys a normal distribution with a mean of zero, and the sample sampling
points are independent of each other, Fα (k1,n−k1) obeys the F distribution with the first
degree of freedom k1 and the second degree of freedom n-k1, and at a specific confidence
degree of 1−α, usually α is 0.01, and the Fα (k1,n−k1) value can be obtained by looking
up the table. Then the statistical control limit is determined (Ahmad & Ahmed, 2021), and
the calculation formula is as follows:

Tα =
k1
(
n2−1

)
n(n−k1)

Fα (k1,n−k1) (11)

where 1−α is the confidence level, n is the number of samples in the training dataset, and
k1 is the number of features selected after PCA.
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The SPE can be used to measure the difference between the observed value and the
predicted value based on the PCA model, thus identifying data points that may be
anomalous. It measures the sum of squares of the differences between observed values
and model predictions. Specifically, for each observation, it can be mapped to the principal
component space using the PCA model, and the reconstructed predicted value can be
obtained from the inverse transformation of the principal component space. Then, the
difference between the observed value and the reconstructed predicted value is calculated,
and the squares of the difference are added up to obtain the SPE statistic. A higher SPE
value indicates a large difference between the observed value and the model prediction and
may indicate an anomaly or change. The control limits for the SPE statistic were proposed
by Jackson and Mud Holkar in 1979. Establish an improved SPE statistic (Zhou, Parkj &
Liu, 2016) for monitoring Y̆ , and construct the statistical index Q for Y̆i,: (i= 1,2...h):

Q= Y̆i,: ∗
(
Im∗m− P̂m∗k2 P̂

T
m∗k2

)
∗ Y̆ T

i,: (12)

where Y̆i,: is the row vector of row i of Y̆ , Im∗m is the identity matrix, and P̂m∗k2 is the matrix
P̂m∗k2 of k eigenvectors corresponding to k eigenvalues from large to small from Eqs. (12)
and (13).

Since X̆ ,Y̆ obeys a normal distribution with zero mean, and the sample sampling points
are independent of each other, it has been proved in the literature (Jacksonj & Mudholkarg,
1979) that Eq. (18) is approximately in line with the normal distribution.

(Q/θ1)h0 ∼N
[
1+

θ2h0(h0−1)
θ21

,
2θ2h20
θ21

]
(13)

θr =

m∑
j=k1+1

λrj ,r = 1,2,3 (14)

h0= 1−
2θ1θ3
3θ22

. (15)

Therefore, the approximate mean of c is a normal distribution of 0, which is calculated
as follows:

c =
θ1[(Q/θ1)h0−1−θ2h0(h0−1)/θ21 ]√

2θ2h20
. (16)

Then the control limit of Q is:

Qα = θ1[
cαh0
√
2θ2

θ1
+1+

θ2h0(h0−1)
θ21

]
1
h0 . (17)

cα is the confidence limit of the standard normal distribution, cα is 0.99 confidence,
λ is the eigenvalue of the corresponding covariance matrix Rta, and h0 is the adjustment
coefficient.
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Condition monitoring and fault prediction
(1) According to Eqs. (5) and (6), the T 2-statistic and T 2-statistic limit Tα of each sampling
point were calculated.

(2) According to Eqs. (7) and (12), the SPE statisticQ and the statistical limitQα of each
sampling point of the monitoring data were calculated, respectively.

(3) Fault determination
If the system is operating normally, the T 2-value of the sample should meet T 2 <Tα ,

otherwise it is considered to be faulty.
If the system is functioning normally, the Q-value of the sample should meet Q<Qα ,

otherwise it is considered to be faulty.

LSTM predictive analytics
First, a training data matrix Xt is constructed at each sampling point, which is
{x(ti). . .x(ti−400)} represents the first 400 steps of the current moment in the sliding
window input vector, where t represents the current moment.

Then, the data Xt is filtered by fault-tolerant filtering (Shaolin, Na & Wenming, 2016) to
obtain the matrix X ′t .

We set the telemetry fragment {xtk,1 ,. . . , xtk,15},(tk = t0+ kh,k =1 ,2,3... , t0 is the
sampling start time, h is the sampling interval) in the sliding time window [tk−7,tk+7]
with a window radius of 7, and sorts it from the lowest to the largest value as {x tk,1 ,. . . ,
x tk,15}, and constructs a quartile mean operator.

Q(xtk,1,... ,xtk,15,15)

=
1

q3−q1+1

q3∑
i=q1

x tk,i
(18)

where: q1 and q3 denote the lower and upper quartile ordinal numbers of { x tk,1,...,x tk,15 },
respectively. Based on the good fault-tolerant ability of the quartile operator, a fault-tolerant
smoothing filtering algorithm for slidingwindow quartile combinations can be constructed:

Select the appropriate window width radius H for the data slice:

Sk ={xti,ti ∈ [tk−H ,tk+H )} (19)

Perform quartile filtering:

x ′ti =Q(Sk,15). (20)

The specific forecast calculation steps are as follows:
(1) The combination of input X ′t and hidden states ht−1 is handled by a hyperbolic

tangent function tanh:

tanh(x)= (ex−e−x)/(ex+e−x) (21)

gt = tanh
(
WgX ′t +Ught−1+bg

)
. (22)

Wang and Hu (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2433 8/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2433


(2) Forget the door ft will determine what information should be removed from the
storage unit Ct via an element-based sigmoid function

ft = σ
(
wf X ′t +uf ht−1+bf

)
. (23)

(3) The input gate will determine what information will be stored in the storage cell Ct

via the sigmoid function:

it = σ
(
wiX ′t +uiht−1+bi

)
. (24)

(4) Update the information in the memory unit Ct−1 by partially forgetting the
information in the previous memory unit, the method is as follows:

Ct = ft ∗Ct−1+ it ∗gt (25)

where ∗ represents the element-by-element product function of the two vectors.
(5) Update the output hidden state ht based on the calculated cell state Ct as follows:

Ot= σ (woX ′t +uoht−1+bo) (26)

ht =Ot ∗ tanh(Ct ). (27)

(6) The output yt of the current moment is shown below:

yt = softmax(Wyht +by). (28)

The predicted data yt can be mathematically abstracted as {y(ti),ti = t0+ kh1,k =1
,2,3... }, where t0 and h1 is the starting time of the measurement process and the sampling
interval, respectively.

Through the training process, the network input weight wg ,i,f ,o,y , cyclic weight ug ,i,f ,o
and bias bg ,i,f ,o,y are calculated, and the trained network is used to predict the time series
data. In this paper, we use the LSTM model for multi-step prediction of eigenvariables.
Specifically, we used a 401-step sliding window as the input to the LSTM, and an output
with a 30-step sliding window, meaning that we were predicting 30 data points in the
future. To achieve this, we employ a recursive single-step prediction approach and use the
predicted values to update the network state. This approach allows us to predict the next
0.5 h of data at once, thus meeting the need for real-time monitoring of future samples. In
practical application, we make forecasts every 10 min to ensure the accuracy and timeliness
of forecasts. This method not only improves the reliability of the monitoring judgment of
each sampling point of the monitoring index, but also provides more response time for the
site engineer.

SIMULATION CALCULATION RESULT ANALYSIS
In real situations, failure data are often scarce. Safety-critical and expensive components are
rarely allowed to run to failure. If the fault is not serious, the machine will usually continue
to operate until repair facilities and spare parts are available. The model presented in this
paper can be used to predict the impact of failures onmachine operation, reduce the impact
on product quality before replacement and alternatives are available, and greatly improves
the problems of false detection and critical safety insecurity.
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LSTM predictive simulation analysis
Introduction to LSTM data settings
For each fault and normal state, the compressor status is reflected in a training data set
and a test data set. The LSTM contains 401 samples per training dataset and 30 samples
per prediction dataset. Each sample has 12 features, the original training sample points are
401× 12 = 4812, and the predicted sample points each time are 30× 12 = 360. The data
sampling frequency is 1 time/min. The training set is gradually updated as the monitoring
time moves. A sliding window with a width of 401 before the current time is used to collect
training data. The time for a prediction is 30 min, and the prediction period is once every
10 min to meet the monitoring needs. In order to ensure a good learning effect for training
samples, fault-tolerant filtering and standardization are performed on each training sample
obtained.

Network structure settings
The LSTM network proposed in this paper includes an input layer, an LSTM layer, a fully
connected layer and a regression layer. The shape of the input layer is a matrix with batch
size 401 and features 12. The number of hidden units in the LSTM layer is 200, the initial
learning rate is 0.01, and the learning rate is multiplied by the learning factor of 0.1 after
259 training sessions, which can reduce the error of the result and shorten the time. The
number of training rounds is 500, and the gradient threshold is 2 to prevent gradient
explosion during prediction. The output of the LSTM is then passed to the fully connected
layer, which maps the patterns captured by the LSTM to the output space. Finally, through
the regression layer, the network predicts the time series data and compares it with the
actual data, and the accuracy of the prediction can be improved by calculating the root
mean square error RMSE of the predicted and tested values.

Parameter tuning
The choice of LSTM network in this paper is based on the structure and complexity of the
data, and is continuously adjusted through experiments. For the 12-dimensional feature
prediction, the input layer, LSTM layer, fully connected layer combined with regression
layer are used. The role of the input layer is to provide data for subsequent layers, passing
data on the time steps of the sequence data. The LSTM layer is the core of the network and
is particularly suitable for processing and predicting data in time series, and the number of
hidden cells set to 200 is obtained empirically, which can be optimized by setting an initial
value interval and then searching according to the grid search. A setting of 200 is able to
capture complex patterns while avoiding overfitting. The learning rate determines the size
of each parameter update step. A larger learning rate converges quickly butmay be unstable.
A larger learning rate is stable but converges slowly. Therefore, this paper combines the
above two advantages to achieve the rapid convergence of the model by controlling the
learning rate decline period and the learning rate decline factor, and combines the Adam
optimizer to realize the adjustment of the learning rate. The decline cycle and decline factor
are constantly adjusted through experience and experimentation. The number of training
epochs is continuously adjusted by monitoring the performance of the validation set and
the validation loss curve. The threshold of gradient clipping is generally set between 0.5-5,
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Figure 2 Data prediction.
Full-size DOI: 10.7717/peerjcs.2433/fig-2

which is suitable for most learning models, especially LSTM, etc., and it is common to
choose 1-2, which is determined by setting the initial value and combining it with grid
search. The fully connected layer maps the output of the LSTM layer to the desired output
dimension. The regression layer is the output layer of the network. The function of the
regression layer is to calculate the error between the predicted value and the true value to
optimize the model. The reason for using a regression layer is that the task of this network
is time series prediction rather than classification. By calculating the root mean square
error (RMSE) between the predicted value and the test value, the accuracy of the prediction
can be improved.

In order to study the influence of key variables on the system in the fault environment,
the LSTM method is adopted in this paper. The method predicts the state of the next 30
data points by training the first 400 data points. The prediction results are shown in Figs. 2
and 3.

Model evaluation
Before the fault, when the fault is detected and after the fault is detected, the predicted
root mean square error, mean square error, mean absolute error, and mean absolute
percentage error are as shown in Tables 1, 2, 3 and 4 below, 1–12 represents the predicted
12-dimensional variables.
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Figure 3 The 7-12 dimensional data prediction result chart.
Full-size DOI: 10.7717/peerjcs.2433/fig-3

Table 1 Root mean square error.

Variable 1 2 3 4 5 6 7 8 9 10 11 12

Pre-fault prediction
RMSE

0.0339 0.0842 0.1886 0.1069 0.1606 0.1942 0.2262 0.5568 0.6415 0.0662 0.6939 0.6148

Predicting when a fault
is detected RMSE

3.9902 3.9562 3.4263 3.6270 3.1400 3.3887 1.3491 1.1296 1.3469 0.7478 2.3322 1.8933

Predicting after
detecting faults RMSE

0.6300 0.7302 0.6324 0.3130 0.5669 0.6070 0.3756 0.7871 0.5550 0.2586 0.9502 0.6437

Fault monitoring verification based on combining LSTM and PCA
algorithm
Introduction to fault monitoring data settings
For each failure and normal state, the compressor status is reflected in a training dataset
and a test dataset. The LSTM-PCA training dataset contains 1,500 samples, and each time
monitoring dataset contains the current moment, 100 past samples and 30 future samples.
Each sample has 12 features, the original training sample points are 1500× 12= 18000, and
the sample points monitored each time are 131× 12 = 1572. The data sampling frequency
is 1 time/min. The monitoring data set is gradually updated as the monitoring time moves.
In order to ensure a good learning effect for the training samples, fault-tolerant filtering
and standardization are performed on each training sample obtained. The constructed
monitoring samples at each moment are also fault-tolerant filtered and standardized.
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Table 2 Model index evaluation results before failure.

1 2 3 4 5 6 7 8 9 10 11 12

MSE 0.0012 0.0006 0.0254 0.0129 0.0630 0.0015 0.4621 0.0676 0.0969 0.0659 0.1661 0.0041
MAE 0.0288 0.0200 0.1251 0.0986 0.1979 0.0315 0.6250 0.2333 0.2385 0.1997 0.3468 0.0515
MAPE 0.2063 0.0308 0.1713 0.1541 0.3112 0.0543 0.9894 0.3101 0.3056 0.3008 0.5025 0.0990

Table 3 Model index evaluation results when a fault is detected.

1 2 3 4 5 6 7 8 9 10 11 12

MSE 4.9208 5.2977 5.9286 7.9677 7.3640 4.7036 5.0191 7.5286 4.8958 0.3368 1.5094 0.1737
MAE 1.9185 1.9929 2.0879 2.4270 2.3355 1.8828 1.9161 2.4991 1.9485 0.5071 1.0543 0.3720
MAPE 20.3747 3.3643 3.4618 4.5379 4.6401 3.6619 3.9558 2.4658 0.8114 1.6186 0.8093 0.7723

Table 4 Model index evaluation results after a fault is detected.

1 2 3 4 5 6 7 8 9 10 11 12

MSE 0.1971 0.2752 0.0954 0.0018 0.0138 0.1283 0.0107 0.5050 0.8914 0.2693 0.4865 0.0882
MAE 0.4001 0.4969 0.7873 0.0316 0.1124 0.2880 0.0924 0.6247 0.9005 0.4869 0.6324 0.2697
MAPE 5.4107 0.9373 0.4710 0.0704 0.2162 0.6115 0.1773 0.9311 1.2759 0.7796 0.9796 0.5502

Analysis of data causes
The motor fault and its related indicators are selected for verification. After the motor
fault, the faulty motor cannot maintain a relatively constant speed and power as before the
fault occurred, and the motor stator temperature also gradually changes with the motor
fault. They can serve as key indicators of motor failure. The motor was in a shutdown state
before 10:00 on 2022/10/14, and ran normally after 10:50. An abnormality occurred around
19:30, and returned to normal around 5:30 on 10/15. The temperature of the motor stator
remains unchanged when the motor is stopped, rises after the motor operates normally,
drops after an abnormality occurs in the motor, and recovers after the motor recovers. The
motor speed and power graphs with the motor stator temperature are shown in Figs. 4
and 5, and the motor temperature anomaly graph is shown in Fig. 6. The colors gradually
transition from warm (red and yellow) to cool (blue and green).

Analysis of the results of the calculation of monitoring indicators
This article is based on the compressor data provided by Gao Ling Station of PetroChina
West-East Gas Pipeline Co., Ltd., combined with internal maintenance manuals, fault cases
and the cooperation and experience of experts in related fields, to conduct monitoring and
analysis of abnormal motor temperature faults. This article focuses on monitoring 12 key
characteristic data such as motor power, motor stator temperature, compressor non-drive
end temperature, drive end temperature, lubricating oil tank temperature, main thrust
bearing temperature and auxiliary thrust bearing temperature. The causes of the failure
and their solutions are summarized as shown in Table 5.
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Figure 4 Trend of speed and power changes before and after motor failure.
Full-size DOI: 10.7717/peerjcs.2433/fig-4

The monitoring method proposed in this article not only focuses on the impact of a
single feature on faults, but also further improves the accuracy of fault detection through
comprehensive analysis of multi-dimensional features. Each sampling point contains a
combination of the first 100 historical data and the last 30 future data, which greatly
improves the accuracy and reliability of monitoring.

The fault is detected at 30 points of fault degradation. At the monitoring moment If the
first 10 data are all abnormal, it is considered that an abnormality has occurred. Therefore,
when a fault is detected, this paper considers that a fault has occurred. The fault monitoring
results calculated from Eqs. (5), (6), (7) and (12) are shown in Fig. 7.

Comparison of improved methods
The monitoring effect before the algorithm improvement is shown in Fig. 8. Prior to the
improvement, each point only contained themonitoring effect of the current point, leading
to false detections, false alarms, and insufficient information content.

After the improvement, each sampling point now includes 100 historical data points
prior to the sample and 30 future data points following it, greatly enhancing the reliability
and accuracy of themonitoring alarms. If the 10 data points before themonitoringmoment
are all abnormal, an anomaly is considered to have occurred, and the forecast results for
the time after the current moment are provided. The normal monitoring results for each
sampling point are shown in Fig. 9, thereby allowing the previously mentioned false
detections to be monitored correctly.

CONCLUSIONS
Based on the condition monitoring data of industrial centrifugal compressors, this paper
tests the fault detection and identification ability of PCA. At the same time, for the first
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Figure 5 Trend of stator temperature change before and after motor failure.
Full-size DOI: 10.7717/peerjcs.2433/fig-5

time, PCA and LSTM are combined to predict the behavior of the system under fault
conditions, and combined with the statistics and SPE statistics health indicators, the fault
is successfully detected in a short detection time and the reaction time is given.

This combinedmethod can greatly improve the following problems: Firstly, critical safety
is not necessarily safe. By means of future data prediction combined with the mentioned
monitoring algorithm, this article achieves fault prediction and greatly improves the
situation where the fault trend develops rapidly and it is too late to repair the system.
Secondly, the existence of outliers in the monitoring data causes frequent false alarms in
the system. Due to the harsh working environment of the compressor and a large amount
of disturbance, the monitoring sensors are prone to outliers, thus reaching the system’s
threshold value. This paper greatly reduces the impact of environmental interference by
comprehensively considering the impact of multi-dimensional features on a single fault,
and greatly improves the performance by constructing at each monitoring point the 100
historical data before the current sampling point and the 30 future data after the sampling
point. It eliminates the influence of outliers and improves the accuracy and reliability of
monitoring.
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Figure 6 Motor temperature abnormality diagram.
Full-size DOI: 10.7717/peerjcs.2433/fig-6

Table 5 Motor faults and solutions.

Cause of failure Solutions

There is something
wrong with the pump

The main oil pump does not start: there is no working
medium, notify the responsible department. The auxiliary
oil pump does not start when the oil pressure drops:
electrical failure, electrical failure of the pump automatic
equipment (notify the responsible department)

Oil pipeline leak Leakage at flange connection: seal must be replaced. Oil line
rupture hazard: Fire hazard due to contact with hot parts

Cooler, filter or strainer is dirty Conversion cooler, filter cleaning coarse filter
Defective oil pressure balancing
valve or pressure reducing valve

Check valve and replace if necessary

Oil pressure too low The pump is defective, the oil pipeline is leaking, the cooler,
filter or strainer is dirty, the oil pressure balance valve or
pressure reducing valve is defective

The oil level in the
high tank is too low

Add enough oil

Seal oil pressure difference
is too low

Adjust control valve

Oil temperature is too low turn on heater
Fault Motor failure
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Figure 7 Fault monitoring.
Full-size DOI: 10.7717/peerjcs.2433/fig-7

Figure 8 Monitoring chart before improvement.
Full-size DOI: 10.7717/peerjcs.2433/fig-8
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Figure 9 Single point monitoring map.
Full-size DOI: 10.7717/peerjcs.2433/fig-9
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