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ABSTRACT

The desert locust is one of the most destructive locusts recorded in human history, and it
has caused significant food shortages, monetary losses, and environmental calamities.
Prediction of locust attacks is complicated as it depends on various environmental
and geographical factors. This research aims to develop a machine-learning model
for predicting desert locust attacks in 42 countries that considers three predictors:
soil moisture, maximum temperature, and precipitation. We developed the Global
Locust Attack Database for 42 countries (GLAD42) by integrating TerraClimate’s
environmental data with locust swarm attack data from the Food and Agriculture
Organization (FAO). To improve the usability of spatial data, reverse geocoding which is
the process of converting geographic coordinates (longitude and latitude) into human-
readable location names (such as countries and regions) was employed. This step
enhances the clarity and interpretability of the data by providing meaningful geographic
context. This study’s initial dataset focused on instances where locust attacks were
recorded (positive class). To ensure a comprehensive analysis, we also incorporated
negative class instances, representing periods (specific years and months) in the same
countries and regions where locust attacks did not occur. This research utilizes the
benefits of lazy learners by employing the K-nearest neighbor algorithm (K-NN),
which provides high accuracy and the benefit of no time-consuming retraining even if
real-time updated data is periodically added to the system. This research also focuses
on building an eco-friendly machine learning model by evaluating carbon emissions
from ML models. The results obtained from LocustLens are compared with other
machine learning models, including baseline-K-NN, decision trees (DT), Logistic
regression (LR), AdaBoost Classifier, BaggingClassifier, and support vector classifier
(SVC). LocustLens outperformed all competitors with an accuracy of 98%, while
baseline-K-NN achieved 96%, SVC gave 91%, DT gave 97%, AdaBoost has accuracy
of 91%, BaggingClassifier gave 94% and LR gave 83%, respectively. Carbon emissions
from RAM and CPU electricity consumption are measured in kg gCO2. They are a
minimum for AdaBoost Classifier equal to 0.02 and 0.07 for DT and a maximum of
9.03 for SVC. The carbon footprint of LocustLens is 4.87 kg gCO,.
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INTRODUCTION

The desert locust (Schistocerca gregaria) has been known to destroy crops across the globe
throughout history. The desert locust pandemic began in 1986 and spread fast throughout
the Sahelian nations in 1987, and reached northwest Africa by the end of that year. It
spread to North Africa, the Sahel, Sudan, the Middle East, and Southwest Asia in 1988.
Swarms then crossed the Atlantic to the Caribbean in October of that year (Skaf, Popov
& Roffey, 1990). Desert locust plagues have ravaged Western Africa for centuries (Gdmez
et al., 2019), causing severe effects on the atmosphere (Retkute et al., 2021), food scarcity,
crop losses, and affected the economies of several countries. Around twelve significant
pest species of locusts and grasshoppers exist, allowing them to embark on extensive
migrations and causing significant harm to crops, pastures, and other green vegetation
during their swarming phase. According to estimates released by the United Nations’ Food
and Agriculture Organization (FAO) in March 2020, damages and losses in Yemen and
East Africa alone total up to US$8.5 billion (World Bank, 2020). Nutrition, healthcare, and
education are ignored when impacted households and families struggle to meet necessities
like food. In Pakistan, a damage level of 15% to the output of wheat, gram, and potato
alone was recorded, and losses to agriculture, in general, might reach a total of PKR 205
billion (USD 1.3 billion) in the future, reported by FAO (Notezai ¢ Rehman, 2020). If
swarm growth is unchecked, the World Food Program predicts that long-term reaction
and recovery expenditures could exceed US$1 billion (World Bank, 2020). The devastation
caused by locusts in 2020 and COVID has put much stress on already affected food output.
Any future desert locust outbreaks can endanger 20% of the global output of the crops,
risking famine regionally or on a global scale.

According to studies, a new generation of locusts emerges every eight weeks. Locusts
exhibit a unique characteristic setting them apart from other insects: their population can
rapidly expand, forming dense bands and swarms. During their solitary phase, locusts
play a significant role in ecosystems. Nevertheless, shifts in environmental conditions and
population growth can trigger the transition to their gregarious phase, potentially resulting
in an outbreak. Every generation, the population of locusts increases by a factor of 20
on average (World Bank, 2020; Symmons ¢ Cressman, 2001). The right combination of
weather, soil, and vegetation is necessary for the outbreak as these factors encourage the
reproduction and aggregation of formerly solitary individuals. The presence of rain makes
it easier for locusts to reproduce. The soil environment is also one of the critical factors
affecting locust reproduction and outbreaks (Shuang et al., 2022). Most of the countries
and states affected by locust attacks are third-world countries. The Peninsula, Pakistan,
Saudia Arabia, Africa, and India were affected extensively, resulting from the combination
of warm weather conditions, uncharacteristically heavy rainfall, and inadequate monitoring
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practices. Thus, COVID and locust attacks have caused massive destruction to the food
and agriculture industry in history (World Bank, 2020).

Therefore, extensive research has been done on the prevention and early prediction
of locust attacks. Effective management and control of the locust population is crucial
due to the considerable damage they pose. The multidimensional nature of managing
the locust population calls for a multidisciplinary approach. In the habitats of locusts,
environmental changes (such as changes in land use) and weather unpredictability can
produce ideal conditions for locust reproduction. It must be recognized and controlled at
the appropriate time. Without these modifications, a locust outbreak could be triggered by
an increase in population, causing the species to go from the solitarious to the gregarious
phase (Klein, Oppelt ¢ Kuenzer, 2021).

Researchers have extensively used machine learning models to predict locust breeding
grounds, classify locust species, predict locust attacks, and analyze important factors that
lead to invasion (Tabar et al., 2021). In this research, we have proposed a novel methodology
called ‘LocustLens’, which accurately predicts the presence of desert locust swarms thereby
mitigating risks to the agricultural sector by providing sufficient planning time. Such an
early warning system can significantly impact various sectors, particularly agriculture,
resulting in reduced losses and more effective management strategies. We have analyzed
data from 42 countries considering the starting year of attack in different regions and
environmental factors such as soil moisture, precipitation, and maximum temperature.
Figure 1 is a pictorial representation of the top 20 out of 42 countries considered in this
research. It is imperative to emphasize that the dataset accessible on the FAO website spans
from 1985 to 2020, with the most recent update being documented in 2020. Because of this
and the dataset’s temporal scope, as well as the most current update accessible on the FAO
platform, the data for 2021 to 2023 are not included in this research.

CONTRIBUTIONS

Data fusion

Extensive work has been done in predicting locust breeding grounds and their attacks
(Kimathi et al., 2020). All these earlier methods share specific characteristics. For most of
the research in this field, the FAO desert locust database (Food and Agriculture Organization
(FAO), 2023) serves as the primary data source, emphasizing various regions of Africa. In
this research, a comprehensive data collection process is carried out, collecting data for 42
countries related to locust swarm attacks and corresponding start year and environmental
data from TerraClimate (TerraClimate, 2023). Data fusion combines positive values of
locust attacks from FAO and key environmental factors from TerraClimate datasets.
TerraClimate and FAO datasets are reverse geocoded to convert longitude and latitude to
country names and regions. Moreover, negative classes are added for months where locust
attacks were not reported to make the dataset favorable for predictions. The resulting
dataset contains essential environmental factors strongly associated with locust attacks
and geographical details of these 42 locust-prone countries, including the years and
months when locust attacks typically begin. This data fusion resulted in a more intricate
and comprehensive dataset named as GLAD 42 (Global Locust Attack Database for 42
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Figure 1 Top 20 countries with locust attack count in GLAD42 (1985-2020).
Full-size Gal DOI: 10.7717/peerjcs.2420/fig-1

countries) that includes all the vital independent features required for constructing a robust
classification model.

Use of lazy learners

Research in this field has three main areas: assessing locust risks, predicting breeding
grounds, and forecasting locust presence. Multiple methods, such as Random Forest
(RF), and neural networks along with other classification and regression algorithms,
have successfully predicted African locust breeding grounds (Gémez et al., 2018; Gomez
et al., 2021). As the literature review delves into, the classification research that has been
done so far on locust attacks is either restricted to limited geographic regions, like Saudi
Arabia, Kenya, and Africa, or it has only taken into account one or two environmental
characteristics, primarily soil moisture, using remote sensing. However, a significant
gap remains as broader global perspectives and comprehensive environmental factors
have not been adequately addressed in the existing literature. Moreover, the majority of
these studies have relied on FAO datasets, highlighting the need for more detailed and
region-specific datasets encompassing a wider range of environmental factors. We have
proposed LocustLens, using K-nearest neighbor (K-NN) following the renowned KISS
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principle as the Lazy Learner methodology to enhance our ability to predict locust attacks
across 42 countries. The KISS principle is a design principle that states that most systems
function best when they are maintained simply as opposed to convoluted. Significant
benefits from this approach, such as those seen with Lazy Learners like K-NN, are their
simplicity, making them easy to understand and apply. Furthermore, their adaptability is a
notable benefit. Lazy Learners quickly adapt to changes in the dataset due to their inherent
nature, eliminating the need for time-consuming retraining and re-testing methods. Our
algorithm adjusts fluidly to these updates as we add new country-specific data, guaranteeing
effective scaling and enabling us to quickly add unique data inputs for accurate and reliable
predictions of locust attacks.

Novel methodology

We have proposed a novel methodology for building a classification model. In this novel
approach, called LocustLens, we hierarchically employed the K-NN algorithm. It starts
with stratified sampling, splitting the dataset into training and testing subsets. It then
iterates over test samples based on the dataset creation; data subsets are created based on
a country match of the test sample with corresponding fitting data while meticulously
tracking the time involved. These subsets are smaller than the complete dataset, providing
the performance advantage of the divide-and-conquer approach. K-NN is applied to these
refined subsets for fitting. The fitted K-NN model predicts outcomes for test samples.
Finally, the model computes average fitting and testing time and generates comprehensive
performance evaluation results, providing insights into LocustLens’s performance in
predicting locust attacks across various countries.

Sustainable machine learning

Existing studies have shown that desert locusts can change their behavior, ecology, and
physiology in response to changes in climatic conditions (Symmons ¢ Cressman, 2001).
In our research paper, along with the prediction of locust attacks, we have examined the
environmental impact associated with our model’s fitting and testing phases. Machine
learning models can affect our climate in various ways, some of which may be subtle.
Potential emissions from machine learning (ML) models are divided into three categories:
(1) system emissions, (2) application emissions, and (3) computing-related emissions.
Specifically, we investigated the carbon footprint generated during computational
processes, considering the total electricity consumed during training and testing and
how much emissions result from CPU and RAM. This study is motivated by the significant
role that greenhouse gas (GHG) emissions play in contributing to climate change, which
subsequently influences factors such as precipitation patterns and temperature, which
are crucial determinants in locust infestation. Figure 2 represents that embodied and
operational emissions comprise the computing-related climate impact of machine learning
models. The arrow indicates a direct relationship between the total amount of greenhouse
gas (GHG) emissions and the embodied emissions connected to computing. Stated
differently, the hardware utilized in machine learning models has an environmental impact
and consumes energy, which leads to a rise in greenhouse gas emissions. On the other
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Figure 2 Potential emissions from training and testing ML models.
Full-size Gal DOI: 10.7717/peerjcs.2420/fig-2

hand, accuracy and precision in measuring or computing the environmental impact are
what precision means in estimating GHG emissions. There is a greater understanding of
the true environmental impact of the computing infrastructure when the estimations are
more accurate.

LITERATURE REVIEW

Swarms of locusts endanger the food sources of millions of people globally. As a result,
research in this field was initiated a century ago by Boris Uvarov (Pfliiger ¢ Briunig, 2021).
Affected areas from locust attacks are the most fragile ones. Therefore, before digging into
the details of building preventive systems, it is important to understand climate changes and
ecological factors that trigger this attack. Other research has been done in many domains
about desert locusts, from biological to psychological, financial, and many more aspects.
However, we are more concerned with the management and control aspect of the desert
locust. Research in this field can be broadly categorized into three sub-fields:

1. Research related to the desert locust infestation and the reasons behind the outbreak.
2. Predicting breeding grounds of the desert locust

3. Predicting the presence of desert locust and its swarms.

During the recent desert locust outbreak in 2020, when COVID-19 also caused massive
destruction, researchers aimed to identify the risks posed by the outbreak to people from
different socioeconomic classes and their fields of work. Researchers analyzed the surface
soil moisture data, soil type, temperature data, and wind trajectory to predict the high-risk
areas of a desert locust invasion in India (Ghosh ¢ Roy, 2020). In Latchininsky (1998), they
have discussed climate changes, such as annual precipitation changes in deserts, which
directly affect the population of locusts. Using preventive measures, spraying pesticides was
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considered the principal method to control locust attacks (Showler et al., 2021). However,
it has severely threatened human health and the environment (Nicolopoulou-Stamati et al.,
2016).

Moreover, some researchers proposed using modern technology, for example, unnamed
aerial vehicles (UAV) or drones, to survey remote areas for effective outbreak control
(Matthews, 2021). As the world recovered from the outbreak, researchers analyzed the
factors that led to the outbreak in 2020 using soil moisture, normalized difference vegetation
index, and digital elevation model. They discussed anomalies of these variables that led to
the outbreak (Wang et al., 2021).

Machine learning is used for its accurate results and reliability in this domain. Researchers
have tried to make early warning systems using different methodologies to predict the
presence of desert locusts or their swarms. RF has been used a lot, considering soil moisture
from remote sensing as a critical factor to predict the presence of locusts, providing an
area under the curve (AUC) of 0.761 (Cyril Piou et al., 2019). A data-driven forecast model
using support vector machines (SVM) has been designed with indicators like the land
cover, topography, vegetation, soil, and similar factors for predicting locusts’ presence
and breeding, and it gave an accuracy of 77.4% and an F-score close to 0.772 (Sun et al.,
2022). Kimathi et al. (2020) used NOAA, ISRIC, and WorldClim rainfall and temperature
data with a Maximum Entropy (MaxEnt) model to identify locust breeding sites in East
African countries. NOAA’s CPC Soil Moisture Data provided crucial insights into soil
conditions, while ISRIC World Soil Information offered global soil property data relevant
to locust breeding. WorldClim contributed high-resolution climate data, including rainfall
and temperature, which are critical for locust habitat modeling. These datasets were
essential in understanding the environmental factors influencing locust outbreaks in the
region. MaxEnt model uses the concept of maximum entropy to find the probability of the
existence of locusts in distributed space. They next used the trained model to apply to the
other countries in their dataset to verify the accuracy of their model. They achieved AUC
of 0.887, 0.884, and 0.820 for Mauritania, Kenya, and Saudi Arabia, respectively.

Moreover, locust classification and crop production analysis using ResNet50 have

been done by Ye et al. (2020), where they used the concept of Densenet to help farmers
identify desert locust locations and predict their attack. To increase the network’s stability,
convergence speed, and classification precision, they integrated the BatchNorm function
before each convolution layer and obtained an accuracy of about 90.16%. Samil et al.
(2020) effectively applied a basic long short-term memory (LSTM) model to forecast
swarm locations one month ahead of time based on historical data from all impacted
regions, achieving recall and precision of 81% and 60%, respectively. A deep learning
method utilizing LSTM and convolutional neural networks (CNN) used in Tabar et al.
(2021) for forecasting future challenges of desert locusts in Africa. It suggests PLAN,
a machine learning system for forecasting high-resolution spatial and temporal locust
movement. PLAN uses a special crowd-sourcing dataset, remote-sensed environmental
data, and a modular neural network architecture to produce precise forecasts of locust
migration. Two species that are common in Zambia are the red locust (Nomadacris
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septemfasciata) and the African migratory locust (Locusta migratoria migratoriodes), which
were detected using CNN with the precision of 91% and 85% (Halubanza et al., 2022).

Incorporating imprecise and unclear information into the prediction of locust attacks is
made possible by fuzzy logic, which allows for a more flexible and realistic modeling of the
elements driving locust behavior. It improves the predictability of outcomes in dynamic
and intricate ecological scenarios by enabling the system to manage variables with degrees
of truth. Therefore, researchers used fuzzy logic to study the timing of the hatching of
locusts as part of their efforts to respond early to desert locust swarming in eastern Africa
(Landmann et al., 2023) and achieved an accuracy of 82%.

Remote sensing plays a crucial role in locust preventive management, aiding in the
mapping and monitoring of extensive locust habitats. This proactive approach aims to
identify and control locust population growth at a smaller scale before they escalate into
larger-scale plagues (Klein, Oppelt & Kuenzer, 20215 Hunter, 2004). Klein et al. (2022) used
RF for time series analysis of Moroccan locusts in Sardinia, focusing on remote sensing
data, which proved helpful in risk assessments and predictions of locusts. For binary
cropland classification, they achieved an accuracy of 96.4% and a kappa coefficient of 0.951
(Klein et al., 2022). Deep learning and computer vision algorithms have proved to be highly
effective in detecting locust presence and analyzing damage caused by their infestation.
In Karim (2020), they used Resnet50 and MobileNet to train on the ImageNet dataset for
rice disease detection and pest recognition. They have achieved an accuracy of 73.34% and
76.45%, respectively. Along with the detection of crop losses using image segmentation,
the detection of locusts using image processing and their classification has been done by
Ebrahimi et al. (2017) and reported an error rate of less than 2.5%. Ensemble techniques
have consistently shown improvement in performance across a combination of datasets.
Santana et al. (2014) have developed a classification model for bees using MLP, reporting
an accuracy of 87.68%. In Kasinathan, Singaraju & Uyyala (2021), researchers have used
artificial neural network (ANN), CNN, K-NN, support vector machine (SVM), and naive
Bayes for nine-class and 24-class datasets. The highest classification rate of 91.5% and
90% was reported for CNN. Along with SVM and RF, lazy learners have proved more
straightforward and more robust in classification. Therefore, in the latest study in 2023,
researchers have used K-NN as a classifier in pest prediction and achieved an accuracy
of 99.3% (Pusadan ¢ Abdullah, 2022). Moreover, several crop pests have been predicted
using time-series feature extraction and transfer learning. This combination resulted in
enhanced accuracy of prediction for crop pests. They have used Pearson product-moment
coefficient for machine learning models including K-NN, RF, SVM, and naive Bayes and
achieved the highest accuracy of 0.9661 with RF in the prediction of aphid pests and 0.944%
in the prediction of whiteflies (Tsai et al., 2023). Cornejo-Bueno et al. (2023) in Western
Africa related to desert locusts has demonstrated regression and classification techniques
in the context of locust sightings. Various machine learning algorithms, including DT, RF,
SVM, and multilayer perceptron (MLP), were applied to enhance the accuracy of desert
locusts’ presence prediction, resulting in improved precision and recall (Cornejo-Bueno et
al., 2023). The related work we have considered in this study is summarized in Table 1.
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Table 1 Literature review summary.

Paper Dataset Model Outcome Metrics
Piou et al. (2019) Proprietary RF Locust presence Forecasting AUC: 0.761
Sun et al. (2022) FAO (Food and Agriculture Or- SVM Locust presence Forecasting AUC: 0.766, Accuracy:
ganization (FAO), 2023) 77.46%
i. Worldclim2 (WorldClim Locust breeding ground
(2023) prediction
ii. NOAA (NOAA Climate Pre-
Kimathi et al. (2020) diction Center (CPC), 2023) MaxEnt AUC: 0.887

Ye et al. (2020)

Samil et al. (2020)

Tabar et al. (2021)

Halubanza et al. (2022)

Landmann et al. (2023)

Klein et al. (2022)

Karim (2020)

Ebrahimi et al. (2017)
Santana et al. (2014)

Kasinathan, Singaraju &
Uyyala (2021)

Pusadan & Abdullah (2022)
Tsai et al. (2023)

Cornejo-Bueno et al. (2023)

iii. ISRIC Information (2023)

Proprietary

FAO (Food and Agriculture Or-
ganization (FAO) (2023)

Proprietary

Proprietary

Proprietary

Proprietary

Proprietary

Proprietary

Proprietary

Proprietary

Proprietary

i. Taiwan’s agriculture (Cern-
tral Weather Bureau of Taiwan
(CWB), 2023), ii. Crop pest
DSS (Indian Council of Agricul-
tural Research, ICAR)(2023)

FAO (Food and Agriculture Or-
ganization (FAO), 2023)

Resnet-locust-BN

LSTM

CNN+LSTM +FEN

CNN-+MobileNet

Fuzzy logic

Random Forest

ResNet50 + MobileNet

SVM
MLP

CNN

K-NN

KNN+RF+SVM + Naive
bayes

SVM+DT+RF

Locust species Classifica-
tion

Prediction of swarm’s loca-
tion

Forecasting migration pat-
terns

Locust species Classifica-
tion

Prediction of locust Hatch-
ing
Locust Prediction

Pest species Classification

Pest species Classification
Pest species Classification

Insect species Classification

Pest prediction

Insect species Classification
(white fly)

Locust species Classifica-
tion

Accuracy: 93.50%

Precision: 60%
Recall: 81%
Accuracy: 0.830%

Precision: 91%, 85%

Accuracy: 82%

Accuracy: 96.4%
ResNet Accuracy: 73.34%

MobileNet Accuracy:
76.64%

MAE =2.25%
Accuracy: 87.68%

Accuracy (nine-class
dataset): 91.5%

Accuracy (24-class dataset):
90.5%

Accuracy: 99.3%

Accuracy: (KNN): 0.95%,
(RF): 0.94%, (DT): 0.86,
(SVM): 0.84%

AUC: (RF): 0.92, (DT):
0.86, (SVM): 0.88

Notes.

*Locust Forecasting implies forecasting of locust occurrence, their breeding regions, and migration patterns in areas under study.
“Locust classification: Classification of different locust’s species and prediction of their attack.
“"Locust Prediction implies a prediction of locust attacks in regions under study.

DATASET GLAD _42 DESCRIPTION

This research presents a novel dataset aimed at enhancing the accuracy and precision of

machine learning models for predicting locust breeding and attacks. The dataset integrates

multiple sources, focusing on environmental factors such as maximum temperature,

precipitation, and soil moisture, which are crucial in predicting locust activity, alongside

locust occurrence data from 42 countries spanning from 1985 to 2020.
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Data sources and integration process
Desert locust swarms global watch data:

The primary source of locust occurrence data is the FAO’s Desert Locust Swarms Global
Watch dataset, which provides detailed time series data from 1985 to 2020 (Food and
Agriculture Organization (FAO), 2023). This dataset includes critical features such as the
start year, start month, and geographical coordinates (latitude and longitude) of locust
attacks. The FAO dataset serves as the backbone for locust occurrence records, offering
precise temporal and spatial data on locust activities globally.

TerraClimate dataset

The environmental data was derived from the TerraClimate dataset (TerraClimate, 2023),
which combines high-spatial-resolution data from the WorldClim dataset with coarser-
resolution datasets like CRU Ts4.0 and JRA-55. WorldClim provides high-resolution,
gridded climate data, including long-term averages of temperature, precipitation, and
other key environmental variables, widely used for ecological and environmental research
due to its detailed spatial coverage. In this study, WorldClim data is crucial for assessing
the impact of climate factors like temperature and precipitation on locust behavior and
outbreaks. TerraClimate data is extracted from WorldClim and it offers a comprehensive
monthly dataset that includes variables such as maximum temperature, vapor pressure,
accumulated precipitation, runoff, and soil moisture, spanning from 1958 to 2020 with
a spatial resolution of 1/24° (4 km) (Abatzoglou et al., 2018; TerraClimate, 2023). For
this study, the focus was on three key environmental features—soil moisture, maximum
temperature, and precipitation—during the period 1985 to 2020, aligning with the FAO
locust occurrence data. The Fig. 3 shows relationship between environmental features and
target variable and correlation among them.

Data processing and feature engineering

The raw data from TerraClimate was initially in netCDF format, which required conversion
to a more accessible format for integration with the FAO dataset. Three features including
soil moisture, maximum temperature, and precipitation conversion of TerraClimate files
which span from 1985 to 2020, are done as they were available in netCDF format. The
longitude and latitude of countries are reverse geocoded to convert into region and country
names. Figure 4 shows the complete data collection and fusion process.

To ensure temporal alignment, the FAO dataset’s locust occurrence records were
integrated with the corresponding environmental data from TerraClimate for the same
years and months. This integration was carefully managed to maintain the integrity and
accuracy of the temporal and spatial dimensions of the data. Hence, our final dataset has
seven independent features and one dependent feature with class labels according to locust
presences as “‘yes” and “no”. This dataset is used in building a binary classifier for locust
attack prediction.
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Figure 3 Pair plot showing the relationship between environmental factors (precipitation, maximum
temperature, and soil moisture) and Locust presence. The plot highlights the distribution and correla-
tion of these variables, differentiating between areas with locusts (blue) and without locusts (red).
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Dataset statistics and summary

GLADA42 is designed to support the development of a binary classifier for locust attack
prediction. The environmental data, such as precipitation, maximum temperature, and
soil moisture, cover a wide range of values.

The dataset has precipitation values in mm ranging from 0.0 to 906.7, the maximum
temperature in Celsius ranging from 2.3 to 46.71, and soil moisture in VWC in the
range of 0 to 569.5 for 42 countries along with specific latitude, longitude, start year, and
start month. The statistics for three environmental features considered in this study are
shown in Table 2. This extensive range reflects the diverse ecological conditions across
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Table 2 Summary statistics for environment features.

Statistics Precipitation Maximum Soil
temperature moisture

Count 79,528 79,528 79,528
Mean 46.48 30.56 23.05
Std Dev 71.67 6.21 50.55
Min 0.00 2.10 0.00
25% 1.00 27.10 0.10
50% 15.70 30.76 2.90
75% 64.80 34.72 21.70
Max 906.70 46.71 582.60

Table 3 Dataset GLAD42 features.

Feature name Description Type

Start month Month when desert locust swarms were reported Independent
Start Year Year when desert locust swarms were reported Independent
Country name Country name where swarms were reported Independent
Region Region name where swarms were reported Independent
Soil moisture Soil moisture of the area where swarms were reported Independent
Precipitation Precipitation of the area where swarms were reported Independent
Max temperature Maximum temperature of the area Independent
Locust present Target variable Dependent

the 42 countries studied, providing a robust foundation for predictive modeling. Table 3
summarizes GLAD42 features.

METHODOLOGY

Feature engineering

The latitude and longitude are converted to human-readable addresses using Reverse
Geocoding. “Country name” and “Region” help in predicting the presence of desert
locust swarms over a larger area and improve the readability of our dataset. We added

a target variable called “Locust Present” (set to yes by default as the FAO dataset only
contains positive class). We then selected the following Features: “Start Year”, “Start
Month”, “Region”, “Country name” (extracted from latitude and longitude via Reverse
Geocoding), “Precipitation”, “Soil Moisture”, “Maximum Temperature”, and “Locust
Present”. Data cleaning is done by dropping any row containing a null value. The data
obtained from FAO exclusively contained records of countries where locust occurrences
were reported, forming the foundation of our dataset. To ensure a more comprehensive
and balanced dataset, we generated a negative class representing instances when desert
locust swarms were absent. To provide a concrete example, consider India in the 1990s: In
1990, desert locust swarms were observed in October and November in just one out of the
initially identified six regions. To address this absence, we included additional rows for that
specific month. These additional rows included the Location Name, Start Year (1990), and
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Figure 5 Negative class generation.
Full-size &l DOI: 10.7717/peerjcs.2420/fig-5

Start Month, indicating “no” for locust Presence in the remaining regions. We repeated
this process every month, spanning from 1985 to 2020. Figure 5 is a visual representation
of this process.

Following this data augmentation, we conducted rigorous data quality assessments
and addressed missing values. The resulting dataset, comprising 79,528 rows and seven
columns, is the foundation for our work. It allowed us to explore the temporal and spatial
dynamics of desert locust swarm occurrences across various locations during the studied
period with precision and accuracy. Figure 6 depicts country wise positive and negative
instance. It is evident from the count that the number of instances for each country varies

in terms of positive and negative class labels.

Locustlens
LocustLens aims to predict locust attacks with high accuracy and time efficiency. In
LocustLens, we have hierarchically used the K-NN algorithm. K-NN is a versatile and
adaptable method for classification and regression tasks that can manage several data types.
LocustLens begins with dividing the dataset into training (N) and testing (M) sets
using stratified sampling. For each test sample (M[i]), we created smaller subsets from the
training data, focusing on samples from the same country as the test sample while keeping
track of the time it takes. The K-NN model is fine-tuned using hyperparameters like the
number of neighbors, weights, and distance metrics.

e In dataset feature space, point x represents an individual test sample, denoted as M{[i],
for which we are making locust swarm prediction. This test sample belongs to a specific
country.

e y corresponds to the class labels of the training samples, either ‘yes’ or ‘no’ within the
country-specific subset that matches the country of the test sample x.
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Figure 6 Positive and negative sample distribution country-wise.
Full-size Gl DOI: 10.7717/peerjcs.2420/fig-6

After fitting and testing LocustLens for different sets of hyperparameters the best optimal
configurations were noted using randomized search. Equation (1) is used to calculate the
distance to pick ‘k’ nearest neighbors.

d
Manhattan distance = ZW”( |, —z, | (1)
r=1

where:

e X represents test sample M{[i]

e d represents number of dimensions or feature space denoted by r; w represents weights
which in our case (w, =1 for all r).

e z represents a training sample to which we are measuring distance.

Equation (2) is used to make predictions on data point x, and the model assigns class
label C that occurs most frequently among the 'k’ nearest neighbors to x accordingly.

k
C(x) =argmax2]l(y,-= C). (2)
C iz

e I(y;=C) is the indicator function that is 1 if y; = C (i.e., if the ith neighbor belongs to
class C) and 0 otherwise. C(x) is the class assigned to data point x.

e y; is the class label of the ith neighbor

e [(y;=C) is the indicator function that is 1 if y; = C (i.e,, if the ith neighbor belongs to
class C) and 0 otherwise.

Khan et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2420 14/28


https://peerj.com
https://doi.org/10.7717/peerjcs.2420/fig-6
http://dx.doi.org/10.7717/peerj-cs.2420

PeerJ Computer Science

Table 4 LocustLens hyperparameters.

Parameter Default Tuned parameters Description

n_neighbors 5 7 neighbors used to make decision.

weights (uniform, distance) uniform uniform Weight function used in prediction

Algorithm (auto, ball_tree, kd_tree, brute) auto auto ‘auto’ will attempt to decide the most appropriate
algorithm.

Metrics (Minkowski, Euclidean, Manhattan) minkowski manhattan Metric to use for distance computation.

Hyperparameters selected after applying a randomized search algorithm on a set of
hyperparameters for LocustLens are listed in Table 4.

Therefore, LocustLens is evaluated recursively for all countries in the dataset, resulting
in a high accuracy score. LocustLens is developed using a lazy learner algorithm. We opted
for this approach because lazy learners like K-NN are robust and well-suited for managing
our extensive dataset covering 42 countries. This choice ensures that our model remains
adaptable and responsive to evolving data conditions, maintaining accuracy and relevance
as new data of countries and data of new countries are incorporated. Additionally, our
model assesses the time-sensitivity of both the training and testing phases and measures
carbon emissions resulting from the machine learning model. Thus, LocustLens is a highly
flexible, accurate, and optimized predictive model for locust prediction. Figure 7 is a
graphical representation of the working of LocustLens.

Comparison models

A thorough review of the literature served as the foundation for comparing LocustLens
with other models. Models like support vector classifier (SVC), logistic regression (LR),
K-NN, and decision trees (DT) were found to be frequently used in the classification
of pest or locust attacks on crops. These models were selected because they exemplify
industry standards for binary classification problems including non-imagery data, which
is comparable to the GLAD42 dataset utilized in this research. Making the comparison
with these models is essential to comprehending LocustLens’s performance in a proven
setting. The investigation can show whether LocustLens provides any notable benefits or
overcomes particular difficulties more effectively than by comparing it to these widely
utilized techniques. Table 5 lists down all combinations of hyperparameters used in
comparison with LocustLens.

EVALUATION METRICS

Classification metrics

The performance metrics used to evaluate models are explained in this section. These
metrics are adaptable to scalar analysis, which provides a quantitative measure of model
performance, and graphical analysis, which provides visual insights into model performance
(Tharwat, 2021). The area under the receiver operating characteristic curve (AUC),
Fl1-score, precision, recall, and accuracy are the scalar metrics we have considered for
evaluation. A summary of these measures is provided below:
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Figure 7 Proposed methodology for LocustLens.
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Values predicted by the classifier can be classified into four different labels and confusion
matrix can be used to visualize them. Table 6 is depicting four classification labels that can
be further used to measure accuracy, precision, recall, AUC and F1-score.

1. True positive (TP): when LocustLens predicted value is ‘yes’, and ground truth is ‘yes’.
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Algorithm 1 LocustLens Algorithm

Input: {(x;,y;)} wherei=1to N

x; = {Region,, CountryName,, Start Year;, Start Month;, PPT;, TMAX;, soil moisture;} y; = {Locust_Present;}
Output:

N data subsets

Trained K-NN

LocustLens Classifier

Phase I

Input = 7 independent features / 1 dependent feature, Output = Final Dataset
1. Independent features = Start Year, Start Month, Precipitation, Maximum temperature, soil moisture, X
coordinates, Y coordinates,

. Dependent features = LocustPresent (class label = “yes”)

. Reverse geocoding to get Region and Country name.

. Identify missing values.

. Feature Scaling of independent and dependent features
. Negative class addition to LocustPresent

e output of Phase I is the Final Dataset denoted as {(x;, y;)} where i ranges from 1 to N.

QU W

T

=

Phase II:
Input = Final Dataset with input {(x;, y;)}

1. Initialize stratified sampling: splits, shuffle, and random state.

2. fori: 1to X and Y index
Get stratified Xirain, Xtest
Get stratified Yirain, Yiest
forj: 1 to Xiest

f<e a list: CountryName of j samples

Get Xirain indices where CountryName of jth sample =X,,,;, samples
Generate data subsets S based on CountryName
Initialize KNN: weights, neighbors, distance.
10. Fit KNN on S
11. Get prediction on each Xies [j]
12.  Record predicted vs Y values.
13.  endfor
14. end for
15. Record classification report (Accuracy, Precision, Recall, F1-Score, AUC)
16. Record average training and testing time
17. Record carbon emissions of training and testing of the model.

O RPN UTR W

2. True negative (TN): when the LocustLens predicted value is ‘no’, the ground truth is
also ‘no’.

3. False positive (FP): when LocustLens predicted value is ‘yes’, and the ground truth is
‘no’.

4. False negative (FN): when the LocustLens predicted value is ‘no’, and the ground truth
is ‘yes.”

Based on the metrics mentioned above, accuracy, precision, recall, and F1-score can be
calculated according to the Egs. (3) to (6).

Accuracy: The ratio of correct predictions to total predictions.

TP+ TN
Accuracy = (3)
TP +TN +FP+FN

Precision: It is the ratio of correctly predicted positive values to all the predicted positive
values.

.. TP
Precision = ——— (4)
TP + FP
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Table5 Combined hyperparameters for various models.

Model Parameter Default Tuned parameters Description
C 1.0 [0.1, 1, 10] Regularization parameter.

SVC kernel rbf [‘linear’, ‘rbf’] The kernel used in the algorithm.
gamma scale [scale, auto] Kernel coefficient for ‘rbf, ‘poly’, and ‘sigmoid’.
Criterion gini [‘gin?’, ‘entropy’] Function to measure split quality.
max_depth None [None, 10, 20, 30, 1000] Maximum depth of the tree.

Decision Tree min_samples_split 2 [50, 100] Minimum samples required to split an internal node.
min_samples_leaf 1 [1,2,4,10] Minimum samples required at a leaf node.
max_features None [‘auto’, ‘sqrt’, log2’] Number of features considered for the best split.
penalty 12 (11, “12°] Norm of the penalty.

IR C 1.0 [0.01, 0.1, 1, 10, 100] Inverse of regularization strength.
solver Ibfgs [‘liblinear’, ‘saga’] Algorithm used in the optimization problem.
max_iter 100 [100, 200, 300, 500, 1000] Maximum iterations for solvers to converge.
base_estimator None DecisionTreeClassifier Base classifier for ensemble.
n_estimators 50 10 Number of estimators for boosting.

AdaBoost learning_rate 1 1 Contribution of each classifier.
algorithm SAMME.R SAMME.R Algorithm to find class probabilities.
random_state None 42 Seed value.
base_estimator None SvVC Base classifier for ensemble.
n_estimators 10 10 Number of estimators in the ensemble.

Bagging . q .

Classifier learning_rate 1 Contribution of each classifier.
verbose 0 0 Verbosity control.
random_state None 42 Seed value.
n_neighbors 3,5,7 11 Number of neighbors to use.

Baseline-K-NN weights uniform, distance [‘uniform’, ‘distance’] Weight function used in prediction.

p 1,2 1 Power parameter for the Minkowski metric.

Table 6 Confusion matrix.

True Positive (TP)
False Positive (FP)

False Negative (FN)
True Negative (TN)

Recall: Recall/sensitivity is the ratio of correctly predicted positive values to all the actual

positive values.

P
Recall = —— (5)
TP +FN
FI1 —score: It is the harmonic mean of precision and recall.
2 X Precision x Recall
Fl-score = (6)

Precision + Recall

AUC: When a model makes a prediction, it frequently gives each instance a probability
score, indicating how likely it is to fall into the positive class. The model’s capacity to
differentiate between these two groups using these probability scores is measured by the
AUC metric. The value can be between 0 and 1, with higher numbers indicating greater
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model performance. An AUC of 1 denotes a perfect model, while an AUC of 0.5 denotes a
model that performs no better than random guessing.

Estimating carbon footprints

Locust attack results when the climate becomes favorable for their breeding. Machine
learning models can delicately and variably affect the climate, affecting environmental
dynamics in complex and direct ways. The environmental impact of ML models can

be categorized into embodied emissions, which result from hardware production, and
operational emissions, arising from ML model development, data processing, training,
and inference. To quantify the carbon footprint of ML training, we employed the package
called CodeCarbon (CodeCarbon, 2023), which calculates emissions based on the following
factors:

Carbon Emissions(CO, — equivalent) = Energy Consumption (kWh)
x Regional Carbon Intensity (in CO,per kWh). (7)

CodeCarbon tracks and records the power usage of GPU, CPU, and RAM during
code execution by capturing data at regular 15-second intervals to measure electricity
consumption accurately. The regional carbon intensity of electricity refers to the carbon
emissions associated with generating electricity in a specific geographical area or region
(Google Cloud, 2023). Tt is typically measured in terms of carbon dioxide CO, emissions
per unit of electricity generated. Thus, using the same procedure, we will measure carbon

emissions for our machine-learning models.

RESULTS AND DISCUSSION

The findings of this research are discussed in this section, focusing on the performance
and comparison of LocustLens, a model constructed using the K-NN algorithm with a
divide-and-conquer approach. This method partitions the dataset for better performance
in predicting locust attacks, and its accuracy is evaluated against several baseline models,
including DT, SVC, Bagging, Boosting, and LR. From the literature (Pusadan ¢ Abdullah,
20225 Piou et al., 2019; Sun et al., 2022; Santana et al., 2014), it is evident that machine
learning models such as K-NN, SVC, RF, DT, and LR are frequently used for insect and
locust attack prediction tasks. However, our methodology using LocustLens differs from
existing approaches, particularly Pusadan ¢ Abdullah’s (2022) work which achieved 99.3%
accuracy. The key differences lie in data type and distance metrics: we use non-image
data and the Manhattan distance for robustness, whereas Pusadan used image data and
Euclidean distance. Additionally, instead of applying K-NN to the entire dataset, LocustLens
applies the divide-and-conquer strategy using country-specific data, improving prediction
precision across countries. In our experiments, we initially implemented a simple K-NN
model while fitting and testing on dataset with various hyperparameters. To improve
baseline-K-NN we developed LocustLens which employed country-wise fitting and testing
instead of fitting on the entire dataset. Hyperparameter optimization was achieved through

randomized search, in contrast to Pusadan’s cross-validation approach.
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ROC Curve for LocustLens with Various Hyperparameters
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Figure 8 LocustLens performance on different hyperparameters.
Full-size & DOI: 10.7717/peerjcs.2420/fig-8

LocustLens was tested under different configurations. For instance, with k = 7, weight
as distance, and p = 1, the model delivered 96% accuracy, 0.97 recall, and a 0.97 F1-score.
Using k =5, weights as uniform, and p =2, LocustLens produced 97% accuracy and 0.96
recall. However, when the value of k was reduced to 3 with uniform distance metrics
and p = 2, accuracy dropped to 95%. Finally, after rigorous hyperparameter tuning, we
concluded that k = 7, uniform weights, and the Manhattan distance provided optimal
results, achieving 98% accuracy and recall. Figure 8 shows the impact of hyperparameters
on the performance of LocustLens.

In this study, predicting locust attacks is critical, and the most important performance
metrics are sensitivity (recall) and accuracy. Various models were tested and compared
based on their recall for both class 0 (no locust attack) and class 1 (locust attack). The
baseline-K-NN model achieved a recall of 98% for class 0 and 95% for class 1, with an
overall average of 98%. The Bagging with SVC model followed with a class 0 recall of 97%
and class 1 recall of 89%, leading to an overall average recall of 94%. The Boosting model
had an average recall of 92%, while SVC produced 96% recall for class 0 and 80% for class
1, averaging 92%. LR performed less effectively, especially for class 1 (63% recall), resulting
in an overall recall of 84%. The DT model achieved 94% recall overall.

In comparison, LocustLens outperformed all other models, achieving a recall of 98%
for class 0 and 96% for class 1, with the highest overall average recall of 98%. Additionally,
LocustLens demonstrated the highest accuracy and shortest execution time, making it the
most efficient and robust model for predicting locust attacks across 42 countries. These
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Figure 9 Country-wise performance of LocustLens.
Full-size Gl DOI: 10.7717/peerjcs.2420/fig-9

results confirm that LocustLens is superior in terms of both sensitivity and computational
efficiency when compared to traditional machine learning models. Since 42 countries
are considered in this research the methodology of LocustLens constitutes a divide-and-
conquer approach that tests the model on each country. The performance of LocustLens
for each country is shown in Fig. 9. For top countries with sufficient data on locust attacks,
the model gave 98% accurate predictions.

Since LocustLens does not require training, it recorded the lowest fitting and testing
times at 0.009 and 0.001 s, respectively. In contrast, SVC had the highest training time
at 1787.4 s and a testing time of 16.02 s. Baseline-K-NN fitting took 142.0 s, and its
testing time was 1.598 s. DT and LR demonstrated slightly lower testing times at 0.0019
and 0.0014 s, respectively. A summary of all models’ performance metrics—including
accuracy, precision, recall, AUC, and F1-score—can be found in Table 7.

Environmental factors, particularly maximum temperature, soil moisture, and
precipitation, were identified as significant contributors to locust infestations. The impact
of these variables is reflected in class predictions, with maximum temperature emerging as
a primary factor. Additionally, to evaluate the sustainability of our models, we measured
their carbon emissions. Thus, we evaluated carbon emissions from ML models for a
sustainable environment. We have used Google Colaboratory, where the assigned total
CPU power is 42.5W, and available RAM is 12.678 GB. Our notebook launched in the
US region. Regional carbon intensities for electricity grid in units of CO, equivalent per
kilowatt-hour (gCO,eq/kWh) are noted from Electricity Maps (2023) and CodeCarbon
(2023) for the aforementioned region.

Equation (7) is used to measure carbon emissions and results are shown in Table 8.

The graphical performance of the LocustLens along with comparison models is displayed
in Fig. 10. While evaluating the results, we carefully examined the frequency distribution
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Table 7 Performance comparison of LocustLens with other ML models.

Model Accuracy Fl-score AUC Precision Recall Train time (secs) Test time (secs)
LocustLens 0.98 0.97 0.97 0.97 0.98 0.009 0.001
Base-line K-NN 0.96 0.96 0.96 0.97 0.98 142 1.59
SvC 0.91 0.89 0.88 0.89 0.92 1787.4 16.2
DT 0.97 0.97 0.96 0.96 0.94 3.07 0.0019
LR 0.83 0.79 0.77 0.75 0.84 5.154 0.0014
AdaboostClassifier 0.91 0.89 0.89 0.91 0.92 0.93 0.031
Bagging with SVC 0.94 0.93 0.92 0.94 0.94 196.50 75.28

Table 8 Carbon footprints of ML models.

Model Energy consumed (RAM) Energy consumed (CPU) Carbon emissions

(kWh) (kWh) (kg CO2eq)

LocustLens 0.0012 0.0111 4.870

Base-line K-NN 0.0012 0.0326 13.38

SvC 0.0023 0.0212 9.306

DT 0.00002 0.00018 0.079

LR 0.00003 0.0003 0.130

Adaboost 0.000007 0.000059 0.024

Bagging Classifier 0.001793 0.016036 0.650

of the ‘yes’ and ‘no’ classes concerning environmental factors, namely soil moisture,
precipitation, and maximum temperature, as shown in Fig. 6. In addition, we have
showcased the results obtained from various models, and it is evident that the LocustLens
outperforms the others in accuracy, AUC, Fl1-score, precision, and recall.

CONCLUSION

This study introduces LocustLens, a novel machine-learning model designed for global
locust swarm prediction. The model integrates key environmental factors like soil moisture,
temperature, and precipitation with locust presence data from 42 countries to create a
robust and adaptable prediction tool. LocustLens is not only highly accurate, with excellent
classification metrics such as precision, recall, and AUC, but it also features low fitting and
testing times, making it efficient and easy to update with new data. In terms of adaptability
locust attack data for new countries or regions can be incorporated into it without the need
of extensive retraining and re-evaluation. Its integration of crucial environmental factors
and ease of updating with new data make it a valuable tool for supporting agricultural
decision-making, especially in regions vulnerable to food crises due to locust infestations.
However, as we continue to apply machine learning models at a global scale, it is essential
to address the environmental impact of these technologies.

While LocustLens demonstrates strong predictive capabilities, several limitations and
challenges should be considered to provide a more balanced view. The GLAD42 dataset
has limited samples for some countries, which could affect the model’s generalizability,
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necessitating improvements in data quality and sampling methods for broader applicability.
Various combinations of encoder and decoder methods can be employed to enhance data
sampling and address class imbalances. Moreover, the model cannot focus on separate
regions due to the limited number of samples. It is recommended for future work to
enhance data quality and samples so LocustLens can be applied for each country and
region. Additionally, as the model’s predictions rely on current environmental factors, the
ongoing and unpredictable impacts of climate change could require frequent updates and
recalibrations to maintain accuracy. Moreover, while LocustLens ranks third in terms of
low carbon emissions, the cumulative environmental impact of deploying machine learning
models at a global scale remains a concern. Future research should focus on enhancing data
collection and developing databases that can forecast environmental changes to address
these challenges effectively. Moreover, future research should also, focus on developing
algorithms that not only enhance predictive capabilities but also promote environmental
sustainability. Such efforts can help mitigate the adverse effects of climate change while
fostering eco-friendly practices to conserve natural resources.
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