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ABSTRACT

This article addresses the problem of interval pricing for auction items by constructing
an auction item price prediction model based on an adaptive learning algorithm. Firstly,
considering the confusing class characteristics of auction item prices, a dynamic inter-
class distance adaptive learning model is developed to identify confusing classes by
calculating the differences in prediction values across multiple classifiers for target
domain samples. The difference in the predicted values of the target domain samples
on multiple classifiers is used to calculate the classification distance, distinguish the
confusing classes, and make the similar samples in the target domain more clustered.
Secondly, a deep clustering algorithm is constructed, which integrates the temporal
characteristics and numerical differences of auction item prices, using DTW-K-medoids
based dynamic time warping (DTW) and fuzzy C-means (FCM) algorithms for fine
clustering. Finally, the KF-LSTM auction item interval price prediction model is
constructed using long short-term memory (LSTM) and dual clustering. Experimental
results show that the proposed KF-LSTM model significantly improves the prediction
accuracy of auction item prices during fluctuation periods, with an average accuracy
rate of 90.23% and an average MAPE of only 5.41%. Additionally, under confidence
levels of 80%, 85%, and 90%, the KF-LSTM model achieves an interval coverage rate of
over 85% for actual auction item prices, significantly enhancing the accuracy of auction
item price predictions. This experiment demonstrates the stability and accuracy of the
proposed model when applied to different sets of auction items, providing a valuable
reference for research in the auction item price prediction field.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms, Artificial
Intelligence, Data Science, Sentiment Analysis

Keywords Adaptive learning algorithm, Dual clustering, LSTM, FCM algorithm, Interval price
prediction

INTRODUCTION

The auction market is a complex and dynamic environment that spans various commodity
classes, including art and antiques, real estate, and industrial equipment. Price formation
in this market is influenced by numerous factors, such as the quality of the goods, their
scarcity, market supply and demand, the psychological expectations of bidders, and their
financial situation. This complexity makes price forecasting for auction items particularly
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challenging yet crucial. Accurate price range prediction is essential in the auction market.

It helps auctioneers set more reasonable starting and reserve prices, maximizing auction

efficiency and revenue. For bidders, understanding the potential price range of goods

aids in developing more rational bidding strategies, avoiding blind bids and excessive
competition.

Traditional methods of predicting auction item prices have achieved specific results;
however, these methods often provide a fixed prediction value. In actual auctions, bidders
need a price range based on their situation and the market environment. Fixed-value
predictions do not meet the exact needs of bidders. Additionally, due to the complexity
and dynamism of the auction market, traditional prediction models often struggle to adapt
to rapid market changes. When the market environment shifts, the predictive accuracy of
these models significantly decreases.

In recent years, deep learning technology has achieved remarkable results in image
recognition and natural language processing (Birkeland ¢» AlSkaif, 2024; Tang et al., 2024).
Deep learning models possess powerful feature learning and representation capabilities,
enabling them to handle complex nonlinear relationships and offer new auction item
price prediction approaches. Adaptive learning algorithms can dynamically adjust model
parameters based on historical data, adapting to market changes. In the context of auction
item price prediction, adaptive learning algorithms can help models better capture market
dynamics and improve prediction accuracy (Nie et al., 2024). Consequently, an auction
price prediction model integrating deep learning and adaptive learning algorithms can
more effectively capture market dynamics and enhance prediction precision. However,
existing deep learning models require substantial amounts of labeled data for training, and
in the realm of auction item price prediction, high-quality labeled data may be relatively
scarce. This scarcity can result in insufficient model training and suboptimal prediction
outcomes (Wu et al., 2024).

Moreover, the initial parameter settings often influence autonomous learning
algorithms’ performance. Inappropriate initial parameters can cause the algorithm
to converge to a local optimal solution rather than a global one. Additionally, while
autonomous learning algorithms can dynamically adjust model parameters based on
historical data, their adaptability may still be limited when confronted with the rapidly
changing environment of the auction market.

Therefore, to address these challenges, this article employs a deep clustering algorithm
to classify auction items, aiming to uncover price patterns and characteristics across
different categories of commodities. It integrates an adaptive learning algorithm to develop
an auction item price prediction model capable of forecasting price intervals for these
commodities. The specific contributions of this study are outlined as follows:

1. Dynamic class spacing adaptive learning: This approach handles confusing classes
by computing classification distances based on differences in predicted values from
multiple classifiers within the target domain. Identifying and segregating confusing
classes enhances the clustering of similar samples in the target domain and widens class
distances. This improves the generalization capability of the source domain model and
enhances classification accuracy on the target domain.
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2. Dual clustering algorithm: A dual clustering algorithm is constructed to achieve
fine clustering of auction items. Considering both the temporal characteristics and
numerical variability of auction item prices, this approach utilizes the K-medoids
clustering algorithm based on dynamic time warping (DTW) and fuzzy C-means
algorithms. It incrementally clusters dynamic characteristics and numerical values to
provide detailed insights into price dynamics.

3. KF-LSTM deep learning model: The article introduces the KF-LSTM model based on
double clustering. This model leverages long short-term memory (LSTM) networks and
integrates the results of dual clustering for deep learning prediction. Each class cluster
obtained from dual clustering is separately trained using LSTM models, which are
then utilized to predict output sequences of auction item prices based on date-linked
predictive features.

RELATED WORKS

Domain adaptive learning algorithm

Domain adaptation (DA) learning algorithms (Hu et al., 2024) primarily explore strategies
for mitigating domain bias between source and target data distributions. These approaches
leverage similarities and discrepancies between domains to transfer and apply models
trained in the source domain, thereby enhancing classification performance on the target
domain. Recent research has focused on several key directions. One such direction involves
employing the maximum mean discrepancy (MMD) (Yu et al., 2024) method to mitigate
domain bias. The DeepAdaptationNetwork (DAN) introduced in literature (Xu et al., 2024)
embeds task layer representations into a kernel Hilbert space, aligning mean embeddings
across different domain distributions. Joint distribution adaptation (JDA), proposed in
the literature (Qian, Luo ¢ Qin, 2024), adapts source and target domain edge distributions
and conditional distributions through dimensionality reduction, integrating them into an
optimization objective. Additionally, the JointAdaptation Network (JAN), as proposed in
the literature (Liu, Peng ¢ El-Latif, 2023), extends DAN and JDA frameworks by aligning
joint distributions of input features and output labels across domain-specific layers using the
joint maximum mean discrepancy (JMMD) criterion. This approach integrates domain
adaptation and adversarial learning in deep networks to maximize network JMMD,
enhancing distinguishability between source and target domain distributions through
adversarial training strategies.

Another research avenue in domain adaptive algorithms focuses on deep learning
methods leveraging adversarial learning. Following the introduction of generative
adversarial networks (GAN) in literature (Chakraborty et al., 2024), adversarial learning
principles were incorporated into domain adaptive algorithms to address domain bias.
However, traditional adversarial-based methods often underperform because they
solely align source and target domains adversarially without deeply exploring deep
data distribution disparities between them. Many current algorithms aim to tackle this
limitation.

Another promising direction involves clustering-based pseudo-labeling methods.
Introduced in Guo, Yin & Yang (2024), this approach begins by clustering unlabeled
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sample features from the target domain. Subsequently, pseudo-labels are generated based
on these clusters and utilized for supervised training to optimize model performance on the
target domain. This iterative process continues until convergence. While clustering-based
pseudo-labeling methods can enhance pseudo-label quality through model optimization,
they are susceptible to noise introduced by pseudo-labels. Insufficient generalization ability
of pre-trained networks from the source domain contributes to this noise.

Moreover, challenges such as unknown target domain categories and limitations
of clustering algorithms further exacerbate pseudo-labeling noise. Yang, Shao ¢ Yang
(2023) proposes training two identical networks concurrently, progressively capturing
target domain data distribution and refining pseudo-labeling for improved network
training. Nguyen (2023) introduces the joint application of classification and ternary loss
in supervised training, while Zoppi et al. (2023) explores its application in unsupervised
training scenarios.

Deep clustering algorithm

Clustering is an essential algorithm in current data mining. Still, with the complexity of
data, traditional clustering methods can no longer handle high-dimensional data types, so it
is becoming increasingly crucial to downscale high-dimensional data using more powerful
models. Since the essence of deep learning is to capture the excellent features of data by
automatically extracting features through multi-layer neural networks, deep clustering has
been proposed as joint optimal representation learning and clustering.

From the model design perspective, existing deep clustering algorithms are divided into
two main categories: models based on traditional clustering ideas (Gormley, Murphy ¢
Raftery, 2023) and neural networks (Lazcano, Herrera ¢» Monge, 2023). These two main
classes of methods have their own merits and aim to improve the accuracy and efficiency
of clustering through different mechanisms. Clustering-based models are usually deep
extensions or improvements of traditional clustering algorithms, such as K-means and
spectral clustering in deep learning. For example, the K-means-based deep clustering
method (Bisen et al., 2023) can significantly improve the performance of clustering
compared to the traditional K-means algorithm by combining the feature extraction
capability of deep learning. However, this method appears incompetent in dealing with
data with non-convex clustering shapes. On the other hand, the deep clustering (Peng et
al., 2023) method based on spectral clustering can handle non-convex-shaped data but still
needs to improve performance.

Subspace-based clustering (Jia et al., 2023) attempts to leverage neural networks’
powerful feature extraction capabilities, mainly showcasing its unique advantages when
dealing with high-dimensional data. The auction market involves many high-dimensional
data, such as bidders’ historical behavior, bidding strategies, auction item attributes, market
trends, etc. Subspace clustering methods can effectively handle these high-dimensional
datasets, learning intrinsic structures like bidder behavior patterns and auction item value
assessment models through feature extraction. This enhances the accuracy of auction
outcome predictions and helps auction houses better understand market demands and
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optimize auction strategies. However, scalability becomes challenging as these methods
experience rapid increases in time and space complexity with larger datasets.

Alternatively, deep clustering methods based on probabilistic models like Gaussian
mixture models (Hamdi et al., 2023) and information-theoretic approaches such as
mutual information (Wan et al., 2023) offer diverse clustering strategies. These methods
provide a wide range of clustering strategies. The model can learn the distribution
characteristics of normal bidding behavior in auctions by performing clustering analysis
on large amounts of historical data. Any behavior deviating from this distribution can be
considered a potential risk, triggering further investigation and review. However, they often
encounter high computational demands, slow convergence, and unstable training. Methods
utilizing Kullback—Leibler divergence (Golzari Oskouei, Balafar & Motamed, 2023), while
demanding in network complexity and training, may exhibit performance limitations
due to their depth. Recently, deep clustering methods integrating generative adversarial
networks and comparative learning (Ros, Riad ¢ Guillaume, 2024) have gained traction
for their flexibility and efficacy in clustering tasks, introducing novel learning mechanisms.
However, challenges such as convergence issues with generative adversarial networks and
handling positive and negative sample pairs in contrastive learning remain.

In conclusion, advancing deep clustering algorithms requires continual innovation
beyond traditional clustering methods, harnessing neural networks’ potent feature
extraction capabilities, and balancing model design and algorithmic optimization.

MODEL DESIGN

As depicted in Fig. 1, the article’s structure begins with developing a dynamic class
spacing adaptive learning model for confusion-prone classes. This algorithm dynamically
adjusts class spacing and employs adaptive learning to enhance the model’s generalization
capability and classification accuracy within the target domain. Next, a double clustering
algorithm is introduced, considering the temporal characteristics and numerical differences
in auction lot prices. This approach utilizes DTW-K-medoids and FCM algorithms for
precise clustering. Finally, the LSTM-based deep learning model, specifically the KF-LSTM
model, integrates the results from the double clustering to forecast price confidence
intervals, thereby significantly improving the accuracy of auction price predictions. These
methodologies present innovative solutions for complex data classification and prediction
tasks.

Dynamic class spacing adaptive learning algorithm for confusable
classes

In this adaptive learning algorithm, samples are initially randomly selected from the target
domain to constitute the set Z of target domain samples in batches. These samples are then
forwarded to the feature extractor to extract their features passed to the multi-classifier to
minimize entropy. The loss function associated with this process is:

1

Lp=
1Z]

> _H(Cu(F(x)) (1)

zeZ
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Full-size G4l DOI: 10.7717/peerjcs.2412/fig-1

where |Z| represents the number of samples in the target domain batch, and H(—) denotes
entropy minimization. This process aims to decrease uncertainty among the target domain
samples, thereby positioning the decision boundary of unlabeled samples within regions of
minimal density and enhancing sample clustering effects. Next, according to the maximum
value and sub-maximum value of the output of the multi-binary classifier, where z/ € Z,
yi represents the prediction of z/, y; € 1,2,..., k represents the y; mark in the k marks, Z
represents the target domain sample set in each, P(y;|z/) is the classification probability of
the target domain sample z/ in the multi-binary classifier, a and b respectively represent
the category corresponding to the maximum value and sub-maximum value of the sample
zi’ output on the multi-binary classifier, where a,b € 1,2,...,k. Since the target domain
sample has no labeling information, P(y;|z;) means that the predicted value output by the
target domain sample through the classifier is a false label.

The classification distances of each target domain sample in the calculation are
rearranged in the order of smallest to largest, and we select the sample with the top /
classification distance, i.e., d al p < di p <. < dé’ »» Where the classes corresponding to d;’ b
are a' and V', and form the set of confusable classes:

D, =(d',b)_,. (2)

The classification distance and boundary threshold are inversely proportional, i.e., the
smaller the classification distance d;,b is, the larger the boundary threshold corresponding
to the confusing class (a',b’) € D, is. Next, the class spacing is dynamically adjusted and is
also subject to a penalty term when it is a confusable class. A penalty is applied when Wylr
and W; are feature weights for the confusion-prone class.

Finally, the features taken from the source and target domains are fed into the domain
classifier D, respectively. After the adversarial training between the domain classifier D
and the feature extractor F, the difference in sample distribution between the source and
target domains was reduced, and domain alignment was realized. The loss function of this

process is:
1 1
Lp= —@ZlogD(F(xi)) —~ ﬁZlog(l —D(F(x}))) (3)

where | Zs| and |Z7| are the number of samples in the source and target batch, respectively,
x; is the i-th sample of the source batch, x; is the j-th sample of the target batch, d; denotes

Ke et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2412 6/17


https://peerj.com
https://doi.org/10.7717/peerjcs.2412/fig-1
http://dx.doi.org/10.7717/peerj-cs.2412

PeerJ Computer Science

the true domain of the i-th sample of the source batch, and d; denotes the true domain of
the j-th sample of the target batch.
The total loss function is as follows:

L=minm};leE(F,Cm)+LDAC—CC(F,Cm) —Lp(F,D). (4)

' —m

DTW- K-medoids clustering algorithm

After dynamic interval adjustment, this article constructs a DTW-based K-medoids
clustering algorithm for efficiently measuring auction price curves. For any pair of (x;, y;)
within a given two time series X = x1,%3,...,Xm, ¥ =¥1,¥2,...,¥n Sequence, the distance
matrix Dy, (i, ;) distance is calculated as follows

D(i,j) =/ (xi—yi)*. (5)

The path from the starting point D(1,1) to the ending point D(m,n) is set as:
W=wi,wy,...,Wk,...,wg,max(m,n) <K <m-+n-—1 (6)

Where wy = (ki,k2), D(wk) = D(ky,k;). The path W needs to satisfy the following
constraints:

Boundary conditions: w; = (1, 1), wx= (m,n)

Continuity: For wx_; = (a',V"), wx = (a,b), it is necessary to satisfy the (a —a’) <
INb-v)<1

Monotonicity: For wx_; = (a',b'), wx = (a,b),(a>a’)N (b > 1) needs to be satisfied.

Satisfying the above constraints and minimizing the mean of the distance values of
the other passing grid yields the dynamic time-bending distance between sequence C and
sequence Y, defined as:

1 K

DTW(X,Y) = rr}(lnEk;D(Wk). (7)

As shown in Fig. 2, we first preprocess the auction item price data, which includes
data normalization and reordering by date. K initial points are then selected as potential
clustering centers. We apply the dynamic DTW algorithm to calculate the distance matrix
from each sample point to these K clustering centers. Based on these DTW distances, each
sample point is assigned to the cluster center with the closest distance, thus forming the
initial clustering structure. During the clustering process, we iteratively optimize. For each
cluster, the absolute minimum error distance from all sample points within it to the cluster
center is calculated, and this minimum error distance point is set as the new cluster center.
This step is continuously repeated, recomputing the DTW distance matrix and updating
the cluster assignments at each iteration until the centrum. Based on fuzzy set theory,
data clustering is achieved by optimizing the objective function. The FCM algorithm
continuously optimizes this objective function by nonlinearly minimizing a function that
typically includes the Euclidean distance between cluster centroids and data points and
the affiliation information of each data point to each cluster center. This approach allows

Ke et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2412 7


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2412

PeerJ Computer Science

DTW algorithm

Data
standardization

Date reordering

Price data New price —»‘ K initial points }—b
data

. . The initial
Distance matrix
cluster structure
—| K initial points

ady and uncl

St i
New cluster New cluster
center center
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FCM to deliver more flexible and accurate clustering results, particularly when handling
data with ambiguity or uncertainty.

For the variable matrix X = x1,x3,...,%,, the FCM clustering algorithm aims to
find a suitable degree of affiliation U = u;; with the clustering center V =vy,v,,...,v,
that minimizes variance and iteration error, i.e., ids of all clusters stabilize and remain
unchanged.

Next, we construct the FCM clustering algorithm

minJ (U, V)= "> uzd*(x,v) (8)

i=1 j=1

dij = |1x; —vil| 9)

where J (U, V) is the weighted distance sum of each object in the cluster class to the
clustering center, u;-kj € [1,4o00], indicates the degree of fuzziness of the clustering results,
d;j indicates the Euclidean distance from the point x; to the clustering center v;.

The steps of the FCM algorithm are as follows.

Step 1: Initialize the number of categories c, the iteration termination condition ¢, and
the value space of each element in the affiliation matrix U, , U, is [0, 1].

Step 2: Calculate the center value of the clusters based on U, V (k); A

Step 3: Calculate the new affiliation matrix U, if ||U (k) — U (k — 1)|| < &, then stop the
loop, otherwise, set k =k + 1 and move to step 2.

Since auction item price data is typically time series data, clustering involves addressing
two primary issues: the similarity measurement method and the selection of clustering
methods. Therefore, in this section, we apply the DWT model to denoise the original
power time series before clustering auction item price data, enhancing the accuracy of time
series similarity calculations. The clustering algorithm in this study adopts a dual clustering
approach.

In the first layer of clustering, the historical price sequence undergoes decomposition
into approximate and detailed signal sequences using DWT to mitigate interference from
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high-frequency fluctuations in auction item price data. Subsequently, the DTW-based
K-medoids clustering algorithm is employed to morphologically cluster the extracted
price principal components, forming initial clusters. In the second layer of dual clustering,
the clusters from the first layer undergo further clustering using the FCM algorithm
for multidimensional accurate clustering, yielding final dual clustering results. This dual
clustering approach effectively leverages morphological changes and numerical distribution
in auction price data.

KF-LSTM algorithm

Each LSTM sub-network includes three crucial gate structures: the input, forget, and
output. These gates are meticulously designed to manage information within the current
cell state, determining whether to retain, add, or delete information. The sigmoid function
operates within the range [0,1], with output values near “0”indicating minimal information

flow and values near “1”

indicating significant or complete information passage. To ensure
precise control of the cell state, the LSTM model effectively utilizes these three distinct
gates. Specifically, the forget gate plays a pivotal role in deciding whether to preserve or
discard information from the previous cell state. The forgetting gate combines the input
vector x; at the moment of ¢ with the output vector h,_; at the moment of t—1 through
the sigmoid layer to obtain the current output vector f,(0 < f, < 1), which is expressed by

Equation (10) :
fr =0 (Wr-[hi—1, %]+ by). (10)

The input gate is used to determine the new information to be added to the current
cell state by performing a dot-multiplication operation between the f; vector and the
C;_1 vector, in addition to this, the new information to be saved at moment t has to pass
through the sigmoid layer and the tanh layer before it can be computed Specific formulas
are detailed in Equations (11) and (12).

iy =0 [W;-[hi—1,x/ ]+ b;] (11)

C; =tanh[Wc - [h_1.x]+bcl. (12)
The status of the old cell C;_; is updated to the new cell status C;:
Ci=f,%Ci_1+i; % C,. (13)

In the output gate, the input vector x; and the output vector h,_ are firstly added to the
current cell state through the sigmoid layer, and finally the final output h; will be calculated
through the tanh layer, and the expression of the formulae is shown in Equations (14) and
(15).

0y =0 [Wo-[hi—1,x: 1+ b,] (14)
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h; = oy *tanh(C;) (15)

where W represents the weight matrix and b represents the bias matrix. Deep learning
prediction is then conducted by integrating the dual clustering results, as illustrated in
Fig. 3. The class clusters obtained from dual clustering are separately trained using LSTM
models, and each model is saved. Subsequently, the corresponding model is selected based
on the proximity between the prediction day and the class clusters. The features of the day
to be predicted are then input into the selected model to predict and sequence the auction
item prices accordingly.
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EXPERIMENTAL ANALYSIS

In this section, we analyze the performance of the proposed KF-LSTM model and validate
its prediction accuracy using an adaptive learning algorithm by comparing it with relevant
literature.

Experimental data

To verify the accuracy of the proposed model for interval price prediction of auction items,
this study utilizes data collected from the eBay online auction platform spanning from 2018
t02022. The dataset includes auction item details such as title, description, category, auction
price, auction time, and other relevant information. To ensure robustness in prediction,
the collected data undergoes preprocessing steps. Duplicate entries are removed, missing
values are handled, and outliers are excluded. Additionally, features are extracted from the
auction time, including year, month, day of the week, and whether the day is a holiday,
as these factors may influence auction item prices. Finally, 17,823 pieces of data were
obtained. Then we divide them into training and test sets at an 8:2 ratio. We conducted
multiple rounds of verification on the results to achieve the final average accuracy.

Experimental evaluation criteria

In this study, three metrics, root mean square error (RMSE), mean absolute percentage
error (MAPE), and accuracy rate (AR), were employed to assess the predictive performance
and data characteristics of the proposed model. The formulas were computed as follows:

INN o 52
VN 2zic(r—7) (6

RMSE =
Pcap
LN
MAPE:NZz:lly b4 1)
Pcap
LzN (y —7)2
vV —1r=7)
AR=1-YN== (18)
Pcap

where N denotes the total number of samples in the test set, y denotes the actual value of
the auction item price, y denotes the predicted value of the auction item price, and Pcap
denotes the total price of all auction items.

To evaluate the performance of interval price prediction, this article adopts prediction
interval normalized average (PINAW) to quantify the narrowness of prediction intervals.
A narrower interval width conveys more informative and practical value than a wider
interval. The formula for PINAW is as follows:

1
PINAW = > U (x) — Li ()] (19)
i=1
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where N; is the total number of predicted sample points, R is the difference between the

predicted maximum and minimum values for data normalization, L, (x;) is the lower limit
of the predicted value, U, (x;) is the upper limit of the predicted value, and x; is the input
variable of the prediction model.

Model comparison

Before starting the experimental analysis, let’s explain the model parameter settings.
The clustering setup specifies five clusters for rows and three clusters for columns, with
both rows and columns utilizing the Pearson correlation coefficient as the similarity
metric. This limitation prevented the algorithm from entering endless loops, ensuring
that the clustering process remained efficient and practical. Additionally, we introduced a
convergence criterion defined by a threshold of 0.01 on the change in clustering quality.
This threshold acted as a sentinel, signaling the completion of the clustering process once
the quality improvement fell below this minute margin, guaranteeing our clusters’ stability
and optimality.

This article introduces two comparison models for analysis alongside the double deep
clustering model to demonstrate the efficacy of double clustering in the proposed method.
These models include the DC(POWER-NWP)-CNN model (Yang et al., 2022) and the
DC(DWT-NWP)-CNN model, which utilizes the DTW-based K-medoids algorithm with
FCM for dual clustering (Xian et al., 2024).

Figures 4 and 5 depict the outcomes of dual clustering models predicting auction item
prices for 2022. Figure 4 illustrates stable price changes within 40 min, showing smooth
auction prices with no significant fluctuations. All three dual clustering models effectively
track the actual price trends, benefiting from the strong regularity observed in auction item
prices. Conversely, Fig. 5 displays fluctuating price changes within the same timeframe,
where the DC(POWER-NWP)-CNN model exhibits reduced performance in tracking
actual price trajectories during fluctuations. In contrast, the KF-LSTM model introduced in
this study demonstrates superior prediction accuracy, particularly in capturing fluctuating
moments and peak characteristics of auction prices. This effectiveness is attributed to noise
reduction and dimensionality reduction techniques applied during data preprocessing,
which enhance data suitability for cluster analysis. Furthermore, our dual clustering
approach enhances clustering accuracy compared to traditional methods, effectively
grouping samples with significant fluctuations into coherent clusters. This optimization
enables individual predictors better to discern complex nonlinear relationships between
inputs and outputs, thereby substantially improving overall prediction accuracy.

Figure 6 presents a comparative analysis of three different auction item price-prediction
models. To comprehensively assess their performance, we meticulously selected and tested
five representative sets of auction items from the test dataset. This thorough evaluation
provides insights into each model’s real-world performance.

As depicted in Fig. 6, the models proposed in this article demonstrate consistent
prediction accuracy across challenging scenarios, including auction items with significant
price fluctuations in the third dataset, despite occasional larger prediction errors.
Notably, the average accuracy of our model reaches an impressive 90.23%, significantly
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Figure 4 Comparison of predictive performance of auction items with stable price changes.
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Figure 6 Performance comparison of each model for predicting the price of auction items.
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outperforming the DC(POWER-NWP)-CNN and the DC(DWT-NWP)-CNN models.
Specifically, our model improves accuracy by 3.58% over the DC(POWER-NWP)-CNN
model and 2.61% over the DC(DWT-NWP)-CNN model.

Furthermore, our model exhibits strong performance on MAPE, a critical indicator
of prediction accuracy, with an average MAPE of only 5.41%. This figure is 2.47% and
1.89% lower than the DC(POWER-NWP)-CNN and DC(DWT-NWP)-CNN models,
respectively. These outstanding results validate the effectiveness of our proposed double
clustering model and underscore its practical utility in auction price prediction applications.
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Interval prediction performance

Figure 7 comprehensively showcases the performance of the KF-LSTM model proposed
in this article for price interval prediction. This section evaluates prediction effectiveness
across different confidence levels, specifically 80%, 85%, and 90%, chosen as representative
conditions for predicting auction item price intervals.

Figure 7 shows that the prediction intervals generated by the KF-LSTM model
consistently encompass the actual auction item prices across all confidence levels. This
highlights not only the accuracy of the model in price prediction but also underscores its
reliability and practical effectiveness. Specifically, under the confidence levels of 80%, 85%,
and 90%, the interval coverage of the KF-LSTM model on actual auction prices exceeds
85%. This data meets engineering requirements and demonstrates the model’s robustness
and consistency across varying confidence levels.

A deeper analysis reveals that the corresponding confidence interval ranges expand as
confidence levels increase. This relationship aligns with statistical principles where higher
confidence levels necessitate broader intervals to ensure accuracy. However, this expansion
is balanced by higher interval coverage, affirming the KF-LSTM model’s capability to adjust
prediction strategies effectively to achieve precise auction item price interval predictions.

In summary, Fig. 7 illustrates the exceptional performance of the KF-LSTM model in
price interval prediction. Regardless of the confidence level, the model consistently delivers
accurate and reliable predictions, providing robust technical support for auction item price
prediction applications.

CONCLUSION

This article presents a novel dynamic class spacing adaptive learning model incorporating
temporal dynamics and numerical disparities in auction item prices through the innovative
KF-LSTM deep clustering approach. Our model achieves accurate price clustering and
interval predictions by leveraging LSTM’s strength in capturing temporal dependencies
and enhancing clustering precision with a dual algorithm. The key innovation lies in its
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ability to dynamically adapt to nuanced class features and effectively track price fluctuations.
Future work aims to refine model performance with advanced deep learning techniques
and integrate multi-source data for a comprehensive valuation and market trend analysis,
thereby constructing robust and precise auction item price-prediction models.

Moreover, the model primarily relies on the temporal characteristics and numerical
differences of price data, overlooking the impact of non-numerical factors such as seller
reputation and item descriptions, limiting the predictions’ comprehensiveness. Future
research should incorporate more advanced deep learning techniques and integrate multi-
source data, including unstructured information, to capture a broader range of factors
influencing prices. Additionally, exploring the relationship between social and economic
factors and auction prices can lead to the development of more comprehensive and accurate
prediction models, thereby enhancing the adaptability and reliability of the forecasts.
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