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ABSTRACT
Federated learning (FL) is a popular method where edge devices work together to train
machine learning models. This study introduces an efficient network for analyzing
healthcare records. It uses VPN technology and applies a federated learning approach
over a wireless backhaul network. The study compares different wireless backhaul
channels, including terahertz (THz), E/V band (mmWave), and microwave, for their
effectiveness. We looked closely at a suggested FL network that uses VPN technology
over awireless backhaul network. We compared it with the standard method and found
that using the FedAvg algorithmwith Terahertz (THz) for communication gave the best
accuracy. The time it took to reach a conclusion improved a lot, going from 55 seconds
to an impressive 38 seconds. This emphasizes how having a faster communication link
makes FL networks work much better. Furthermore, a three-step plan was executed
to boost security, adopting a multi-layered method to safeguard the FL network and
its confidential data. The first step involves integrating a private network into the
current telecom infrastructure, establishing an initial layer of security. To enhance
security further, licensed frequency channels are introduced, providing an extra layer of
protection. The highest level of security is achieved by combining a private networkwith
licensed frequency channels, complemented by an additional layer of security through
VPN-based measures. This comprehensive strategy ensures the application of strong
security protocols.
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INTRODUCTION
In the realm of machine learning, numerous situations present difficulties when it comes
to transferring data to a central server for model training. To tackle these issues, an
alternative approach is to employ distributed machine learning, as discussed in Verbraeken
et al. (2020). Distributed machine learning involves training multiple models on servers
located in different geographical locations, and these models are later combined to create a
cohesive machine learning model. Two main types of distributed learning strategies exist:
the data parallel approach and the model parallel approach. In the data parallel approach,
data is divided among various servers, each running the same machine learning model, as
explained in Peteiro-Barral & Guijarro-Berdiñas (2013). The model parallel method relies
on utilizing identical data across all servers but with distinct parameters for a machine
learning model. The distributed machine learning algorithms facilitate quicker learning
with shortened training times by employing multiple models on parallel servers, they
often neglect the important aspect of safeguarding end-device privacy. The transfer of
end-device data to distributed servers can potentially result in privacy infringements on
the end-devices. To tackle this issue, the concept of federated learning was introduced in
the publication byMcMahan et al. (2017).

Federated learning is a concept that has gained significant popularity recently due
to its potential in handling fragmented sensitive data for learning purposes. Instead of
consolidating data from various sources into a single entity or following the conventional
approach of discovering data and then duplicating it, federated learning allows the training
of a shared global model using a central server while preserving the data within local clients
where it originates (Qayyum et al., 2022).

Federated learning in healthcare. Healthcare data often appear fragmented due to the
intricate structure of the healthcare system and its associated procedures. For instance,
various hospitals may have access exclusively to the clinical records of their respective
patient groups. These records contain highly sensitive information, including protected
health data (PHI) of individuals. To govern the access and analysis of such data, stringent
regulations like the Health Insurance Portability and Accountability Act (HIPAA) have
been established (Gostin, 2001). This presents a significant obstacle for contemporary
data mining and machine learning (ML) methodologies, including deep learning (LeCun,
Bengio & Hinton, 2015), as they typically rely on substantial volumes of training data.

Federated learning shows significant potential in the field of healthcare data analytics.
It offers promising prospects for both provider-oriented tasks, such as creating models to
predict hospital readmission risks using patient Electronic Health Records (EHR) (Min,
Yu &Wang, 2019), and consumer-focused applications, like detecting atrial fibrillation
using electrocardiograms recorded by smartwatches (Perez et al., 2019). This methodology
ensures that sensitive patient data remains confidential within local institutions or with
individual consumers throughout the federated model learning process, thereby preserving
patient privacy effectively. Federated learning involves the challenge of training a top-notch
shared global model using a central server, drawing data from decentralized sources spread
across a multitude of diverse clients (see Fig. 1).
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Figure 1 Federated learning is utilized for the prediction or categorization of medical records or dis-
eases, prioritizing patient record confidentiality andminimizing network strain. Rather than sending
raw data to a central server, an approach involving decentralized training is employed. Periodic communi-
cation between remote devices and a central server facilitates knowledge acquisition from a global model.
Specific groups of computer systems conduct local training with diverse user data distributions, and the
resultant updates are transmitted to the server. The server includes these updates and shares the improved
global model with another set of devices. This process of iterative training persists until it reaches conver-
gence or meets a pre-established stopping condition.

Full-size DOI: 10.7717/peerjcs.2422/fig-1

Challenges and opportunities in FL over wireless network. In federated learning, local
models are trained on end-devices and then combined on a central server. The global
model is continuously sent back to end-devices until convergence is achieved. Federated
learning relies on iterative interaction between end-devices and the aggregation server,
necessitating efficient optimization schemes like FedAvg and FedProx. Subsequently, the
aggregated weights (global model) are returned to the end-devices. Despite its benefits,
federated learning encounters challenges such as privacy issues, resource optimization,
incentive mechanisms, and statistical and system heterogeneity (McMahan et al., 2017).
Malicious aggregation servers or end-devices could potentially extract sensitive information
from others’ model updates, emphasizing the need for effective privacy preservation
mechanisms. In summary, the discussion highlights the importance of addressing key
questions regarding federated learning over wireless networks (Hong et al., 2021).

How can we design a federated optimization scheme to handle statistical and system
heterogeneity effectively? How can we optimize computing and communication resources
to shorten the global convergence time of federated learning? How do we enhance privacy
in federated learning despite the existence of a malicious aggregation server?
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To answer the above questions, we present a proposed network framework based on
Wireless Backhaul Network.

Aim of the study
Federated learning (FL) over wireless networks incorporates ML and Internet of Everything
(IoE) applications, but there is room for improvement in resource allocation, security, and
addressing statistical variations in FL aggregation algorithms. We have identified two key
areas for improvement: (1) Enhancing wireless channels with terahertz spectrum, and (2)
improving privacy in FL-based healthcare networks through a secure cross-silo solution
using fixed wireless backhaul networks.

In this study, we explore a novel approach in the FL Briefing that leverages terahertz
wireless channels and fixed wireless backhaul networks to address the challenges of
resource efficiency and security. Additionally, we propose a design for implementing FL
for healthcare using VPN-based wireless backhaul networks, including terahertz. This
contribution is novel in the area of federated learning for healthcare improvement.

Article structure
The article is structured as follows: It begins with an introduction and motivation for the
study. ‘‘Proposed Solution’’ provides comprehensive details of the proposed solution and
its key factors, while ‘‘Methodology’’ covers the methodology of the study. ‘‘Experiment
Setup’’ and ‘‘Results and Discussion’’ explain the experiments, results, and discussion.
Finally, the conclusion and future work of the study are presented.

PROPOSED SOLUTION
The proposed framework comprises different technologies such as FL, wireless backhaul
network, and virtual private network (VPN). Following our detailed discussions, we
introduce the proposed framework depicted in Fig. 2 (Mahmood et al., 2024). Under this
framework, each hospital functions as a client within a federated network, granting them
independence to carry out specific tasks such as heart disease classification, MRI scan
classification, medicine prediction, and various other medical analyses. In the proposed
architecture, the federated network is implemented over a wireless backhaul network using
the telecom network. Each site has a Radio Access Network (RAN) for user coverage
and wireless backhaul links for data transfer between sites, with the final goal being the
switching center. We use the backhaul link from these sites for our data transfer to the FL
server. Let’s discuss this in more detail.

Looking at how a mobile network is structured, we can identify three important parts
that make it work: the last mile, the middle network, and the core network, as shown in
Fig. 3. These parts work together to ensure the smooth operation of the mobile network,
each playing its own unique and important role. The last mile site, vital in network
paradigms (Parvez et al., 2018), is where users connect devices such as smartphones and
smart gadgets to the wider network. This component ensures crucial network delivery
and is indispensable in the mobile network ecosystem. Last mile 5G services deliver fast,
low-latency, reliable connectivity using wireless technology, small cells, network slicing,
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Figure 2 Proposed cross silo federated learning using VPN based wireless backhaul network (Mah-
mood et al., 2024).

Full-size DOI: 10.7717/peerjcs.2422/fig-2

and advanced antenna systems, benefiting various applications and industries to foster
innovative connected experiences.

Following the last mile is the regional network, which acts as a middle layer linking
the last mile to the core network. It functions as a bridge, facilitating the flow of data and
communication between the outer edges (lastmile) and the central core. It is like connective
tissue that ensures information can travel smoothly across the network, covering both urban
and rural areas. The core network is the backbone of the mobile network, comprising
optical and switching nodes across the nation. These nodes are resilient, scalable, and use
advanced transport network protocols. Operating at the network’s core, it manages data
flow, integrity, and essential network functions for modern mobile communication.

A cellular network’s success depends on strategic site selection, considering rental
rates, civil engineering, RF optimization, marketing, profitability, and market dynamics.
Assessments aim to use tall structures to lower tower costs and evaluate building strength to
support equipment, towers, antennas, and an equipment room, ensuring resilience against
equipment loads, seismic activity, and harsh weather (Mishra, 2018). We utilize high-rise
buildings to install last mile sites and improve network coverage in crowded urban areas
facing network congestion and signal issues. Elevated locations offer clear line-of-sight
for mobile signals, enhancing signal quality and reliability. Installing infrastructure on tall
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Figure 3 Proposed cross silo federated learning using VPN based wireless backhaul network.
Full-size DOI: 10.7717/peerjcs.2422/fig-3

buildings, such as malls, educational buildings, offices, and hospitals, increases network
capacity, enabling more connections and better data traffic management.

Some of the sites deployed on hospital buildings and nearby locations are points of
interest in this proposed architecture. The last mile sites and intermediate sites have a
backhaul facility based on wireless backhaul links. We will use these links to transport the
federated network traffic, which includes the model parameters. In Fig. 3, the sites marked
with a hospital sign are used for this purpose and aim to transport the model parameters
to the central server, where all parameters are aggregated and updated parameters are
sent back to the users/clients. In this proposed scheme, the conventional traffic or normal
backhaul traffic will not be disturbed, and a simple VPN architecture will be used. We
will create a VPN on top of the conventional traffic, which will be a separate tunnel. This
separate tunnel can be used to transmit and receive data for the federated network.
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Key factors of proposed architecture
In this section, we study the communication and security aspects of the proposed solution,
focusing on several key considerations on which our proposed network is based and
implemented:

• Private versus public network
• Licensed versus unlicensed channel
• Cross-silo versus cross-device
• Enhanced communication wireless channel

Private network
A private network ensures heightened security and a dedicated communication channel,
separate from public networks. This reduces data breach risks and cyberattacks, allowing
organizations full control over security protocols. The network’s private nature enables
customized configurations, such as bandwidth allocation, network slicing, and application
prioritization (Ezra et al., 2022). Private networks offer superior performance and reliability
compared to public networks. Theyminimize network congestion by serving specific groups
or organizations exclusively (Goyal, 2014).

The literature emphasizes the benefits of private networks over public ones, highlighting
strengthened security measures and improved communication system quality, including
bandwidth, integrity, and reliability. Private networks play a crucial role in protecting
sensitive data and mitigating cyber threats, establishing a robust communication
infrastructure (Abdulsalam & Hedabou, 2021).

Licensed channel
A wireless backhaul network in a licensed spectrum provides several advantages. It offers
exclusive access to specific frequency bands, preventing interference from other users
and allowing license holders to involve regulatory authorities in case of issues. Dedicated
spectrum resources enable faster data transmission, outperforming unlicensed spectrum
by delivering data ten times faster. This spectrum also allows greater flexibility in deploying
cellular networks and ensures private access, reducing the risk of unauthorized data access
and manipulation, critical in industries prioritizing data privacy. The literature here
illustrates the benefits of licensed band security over unlicensed band and lists out the
important aspects (Mumtaz et al., 2019; Grech & Eronen, 2005; Matinmikko et al., 2015;
Cano et al., 2016).

Virtual private network (VPN)
VPNs prevent unauthorized access to private business correspondence and help reduce
the environmental impact of business travel (Forbacha & Agwu, 2023). The VPN enhances
security by integrating the public network into the private network and adds an extra layer
of protection with another VPN within the private network. VPNs extend the capabilities
of private networks to public networks, allowing devices to securely communicate as if
they were directly connected to the private network. VPNs utilize different methods such
as virtual point-to-point connections, dedicated links, tunneling protocols, and traffic
encryption during setup. The discussion and literature show that VPNs can significantly
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add another layer of security for smooth communication (Ali, Hossain & Parvez, 2015;
Odonkor et al., 2024; Akinsanya, Ekechi & Okeke, 2024; Iqbal & Riadi, 2019).

Cross-silo FL vs. cross-device FL
Cross-device FL involves a large number of clients contributing to the global model,
utilizing extensive, dispersed data from the same application. Participating clients are
decentralized entities, including smartphones, wearables, and edge devices. This approach
poses challenges in managing transaction history logs due to the volume of clients and the
use of unreliable networks, which can lead to random participation in training rounds and
increased security risks.

In contrast, cross-silo federated learning typically involves 2 to 1,000 devices within
a trusted network, consistently available for training rounds. This approach offers more
flexibility than cross-device FL and is commonly used in organizational or group settings
for training models with confidential data. Essential techniques such as client selection and
incentive designs facilitate this form of federated learning (Yu et al., 2020). The comparison
of both data availability approaches is explained in Fig. 4.

Enhance wireless communication channel
We are dealing with a private network, specifically a wireless backhaul network. This
network operates only under licensed spectrums such as microwave, mmWave, and the
newly studied spectrum, terahertz (THz). In our previous study We propose terahertz-
based wireless backhaul as integral to 6G due to its numerous benefits: significantly
higher bandwidth in the terabits per second (Tbps) range, exceptional user data rates
up to 100 Gbps, ultra-low latency under 0.1 ms, improved spectrum efficiency, and a
tenfold increase in bandwidth compared to traditional solutions. This technology promises
unprecedented speeds and is ideal for next-gen applications and services. The suggested
design is versatile and perfectly suited for various wireless backhaul networks operating at
frequencies starting from 38 GHz and beyond. Its capabilities, combined with the benefits
of terahertz technology, establish it as a promising and forward-looking solution to meet
the changing connectivity requirements of the 6G era (Mahmood et al., 2024).

METHODOLOGY
In this section, we have explained the overall methodology as depicted in Fig. 5. The
remaining article is structured based on the methodology discussed in this section. In
our upcoming analysis, we intend to focus on hand, foot, and mouth disease (HFMD)
classification using biosensor-extracted data. We will assess the performance of our
proposed framework in this context. To establish a validation benchmark, we compared
these analyses with the results obtained through centralized approaches currently available,
as comprehensively explained in Mahmood et al. (2022). The results from Mahmood et al.
(2022) are now used for further comparative analysis, enabling us to draw conclusions
about the achievements of our proposed framework and identify areas for potential
improvement.

Mahmood et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2422 8/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2422


Figure 4 Comparison of cross-silo and cross-device settings.
Full-size DOI: 10.7717/peerjcs.2422/fig-4

Flow of experiments
In this section, we explain the flow of the experiment and how federated ML performs the
classification of signals. In Fig. 6, the stepwise approach for federated ML is illustrated. In
Step 1, the central server sends the latest model parameters to the nodes. Step 2 involves
data collection at each node. In Step 3, each local model is trained based on the latest
parameters. Step 4 consists of communicating the updated model parameters back to the
global model. In Step 5, the updates from each model are combined to retrain the global
model, resulting in a new model. Finally, Step 6 restarts the process from Step 1.

Machine learning for classification: state of the art
Machine learning a broad topic in the field of artificial intelligence (AI) that involves
developing algorithms and models that enable computers to learn from and make
predictions or decisions based on data. Machine learning has the potential to revolutionize
various industries bymaking predictions, automating tasks, and extracting valuable insights
from data In the realm of machine learning, numerous situations present difficulties when
it comes to transferring data to a central server for model training. To tackle these
issues, an alternative approach is to employ distributed machine learning, also detailed in
Verbraeken’s survey (Verbraeken et al., 2020).
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Figure 5 Brief methodology of experiments/structure.
Full-size DOI: 10.7717/peerjcs.2422/fig-5

Figure 6 Steps in training a model using the FL framework, with nodes referring to hospitals or clinics
(Fachola et al., 2023).

Full-size DOI: 10.7717/peerjcs.2422/fig-6
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Artificial neural network (ANN)
Inspired by the human brain, a neural network creates meaningful features from an initial
signal using interconnected layers of units. The first layer accepts diverse inputs, and the
last layer acts as a classifier. Intermediate layers transform inputs into valuable features,
enabling the network to acquire robust characteristics for classification as presented in
Figs. 7 and 8. Training employs stochastic gradient descent, removing the necessity for
manual feature selection. This method, especially advantageous for classification, has
resulted in highly efficient image and non-image classification systems based on neural
networks (Bishop, 2006).

Neural network—federated learning
Distributed machine learning involves training numerous models across servers that are
located in different geographical locations, and these models are later combined to create
a unified machine learning model. Federated learning is a key modern-day solution for
addressing the challenges of training a machine learning model on extremely large datasets,
such as astronomical data, which include substantial computational energy consumption
and extended training durations (Li et al., 2020). It is a machine learning method enabling
training models on decentralized devices like smartphones, IoT devices, or local servers,
without transferring data to a central server. In contrast to traditional machine learning,
where data is usually gathered and sent to a central server for model training. However, in
federated learning, the model is sent to the data sources, and model updates are performed
locally on these devices. In this way, FL earns many advantages over other approaches such
as privacy preservation, reduced data transfer, decentralization and model customization.

In recent times, there has been a notable increase in attention towards the field of
healthcare data analytics. This heightened interest is attributed to the growing availability
of healthcare data from diverse sources, such as clinical institutions, individual patients,
insurance firms, andpharmaceutical companies. This influx of data presents an unparalleled
opportunity to develop computational methods aimed at extracting valuable insights from
the data. These insights, driven by data, have the potential to enhance the quality of
healthcare delivery significantly (Wang & Preininger, 2019).

In applying federated learning referred to Fig. 1, to classify diseases on computer
systems, we prioritize patient data privacy and network efficiency. Instead of sending raw
data to a central server, a decentralized approach is adopted. Remote devices periodically
communicate with a central server to obtain a global model. During each communication
round, a specific subset of devices conducts local training on their distinct patient data,
sending updates to the server. The server adjusts the global model and transmits it to
another subset of devices. This iterative process continues until convergence or a predefined
stopping criterion is met.

Description of datasets
The data is in the form of a signal extracted from a biofunctionalized SPR-TFBG sensor.
To clarify and simplify, we explained how the biofunctionalized SPR-TFBG sensor works.
The primary function of the SPR-TFBG biosensor is to differentiate the spectral details
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Figure 7 A basic neural network is portrayed, comprising a three-input input layer and lacking hid-
den layers. The output layer receives the combined inputs and weights, undergoes activation by any cho-
sen function, and then progresses to produce the final output.

Full-size DOI: 10.7717/peerjcs.2422/fig-7

Figure 8 The depiction showcases a neural network characterized by a solitary input layer capable of
handling multiple inputs. This network is distinguished by three hidden layers and four outputs at the
output layer.

Full-size DOI: 10.7717/peerjcs.2422/fig-8

between a virus-free solution and a virus-containing solution. The SPR mode’s spectral
responses vary with different concentrations of the EV-A71 virus in both clean solutions
and solutions with varying levels of impurities. Readers are encouraged to review the
additional information on the development and experiments of the SPR-TFBG biosensor
found in Udos et al. (2021).

The horizontal axis corresponds to the wavelength, and the vertical axis represents
the amplitude of each wavelength in decibels (dBm). Figure 9 illustrates the relationship
between wavelength and amplitude for each solution. Referring to the raw data, the signal
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Figure 9 The PBS-immersed biofunctionalized SPR-TFBG exhibits a transmission spectrum in the P-
polarized mode. The selected SPR mode (1514.6 nm) for the virus test is emphasized through the shaded
region. Indications of the Bragg mode and ghost mode are depicted by blue arrows. The inset illustrates
the SPR mode’s spectral responses to diverse concentrations of the EV-A71 virus (Udos et al., 2021).

Full-size DOI: 10.7717/peerjcs.2422/fig-9

waveform spans from 1,490 nm to 1,570 nm, with the y-axis representing the output
spectrum in dBm, ranging from −21 to −15. Each signal comprises 4,000 individual
features.

In other words, one sample or single patient data has 4,000 individual features based on
the waveform, and their values vary from −21 to −15. The matrix of the complete dataset
for all impurities and a clean solution has a dimension of n×4000, where 4,000 are the
number of features and n is the number of samples. In the next step of dimension reduction,
the region of interest (ROI) is applied. The region of interest ranges from 1,510 nm to
1,540 nm, meaning the ROI has 1,496 features of different wavelengths, and the dimension
has now been reduced to n×1,496. There are five different classes available in the datasets
based on expert opinion and analysis: PBS, 02 µL, 08 µL, 32 µL, and 128 µL. PBS refers to
the clean solution, meaning there are no virus strains present, while 02 µL to 128 µL refer to
impure solutions with varying virus intensities and types. The sample dataset is presented
in Table 1. There are a total of four clients taking part in the classification process. Client 1
contributes 598 samples, Client 2 contributes 287 samples, Client 3 has 275 samples, and
Client 4 has 162 samples. There are 264 samples tested in each solution: PBS, 02 µL, 08 µL,
32 µL, and 128 µL. The total number of tested samples is 1,320 when all the samples from
all the clients are consolidated.

The merged dataset for all the impurities and a clean solution is presented in Table 1. In
the final dataset, each wavelength is treated as the individual feature of the samples. In the
final image of the dataset presented in Table 2, there are around 4,000 features for every
sample. Each sample is labeled as 0 ul, 02 ul, 08 ul, 32 ul, and 128 ul.
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Table 1 All solutions with labels written in Target col after feature reduction based on ROI.

Features 1510.1 1510.12 . . . 1540 TARGET

Sample-1 −21.5246 −21.5343 . . . −18.9976 2UL
Sample-2 −21.5359 −21.5545 . . . −18.9935 2UL
Sample-140 −21.4907 −21.5165 . . . −18.9346 8UL
Sample-141 −21.5351 −21.5069 . . . −19.0065 8UL
Sample-265 −21.4415 −21.4617 . . . −18.9637 32UL
Sample-266 −21.3745 −21.3842 . . . −18.9193 32UL
Sample-399 −21.5416 −21.5569 . . . −19.0573 128UL
Sample-400 −21.6037 −21.6166 . . . −19.0444 128UL
Sample-531 −21.4818 −21.4609 . . . −18.9209 0UL
Sample-532 −21.5174 −21.5206 . . . −19.0048 0UL

Table 2 Statistical characteristics used for features (Mahmood et al., 2022).

Statistical characteristics Formula

Mean (µ)= 1
n

∑n
i=1xi

Root mean square (RMS) RMS=
√

1
n

∑n
i=1(xi)2

Variance σ 2
=

1
n

∑n
i=1(xi−µ)

2

Standard deviation σ =

√
1
n

∑n
i=1(xi−µ)2

Skewness 1
n

∑n
i=1(

xi−µ
σ

)3

Kurtosis kurtosis= 1
n

∑n
i=1(

xi−µ
σ

)4

Crest Factor CF = Max(|x|)
RMS

Impulse Factor IF = Max(|x|)
1
n
∑n

i=1|x(t )|

Shape Factor SF = RMS
1
n
∑n

i=1|x(t )|

Range Range=Max(x)−Min(x)

Feature analysis
The section is divided into feature extraction and feature engineering for both centralized
and federated ML approaches. In each part, we explained the technique that is used, and
then their results for both approaches are presented separately.

Feature extraction
The utilization of raw signals by the classifier might lead to bias or influence its performance
due to the abundance of features. Table 1 displays the existence of 1496 features originating
from diverse wavelengths within the region of interest (ROI). In the initial step of
feature extraction, a simple bandpass filter was employed on the wavelength spectrum
encompassing the ROI. This specific range extends from 1,510 nm to 1,540 nm, as detailed
in Table 1.

Feature engineering
Engaging in feature engineering involves significant computational demands, often giving
rise to the creation of numerous sets of features. The presence of these numerous feature
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Table 3 Statistical characteristics derived from the combined datasets of all solutions within the ROI.

Features IF SF CF RMS Kur Skew Var SD Mean Range TARGET

sample-1 0.911 1.002 0.910 20.661 −0.370 −0.634 1.576 1.255 −20.622 5.190 2UL
sample-2 0.911 1.002 0.909 20.669 −0.397 −0.625 1.599 1.265 −20.630 5.216 2UL
sample-135 0.912 1.002 0.911 20.640 −0.317 −0.653 1.562 1.250 −20.603 5.189 8UL
sample-136 0.911 1.002 0.910 20.652 −0.351 −0.647 1.591 1.261 −20.614 5.206 8UL
sample-265 0.912 1.002 0.910 20.601 −0.363 −0.633 1.607 1.268 −20.562 5.230 32UL
sample-266 0.911 1.002 0.910 20.594 −0.360 −0.637 1.599 1.264 −20.555 5.182 32UL
sample-399 0.912 1.002 0.911 20.714 −0.354 −0.642 1.585 1.259 −20.676 5.184 128UL
sample-400 0.914 1.002 0.913 20.710 −0.369 −0.630 1.580 1.257 −20.672 5.136 128UL
sample-531 0.910 1.002 0.909 20.631 −0.391 −0.611 1.578 1.256 −20.593 5.189 0UL
sample-532 0.912 1.002 0.910 20.626 −0.372 −0.629 1.579 1.257 −20.588 5.165 0UL

sets can give rise to a range of challenges. Some of these difficulties encompass the usage
of computationally resource-intensive models, the risk of model overfitting, a decline
in model effectiveness, issues with multi-collinearity, and the potential drawbacks of
dealing with high dimensions. To address these potential problems, we have implemented
techniques for feature reduction, guided by the statistical characteristics of the signals. This
process aims to produce a condensed set of features that can lead to heightened accuracy,
thus markedly improving the performance of classification. The selected attributes for
this process include mean, SD, variance, RMS, kurtosis, skewness, crest, shape, range and
impulse, all derived from their corresponding statistical characteristics (Kuhn & Johnson,
2019).

The statistical characteristics displayed in Table 2 are explained in detail in our previous
study, including their definitions and descriptions. Here, we describe their mathematical
formulas. Later, the features extracted through statistical properties are displayed in Table 3
refereed by our previous study (Mahmood et al., 2022). Following the application of feature
engineering guided by these statistical properties, the dataset’s dimension is reduced from
1,496 to 10.

Feature selection
Following feature extraction, the subsequent stage involves feature selection. Numerous
techniques exist to tackle the issue of diminishing irrelevant and redundant features that can
complicate a demanding task. Generally, the feature selection methods fall into categories
such as filters, wrappers, and embedded methods, as depicted in Fig. 10.
Filter methods —mutual information. Filter techniques utilize variable ranking strategies as
the fundamental basis for selecting variables by means of ordering. The selection of ranking
methods stems from their simplicity and proven effectiveness within practical contexts.
A fitting ranking criterion is applied to assign scores to the variables, and subsequently, a
threshold is employed to exclude variables that do notmeet the threshold. Rankingmethods
operate akin to filter methods, given that they are implemented prior to classification, with
the aim of sieving out less pertinent variables. A fundamental quality of a distinctive
feature lies in its capacity to encompass valuable insights concerning the various classes
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Figure 10 Feature selection techniques (Khalid, Khalil & Nasreen, 2014).
Full-size DOI: 10.7717/peerjcs.2422/fig-10

inherent in the data. This attribute can be defined as feature relevance, offering a metric
for assessing the feature’s capability to distinguish among the diverse classes present. In
this investigation, we have chosen mutual information as the filter approach to designate
the selected features (Chandrashekar & Sahin, 2014).

Utilizing the concept of mutual information (MI) introduced by Deng, Luo & Yu
(2014), a term weighting scheme was developed. For a given term ti and a document set
Dc (comprising documents within a specific category), the MI between them is computed
using the subsequent formula:

MI (ti,Dc)= log P(ti,Dc )
P(ti)xP(Dc )

Figures 11, 12, 13, 14 and 15 illustrate the feature set along with their MI Score using the
method for both centralized ML and federated ML. From the selected features, we targeted
the top 80% and compare the results with the sequential feature selection method. These
selected feature sets are further employed for classification purposes. In the classification
phase, we selected all five feature sets and run classifier, evaluating the performance and
accuracy based on the established criteria.

The top eight out of 10 feature sets used for centralized machine learning classification
and for distributed clients in federated networks refer to specific attributes or characteristics
of data selected based on mutual information, as presented in Table 4.

Performance evaluation
The classification process serves as the ultimate and crucial stage for the identification and
categorization of both pure and impure solutions, each characterized by varying degrees of
impurities. According to the established methodologies, the features identified and listed in
Table 4 via employing MI will be employed to classify the signals. Consequently, the signals
will be grouped into virus-free or virus-present categories, depending on the impurity
level. The dataset was divided into separate testing and training sets. In order to assess the
results obtained across different classifiers, the following metrics were employed:

• True positives (TP) correspond to cases where the expert-annotated positive class
coincides with the model’s positive class prediction.
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Figure 11 The feature selection on the centralized dataset, comprising a total of 1,320 samples, is pre-
sented here with scores based on theMImethod, ranging from amaximum to a minimum. It is evident
that the feature ‘mean’ attains the highest score, while the feature ‘IF’ receives the lowest score. This infor-
mation can be subsequently utilized for feature selection.

Full-size DOI: 10.7717/peerjcs.2422/fig-11

• False positives (FP) represent instances where the expert-annotated negative class is
erroneously predicted by the model as the positive class.
• True negatives (TN) indicate instances where the expert-annotated negative class is
accurately predicted as the negative class by the model.
• False negatives (FN) denote cases where the expert-annotated positive class is incorrectly
classified by the model as the negative class. These performance metrics were employed
in this study to assess the outcomes achieved through various classifiers.:

Accuracy =
TP+TN

TP+FP+FN +TN
(1)

Sensitivity =
TP

FN +TP
(2)

Precision=
TP

TP+FP
(3)

F1score= 2∗
precision∗ recall
precision+ recall

. (4)
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Figure 12 The feature selection on the distributed dataset, based on four clients where Client 1 has 598
samples. In the left image, the MI score of Client 1 is displayed, revealing that the feature ‘mean’ achieves
the highest score, while the feature ’SD’ obtains the lowest score.

Full-size DOI: 10.7717/peerjcs.2422/fig-12

EXPERIMENT SETUP

Experiment with neural network—centralized ML
This study implemented a neural network using Python and the Keras library, which
is a user-friendly high-level Python library designed for deep learning. Keras seamlessly
integrates with TensorFlow (or Theano or CNTK), focusing on essential deep learning
concepts such as creating neural network layers while managing tensor details. TensorFlow
(or Theano or CNTK) acts as the backend for Keras. By utilizing Keras in deep learning
applications, practitioners can avoid dealing directly with the complexities of TensorFlow
(or Theano or CNTK). Keras offers two main frameworks: the sequential API, which
arranges layers in a linear sequence, and the functional API. The sequentialmodel represents
a straightforward stack of layers.

Model architecture

Input layer. In our experimentation, we utilized feature sets detailed in Table 3. Initially,
we applied MI with an eight-feature set, selecting features based on their relevance using
this information-theoretic measure. This diverse approach to feature engineering allows
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Figure 13 Similarly, the right-side image shows the feature selection on Client 2, comprising 287 sam-
ples, with the highest score assigned to the feature ‘kurtosis’ and the lowest to ‘CF’.

Full-size DOI: 10.7717/peerjcs.2422/fig-13

our neural network to adapt and optimize performance according to each set’s unique
characteristics.

Hidden layers. In building our neural network, we intentionally opted to use two hidden
layers for specific feature set methodologies. Each hidden layer consists of 15 nodes,
carefully selected to enhance the extraction of pertinent patterns and relationships within
the input data. This setup is customized to suit the distinctive attributes and informational
richness of the Mutual Information features.

Output layer. In our classification task focused on virus stages, we predict five distinct
classes: 0 UL (PBS), 2 UL, 8 UL, 32 UL, and 128 UL. The output layer of our neural network
is configured with five neurons, each corresponding to one of these classes. This design
allows the model to predict the likelihood of an input instance belonging to any of these
stages, ensuring precise classification tailored to the nuances of virus stages.

Activation functions. In designing this neural network architecture, we’ve integrated two
distinct activation functions with specific roles. The rectified linear unit (ReLU) is chosen
for the hidden layers to introduce crucial non-linearity, enabling effective capture of
complex patterns and relationships in input data. ReLU also mitigates the vanishing
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Figure 14 The feature selection on the distributed dataset, based on four clients, where Client 3 has
275 samples, is presented. The MI score of Client 3 is displayed, revealing that the feature ‘mean’ achieves
the highest score, while the feature ‘IF’ obtains the lowest score.

Full-size DOI: 10.7717/peerjcs.2422/fig-14

Table 4 Features set used for classification.

Dataset & Approach Feature selection Feature set

Consolidated dataset for centralized ML MI with Top 80% (‘Mean’, ‘RMS’, ‘Kur’, ‘Skew’, ‘Shape Fac’, ‘SD’, ‘Var’, ‘CF’)
Client 1 for federated ML MI with Top 80% (‘Mean’, ‘RMS’, ‘Kur’, ‘Skew’, ‘CF’, ‘IF’, ‘Range’, ‘Shape

Fac’)
Client 2 for federated ML MI with Top 80% (‘Kur’, ‘Mean’, ‘RMS’, ‘Skew’, ‘Range’, ‘Shape Fac’, ‘Var’,

‘SD’)
Client 3 for federated ML MI with Top 80% (‘Mean’, ‘RMS’, ‘Kur’, ‘Skew’, ‘Shape Fac’, ‘SD’, ‘Var’,

‘Range’)
Client 4 for federated ML MI with Top 80% (‘RMS’, ‘Mean’, ‘Kur’, ‘Skew’, ‘Var’, ‘SD’, ‘Shape Fac’, ‘CF’)

gradient problem, enhancing learning efficiency during training. Softmax is chosen for
the output layer to facilitate multi-class classification tasks by transforming the network’s
outputs into a probability distribution across multiple classes. This feature is particularly
advantageous for categorizing input instances into distinct categories. The deliberate use
of ReLU for hidden layers and Softmax for the output layer demonstrates a thoughtful
approach, optimizing the model’s performance for its specific task.
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Figure 15 Image shows the feature selection on Client 4, comprising 162 samples, with the highest
score assigned to the feature ‘RMS’ and the lowest to ‘Range’.

Full-size DOI: 10.7717/peerjcs.2422/fig-15

Experiment results
Referring to Table 1 and ‘Artificial neural network (ANN)’, our consolidated dataset
consists of a total of 1,320 samples, each characterized by eight distinct features, as
described earlier. The centralized machine learning architecture previously described is
applied to this dataset, and the results achieved are presented in Fig. 16. In this scenario,
the dataset is split into training and testing sets using a 70–30 percent ratio, with 70 percent
allocated for training and the remaining 30 percent for testing.

Federated ML
In this proposed approach, the regular backhaul traffic remains undisturbed, employing a
straightforward VPN architecture. A dedicated VPN is established over the conventional
traffic, creating a distinct tunnel for transmitting and receiving data within the federated
network. The implementation of the FL framework for a wireless backhaul network,
utilizing VPN, has been successfully accomplished through the GNS3 virtual environment
emulator. This emulator simplifies the tasks of designing, constructing, emulating,
configuring, testing, and resolving issues in both virtual and actual networks, eliminating
the necessity for physical hardware. The network controller is constructed based on
the OpenDaylight (ODL) architecture, utilizing Open vSwitches (OvS) and layer three
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Figure 16 Performance analysis of neural network using mutual information features set achieved
80%weighted accuracy.

Full-size DOI: 10.7717/peerjcs.2422/fig-16

switches/routers to replicate the proposed topology in the simulation environment. The
experiments, illustrated with a set of four clients, involve each client contributing its
own HFMD biosensor data. To implement the federated learning strategy, the Flower
framework (Beutel et al., 2022) has been installed and properly configured on both the
client and server sides, executing the FedAvg, Q-FedAvg, and FedProx algorithms. The
training process on the clients involves utilizing the HFMDdataset with neural networks, as
extensively explained inMahmood et al. (2022). In Fig. 17 the simulation setup is explained.

Simulation settings
Table 5 provides a comprehensive overview of the diverse simulation settings that
underwent testing and evaluation within the framework proposed in this study. These
settings are carefully examined and then compared with the outcomes derived from the
developed benchmark. The analysis involves a thorough exploration of the performance
and efficiency of the proposed framework under different conditions, aiming to establish
a robust basis for comparison with the established benchmark.

In standard practice, a single algorithm is chosen for FL model learning. we explored
three distinct learning algorithms in conjunction with THz communication networks at
mm-wave and microwave frequencies. The approach involves a three-dimensional grid
search, where each dimension has three parameters. Local device parameters are fixed
to CPU, GPU, and RAM. On the x-axis, we represented FL algorithm choices: FedAvg,
Q-FedAvg, and FedProx. Wireless channel options include terahertz (10 Gbps), mm-wave
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Figure 17 The replica of proposed framework implemented in virtual environment.
Full-size DOI: 10.7717/peerjcs.2422/fig-17

Table 5 Simulation settings.

Setting No. X-axis Y-axis Z-axis

1 FedAvg 2.4 GHz, 8GB, No GPU Terahertz
2 FedAvg 2.4 GHz, 8GB, No GPU mmWave
3 FedAvg 2.4 GHz, 8GB, No GPU Microwave
4 FedProx 2.4 GHz, 8GB, No GPU Terahertz
5 FedProx 2.4 GHz, 8GB, No GPU mmWave
6 FedProx 2.4 GHz, 8GB, No GPU Microwave
7 Q-FedAvg 2.4 GHz, 8GB, No GPU Terahertz
8 Q-FedAvg 2.4 GHz, 8GB, No GPU mmWave
9 Q-FedAvg 2.4 GHz, 8GB, No GPU Microwave

(2 Gbps), and microwave (1 Gbps). Additionally, 20% of the total comprises THz (VPN)
at 2000 Mbps, mmW at 400 Mbps, and MW at 200 Mbps.

The optimization results aim to improve the efficiency of both the algorithms and the
network, ultimately identifying the best possible combination.

Federated aggregation learning algorithms
Various optimization strategies like federated averaging (FedAvg) and FedProx facilitate
federated learning. FedProx, a modified version of FedAvg, considers statistical and system
heterogeneity among end-devices. FedAvg uses stochastic gradient descent (SGD) on
devices to get local model weights, which are then averaged at the edge computing server
at the base station (BS).

FedProx follows a process similar to FedAvg but with a distinction in how the local
device minimizes the objective function. It incorporates the FedAvg objective function and
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Table 6 Experiment no. 1 results with FedAvg Algo.

Z-axis Accuracy of Client 1 Accuracy of Client 2 Accuracy of Client 3 Accuracy of Client 4 Conv. time

Microwave 81 57 70 76 51 seconds
mmWave 86 69 46 84 41 seconds
Terahertz 98 83 88 65 33 s

Table 7 Experiment no. 2 results with FedProx Algo.

Z-axis Accuracy of Client 1 Accuracy of Client 2 Accuracy of Client 3 Accuracy of Client 4 Conv. Time

Microwave 72 56 83 17 51 s
mmWave 84 90 67 52 39 seconds
Terahertz 72 70 86 71 42 seconds

introduces an additional proximal term. This adjustment in FedProx aims to reduce the
impact of non-independent and identically distributed (non-IID) device data on the global
learning model. Unlike FedAvg, which lacks theoretical convergence guarantees, FedProx
demonstrates theoretical convergence.

Unlike FedAvg, q-fair federated learning uses weighted averaging. In q-federated
learning, local deviceswith high empirical loss are given a higher relativeweight, introducing
weighted averaging to enhance fairness and minimize training accuracy variance.

RESULTS AND DISCUSSION
In ‘Experiment Results’, we have explained the acheived results throught the centralizedML
approachwhere the best accuracy is 80%.Now in this sectionwe present the results acheived
in federated network. and then we compare with FL results and draw the conclusion either
the FL approach is giving the acceptable result or not. We presented the three best
results, and our selection is focused on choosing the top-performing outcome among
these three. The criteria for identifying the best results involve maintaining a constant
y-axis. Specifically, from the x-axis, we opted for FedAvg as the learning algorithm. This
algorithm is then tested across various z-axis options, encompassing terahertz, mmWave,
and microwave, to comprehensively assess its performance under different conditions (see
Table 6).

Likewise, in Test (No. 2) we selected FedProx as the learning algorithm. This algorithm
was subsequently evaluated with different z-axis options, such as terahertz, mmWave,
and microwave, to thoroughly assess its performance across various conditions (refer to
Table 7).

In the most recent test, (No. 3) we chose Q-FedAvg as the learning algorithm. This
algorithm was then evaluated with different z-axis options, such as terahertz, mmWave,
and microwave, to thoroughly examine its performance under various conditions (refer to
Table 8).

In this section, we presented the rankings based on our analysis, where we leveraged the
insights gained in the previous section. Our investigation reveals that the highest accuracy is
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Table 8 Experiment no. 2 results with Q-FedAvg Algo.

Z-axis Accuracy of Client 1 Accuracy of Client 2 Accuracy of Client 3 Accuracy of Client 4 Conv. time

Microwave 82 58 95 35 55 s
mmWave 85 70 81 34 38 s
Terahertz 94 73 23 97 37 Seconds

Table 9 Ranking of the experiments.

Learning Algo Channel BW Average accuracy Conv. time Ranking

FedAvg Microwave 71 51 s 6
FedAvg mmWave 71.25 41 s 5
Fed Avg Terahertz 83.5 33 s 1
FedProx Microwave 57 51 s 9
FedProx mmWave 73.25 39 s 4
FedProx Terahertz 74.75 42 s 3
Q-FedAvg Microwave 67.5 55 s 8
Q-FedAvg mmWave 67.5 38 s 7
Q-FedAvg Terahertz 79.25 37 s 2

attained through the application of the FedAvg algorithm for parameter learning, utilizing
the terahertz bandwidth. This results in a remarkably fast convergence of the model within
a mere 33 s. The second-best performance is observed when employing the QFedAvg
algorithm for learning, also utilizing the terahertz bandwidth. In this case, the model
converges in 37 s, showcasing the efficacy of this approach. For a comprehensive overview
of the rankings, please refer to Table 9, where we detailed the performance metrics of
various algorithms in or study.

CONCLUSION
Implementing federated learning across wireless networks requires the essential
establishment of successful interaction between end-devices and the aggregation server. At
the aggregation server, three distinct learning algorithms—namely, FedAvg, FedProx, and
Q-FedAvg—have been utilized.

An additional influential factor impacting the efficacy of federated learning is system
heterogeneity, as emphasized by Khan et al. (2021). End-devices characterized by system
heterogeneity produce varied local learning models. The amalgamation of these models
at the global server may result in weight divergences between the end-devices and the
aggregation server.

Throughout our experiments, we maintained consistent device specifications. However,
it is crucial to recognize that system heterogeneity can significantly influence the
convergence performance of the global model. For example, if a device with lower
specifications is assigned resource-intensive tasks, such as image processing, it can negatively
impact the overall convergence time.
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Devices with limited computational resources may encounter challenges in computing
their local learning models within the specified deadline, particularly when the number of
local iterations is high. Consequently, for devices with restricted computational resources,
it becomes imperative to execute the local model for a reduced number of iterations.
Nevertheless, it is essential to acknowledge that running a local model for fewer iterations
generally results in diminished accuracy for the global federated learning model (McMahan
et al., 2017).

The best accuracy is achieved using FedAvg and THz for the communication channel,
with convergence times varying from 55 s to 24 s for FedAvg and transitioning from THz
to downgraded MW. This underscores the critical importance of a higher bandwidth
communication link. Determining device rules cannot heavily rely on the dataset alone.
Security is enhanced through a three-step approach: a private network within the telecom
network, a private network with licensed frequency channels, and a private network with
a licensed band, further fortified by VPN-based security.
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