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ABSTRACT
Multi-label classification is a type of supervised learning where an instance may
belong to multiple labels simultaneously. Predicting each label independently has been
criticized for not exploiting any correlation between labels. In this article we propose
a novel approach, Nearest Labelset using Double Distances (NLDD), that predicts the
labelset observed in the training data that minimizes a weighted sum of the distances in
both the feature space and the label space to the new instance. The weights specify the
relative tradeoff between the two distances. The weights are estimated from a binomial
regression of the number ofmisclassified labels as a function of the two distances.Model
parameters are estimated by maximum likelihood. NLDD only considers labelsets
observed in the training data, thus implicitly taking into account label dependencies.
Experiments on benchmark multi-label data sets show that the proposed method on
average outperforms other well-known approaches in terms of 0/1 loss, and multi-
label accuracy and ranks second on the F-measure (after a method called ECC) and on
Hamming loss (after a method called RF-PCT ).

Subjects Data Mining and Machine Learning, Data Science
Keywords Multi-label classification, Label correlations, Nearest neighbor

INTRODUCTION
In multi-label classification, an instance can belong to multiple labels at the same time. This
is different frommulti-class or binary classification,where an instance can only be associated
with a single label. For example, a newspaper article talking about electronic books may be
labelled with multiple topics such as business, arts and technology simultaneously. Multi-
label classification has been applied in many areas of application including text (Schapire &
Singer, 2000; Godbole & Sarawagi, 2004), image (Boutell et al., 2004; Zhang & Zhou, 2007),
music (Li & Ogihara, 2003; Trohidis et al., 2008) and bioinformatics (Elisseeff & Weston,
2001). A labelset for an instance is the set of all labels that are associated with that instance.

Approaches for solving multi-label classification problems may be categorized into
either problem transformation methods or algorithm adaptation methods (Tsoumakas
& Katakis, 2007). Problem transformation methods transform a multi-label problem
into one or more single-label problems. For the single-label classification problems,
binary or multi-class classifiers are used. The results are combined and transformed back
into a multi-label representation. Algorithm adaptation methods, on the other hand,
modify specific learning algorithms directly for multi-label problems. Tsoumakas, Katakis
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& Vlahavas (2010), Madjarov et al. (2012) and Zhang & Zhou (2014) give overviews of
multi-label algorithms and evaluation metrics.

In this article, we propose a new problem transformation approach to multi-label
classification. Our proposed approach applies the nearest neighbor method to predict the
label with the shortest distance in the feature space. However, because we have multiple
labels, we additionally consider the shortest (Euclidean) distance in the label space where
the input of the test instance in the label space consists of probability outputs obtained
by independent binary classifiers. We then find the labelset that minimizes the expected
label misclassification rate as a function of both feature space and label space distances,
thus exploiting high-order interdependencies between labels. The nonlinear function is
estimated using maximum likelihood.

The effectiveness of the proposed approach is evaluatedwith variousmulti-label data sets.
Our experiments show that the proposed method performs on average better on standard
evaluation metrics (Hammming loss, 0/1 loss, multi-label accuracy and the F-measure)
than other commonly used algorithms.

The rest of this article is organized as follows: in ‘Related work’ we review previous work
on multi-label classification. In ‘The nearest labelset using double distances approach’,
we present the details of the proposed method. In ‘Experimental Evaluation’, we report
on experiments that compare the proposed method with other algorithms on standard
metrics. In ‘Discussion’ we discuss the results. In ‘Conclusion’, we draw conclusions.

RELATED WORK
In this section, we briefly review the multi-label approaches that are existing competitors
to the proposed method.

There are several approaches to classifyingmulti-label data. Themost commonapproach,
binary relevance (BR) (Zhang & Zhou, 2005; Tsoumakas & Katakis, 2007), transforms
a multi-label problem into separate binary problems. That is, using training data, BR
constructs a binary classifier for each label independently. For a test instance, the prediction
set of labels is obtained simply by combining the individual binary results. In other words,
the predicted labelset is the union of the results predicted from the L binary models. This
approach requires one binary model for each label. The method has been adapted in
many domains including text (Gonçalves & Quaresma, 2003), music (Li & Ogihara, 2003)
and images (Boutell et al., 2004). One drawback of the basic binary approach is that it
does not account for any correlation that may exist between labels, because the labels are
modelled independently. Taking correlations into account is often critical for prediction
in multi-label problems (Godbole & Sarawagi, 2004; Ji et al., 2008).

Subset-Mapping (SMBR) (Schapire & Singer, 1999; Read et al., 2011) is a method related
to BR. For a new instance, first labels are predicted by the binary outputs of BR. Then,
final prediction is made by the training labelset with the shortest Hamming distance to the
predicted labelset. SMBR makes predictions by selecting labelsets observed in the training
data. SBMR is a nearest neighbor approach in the label space—from the set of predicted
labels to the sets of labels observed in the training data—with Hamming distance as the
distance metric.
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An extension of binary relevance is Classifier Chain (CC) (Read et al., 2011). CC fits
labels sequentially using binary classifiers. Labels already predicted are included as features
in subsequent classifiers until all labels have been fit. Including previous predictions
as features ‘‘chains’’ the classifiers together and also takes into account potential label
correlations. However, the order of the labels in a chain affects the predictive performances.
Read et al. (2011) also introduced the ensemble of classifier chains (ECC), where multiple
CC are built with re-sampled training sets. The order of the labels in each CC is randomly
chosen. The prediction label of an ECC is obtained by the majority vote of the CC models.

Label Powerset learning (LP) transforms a multi-label classification into a multi-
class problem (Tsoumakas & Katakis, 2007). In other words, LP treats each labelset as a
single label. The transformed problem requires a single classifier. Although LP captures
correlations between labels, the number of classes in the transformed problem increases
exponentially with the number of original labels. LP learning can only choose observed
labelsets for predictions (Tsoumakas & Katakis, 2007; Read, Pfahringer & Holmes, 2008).

The random k-labelsets method, (RAKEL) (Tsoumakas & Vlahavas, 2007), is a variation
on the LP approach. In a multi-label problem with L different labels, RAKEL employs m
multi-class models each of which considers k(≤ L) randomly chosen labels, rather than the
entire labelset. For a test instance, the prediction labelset is obtained by the majority vote
of the results based on the m models. RAKEL overcomes the problem that the number of
multinomial classes increases exponentially as a function of the number of labels. It also
considers interdependencies between labels by using multi-class models with subsets of the
labels.

A hierarchy of multi-label classifiers (HOMER) (Tsoumakas, Katakis & Vlahavas, 2008)
constructs a tree-shaped hierarchy by partitioning the labels recursively into smaller
disjoint subsets (i.e., nodes) using a balanced clustering algorithm, which extends the
k means algorithm with an additional constraint on the size of each cluster. After that,
HOMER constructs a multi-label classifier for the labelsets in each node. For the prediction
of a new instance,HOMER follows a top-down recursive process from the root. A classifier
on a non-root node is called only if the prediction of its parent node is positive. The final
labelset is determined by the positive leaves (i.e., labels) whose parent nodes are all positive.

A popular lazy learning algorithm based on the k Nearest Neighbours (kNN ) approach
is MLKNN (Zhang & Zhou, 2007). Like other kNN -based methods, MLKNN identifies
the k nearest training instances in the feature space for a test instance. Then for each label,
MLKNN estimates the prior and likelihood for the number of neighbours associated with
the label. Using Bayes theorem,MLKNN calculates the posterior probability from which a
prediction is made.

The Conditional Bernoulli Mixtures (CBM ) (Li et al., 2016) approach transforms a
multi-label problem into a mixture of binary and multi-class problems. CBM divides the
feature space into K regions and learns a multi-class classifier for the regional components
as well as binary classifiers in each region. The posterior probability for a labelset is
obtained by mixing the multi-class and multiple binary classifiers. The model parameters
are estimated using the Expectation Maximization algorithm.
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Figure 1 An illustration of the label space when L= 3. Each vertex represents a labelset. The inner point
represents a fitted vector of an instance. Dyi represents the distance between p̂ and yi.

Full-size DOI: 10.7717/peerjcs.242/fig-1

Multi-target classification approaches may also be used for multi-label classification. A
number of multi-target learningmethods use the predictive clustering tree (PCT ) (Blockeel,
Raedt & Ramon, 1998) as the base classifier. Random forest of predictive clustering trees
(RF- PCT ) (Kocev et al., 2007) has been shown to be competitive (Madjarov et al., 2012).
RF-PCT is a tree-based ensemble method using PCT s as base classifiers. Different PCT s
are constructed from different bootstrap samples and random subsets of the features.

THE NEAREST LABELSET USING DOUBLE DISTANCES
APPROACH
Hypercube view of a multi-label problem
In multi-label classification, we are given a set of possible output labels L= {1,2,...,L}.
Each instance with a feature vector x ∈Rd is associated with a subset of these labels.
Equivalently, the subset can be described as y= (y(1),y(2),...,y(L)), where y(i)= 1 if label
i is associated with the instance and y(i)= 0 otherwise. A multi-label training data set is
described as T ={(xi,yi)},i=1 ,{2,...,N }.

Any labelset y can be described as a vertex in the L-dimensional unit hypercube (Tai &
Lin, 2012). Each component y(i) of y represents an axis of the hypercube. As an example,
Fig. 1 illustrates the label space of a multi-label problem with three labels (y(1), y(2), y(3)).

Assume that the presence or absence of each label is modeled independently with a
probabilistic classifier. For a new instance, the classifiers provide the probabilities, p(1), . . . ,
p(L), that the corresponding labels are associated with the instance. Using the probability
outputs, we may obtain a L-dimensional vector p̂= (p(1),p(2),...,p(L)). Every element of
p̂ has a value from 0 to 1 and the vector p̂ is an inner point in the hypercube (see Fig. 1).
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Given p̂ the prediction task is completed by assigning the inner point to a vertex of the
cube.

For the new instance, we may calculate the Euclidean distance, Dyi , between p̂ and each
yi (i.e., the labelset of the ith training instance). In Fig. 1, three training instances y1, y2
and y3 and the corresponding distances are shown. A small distance Dyi indicates that yi is
likely to be the labelset for the new instance.

Nearest labelset using double distances (NLDD)
In addition to computing the distance in the label space, Dyi , we may also obtain the
(Euclidean) distance in the feature space, denoted by Dxi . The proposed method, NLDD,
uses both Dx and Dy as predictors to find a training labelset that minimizes the expected
loss. For each test instance, we define loss as the number of misclassified labels out of
L labels. The expected loss is then Lθ where θ = g (Dx,Dy) represents the probability of
misclassifying each label. The predicted labelset, ŷ∗, is the labelset observed in the training
data that minimizes the expected loss:

ŷ∗= argmin
y∈T

Lg (Dx,Dy) (1)

The loss follows a binomial distribution with L trials and a parameter θ . We model
θ = g (Dx,Dy) using binomial regression. Specifically,

log
(

θ

1−θ

)
=β0+β1Dx+β2Dy (2)

where β0, β1 and β2 are the model parameters. Greater values for β1 and β2 imply that θ
becomes more sensitive to the distances in the feature and label spaces, respectively. The
misclassification probability decreases as Dx and Dy approach zero.

A test instance with Dx=Dy= 0 has a duplicate instance in the training data (i.e., with
identical features). The predicted probabilities for the test instance are either 0 or 1 and
the match the labels of the duplicate training observation. For such a ‘‘double’’-duplicate
instance (i.e., Dx = Dy = 0), the probability of misclassification is 1/(1+ e−β0)> 0.
As expected, the uncertainty of a test observation with a ‘‘double-duplicate’’ training
observation is greater than zero. This is not surprising: duplicate training observations do
not necessarily have the same response, and neither do double-duplicate observations.

The model in Eq. (2) implies g (Dx,Dy)= 1/(1+e−(β0+β1Dx+β2Dy)). Because log
(
θ

1−θ

)
is

a monotone transformation of θ and L is a constant, the minimization problem in (1) is
equivalent to

ŷ∗= argmin
(x,y)∈T

β1Dx+β2Dy (3)

That is, NLDD predicts by choosing the labelset of the training instance that minimizes the
weighted sum of the distances. For prediction, the only remaining issue is how to estimate
the weights.

Estimating the relative weights of the two distances
The weights β0,β1 and β2 can be estimated using binomial regression. Binomial regression
can be fit by running separate logistic regressions, one for each of the L labels. To run
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1The dataset is split equally for training
and testing. An unequal split is not
desirable: adding more instances to the
internal training set may improve the
performance of individual probabilistic
classifiers. However, this would lead to
the decrease of the number of distance
pairs that are needed for the binomial
regression modeling (# distance pairs = 2(#
instance in the internal validation set)).
That is, reducing the size of the validation
set will decrease the amount of data used
for binomial regression.

Algorithm 1 The training process of NLDD
Input: training data T , number of labels L
Output: probabilistic classifiers h(i), binomial regression g
Split T into T1 and T2

for i= 1 to L do
train probabilistic classifier h(i) based on T
train probabilistic classifier h(i)∗ based on T1

end for
S,W←∅
for each instance in T2 do

obtain p̂= (h(1)∗ (x),...,h(L)∗ (x))
for each instance in T1 do

compute Dx and Dy

W←W ∪ (Dx,Dy)
end for
findm1,m2 ∈W
update S← S∪{m1,m2}

end for
Fit log

(
θ

1−θ

)
=β0+β1Dx+β2Dy to S

Obtain g : S→ θ̂ = e f̂

1+e f̂
where f̂ = β̂0+ β̂1Dx+ β̂2Dy

Algorithm 2 The classification process of NLDD

Input: new instance x, binomial model g , probabilistic classifiers h(i), training data T of
size N
Output:multi-label classification vector ŷ
for j = 1 to N do

compute p̂= (h(1)(x),...,h(L)(x))
compute Dxj and Dyj
obtain θ̂j← g (Dxj ,Dyj )

end for
return ŷ← argmin

yj∈T
θ̂j

the regressions Dx and Dy need to be computed on the training data. For this purpose we
split the training data (T ) equally into an internal training data set, T1, and an internal
validation data set, T2.1 We next fit a binary classifier to each of the L labels separately
and obtain the labelset predictions (i.e., probability outcomes) for the instances in T2. In
principle, each observation in T2 can be paired with each observation in T1, creating a
(Dx,Dy) pair, and the regressions can be run on all possible pairs. Note that matching any
single instance in T2 to those in T1 results in N/2 distance pairs. However, most of the
pairs are uninformative because the distance in either the feature space or the label space is
very large. Since candidate labelsets for the final prediction will have a small Dy and a small
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Figure 2 An illustration of how to identifymi1 andmi2 forN = 20.T1 and T2 contain 10 instances each.
The 10 points in the scatter plot were obtained by calculating Dx and Dy between a single instance in T2

and the 10 instances in T1. In this example two points have the lowest distance in Dy and are candidates
formi2 . Among the candidates, the point with the lowest Dx is chosen.

Full-size DOI: 10.7717/peerjcs.242/fig-2

Dx, it is reasonable to focus more on the behavior of the loss especially at small values of
Dx andDy than considering the loss at the entire range of the distances. Moreover, since T2

containsN/2 instances, the number of possible pairs is potentially large (N 2/4). Therefore,
to reduce computational complexity, for each instance we only identify two pairs: the pair
with the smallest distance in x and the pair with the smallest distance in y. In case of ties in
one distance, the pair with the smallest value in the other distance is chosen. More formally,
we identify the first pair mi1 by

mi1 = argmin
(Dx ,Dy )∈Wix

Dy

where Wix is the set of pairs that are tied; i.e., that each corresponds to the minimum
distance in Dx . Similarly, the second pair mi2 is found by

mi2 = argmin
(Dx ,Dy )∈Wiy

Dx .

where Wiy is the set of labels that are tied with the minimal distance in Dy . Figure 2
illustrates an example of how to identify mi1 and mi2 for N = 20. Our goal was to identify
the instance with the smallest distance in x and the instance with the smallest distance in y.
Note thatmi1 andmi2 may be the same instance. If we find a single instance that minimizes
both distances, we use just that instance. (A possible duplication of that instance is unlikely
to make any difference in practice).
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The two pairs corresponding to the ith instance in T2 are denoted as the set
Si=

{
mi1,mi2

}
, and their union for all instances is denoted as S=

⋃N/2
i=1 Si. The binomial

regression specified in Eq. (2) is performed on the 2N
2 =N instances in S. Algorithm 1

outlines the training procedure.
For the classification of a new instance, we first obtain p̂ using the probabilistic classifiers

fitted to the training data T . Dxj and Dyj are obtained by matching the instance with

the jth training instance. Using the MLEs β̂0, β̂1 and β̂2, we calculate θ̂j = e f̂j

1+e f̂j
where

f̂j = β̂0+ β̂1Dxj + β̂2Dyj . The final prediction of the new instance is obtained by

ŷ= argmin
yj∈T

Ê(loss)= argmin
yj∈T

θ̂j .

The second equality holds because Ê(loss)= Lθ̂ and L is a constant. As in LP , NLDD
chooses a training labelset as the predicted vector. Algorithm 2 outlines the classification
procedure.

The training time of NLDD is O(L(f (d,N )+ f (d,N/2)+ g (d,N/2))+N 2(d+L)+
Nlog (k)) where O(f (d,N )) is the complexity of each binary classifier with d features
and N training instances, O(g (d,N/2)) is the complexity for predicting each label for
T2, N 2(d+L) is the complexity for obtaining the distance pairs for the regression and
O(Nlog (k)) is the complexity for fitting a binomial regression. T1 and T2 have N/2
instances respectively. O(Lf (d,N/2)) is the complexity for fitting binary classifiers using
T1 and obtaining the probability results for T2 takes O(Lg (d,N/2)). For each instance
of T2, we obtain N/2 numbers of distance pairs. This has complexity O((N/2)(d+L)).
Since there are N/2 instances, overall it takes O((N/2)(N/2)(d+L)) or O(N 2(d+L))
when omitting the constant. Among theN/2 pairs for each instance of T2, we only identify
at most 2 pairs. This implies N/2≤ s≤N where s is the number of elements in S. Each
iteration of the Newton–Raphson method has a complexity of O(N ). For k-digit precision
complexity O(logk) is required (Ypma, 1995). Combined, the complexity for estimating
the parameters with k-digit precision is O(Nlog (k)). In practice, however, this term is
dominated by N 2(d+L) as we can set k<<N .

EXPERIMENTAL EVALUATION
In this section we compare different multi-label algorithms on nine data sets. We next
introduce the data sets and the evaluation measures and then present the results of our
experiments.

Data sets
We evaluated the proposed approach using nine commonly used multi-label data sets from
different domains. Table 1 shows basic statistics for each data set including its domain,
numbers of labels and features. In the text data sets, all features are categorical (i.e., binary).
The last column ‘‘lcard’’, short for label cardinality, represents the average number of labels
associated with an instance. The data sets are ordered by (|L| · |X | · |E|).

The emotions data set (Trohidis et al., 2008) consists of pieces ofmusic with rhythmic and
timbre features. Each instance is associatedwith up to 6 emotion labels such as ‘‘sad-lonely’’,
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Table 1 Multi-label data sets and their associated characteristics. Label cardinality (lcards) is the aver-
age number of labels associated with an instance.

Name Domain Labels (|L|) Features (|X |) Examples (|E|) Lcards

emotions music 6 72 593 1.87
scene image 6 294 2,407 1.07
yeast biology 14 103 2,417 4.24
medical text 45 1,449 978 1.25
slashdot text 22 1,079 3,782 1.18
enron text 53 1,001 1,702 3.37
ohsumed text 23 1,002 1,3929 1.66
tmc2007 text 22 500 2,8596 2.16
bibtex text 159 1,836 7,395 2.40

‘‘amazed-surprised’’ and ‘‘happy-pleased’’. The scene data set (Boutell et al., 2004) consists
of images with 294 visual features. Each image is associated with up to 6 labels including
‘‘mountain’’, ‘‘urban’’ and ‘‘beach’’. The yeast data set (Elisseeff & Weston, 2001) contains
2,417 yeast genes in the Yeast Saccharomyces Cerevisiae. Each gene is represented by 103
features and is associated with a subset of 14 functional labels. Themedical data set consists
of documents that describe patient symptom histories. The data were made available in
the Medical Natural language Processing Challenge in 2007. Each document is associated
with a set of 45 disease codes. The slashdot data set consists of 3,782 text instances with
22 labels obtained from Slashdot.org. The enron data set (Klimt & Yang, 2004) contains
1,702 email messages from the Enron corporation employees. The emails were categorized
into 53 labels. The ohsumed data set (Hersh et al., 1994) is a collection of medical research
articles from MEDLINE database. We used the same data set as in (Read et al., 2011) that
contains 13,929 instances and 23 labels. The tmc2007 data set (Srivastava & Zane-Ulman,
2005) contains 28,596 aviation safety reports associated with up to 22 labels. Following
Tsoumakas, Katakis & Vlahavas (2011), we used a reduced version of the data set with 500
features. The bibtex data set (Katakis, Tsoumakas & Vlahavas, 2008) consists of 7,395 bibtex
entries for automated tag suggestion. The entries were classified into 159 labels. All data
sets are available online at: MULAN (http://mulan.sourceforge.net/datasets-mlc.html) and
MEKA (http://meka.sourceforge.net/#datasets).

Evaluation metrics
Multi-label classifiers can be evaluated with various loss functions. Here, four of the most
popular criteria are used: Hamming loss, 0/1 loss, multi-label accuracy and F-measure.
These criteria are defined in the following paragraphs.

Let L be the number of labels in a multi-label problem. For a particular test instance,
let y= (y(1),...,y(L)) be the labelset where y(j) = 1 if the jth label is associated with the
instance and 0 otherwise. Let ŷ= (ŷ(1),...,ŷ(L)) be the predicted values obtained by any
machine learning method. Hamming loss refers to the percentage of incorrect labels. The
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Hamming loss for the instance is

Hamming loss= 1−
1
L

L∑
j=1

1{y(j)= ŷ(j)}

where 1 is the indicator function. Despite its simplicity, the Hamming loss may be less
discriminative than other metrics. In practice, an instance is usually associated with a small
subset of labels. As the elements of the L-dimensional label vector are mostly zero, even
the empty set (i.e., zero vector) prediction may lead to a decent Hamming loss.

The 0/1 loss is 0 if all predicted labels match the true labels and 1 otherwise. Hence,

0/1 loss= 1−1{y= ŷ}.

Compared to other evaluation metrics, 0/1 loss is strict as all the L labels must match to
the true ones simultaneously. The multi-label accuracy (Godbole & Sarawagi, 2004) (also
known as the Jaccard index) is defined as the number of labels counted in the intersection
of the predicted and true labelsets divided by the number of labels counted in the union of
the labelsets. That is,

Multi-labelaccuracy =
|y∩ ŷ|
|y∪ ŷ|

.

The multi-label accuracy measures the similarity between the true and predicted labelsets.
The F-measure is the harmonic mean of precision and recall. The F-measure is defined

as

F-measure=
2|y∩ ŷ|
|y|+|ŷ|

.

The metrics above were defined for a single instance. On each metric, the overall value
for an entire test data set is obtained by averaging out the individual values.

Experimental setup
We compared our proposed method against BR, SMBR, ECC , RAKEL, HOMER, RF-PCT ,
MLKNN and CBM . To train multi-label classifiers, the parameters recommended by
the authors were used, since they appear to give the best (or comparable to the best)
performance in general. In the case of MLKNN , we set the number of neighbors and the
smoothing parameter to 10 and 1 respectively. For RAKEL, we set the number of separate
models to 2L and the size of each sub-labelset to 3. For ECC , the number of CC models for
each ensemble was set to 10. For HOMER, the number of clusters was set to 3 as used in
Liu et al. (2015). On the larger data sets (ohsumed , tmc2007 and bibtex), we fit ECC using
reduced training data sets (75% of the instances and 50% of the features) as suggested in
Read et al. (2011). On the same data sets, we ran NLDD using 70% of the training data to
reduce redundancy in learning.

ForNLDD, we used support vector machines (SVM ) (Vapnik, 2000) as the base classifier
on unscaled variables with a linear kernel and tuning parameter C = 1. The SVM scores
were converted into probabilities using Platt’s method (Platt, 2000). The analysis was
conducted in R (R Core Team, 2014) using the e1071 package (Meyer et al., 2014) for
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Table 2 Hamming loss (lower is better) averaged over 10 cross validations (with ranks in parentheses). The data sets are ordered as in Table 1.

Data BR SMBR NLDD ECC RAKEL HOMER RF -PCT MLKNN CBM

emotions 0.196 (4) 0.200 (5) 0.190 (2) 0.201 (6) 0.195 (3) 0.211 (7) 0.188 (1) 0.265 (8) 0.337 (9)
scene 0.104 (7) 0.130 (9) 0.095 (5) 0.094 (4) 0.089 (2) 0.109 (8) 0.088 (1) 0.090 (3) 0.095 (6)
yeast 0.199 (5) 0.205 (6) 0.190 (1) 0.206 (7) 0.196 (4) 0.254 (9) 0.192 (2) 0.195 (3) 0.213 (8)
medical 0.010 (3) 0.011 (6) 0.010 (4) 0.009 (2) 0.010 (5) 0.014 (8) 0.012 (7) 0.015 (9) 0.009 (1)
slashdot 0.047 (5) 0.054 (8) 0.045 (4) 0.047 (6) 0.044 (2) 0.055 (9) 0.044 (3) 0.052 (7) 0.044 (1)
enron 0.058 (9) 0.056 (8) 0.055 (5) 0.052 (3) 0.055 (6) 0.055 (7) 0.046 (1) 0.053 (2) 0.053 (4)
ohsumed 0.067 (5) 0.072 (7) 0.061 (3) 0.074 (8) 0.060 (2) 0.079 (9) 0.057 (1) 0.070 (6) 0.064 (4)
tmc2007 0.058 (3) 0.059 (4) 0.058 (2) 0.063 (6) 0.059 (5) 0.065 (7) 0.053 (1) 0.071 (9) 0.070 (8)
bibtex 0.016 (8) 0.015 (7) 0.013 (1) 0.015 (5) 0.015 (6) 0.021 (9) 0.014 (2) 0.014 (4) 0.014 (3)
av. ranks 5.4 6.7 3.0 5.2 3.8 8.1 2.1 5.7 4.9

SVM . For the data sets with less than 5,000 instances 10-fold cross validations (CV ) were
performed. On the larger data sets, we used 75/25 train/test splits. For fitting binomial
regression models, we divided the training data sets at random into two parts of equal sizes.

For RF-PCT , we used the Clus (http://clus.sourceforge.net) system. In the pre-pruning
strategy of PCT , the significance level for the F-test was automatically chosen from {0.001,
0.005, 0.01, 0.05, 0.1, 0.125} using a reserved prune-set.

For CBM , we used the authors’ Java program (https://github.com/cheng-li/pyramid).
The default settings (e.g., logistic regression and 10 iterations for the EM algorithm) were
used on non-large data sets. For the large data sets tmc2007 and bibtex , the number of
iterations was set to 5 and random feature reduction was applied as suggested by the
developers. On each data set we used the train/test split recommended at their website
(https://github.com/cheng-li/pyramid).

To test the hypothesis that all classifiers perform equally, we used the Friedman test
as recommended by Demšar (2006). We then compared NLDD with each of the other
methods using Wilcoxon signed-rank tests (Wilcoxon, 1945). We adjusted p-values for
multiple testing using Hochberg’s method (Hochberg, 1988).

In NLDD, when calculating distances in the feature spaces we used the standardized
features so that no particular features dominated distances. For a numerical feature variable
x , the standardized variable z is obtained by z = (x− x̄)/sd(x) where x̄ and sd(x) are the
mean and standard deviation of x in the training data.

Results
Tables 2 to 5 summarize the results in terms ofHamming loss, 0/1 loss,multi-label accuracy
and F-measure, respectively. We also ranked the algorithms for each metric.

According to the Friedman tests, the classifiers are not all equal (p< 0.05). The post-hoc
analysis - adjusted for multiple testing - showed that NLDD performed significantly better
than BR and SMBR on all metrics, significantly better than RAKEL and MLKNN on all
but Hamming loss, significantly better than HOMER on Hamming loss and 0/1 loss, and
significantly better than ECC and RF-PCT on 0/1 loss. No method performed statistically
significantly better than NLDD on any evaluation metric.
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Table 3 0/1 loss (lower is better) averaged over 10 cross validations (with ranks in parentheses). The loss is 0 if a predicted labelset matches the
true labelset exactly and 1 otherwise.

Data BR SMBR NLDD ECC RAKEL HOMER RF - PCT MLKNN CBM

emotions 0.718 (7) 0.708 (5) 0.690 (3) 0.710 (6) 0.679 (2) 0.695 (4) 0.662 (1) 0.885 (9) 0.798 (8)
scene 0.467 (9) 0.424 (7) 0.319 (1) 0.351 (3) 0.364 (4) 0.377 (6) 0.436 (8) 0.370 (5) 0.321 (2)
yeast 0.894 (8) 0.818 (6) 0.748 (1) 0.798 (3) 0.813 (4) 0.977 (9) 0.821 (7) 0.818 (5) 0.751 (2)
medical 0.319 (6) 0.307 (4) 0.279 (2) 0.302 (3) 0.319 (5) 0.321 (7) 0.392 (8) 0.494 (7) 0.226 (1)
slashdot 0.645 (7) 0.625 (5) 0.523 (2) 0.600 (4) 0.628 (6) 0.597 (3) 0.797 (8) 0.939 (9) 0.513 (1)
enron 0.907 (8) 0.877 (4) 0.866 (2) 0.879 (5) 0.900 (6) 0.906 (7) 0.871 (3) 0.959 (9) 0.830 (1)
ohsumed 0.799 (7) 0.787 (6) 0.720 (1) 0.820 (8) 0.774 (4) 0.776 (5) 0.768 (3) 0.949 (9) 0.734 (2)
tmc2007 0.706 (5) 0.704 (4) 0.702 (2) 0.732 (7) 0.703 (3) 0.730 (6) 0.645 (1) 0.773 (9) 0.736 (8)
bibtex 0.850 (6) 0.820 (3) 0.805 (2) 0.839 (4) 0.841 (5) 0.899 (7) 0.913 (8) 0.944 (9) 0.782 (1)
av. ranks 6.9 4.9 1.8 4.8 4.3 6.0 5.2 8.1 2.9

Table 4 Multi- label accuracy (higher is better) averaged over 10 cross validations (with ranks in parentheses).

Data BR SMBR NLDD ECC RAKEL HOMER RF - PCT MLKNN CBM

emotions 0.525 (7) 0.547 (6) 0.562 (2) 0.559 (3) 0.555 (4) 0.579 (1) 0.552 (5) 0.325 (9) 0.403 (8)
scene 0.636 (8) 0.651 (7) 0.742 (1) 0.699 (4) 0.699 (3) 0.692 (5) 0.587 (9) 0.690 (6) 0.718 (2)
yeast 0.499 (8) 0.509 (7) 0.546 (1) 0.543 (2) 0.519 (4) 0.431 (9) 0.515 (5) 0.510 (6) 0.522 (3)
medical 0.766 (6) 0.768 (5) 0.799 (2) 0.793 (3) 0.764 (7) 0.769 (4) 0.675 (8) 0.579 (9) 0.817 (1)
slashdot 0.452 (7) 0.469 (5) 0.535 (2) 0.507 (3) 0.458 (6) 0.495 (4) 0.216 (8) 0.069 (9) 0.550 (1)
enron 0.397 (8) 0.423 (5) 0.412 (6) 0.471 (1) 0.409 (7) 0.427 (4) 0.453 (2) 0.318 (9) 0.430 (3)
ohsumed 0.385 (7) 0.397 (5) 0.435 (2) 0.432 (3) 0.394 (6) 0.422 (4) 0.341 (8) 0.080 (9) 0.492 (1)
tmc2007 0.575 (3) 0.578 (2) 0.570 (6) 0.567 (7) 0.571 (5) 0.574 (4) 0.607 (1) 0.472 (9) 0.519 (8)
bibtex 0.326 (6) 0.339 (3) 0.351 (2) 0.332 (5) 0.334 (4) 0.256 (7) 0.159 (8) 0.128 (9) 0.376 (1)
av. ranks 6.7 5.0 2.7 3.4 5.1 4.7 6.0 8.3 3.1

Table 5 F -measure (higher is better) averaged over 10 cross validations (with ranks in parentheses).

Data BR SMBR NLDD ECC RAKEL HOMER RF -PCT MLKNN CBM

emotions 0.603 (7) 0.629 (5) 0.645 (3) 0.648 (2) 0.632 (4) 0.670 (1) 0.628 (6) 0.399 (9) 0.472 (8)
scene 0.625 (8) 0.643 (7) 0.736 (1) 0.715 (4) 0.692 (5) 0.716 (3) 0.595 (9) 0.683 (6) 0.731 (2)
yeast 0.609 (8) 0.616 (5) 0.644 (2) 0.647 (1) 0.625 (3) 0.562 (9) 0.622 (4) 0.614 (7) 0.615 (6)
medical 0.795 (6) 0.796 (5) 0.827 (2) 0.826 (3) 0.793 (7) 0.801 (4) 0.697 (8) 0.603 (9) 0.831 (1)
slashdot 0.503 (6) 0.516 (5) 0.562 (2) 0.561 (3) 0.502 (7) 0.528 (4) 0.220 (8) 0.073 (9) 0.567 (1)
enron 0.512 (8) 0.530 (4) 0.520 (7) 0.585 (1) 0.522 (5) 0.546 (3) 0.562 (2) 0.426 (9) 0.522 (6)
ohsumed 0.453 (7) 0.455 (6) 0.488 (4) 0.524 (1) 0.455 (5) 0.497 (2) 0.381 (8) 0.091 (9) 0.494 (3)
tmc2007 0.666 (4) 0.670 (3) 0.662 (6) 0.664 (5) 0.660 (7) 0.672 (2) 0.688 (1) 0.556 (9) 0.601 (8)
bibtex 0.397 (5) 0.393 (6) 0.411 (2) 0.406 (3) 0.402 (4) 0.323 (7) 0.190 (8) 0.160 (9) 0.437 (1)
av. ranks 6.6 5.1 3.2 2.6 5.1 3.9 6.0 8.4 4.0
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Table 6 Evaluation results on the bibtex data set by whether or not the labelset was observed (Subset
A) or unobserved (Subset B) in the training data. Subset A contains 67% of the test instances and subset
B contains 33%. For Hamming loss and 0/1 loss, lower is better. ForMulti-label accuracy and F-measure,
higher is better.

Subset A Subset B Total (A∪B)

BR NLDD BR NLDD BR NLDD

Hamming loss 0.0113 0.0091 0.0250 0.0224 0.0158 0.0134
0/1 loss 0.7804 0.7163 0.9958 1.0000 0.8504 0.8084
Multi-label accuracy 0.3807 0.4273 0.2118 0.1870 0.3259 0.3492
F-measure 0.4402 0.4785 0.3065 0.3058 0.3966 0.4130

NLDD achieved lowest (i.e., best) average ranks on 0/1 loss and multi-label accuracy ,
while ECC and RF-PCT achieved the lowest average ranks on the F-measure and
Hamming loss, respectively. On both F-measure and Hamming loss, NLDD achieved
the second lowest (i.e., best) average ranks. CBM achieved the second lowest average rank
on 0/1 loss and multi-label accuracy . The performance of CBM on the 0/1 loss was very
variable achieving the lowest rank on five out of nine data sets and the second worst on
two data sets.

We next look at the performance of NLDD by whether or not the true labelsets were
observed in the training data. A labelset has been observed if the exact labelset can be
found in the training data and unobserved otherwise. Since NLDD makes a prediction
by choosing a training labelset, a predicted labelset can only be partially correct on an
unobserved labelset. Table 6 compares the evaluation results of BR and NLDD on two
separate subsets of the test set of the bibtex data. The bibtex data were chosen because the
data set contains by far the largest percentage of unobserved labelsets (33%) among the
data sets investigated. The test data set was split into subsets A and B; if the labelset of a test
instance was an observed labelset, the instance was assigned to A; otherwise the instance
was assigned to B. For all of the four metrics, NLDD outperformed BR even though 33%
of the labelsets in the test data were unobserved labelsets.

We next look at the three regression parameters the proposedmethod (NLDD) estimated
(Eq. (2)) for each data set in more detail. Table 7 displays the MLE of the parameters of
the binomial model in each data set. In all data sets, the estimates of β1 and β2 were all
positive. The positive slopes imply that the expected loss (or, equivalently the probability
of misclassification for each label) decreases as Dx or Dy decreases.

From the values of β̂0 we may infer how low the expected loss is when either Dx or Dy

is 0. For example, β̂0 =−3.5023 in the scene data set. If Dx = 0 and Dy = 0, p̂= 0.0292

because log p̂
1−p̂
=−3.5023. Hence Ê(loss)= Lp̂= 6 ·0.0292= 0.1752. This is the expected

number of mismatched labels for choosing a training labelset whose distances to the new
instance are zero in both feature and label spaces. The results suggest the expected loss
would be very small when classifying a new instance that had a duplicate in the training
data (Dx= 0) and whose labels are predicted with probability 1 and the predicted labelset
was observed in the training data (Dy= 0).
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Table 7 The maximum likelihood estimates of the parameters of equation (2) averaged over 10 cross
validations.

Data β̂0 β̂1 β̂2

emotions −2.6353 0.0321 1.0912
scene −3.5023 0.0134 1.8269
yeast −3.9053 0.1409 0.8546
medical −5.5296 0.1089 1.6933
slashdot −4.2503 0.1204 1.3925
enron −3.8827 0.0316 0.7755
bibtex −4.8436 0.0093 0.7264
ohsumed −3.1341 0.0022 0.9855
tmc2007 −3.6862 0.0370 1.1056

SCALING UP NLDD
As seen in ‘Nearest labelset using double distances (NLDD)’, the time complexity ofNLDD
is dependent on the size of the training data (N ). In particular, the term O(N 2(d+L))
makes the complexity ofNLDD quadratic inN . For larger data sets the running time could
be reduced by running the algorithm on a fraction of the N instances, but performance
may be affected. This is investigated next.

Figure 3 illustrates the running time and the corresponding performance of NLDD as
a function of the percentage of N . For the result, we used the tmc2007 data with 75/25
train/test splits. After splitting, we randomly chose 10%–100% of the training data and
ran NLDD with the reduced data. As before, we used SVM with a linear kernel as the base
classifier.
The result shows that NLDD can obtain similar predictive performances for considerably
less time. The running time increased quadratically as a function of N while the
improvement of the performance of NLDD appeared to converge. Using 60% of the
training data, NLDD achieved almost the same performance in the number of mismatched
labels as using the full training data. Similar results were obtained on other large data sets.

DISCUSSION
For the sample data sets selected, NLDD achieved the lowest (i.e., best) average ranks on
0/1 loss and multi-label accuracy , and the second lowest average ranks on Hamming loss
and F-measure compared with other state-of-art methods.

What may explain the success of NLDD? NLDD minimizes a function of two distances.
NLDD performs substantially better than separate approaches that rely on only one of the
distances: k-nearest neighbors (k= 1) usingDx only or SMBR usingDy only (Supplemental
Information). NLDD integrates the two distances using an additive model Eq. (2). The
specific integration does not appear crucial: we have experimented with a multiplicative
model, log

(
θ

1−θ

)
= β0+Dβ1x Dβ2y , that performed similarly (results not shown). Therefore

the success seems due to the combination of two quite different distances. The distances
may be complementary in that Dx corresponds to a highly local classifier (kNN with k=1)
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Figure 3 Running time (A) and the average number of mismatched labels (B) as a function of the
percentage of the instance space forNLDD.

Full-size DOI: 10.7717/peerjcs.242/fig-3

and Dy draws on a global classifier. Computing the distance Dy requires estimating the
probability of each label using a base classifier. The classifier used here, SVM , is a general
global classifier. Some evidence for the conjecture that a global base classifier is important
are experiments using nearest neighbors (kNN ) instead of SVM as a base classifier: a more
global choice (k = 30) yielded much improved results over a more local choice (k = 3)
(Supplemental Information).

Like BR, NLDD uses outputs of independent binary classifiers. Using the distances
in the feature and label spaces in binomial regression, NLDD can make more accurate
predictions than BR. NLDD was also significantly superior to SMBR, which is similar to
NLDD in the sense that it makes predictions by choosing training labelsets using binary
classifiers. One of the reasons why NLDD performs better than BR and SMBR is that it
contains extra parameters. SMBR is based on the label space only, while NLDD uses the
distances in the feature space as well.

Like LP , the proposed method predicts only labelsets observed in the training data.
In restricting the labelsets for prediction, higher order correlations among the labels are
implicitly accounted for. At the same time, this restriction is NLDD’s main limitation. If a
new instance has a true labelset unobserved in the training data, there will be at least one
incorrectly predicted label. Even so, NLDD scored best on two metrics and second best on
two other metrics. How frequently an unobserved labelset occurs depends on the data set.
For most data sets, less than 5% of the test data contained labelsets not observed in the
training data. In other words, most of the labelsets of the test instances could be found in
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the training data. However, for the bibtex data set about 33% of the test data contained
unobserved labelsets. As seen in Table 6, when the true labelsets of the test instances were
not observed in the training data (subset B), BR performed slightly better than NLDD
in terms of 0/1 loss, multi-label accuracy and F-measure. On the other hand, when the
true labelsets of the test instances were observed in the training data (subset A), NLDD
outperformed BR on all of the metrics. Combined, NLDD achieved higher performances
than BR on the entire test data. However,NLDDmight not fare as well when the percentage
of unobserved labelsets is substantially greater.

The use of binomial regression (see equation Eq. (2)) implies that the misclassification
probability θ is constant for each label. Although the true misclassification probabilities
may differ for labels, the experimental results showed that NLDD performs well under this
assumption. Instead of using binomial regression and estimating a single constant θ , one
might have used L logistic regressions to estimate individual θi (i= 1,...,L) for each label.
Rather than choosing the labelset that minimizes a single θ , one could have then chosen
the labelset that minimizes a function of the θi. However, choosing such a function is not
straightforward. Also, this requires estimating 3L parameters instead of 3.

NLDD uses binomial regression to estimate the parameters. This setup assumes that
the instances in S are independent. While it turned out that this assumption worked well
in practice, dependencies may arise between the two pairs of a given Si. If required this
dependency could be modeled using, for example, generalized estimating equations (GEE)
(Liang & Zeger, 1986). We examinedGEE using an exchangeable correlation structure. The
estimates were almost the same and the prediction results were unchanged. The analogous
results are not shown.

NLDD has higher time complexity than BR. The relative differences of running time
between NLDD and BR depended on the size of the training data (N ). The number of
labels and features had less impact on the differences, as the complexity of NLDD is linear
in them.

For prediction, the minimization in Eq. (3) only requires the estimates of the coefficients
β1 andβ2which determine the tradeoff betweenDx andDy. The estimate ofβ0 is not needed.
However, estimating β0 allows us to also estimate the probability of a misclassification
of a label for an instance, θ̂ . Such an assessment of uncertainty of the prediction can be
useful. For example, one might only want to classify instances where the probability of
misclassification is below a certain threshold value.

NLDD uses a linear model for binomial regression specified in Eq. (2). To investigate
how the performance of NLDD changes in nonlinear models, we also considered a model:
log
(
θ

1−θ

)
=β0+D

β1
x ·D

β2
y in which the distances are combined in a multiplicative way. The

difference of prediction results obtained by the linear and multiplicative models was small.
While we used the Euclidean distance for NLDD, other distance metrics such as the

Manhattan distancemay also be employed.We ranNLDD based on theManhattan distance
in the label space and the results were almost the same: over 99% of the prediction were
identical and the differences of the performance in all metrics were less than 1%(the
Euclidean distance gave slightly better performance for most data). This shows that the
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difference in prediction performance between the Manhattan and the Euclidean metrics
was tiny in practice.

While SVM was employed as the base classifier, other algorithms could be chosen
provided the classifier can estimate posterior probabilities rather than just scores. Better
predictions of binary classifiers will make distances in the label space more useful and
hence lead to a better performance.

Lastly, we observed that the distributions of labels are, in general, unbalanced for many
multi-label datasets. Since the performance of traditional classification algorithms can be
limited on unbalanced data, addressing this problem could improve the reliability of the
probabilistic classifiers, and result in an improved performance of NLDD. To mitigate the
unbalanceddistributions of labels, we applied SyntheticMinorityOver-samplingTechnique
(SMOTE) (Chawla et al., 2002) that evens out the class distribution by generating synthetic
examples of the minority class. Probabilistic classifiers were then trained on the expanded
training data and used in the process of NLDD. For 7 out of the 9 data sets, the 0/1 loss,
multi-label accuracy and F-measure were improved by a modest amount.

CONCLUSION
In this article, we have presented NLDD based on probabilistic binary classifiers. The
proposed method chooses a training labelset with the minimum expected loss, where
the expected loss is a function of two variables: the distances in feature and label spaces.
The parameters are estimated by maximum likelihood. The experimental study with nine
different multi-label data sets showed that NLDD outperformed other state-of-the-art
methods on average in terms of 0/1 loss and multi-label accuracy .
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Gonçalves T, Quaresma P. 2003. A preliminary approach to the multilabel classification
problem of portuguese juridical documents. In: Proceedings of the 11th Portuguese
conference on artificial intelligence. Springer, 435–444
DOI 10.1007/978-3-540-24580-3_50.

HershW, Buckley C, Leone TJ, HickamD. 1994. OHSUMED: an interactive retrieval
evaluation and new large test collection for research. In: Proceedings of the 17th an-
nual international ACM-SIGIR conference on research and development in information
retrieval. London, 192–201 DOI 10.1007/978-1-4471-2099-5_20.

Hochberg Y. 1988. A sharper Bonferroni procedure for multiple tests of significance.
Biometrika 75(4):800–802.

Gweon et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.242 18/20

https://peerj.com
https://github.com/hgweon/HG-multilabel
http://dx.doi.org/10.7717/peerj-cs.242#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.242#supplemental-information
http://dx.doi.org/10.1016/j.patcog.2004.03.009
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1007/978-3-540-24775-3_5
http://dx.doi.org/10.1007/978-3-540-24580-3_50
http://dx.doi.org/10.1007/978-1-4471-2099-5_20
http://dx.doi.org/10.7717/peerj-cs.242


Ji S, Tang L, Yu S, Ye J. 2008. Extracting shared subspace for multi-label classification. In:
Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery
and data mining. ACM, 381–389 DOI 10.1145/1401890.1401939.

Katakis I, Tsoumakas G, Vlahavas I. 2008.Multilabel text classification for automated
tag suggestion. In: Proceedings of the ECML/PKDD discovery challenge. Antwerp.

Klimt B, Yang Y. 2004. The enron corpus: a new dataset for email classification research.
In: Proceedings of the 15th European conference on machine learning. Pisa: Springer,
217–226 DOI 10.1007/978-3-540-30115-8_22.

Kocev D, Vens C, Struyf J, Džeroski S. 2007. Ensembles of multi-objective decision trees.
In: Proceedings of the 18th European conference on machine learning. 624–631.

Li C,Wang B, Pavlu V, Aslam JA. 2016. Conditional Bernoulli mixtures for multi-label
classification. In: Proceedings of the 33rd international conference on machine learning.
New York, 2482–2491.

Li T, Ogihara M. 2003. Detecting emotion in music. In: Proceedings of the international
symposium on music information retrieval. 239–240.

Liang K-Y, Zeger SL. 1986. Longitudinal data analysis using generalized linear models.
Biometrika 73(1):13–22.

Liu F, Zhang X, Ye Y, Zhao Y, Li Y. 2015.MLRF: multi-label classification through
random forest with label-set partition. In: Proceedings of the 11th international
conference on intelligent computing. Springer, 407–418.

Madjarov G, Kocev D, Gjorgjevikj D, Džeroski S. 2012. An extensive experimental com-
parison of methods for multi-label learning. Pattern Recognition 45(9):3084–3104
DOI 10.1016/j.patcog.2012.03.004.

Meyer D, Dimitriadou E, Hornik K,Weingessel A, Leisch F. 2014. e1071: misc functions
of the department of statistics, TUWien. Available at http://CRAN.R-project.org/
package=e1071.

Platt J. 2000. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In: Smola A, Bartlett P, Schoelkopf B, Schuurmans
D, eds. Advances in large margin classifiers. Cambridge: MIT Press, 61–74.

R Core Team. 2014. R: a language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing. Available at http://www.R-project.org/ .

Read J, Pfahringer B, Holmes G. 2008.Multi-label classification using ensembles of
pruned sets. In: Proceedings of the 8th IEEE international conference on data mining.
995–1000 DOI 10.1109/ICDM.2008.74.

Read J, Pfahringer B, Holmes G, Frank E. 2011. Classifier chains for multi-label
classification.Machine Learning 85(3):333–359 DOI 10.1007/s10994-011-5256-5.

Schapire RE, Singer Y. 1999. Improved boosting algorithms using confidence-rated
predictions.Machine Learning 37(3):297–336 DOI 10.1023/A:1007614523901.

Schapire RE, Singer Y. 2000. BoosTexter: a boosting-based system for text categorization.
Machine Learning 39(2):135–168 DOI 10.1023/A:1007649029923.

Srivastava A, Zane-Ulman B. 2005. Discovering recurring anomalies in text reports
regarding complex space systems. In: Proceedings of the 2005 IEEE Aerospace
Conference. 3853–3862 DOI 10.1109/AERO.2005.1559692.

Gweon et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.242 19/20

https://peerj.com
http://dx.doi.org/10.1145/1401890.1401939
http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.1016/j.patcog.2012.03.004
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071
http://www.R-project.org/
http://dx.doi.org/10.1109/ICDM.2008.74
http://dx.doi.org/10.1007/s10994-011-5256-5
http://dx.doi.org/10.1023/A:1007614523901
http://dx.doi.org/10.1023/A:1007649029923
http://dx.doi.org/10.1109/AERO.2005.1559692
http://dx.doi.org/10.7717/peerj-cs.242


Tai F, Lin H-T. 2012.Multilabel classification with principal label space transformation.
Neural Computation 24(9):2508–2542 DOI 10.1162/NECO_a_00320.

Trohidis K, Tsoumakas G, Kalliris G, Vlahavas I. 2008.Multilabel classification of music
into emotions. In: Proceedings of the 9th international conference on music information
retrieval. Philadelphia, 325–330.

Tsoumakas G, Katakis I. 2007.Multi-label classification: an overview. International
Journal of Data Warehousing and Mining 3:1–13.

Tsoumakas G, Katakis I, Vlahavas I. 2008. Effective and efficient multilabel classification
in domains with large number of labels. In: Proceedings of ECML/PKDD workshop on
mining multidimensional data. 30–44.

Tsoumakas G, Katakis I, Vlahavas I. 2010. Mining Multi-label Data. In: Maimon O,
Rokach L, eds. Data mining and knowledge discovery handbook. Boston: Springer,
667–685.

Tsoumakas G, Katakis I, Vlahavas I. 2011. Random k-Labelsets for multilabel classi-
fication. IEEE Transactions on Knowledge and Data Engineering 23(7):1079–1089
DOI 10.1109/TKDE.2010.164.

Tsoumakas G, Vlahavas I. 2007. Random k-labelsets: an ensemble method for multilabel
classification. In: Proceedings of the 18th European conference on machine learning.
Berlin: Springer, 406–417 DOI 10.1007/978-3-540-74958-5_38.

Vapnik VN. 2000. The nature of statistical learning theory. 2nd edition. New York:
Springer.

Wilcoxon F. 1945. Individual comparisons by ranking methods. Biometrics Bulletin
1(6):80–83 DOI 10.2307/3001968.

Ypma TJ. 1995.Historical development of the Newton-Raphson method. SIAM Review
37(4):531–551 DOI 10.1137/1037125.

ZhangM-L, Zhou Z-H. 2005. A k-nearest neighbor based algorithm for multi-label
classification. In: Proceedings of the 1st IEEE international conference on granular
computing, vol. 2. 718–721 DOI 10.1109/GRC.2005.1547385.

ZhangM-L, Zhou Z-H. 2007.ML-KNN: a lazy learning approach to multi-label learning.
Pattern Recognition 40(7):2038–2048 DOI 10.1016/j.patcog.2006.12.019.

ZhangML, Zhou ZH. 2014. A review on multi-label learning algorithms. IEEE Transac-
tions on Knowledge and Data Engineering 26(8):1819–1837 DOI 10.1109/TKDE.2013.39.

Gweon et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.242 20/20

https://peerj.com
http://dx.doi.org/10.1162/NECO_a_00320
http://dx.doi.org/10.1109/TKDE.2010.164
http://dx.doi.org/10.1007/978-3-540-74958-5_38
http://dx.doi.org/10.2307/3001968
http://dx.doi.org/10.1137/1037125
http://dx.doi.org/10.1109/GRC.2005.1547385
http://dx.doi.org/10.1016/j.patcog.2006.12.019
http://dx.doi.org/10.1109/TKDE.2013.39
http://dx.doi.org/10.7717/peerj-cs.242

