Submitted 26 April 2019
Accepted 3 November 2019
Published 16 December 2019

Corresponding author
Helena Barke, h.barke@fu-berlin.de

Academic editor
Arie van Deursen

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.241

© Copyright
2019 Barke and Prechelt

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Role clarity deficiencies can wreck agile
teams

Helena Barke and Lutz Prechelt

Freie Universitit Berlin, Berlin, Germany

ABSTRACT

Background. One of the twelve agile principles is to build projects around motivated
individuals and trust them to get the job done. Such agile teams must self-organize,
but this involves conflict, making self-organization difficult. One area of difficulty is
agreeing on everybody’s role.

Background. What dynamics arise in a self-organizing team from the negotiation of
everybody’s role?

Method. We conceptualize observations from five agile teams (work observations,
interviews) by Charmazian Grounded Theory Methodology.

Results. We define role as something transient and implicit, not fixed and named. The
roles are characterized by the responsibilities and expectations of each team member.
Every team member must understand and accept their own roles (Local role clarity)
and everbody else’s roles (Team-wide role clarity). Role clarity allows a team to work
smoothly and effectively and to develop its members’ skills fast. Lack of role clarity
creates friction that not only hampers the day-to-day work, but also appears to lead
to high employee turnover. Agile coaches are critical to create and maintain role
clarity.

Conclusions. Agile teams should pay close attention to the levels of Local role clarity of
each member and Team-wide role clarity overall, because role clarity deficits are highly
detrimental.

Subjects Social Computing, Software Engineering

Keywords Agile, Scrum, conflicts, coach, Scrum Master, Social skills, Technical skills, Reflection,
Team dynamics, Self-organization

INTRODUCTION

The Agile Manifesto (Beck et al., 2001) suggests to “Build projects around motivated
individuals. Give them the environment and support they need, and trust them to get the job
done.” So agile teams need to self-organize: Where a conventional team would have a
manager who assigns tasks to people, defines team work processes, and mediates conflicts
that might arise among team members, an agile team needs to do all those things themselves,
perhaps supported by a coach who is supposed to catalyze the self-organization processes.
The most widely used agile method, Scrum (Sutherland ¢ Schwaber, 2016), which is
our sole focus here, is quite explicit about this. It has only three roles: Product Owner,
who defines requirements; Scrum Master, the coach; and everybody else, called the
“development team”. The overall team (“Scrum team”) is supposed to self-organize.

How to cite this article Barke H, Prechelt L. 2019. Role clarity deficiencies can wreck agile teams. Peer] Comput. Sci. 5:€241
http://doi.org/10.7717/peerj-cs.241

https://peerj.com/computer-science
mailto:h.barke@fu-berlin.de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.241
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

'We use Grounded Theory Methodology
(GTM). This markup signifies a concept
created during the analysis.

Self-organization is at the very heart of the method; all formalized Scrum method elements
are merely tools for making self-organization easier.

There is plenty of evidence that self-organization is difficult (Barker, 1993; Hoda, 2011;
Moe, Dingsoyr ¢ Dybd, 2008; Gren, Torkar & Feldt, 2017; Karhatsu et al., 2010; Hackman,
1986). Requiring agile teams to self-organize is one of the most pronounced differences to
previous forms of software development. Hackman (1986) examined self-organized teams
over decades long before agile software development. In those results, being self-organized
is not necessarily an advantage; there are low-performing as well as high-performing
self-organized teams and an explanation of these differences is lacking. The systematic
literature review of Magpili ¢» Pazos (2018) looked for such explanations in research from
all fields and identified performance-relevant input factors on individual level, team level,
and organizational level. Individual roles are one such factor. These roles are not tied to job
descriptions and could be implicit. Another factor is the balance of individual and team
autonomy.

Although there is a huge amount of literature on agile methods overall (Dybdie> Dingsoyr,
2008; Hoda et al., 2017), few works have considered self-organization as such and as a
whole. Karhatsu et al. (2010) states that autonomy, communication, and collaboration are
the major components for building self-organizing teams. Moe, Dingsoyr ¢ Dybd(2008)
find the division of labor that results from the specialized skills of the team members to
create a major self-organization hurdle. Hoda (2011) explains many different phenomena
observed in agile teams all in terms of self-organization. She describes balancing acts
such as specialization versus cross-functionality or continuous learning versus iteration
pressure (Hoda, Noble & Marshall, 2010). She also describes roles such as Mentor,
Translator, or Coordinator which are also not based on job description (Hoda, Noble
& Marshall, 2013).

In conclusion there is research about self-organized teams in general which shows that
roles are one input factor on performance of self-organized teams. There is research about
the problems of self-organized teams in software development and there is research about
roles in software development. What is missing is how roles are helping or hurting in
making self-organized software development teams work.

Since a few years, we have worked with agile teams and analyze how self-organization
works or fails to work. In our previous work (Barke ¢ Prechelt, 2018) we focused on
cross-functional collaboration. Cross-functional teams do have a wide variety of roles
(dependent or independent of job description). In this first article, self orientation and
team orientation were auxiliary concepts for some facet of the cross-functionality problem.
Focusing on these two concepts led to the present work which show how clarifying roles
in self-organized software development teams is critical for team surviving.

Contributions: We explicate the process by which Roles' are defined and what leads
to Role clarity, thus making that process visible, negotiable, and controllable for
individuals and teams. We expect our work helps practitioners reach Role clarity,
allowing smoother day-to-day-work, reduced employee turnover, and accelerated team
maturation. The examples shown will hopefully motivate teams to pick the process up.

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 2/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

2The data used in the present study is the
same as used in Barke & Prechelt (2018)
plus a few extensions.

As for the structure of the article, we start by describing our research method (‘Method’).
The core part of the article presents the definition of role and the two core concepts in detail
along with the evidence that led to them (‘Results’), followed by discussion of the findings,
the related work and the application for practice (‘Discussion’). After a short discussion of
limitations (‘Limitations’), we formulate the take-home message (‘Conclusion’).

METHOD
Method choice

Our research originally started from an interest in diversity and how teams made use
of it (or not). We had no particular preconception what types of data or what kinds of
phenomena would be most helpful to find this out, so we selected the most open and
flexible of the qualitative research methods, Grounded Theory Methodology (GTM). GTM
is applicable to research interpersonal processes in software development teams and is
now established in software engineering (Stol, Ralph ¢ Fitzgerald, 2016; Badreddin, 2013).
It is highly suitable for examining agile contexts (Hoda, Noble ¢ Marshall, 2012; Javdani
Gandomani et al., 2013) as GTM and agile methods have similarities: they are iterative
approaches, minimize unreliable long-term planing, and put people and their actions at
the center (Hoda, Noble ¢» Marshall, 2012).

We use the Constructing Grounded Theory variant of Charmaz (2014) as we share
her view of a reality that is constructed by participants and researchers (see ‘Use of GTM
Practices’).

Data collection

We used Theoretical Sampling (Charmaz, 2014, p. 195): Gathering the data iteratively,
driven by the needs of the ongoing analysis. The teams were chosen to cover a variety of
different company structures and software domains and had different levels of maturity.
As far as possible, team members to be interviewed were also chosen iteratively such

as to obtain complementary perspectives on the team. Although our data set is small,
the diversity across teams and team contexts is high. Our teams are very different at the
surface which requires a thorough analysis so as to reveal recurring structures across teams.
Longitudinal data was gathered along longer-term team processes in four of the five teams.
MAXQDA (www.maxqda.com) was used as software support.

A personal network of the first author from the mentoring program for students of
the HTW University of Applied Sciences Berlin helped to get access to a wide range of
companies. The personal contact via the mentoring program made it easy to establish
research cooperation and industry mentors from that program were members of two of
the observed teams (but to avoid biases were never chosen for interviews).

Most of the examples below come from five software development teams which we refer
toas t1 to t5.

All data collection was done by the first author. For an overview please see Table 1.”

This study is based on 16 qualitative interviews and nearly 20 h of audio recordings.
About 14 h are individual interviews, which were nearly completely transcribed. The
remaining recordings were made during feedback meetings and discussions and were used

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 3/20

https://peerj.com
www.maxqda.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

Table 1 Data collection in Scrum teams.

Team Interviews Timespan Number of observed meetings
w £ o
T § 5 % § "
K M A = Additionally
t1 tldev1 t1dev2 one day in 2015 1
t2 t2devl t2test1 t2test3 Nov 16-Oct 17 5 1 2 team analyzing discussion, anonymous online
questionnaire, Retro moderation
t3 t3test1 t3sm Feb—May 17 2 3 1 1 feedback Junel7
t4 t4sm2 June—Sep 17 1 1 2 group discussion
t5(t6) t5sm1 t5dev] Sep 17-Jun 18 4 3 4 2 feedback with SMs January and Junel8, feedback
complete team Jan18
Total amount of meetings 33

3This generic naming was developed during
research. It is and will be consistent in all
our publications (Barke & Prechelt, 2018)

to further differentiate some concepts. In addition, more than 100 pages of hand-written
notes reflect observations from team meetings where participants did not like to be
audio-recorded. These hand-written notes contain as much near-verbatim language as
possible to gain unbiased raw data even without audio recording it.

The longest research collaboration with one team (t2) lasted 11 months. All teams stated
they work with Scrum, which was the only property they all had in common. Other than
that, they represent a wide spectrum as shown in Table 2. The research work received an
ethics approval waiver from Zentraler Ethikausschuss (ZEA) of Freie Universitit Berlin.

Interviews: The interviews were face-to-face, hour-long, semi-structured interviews,
focused on individual action and perceptions. Except at t3, at least two team members were
interviewed per team to get different perspectives. It was often difficult to keep interviewees
in that personal perspective; they had a strong tendency to switch to a team perspective.
The interview questions varied between interviews because of Theoretical Sampling (see
‘Use of GTM Practices’ and Fig. 1). The basic interview guideline is attached to this article.
Our quotes will be tied to individual team members. For instance, t4dev2 means team
t4, second person which is an developer. We use dev (developer), po (product owner), sm
(scrum master/coach), test (tester).’

Observations: In three teams (t2, t3, and t5), we observed at least two successive
sprint changes. The sprint changes included Review, Retrospective, and Planning. Where
possible, we also observed Refinements and Daily Scrums. t6 had planning and review
meetings together with t5, as they worked on the same project. t6 had only two to three
team members during our observation phase and was in a transformation process, so it
was not investigated further. The observations were not limited to team meetings. Usually
before and after the meetings, time was spent with the team or individual team members.
Especially during sprint changes, complete days were observed including other work
situations and even lunch break.

Member check and feedback: After completing the first round of data collection in
these teams and initial analysis of the status quo we did a member check: We shared our
preliminary results with the respective teams and asked for feedback in different ways as

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 4/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

Table2 Background of the Scrum teams.

Team Size Company and work context Agile background

tl 90 employees business management software since 6 years agile

2 1500 employees, distributed over ~ hardware planning tool for internal use since 1 year agile, long waterfall background
3 countries

3 15.000 employees, 15 Scrum public instituation with external members of a since 2 years agile, long waterfall background
teams service company building a system of complex

business logic
t4 25 employees start-up developing web portal since 4 years agile, agile from the beginning
t5 150 employees sub-company of a much bigger one, e-commerce, since 2 years agile, agile from the beginning

importing data from suppliers databases

shown in column ‘Additionally’ in Table 1. Notes from the feedback sessions were fed back
into the research process to enrich and validate the identified concepts.

Expert interviews (outside teams): We obtained indirect insights on many additional
teams (from a range of companies of different sizes, domains, and agile backgrounds) via
six expert interviews with agile coaches and consultants from outside the context of the
above teams. For these interviews a slightly different interview guide was used. To avoid
sweeping generalizations, we asked the experts to report on concrete teams and describe
specific situations.

Use of GTM Practices

Charmazian GTM suggests various practices, in particular Initial Coding, Fosused Coding,
Constant Comparison, and Theoretical Sampling. We now explain their interplay by means
of Fig. 1, which shows the practices (as rectangles) and the resulting concepts obtained
with them (in red).

Initial Coding (Charmaz, 2014, p. 109) and Focused Coding (Charmaz, 2014, p. 138)
were performed iteratively over all data several times. Charmaz’ questions and advice were
used to support open coding (Charmaz, 2014, pp. 116,120,125,127). Despite Charmaz’
and Hoda, Noble ¢ Marshall (2012)’s reservation about word-by-word coding, we found
it helpful as a starting point; it helped build an understanding of the GTM method (as
opposed to just counting topics). Comparing incident by incident helped to find difference
in the data and extracting the common process. Care was taken to assign actions instead
of assigning types to people (Charmaz, 2014, pp. 15,117), coding actions with gerunds.
During initial coding manifold quotes and incidents were found and examined in detail
and lead to many different concepts. (A few of the quotes can be found as examples in
the results ‘Results’). The codings we concentrate on in this paper were mostly around
Self-Reflection, a wide variety of different Actions supporting the team, and
different situations and ways of giving Feedback. By this detailed examination, the data
were “broken up” as a preparation for structuring them during Focused Coding.

During Focused Coding, theorizing Memos were written with exemplary quotes. Memo
writing (Charmaz, 2014, p. 162) was also used to document the process and gain ideas
and theoretical understanding. The findings from this work were discussed in different
contexts: in research meetings with other academic researchers; in agile-interest meetups

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 5/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

A\

Initial Coding: Focused Coding: Constant
word by word memoin Comparison
incident by incident 9
Self-Reflection = Local role clarity
actions SUPPOIiNG — ee—— Team-wide role Definition of Role
the team clarity
Feedback/Monitoring === (Coach facilitation

\—

iterative cycle:
theoretical sampling
coding
feedback

Figure 1 Coding Process.
Full-size Gal DOI: 10.7717/peerjcs.241/fig-1

with unrelated Scrum coaches; in feedback meetings and retrospectives with members of
the investigated teams. Ideas from those discussions improved our Theoretical Sensitivity
and were subsequently tested in the analysis (iterative cycle).

In this paper we restrict ourselves to a small selection of concepts that help to tell and
understand the overall narrative. In the text, names of concepts are given as Concept Name.
Such concepts are always based on extensive analysis and grounded in data. To make the
latter palpable, at least one quote is provided as an example for each concept. Such quotes
are given like this:

No. 1: “I said this!” (speaker).

Each Quote has a number to refer to it. Most quotes were originally in German; since
a close translation of spontaneous spoken language is hardly helpful, we have polished
grammar and phrasing towards written language during translation. We guaranteed
anonymity to the interviewees and teams such that quotes can not be traced back to them,
so we cannot give public access to all of our data.

Our discussion is structured around grounded and generalized phenomena, not around
specific people or teams as a case study would do it.

RESULTS

Overview
We present two important results from our research, which we illuminate by examples in
the following Sections:

e A definition of Role
e and a process how to Clarify Roles on two levels.

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 6/20

https://peerj.com
https://doi.org/10.7717/peerjcs.241/fig-1
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

A definition of role evolved during research and considers the peculiar circumstances of
self-organized software development teams, in particular the transfer of autonomy from
management to team level. We define a Role as an Area of responsibility plus the
Expertise required to cope with it. Areas of responsibility talk about both what to
achieve (goals) and how to pursue it (work style, culture/conventions, etc.). Complying
with a Role requires to

e Accept the responsibility (R1-Accept),
e Possess expertise (R2-Expertise), and
e Act accordingly (R3-Acting)

so that the expectations regarding the role are fulfilled—one’s own expectations as well
as the team’s. To refer to these attributes of roles we use the short labels R1-R3. This
definition of Role covers a continuum of Roles, which mirrors complex team dynamics:
For example, one can feel responsible (R1-Accept) for technical factors such as code
quality, architecture, or testing or for team and social factors such as motivation or for a
combination of several factors. The definition goes beyond enumerated explicit roles (such
as the standard Scrum Roles) and allows for implicit, intertwined, or dynamically changing
roles, among others. In fact, all roles we found in our teams were partly or fully implicit
and can be characterized as intertwined and potentially dynamically changing.

For the present article, our insights cluster around two concepts:

e Local role clarity is an individual’s proper understanding of their own role in the
team.

e Team-wide role clarity requires role clarity of all team members plus the mutual
understanding and acceptance of each other’s roles. We use the shorter term Role
clarity when the separation of individual and team level is not of interest.

Our results characterize steps needed to achieve Local role clarity and Team-wide
role clarity and also how teams can fail to achieve them. The narrative results points
out that Role clarity is difficult, because it requires two steps, each having multiple
substeps, and any missing substep tends to make clarity unachievable.

We refer to the following process when we discuss the team episodes we use for grounding
and illustration (see also Fig. 2):

Self Reflection (to gain Local role clarity):

e Team member M is conscious about his/her Role (self-conscious) and
e accepts the Role (self-accept).

Team Reflection (to gain Team-wide role clarity):

e Fach team member is aware about M’s Role (team-aware).
e accepts this role as appropriate (team-accept), and
e knows how to support M in it (team-support).

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 7/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

Self-Reflection
self-concious
self-accept
hol |) Definition of Role
elps to gain R1-Accept
R2-Expertise
Local role clarity =~ |--------- R3-Acting

provides input for

Team-Reflection
team-aware | helps >
team accept to gain
team support

Team-wide role clarity

Figure2 Key concepts.
Full-size & DOI: 10.7717/peerjcs.241/fig-2

Although all our observed teams (or at least some members in them) appear to have
had a vague notion that something like a team-wide understanding of roles was important
for self-organization, none of them had previously recognized Self-Reflection and
Team-Reflection (let alone their substeps) and so none had a conscious process for
achieving Team-wide role clarity.

Self-Reflection to gain Local role clarity

The process of gaining Role clarity begins at individual level by gaining Local role
clarity. We start with a statement of frustration from t2test1, who had formerly acted
as the Scrum Master of t2:

No. 2: “T feel like a babysitter. [...] we had just understood our roles, then he (t2test3)
came into the team. We do not know his role, he does not know his role. I encourage him to
talk, but he has a different personality: I try to find my place by myself; he wants somebody
to do it for him.” (t2test1)

The statement points out the need for self-reflection as the first step (Self-Reflection).
Nobody else can do this for me in a self-organizing team. It also shows that role
consciousness (self-conscious) is not easy for everybody. The frustration underlying the
statement, only part of which is visible in the quote, shows that a lack of role understanding
makes self-organization difficult. This quote also contains an implicit expectation that a
Scrum Master should help finding one’s role and could fail with it.

Team t2 came from a waterfall background in a conservative company, had switched to
agile only a year ago, and t2test3 was not the only member having a hard time becoming
Self-Reflecting. t2dev1 was much less passive and more willing trying new things, but
was struggling, too:

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 8/20

https://peerj.com
https://doi.org/10.7717/peerjcs.241/fig-2
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

No. 3: “Meditation. This helps. It helps to think about it: What bothers you now? Why
are you so pissed off now? [...] But of course that’s a long process: This is a strong change in
thinking, a mental change; it is incredibly difficult, because you have to have a lot of self-
reflection.” (t2dev1)

When the team first started with agile, this developer took a sabbatical of several weeks
to cope with the situation of no longer being the sole governor of his technical domain. In
contrast to t2test3 from quote No. 2, he managed the first step of Self-Reflection and
became conscious about his new role (self-concious). But he is struggling with the next
step: accepting his (new) role (self-accept).

To summarize these two examples: In order to function as a participant in self-
organization each team member needs to reflect about her/his role (Self-Reflection) to
gain Local role clarity. Self-Reflection contains two sub-steps. I first need to be
aware of my role (self-conscious) in order to be able to accept it (self-accept).

Lack of Local role clarity may also lead to conflict. The above t2dev1 had one with
t2dev2, which was successfully mediated by a coach, in this case t2po. The conflict was
so strong that it came up in several interviews and in informal conversation with various
team members. t2dev1 summarizes it like this:

No. 4: “Itold him (t2dev2) clearly [that I don’t like that] he often does not involve
people. He does things without telling anybody: We talk about a user story in the Grooming
and he says “I completed that long ago. Only need to commit it.”” Excuse me? How about
involving us in that decision?? You force this upon us —that’s not so cool. We as a team have
to take responsibility for it. [...] After that, we were not on speaking terms for a long time.
Eventually, t2po mediated between us and his attitude changed towards how one should
work —as the team expects of him.” (t2dev1)

As t2dev1 recalls it, at the heart of the mediation was undiplomatic feedback, roughly
like this:

No. 5: “t2dev2, I don’t respect what you do, because it is often not well thought-through.
It is imprecise, unclean, and badly done. It has not been agreed upon and creates a lot of
additional work later. [...] Therefore, I cannot respect you as a developer.” (t2dev1)

The significance of this dialogue lies in the fact that the situation required a facilitation
initiative of t2po to make this feedback happen. But then the resulting change in role

acceptance was comprehensive:

No. 6: “He no longer makes lonely-cowboy decisions. He tries to participate in discussions
on topics he does not know much about and which he finds hardly interesting. To listen,
maybe even say something. He presents his ideas before implementing them. And he... how
should I put it? OK, arrogantly: He listens to me. (t2dev1)

This conflict is about an issue that is highly important for an agile team: accepting
responsibility (R1-Accept). The conflict persists until t2dev2 accepts his role more fully
(self-accept). Afterwards, there is evidence of better team cooperation (Quote No. 6).

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 9/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

t2dev1 is the most senior developer on the team and has been developing that particular
software since 30 years. The episode shows that the lacking Role clarity effect can be

strong and could easily be mistaken for a lack of technical expertise. But t2dev2 is not a
junior developer at all; the problem is a Local role clarity issue.

Roles in self view vs. team view to gain Team-wide role clarity

Above, we have seen examples how R1-Accept can be a problem. By obtaining Local
role clarity, responsibility of one’s Role is accepted (R1-Accept). In order to
become clear about one’s expertise (R2-Expertise) and act accordingly (R3-Acting),
Team-reflection is needed as next step. Starting with a quote about t6dev from the joint
Scrum Master of t5 and t6:

No. 7: “For him, self-image and how others perceive him are a bit different. When I give
him feedback that something was not good, he is surprised: “I thought I am the super-high
performer.” I told him to ask others as well and adjust his self-image or his performance.
And indeed he tries to improve —but it does not help: The next time around he is surprised
again.” (t5sm1, paraphrased)

In t6dev2’s self-view his expertise (R2-Expertise) is high. He would consider himself as
having Local role clarity, but from his team’s point of view, the Possess expertise
(R2-Expertise) component is lacking; he has expertise only for a different, weaker role.
As a consequence, Team-wide role clarity is not achieved—which shows again: Even
with coach facilitation, complete role understanding may remain difficult for a team. Some
time later, the company decided to let t6dev2 off, whereas another problematic developer,
t6dev1 could stay, although his technical competence was lower than t6dev2’s; he was also
a slow learner, but he was good at Self-Reflection (He says about himself No. 8: ““It’s

333>

hard to learn about new tricks.”” (t5sm1)) and so the team saw a better overall perspective
for him.

This shows how R2-Expertise and R3-Acting can be a problem as well —not because
of a lack of technical competence (R2-Expertise), but as a hurdle for Team-wide role
clarity: Successful negotiation of Roles enables a team to do its job with whatever level
of technical competence is available at the time, but forming joint expectations about
R3-Acting may involve conflict, which is created for instance from perception differences
or preference differences.

The first two substeps of Team-reflection towards Team-wide role clarity mirror
the substeps of Self-Reflection: role awareness (team-aware) and role acceptance
(team-accept), only this time for someone else’s role. To make the Self-Reflection
match the Team-reflection, all team members must have approximately the same view of
what the level of expertise (R2-Expertise) involved in the unique role of a team member
needs to be. This becomes a problem in particular when the team member has a distorted
self-image as in the case above.

The episode impressively underlines the difficulty of achieving sufficent understanding
and acceptance of members’ Roles and how such difficulties undermine a team’s self-
organization.

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 10/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

Effects of having Role clarity
Having Role clarity has several positive effects for the team and each team member.

Handling of technical expertise (R2)
When Role clarity is achieved, technical expertise becomes less important
(R2-Expertise), because expectations and reality align (R3-Acting) like in this example:

No. 9: “He is sometimes a bit slow, but, hey!, he does his job. Everything takes a little
longer, but that is not the issue, as long as the code works in the end. I don’t care how long
it takes.” (t2dev1)

Also evaluating and growing expertise (R2-Expertise) becomes more matched to the
needs of the Role. Here is a positive example:

t3dev3 is a new and junior team member, with the additional difficulty that his German
skills (German is the team language) are only intermediate. When people speak fast or use
difficult terms he often cannot follow. t3dev3 is aware of his new and junior status as well as
his limitations with German (self-conscious) and talks about this openly (a consequence
of self-accept). The team understands this as well (team-aware) and is willing to help
(a consequence of team-accept). In total Self-Reflection and Team-reflection are
aligned and Role clarity is gained. This led to tailor-made help for t3dev3 to grow
R2-Expertise as follows. In a team meeting, the team considers many possibilities and
their constraints: (1) t3dev3 has stated that he wants to contribute to the team’s output, so
he wants to work on complete tasks. (2) The next sprint will start new things in green-field
fashion so other team members will be learners as well. (3) The team could plan fewer
tickets to allow for pair programming, so t3dev3 could learn a lot and the language barrier
could be lowered. (4) However, t3dev3 likes to work out an overview and understanding
by himself, so this idea is postponed. (5) t3dev3 has sometimes stopped asking questions
when they were not answered on first try. (6) The team encourages t3dev3 to perhaps
submit questions in writing and (7) also ask more questions, because more things are
unclear for more team members in the future anyway.

We do not know how the situation played out eventually, but it is obvious from these
observations that without the team’s concerted attempt at understanding how to support
t3dev3 in his Role, it would have been more difficult to make him productive; this
corroborates that self-organization becomes difficult when Team-wide role clarity is

low.

Robustness Against Dysfunctional Behavior

The following episode illustrates an interesting aspect of Team-wide role clarity:
Increasing Team-wide role clarity can make a team more robust and resilient against
dysfunctional or even destructive behavior of a team member.

An example: In an act of Self-Reflection, one day t4dev3 decides it is time for him
to move on in his career: He wants the role of a team lead and assign tasks to others. He
speaks with management, who denies him such a role, as it would be alien to the agile work
style. As a consequence, t4dev3 starts disrupting meetings or staying away from them.

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 11/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

His team colleagues are confused, because they do not know the reasons for his
dysfunctional behavior. The coach t4sm2 makes this behavior a topic of the next
retrospective. t4dev3 explains that it is a conscious tactic to make management take
him out of the agile context and give him a team lead role. The coach reports:

No. 10: “We talked openly about it. Everybody had felt bad with the situation; they almost
did no longer want to go to work in the mornings. But talking helped. It did not resolve

the situation or change t4dev3’s behavior, but the others no longer took it personally and
could cope with it with more confidently. (t4sm2, paraphrased)

In the terms of our analysis, t4dev3 had Local role clarity: he dropped the
acceptance of his previous roles (anti-self-accept) and assigned himself a disruptor
role (self-conscious, self-accept). But there was zero Team-wide role clarity in
both respects. The retrospective changed this: The team recognized the disruptor role and
although they did not accept it (non-team-accept), the partial clarity allowed them to
work better as a team. Eventually, management suggested to t4dev3 to go separate ways,
which they then agreed to do.

Although the situation is fundamentally negative and although Team-wide role
clarity remains incomplete, a lot of progress is made, which emphasizes the usefulness of
role understanding. Also, once again a coach triggers the resolution of a difficult situation.
Finally, the episode shows that perfect role acceptance may will be impossible.

Effects of not having Role clarity: Wrecking teams
After the previous two positive examples, a highly negative (if extreme) example shows how
not having role clarity hampers self-organization. We have already heard about t2test3
in our very first example (Quote No. 2), the person who wanted others to devise his roles
for him. At the team level, the effect was profound: No team member had even a rough
idea of his role.

One of them summarizes this bitingly:

No. 11: “During Planing, we had a test user story. t2test3 says “I want to do it in this-
and-that way.”. OK. Do it. I don’t care. What does it have to do with us? Nothing. Why
are you even here [at the planning]? I've no idea! Why are you in our sprint at all? I do not
know. (t2dev1)

Note that t2test3 did have technical capabilities. But he never asked the questions
needed to make his work useful for the team:

No. 12: “He does not play a part. In a Scrum team, everybody must play a part —but he
doesn’t. He just sits there. He’s present. But he is not present so unobtrusively that I could
ignore him. (t2dev1)

And as if the loss of one team member’s contributions was not enough, the latter aspect
even appeared to drag down the team additionally, in particular in planning activities:

No. 13: “that sometimes hampers me. [...] I often have the impression that things are
discussed differently because he cannot contribute anything (t2dev1)

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 12/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

4including in teams t2 and t3 that generally
had long member tenures.

Several team members, when we asked them to shortly characterize each of their
colleagues in the team, failed to mention t2test3 at all!

The fate of t2test3 was the same as the one of the disrupting team member t4dev3
or the one who believes he is a high-performer (t6dev2): They all were asked to leave
the company even though they were technically skilled. These were not the only cases
of people from our teams leaving their company. We saw five cases overall.” With only
one exception, roles issues were involved and played a major part in the event: Either a
team member lacked Self-Reflection, or a member performed Self-Reflection, but
did not communicate their expectations to the team, or the team was unable to create
consensus about a role (Team-reflection).

We conclude that a lack of Team-wide role clarity frequently leads to loss of team
members, which may sometimes be helpful for the team, but more often will be a major
concern for the teams and companies involved, because capable software development
people are scarce.

The effects of emotions

As we have already seen in the examples, strong emotions are often involved in Role
issues: (E1) Team t4 reported strong negative feelings due to the disruption, (E2) team t3
carefully and explicitly handled t3dev3’s emotions in their role coordination, and (E3) the
negative emotional subtext in the extremely-unclear-role case of t2 is difficult to overlook.

We even encountered one episode that had the emotional aspect at its very center: (E4)
t5dev1 is very unhappy with some aspects of how t5dev?2 acts in his role. After some time,
he took the courage to unannouncedly visit t5dev2 at home in the evening to invite him
to a beer and No. 14: “confess” (t5dev1) his feelings. When t5dev1 confronted t5dev2
with his troubling work behavior, he was not surprised of the behavior itself at all; he was
aware that he acted in this manner. But he was quite surprised by t5dev1’s negative feelings
about it. So t5dev2 had Self-Reflection, but for t5dev1 it was an emotional hurdle to
trigger Team-reflection and “confess” his feelings.

In the longer term, the dynamics of this role conflict were explosive: t5dev1 does not
follow up the resolution of the conflict and falls silent again until eventually he has an
emotional outburst and leaves the team and even the company. But t5dev1 (just like
t5dev2) was a key technical person in that team; over the course of a few months, the
whole team dissolves and all members except one also leave the company.

Negative emotions can bind a lot of energy and as examples (E1) to (E4) show, it is not
unusual for this to occur due to Role conflicts. As (E1) and (E2) show, proper negotiation
of these conflicts helps release this energy and make it available for the team’s work. But as
(E4) shows, improper negotiation not merely hampers a team’s effectiveness, it endangers
the very existence of the team.

DISCUSSION

Here, we summarize our findings, discuss how they relate to earlier research, and give some
ideas how they might be used to improve software practice.

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 13/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

Summary of findings

Recognizing the concepts and analyzing their implications has led us to the following
findings:

1. Self-organization becomes very hard when there is incomplete understanding of the
roles in the team;

this happens suprisingly often;

coach-facilitated reflection on roles can presumably help;

achieving sufficiently complete understanding and acceptance is difficult even then.

Al

Once achieved, good role understanding and acceptance helps a team to be effective
and work together well.

6. The process of gaining Role clarity is difficult and can be emotionally challenging.
7. Technical skills can be less important than being self-reflective.

As a positive example, one coach characterized a former team like this:

No. 15: “They had found each other as a team. They could rely on each other. It was

clear who could do what. One writes plenty of code, another thinks ahead, another is good
at diplomacy and negotiating with the product owner, and yet another is more like “T’ll
run and get us person so-and-so.”. Without speaking, they knew who had which skills

and who would pick up which things to be done. No need for much coordination, it arose
dynamically just so. Five strong personalities. Initially, they had had a very strong storming
phase, real quarrels about how they would work. But then: fantastic productivity and fun
at work.” (t4sm2, paraphrased)

This quote No. 15 summarizes the results perfectly. The team members found their
different responsibilities respective roles (independent of job description) which was in
line with their skills and the team expectations. This was not gained without conflict and
built by ”strong personalities”.

The present work shows that (and how) role acceptance (R1-Accept) and expectation
differences (R3-Acting) can create major difficulty for collaboration, much more so
than actual expertise issues (R2-Expertise, see also quotes No. 7 and 8 and ‘Handling
of technical expertise (R2)’). The specific content or level of expertise (R2-Expertise)
is much less relevant. Instead a team member’s assessment of their own or a colleague’s
expertise can lead to different expectations and those differences create much of the
dynamics. Once a team manages to find Roles that are appropriate for the team members
at hand and goals at hand, a part of the self-organization puzzle will be solved (see ‘Effects
of having Role clarity’ to ‘The effects of emotions’).

Related work
Here we discuss which parts of our results pertain to related work and how they fit with it,
extend it, or go against it.

There has been interest in the relevance of personality type (such as MBTI type or
Big5 profile) for team work, e.g., (Lenberg, Feldt ¢ Wallgren, 2015; Cruz et al., 2011; Choi,
Deek & Im, 2008; Salleh et al., 2009). This is not a perspective we share and does not fit
our definition of Role. Our research method requires to focus on concrete action, rather

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 14/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

than assigning types (which represent mere preferences) to people (Charmaz, 2014, p. 15).
Our Roles are team-wide agreements, much like team norms (Flynn ¢ Chatman, 2003;
Feldman, 1984), but in contrast to those each one is created for a specific team member.
Lenberg ¢ Feldt (2018) conclude in a quantitative study that there is a strong business case
for achieving team norm clarity and we report qualitatively related evidence for Team-wide
role clarity.

Hackman (1986) who researched self-organized (mostly non-software) teams for
decades, states that (1) people taking personal responsibility is one behavioral sign of
self-management (akin to R1-Accept), (2) team members need to be equipped with
knowledge and skill relevant for the task (akin to R2-Expertise), and (3) team members
employ task performing strategies (akin to R3-Acting). GTM results emerge from the
data, so we found Hackman (1986) only after our analysis. His results and ours nicely
corroborate each other.

Whitworth ¢ Biddle (2007) concentrate on the positive effects of agile teamwork from
a system theory point of view. They found a positive effect of “Team Awareness and
Acceptance” (one aspect of Team-wide role clarity) which was associated with an
“increased sense of individual responsibility and self worth” (one aspect of Local role
clarity). Even though their research concentrates on positive effects, they found some
pitfalls of agile methods. In particular, as in our ‘Self-Reflection to gain Local role
clarity’, ‘Robustness Against Dysfunctional Behavior’ and ‘Effects of not having Role
clarity: Wrecking teams’, team members feel stressed and exhausted when they are
unable to integrate certain individuals into the team. It seems likely that Role clarity
contributes to psychological safety (Newman, Donohue ¢ Eva, 2017) which is helping teams
as well.

Langfred (2000) discusses individual and group autonomy as a paradox in self-organized
teams. Moe, Dingsoyr ¢» Dybd (2008) recognize this paradox in agile software development
teams as well: The highly specialized skills in software teams that lead to a high level of
individual autonomy are a hurdle in becoming self-organized and sharing autonomy at
the team level. Our results show how role negotiation is important and helps the teams to
balance their members’ autonomy and find agreements (Team-wide role clarity).

Hoda, Noble ¢» Marshall (2013) describe emergent roles in agile teams such as Mentor,
Coordinator, Translator, Champion, Promoter, and Terminator. In contrast, our work is
not interested in such generic roles, rather in the process how teams tailor and customize
roles to their members. We share Hoda’s understanding of “informal, implicit, transient,
and spontaneous roles” and her roles fit our definition of Roles in many respects, except
that they are not tailored to a single individual and can hence be named.

In a nutshell: The shift to more individual and team autonomy in agile methods causes
problems, in particular at the team level. Our research closes a gap between previous
research that gave examples of helpful roles on the one hand and general research on the
autonomy problem on the other by characterizing the roles-finding problem as a whole.

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 15/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

Se.g., http://agilesuperleaders.info/, last
checked January 2019.

be.g., https://retrospectivewiki.org/index.
php?title=6_Thinking_Hats_Retrospective,
last checked January 2019.

7e.g., http://tastycupcakes.org/2016/01/the-
job-title-game/, last checked January 2019.

Implications for practice

Agile coaches are usually considered facilitators for a team’s self-organization and indeed
this is what we find. They play a key role in making Team-reflection happen and
achieving Team-wide role clarity—or not. Many of the generic methods from coaches’
toolboxes are applicable. Andriyani, Hoda ¢ Amor (2017) shows how different levels of
reflection can be integrated in retrospectives and Babb, Hoda ¢» Norbjerg (2014) discusses
where Reflection in action and Reflection on action have their place in agile work. These
results and ours suggest that team members learn about each other’s skills and expertise
during collective estimation and planning. This makes planning a crucial moment in the
roles-finding process (and many of our episodes illustrate this), so paying attention to this
aspect of planning will likely pay off highly.

Some team members fail at (or do not even attempt) Self-Reflection and then
coaches need to work with them individually. More often, however the reflection difficulty
occurs at the team level and coaches can then use natural situations for their interventions,
such as planning, story refinement steps, and of course retrospectives. In any case, Team
reflection about roles appears to be a near-continuous need.

When we discussed our results with agile coaches and non-coaches from outside our
teams, they agreed that making the process explicit ought to be helpful for practitioners,
because they can then replace intuitive action with rational action and explicit discussion.
The coaches recommended the following tools for clarifying roles:

Role card game enforces the reflection of upsides and downsides of different roles and
behaviours.’

De Bonos 6 hats helps to discover and gain empathy for different work styles and realizing
their benefit.®

Lego serious play Each team member builds a metaphorical scene about the team and
explains it: Who is standing where? Who is doing what? Why? What is she
doing herself? The rest of the team can ask questions. It helps to talk about
the scene in the third person to reach openness and discover team issues.

Job title game helps individual team members formulate salient aspects of their role and
check how far the team’s view is aligned. ’

Of these, De Bonos 6 hats focusses on the team-accept aspect, the others address the
role-definition problem holistically.

LIMITATIONS

Completeness: We have not reached Theoretical Saturation (Charmaz, 2014, pp. 214,345),
so while our work illustrates dynamics that are sure to exist (due to grounding), the
explanation of those dynamics may be incomplete; it is not a full theory.

Generalizability: All our teams were Scrum teams, making generalization to other styles
of agile development less reliable (although we are optimistic in that respect). All our teams
were German teams. Further studies need to check where the results do or do not apply to
different work cultures.

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 16/20

http://agilesuperleaders.info/
https://retrospectivewiki.org/index.php?title=6_Thinking_Hats_Retrospective
https://retrospectivewiki.org/index.php?title=6_Thinking_Hats_Retrospective
http://tastycupcakes.org/2016/01/the-job-title-game/
http://tastycupcakes.org/2016/01/the-job-title-game/
https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

Validity: In contrast to the team member interview data, the statements of the
consultants could not be validated by direct observations or other triangulation.

Representativeness: Most of our concepts are grounded in only a small number of
instances. Therefore, they are likely to miss a few elements that are in fact common.

Quantification: As with any GTM study, the grounding can only provide existence
evidence, but cannot measure the relative commonality or importance of different
phenomena. A GTM-based study is inherently unsuitable for quantifying phenomena,
because no representativity must be assumed. However, it is striking that we found relevant
role-clarification dynamics in all of our teams and did so without ever looking for them
actively —we found these concepts only by deeper analysis of data we had already collected
previously. So they appear to be common phenomena in agile teams.

CONCLUSIONS AND FURTHER WORK

As we have seen, issues with roles in self-organizing teams are diverse and having such
issues appears to be common. They can occur at a personal level (finding one’s own role)
or team level (agreeing on roles). When they are present, they severely damage the team’s
self-organization capability and obstruct the team’s work. Ignoring role issues can lead to
losing valuable personnel. Agile coaches are often involved (and presumably crucial) in
making these issues visible and helping the team resolve them. Resolving roles issues has
large practical as well as emotional benefits for the team.

We conclude that our concepts of Local role clarity (an individual is aware of a
particular role for themselves and accepts it) and Team-wide role clarity (each team
member is also aware of their team mates’ roles, accepts them, and knows how to support
them in fulfilling these roles) are worthy of a lot of attention from agile teams. They provide
lenses through which teams can address a sizable fraction of their self-organization issues
and are a helpful stepping stone for becoming a high-performance team.

Further work should validate the expectation that actively developing a notion of role
clarity in a team will lead to improved cooperation.

ACKNOWLEDGEMENTS

Thanks to Hochschule fiir Technik und Wirtschaft Berlin (University of Applied Sciences),
all teams, experts, and companies who helped.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

Helena Barke was financed by Hochschule fiir Technik und Wirtschaft Berlin (University
of Applied Sciences). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Hochschule fiir Technik und Wirtschaft Berlin.

Barke and Prechelt (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.241 17/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Helena Barke conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, approved the final draft.

e Lutz Prechelt conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the paper, approved the final draft.

Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The need for ethical approval from Zentraler Ethikausschuss (ZEA) of Freie Universitit
was waived.

Data Availability
The following information was supplied regarding data availability:
The interview guideline is available as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.241#supplemental-information.

REFERENCES

Andriyani Y, Hoda R, Amor R. 2017. Reflection in agile retrospectives. In: Baumeister
H, Lichter H, Riebisch M, eds. Agile processes in software engineering and extreme
programming. Cham: Springer International Publishing, 3-19.

Babb J, Hoda R, Norbjerg J. 2014. Embedding reflection and learning into agile software
development. IEEE Software 31(4):51-57 DOI 10.1109/MS.2014.54.

Badreddin O. 2013. Thematic review and analysis of grounded theory applica-
tion in software engineering. Advances in Software Engineering 2013(3):1-9
DOI 10.1155/2013/468021.

Barke H, Prechelt L. 2018. Some reasons why actual cross-fertilization in cross-
functional agile teams is difficult. In: Sharp H, De Souza CRB, Graziotin D, Levy
M, Socha D, eds. Proceedings of the 11th international workshop on cooperative and
human aspects of software engineering—CHASE ’18. New York: ACM Press, 97-103
DOI 10.1145/3195836.3195839.

Barker JR. 1993. Tightening the iron cage: concertive control in self-managing teams.
Administrative Science Quarterly 38(3):408—437 DOI 10.2307/2393374.

Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler M,
Grenning J, Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin RC, Mellor
S, Schwaber K, Sutherland J, Thomas D. 2001. Manifesto for agile software
development. Available at http:// agilemanifesto.org.

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 18/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.241#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.241#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.241#supplemental-information
http://dx.doi.org/10.1109/MS.2014.54
http://dx.doi.org/10.1155/2013/468021
http://dx.doi.org/10.1145/3195836.3195839
http://dx.doi.org/10.2307/2393374
http://agilemanifesto.org
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

Charmaz K. 2014. Constructing grounded theory. In: Introducing qualitative methods.
2nd edition. Los Angeles and London and New Delhi and Singapore and Washing-
ton DC: SAGE.

Choi KS, Deek FP, Im 1. 2008. Exploring the underlying aspects of pair programming:
the impact of personality. Information and Software Technology 50(11):1114-1126
DOI 10.1016/j.infsof.2007.11.002.

Cruz S, Da Silva F, Monteiro C, Santos CF, Dos Santos MT. 2011. Personality in
software engineering: preliminary findings from a systematic literature review. In:
Evaluation & assessment in software engineering (EASE 2011), 15th annual conference
on. Piscataway: IEEE, 1-10 DOI 10.1049/ic.2011.0001.

Dyba T, Dingseyr T. 2008. Empirical studies of agile software development: a systematic
review. Information and Software Technology 50(9):833—859
DOI 10.1016/j.infsof.2008.01.006.

Feldman DC. 1984. The development and enforcement of group norms. The Academy of
Management Review 9(1):47-53 DOI 10.2307/258231.

Flynn FJ, Chatman JA. 2003. "Whats the norm here?’ Social categorization as a basis
for group norm development. In: Polzer JT, ed. Identity issues in groups. Research on
managing groups and teams, Amsterdam and Boston: JAI, 135-160.

Gren L, Torkar R, Feldt R. 2017. Group development and group maturity when building
agile teams: a qualitative and quantitative investigation at eight large companies.
Journal of Systems and Software 124:104-119 DOI 10.1016/j.jss.2016.11.024.

Hackman JR. 1986. The psychology of self-management in organizations. In: Pallak
MS, Perloff RO, eds. Psychology and work: productivity, change, and employment.
Washington: American Psychological Association, 89-136 DOT 10.1037/10055-003.

Hoda R. 2011. Self-organizing agile teams: a grounded theory. PhD thesis, Victoria
University of Wellington. Available at http://hdl.handle.net/ 10063/ 1617 .

Hoda R, Noble J, Marshall S. 2010. Balancing acts. In: Dittrich Y, De Souza C, Korpela
M, Sharp H, Singer], Winshiers-Theophilus H, eds. Proceedings of the 2010 ICSE
workshop on cooperative and human aspects of software engineering—CHASE ’10. New
York: ACM Press, 5-12 DOI 10.1145/1833310.1833312.

Hoda R, Noble J, Marshall S. 2012. Developing a grounded theory to explain the prac-
tices of self-organizing Agile teams. Empirical Software Engineering 17(6):609—639
DOI 10.1007/s10664-011-9161-0.

Hoda R, Noble J, Marshall S. 2013. Self-organizing roles on agile software devel-
opment teams. [EEE Transactions on Software Engineering 39(3):422—-444
DOI 10.1109/TSE.2012.30.

HodaR, Salleh N, Grundy J, Tee HM. 2017. Systematic literature reviews in agile
software development: a tertiary study. Information and Software Technology
85(Supplement C):60-70 DOT 10.1016/j.infsof.2017.01.007.

Javdani Gandomani T, Zulzalil H, Abdul Ghani AA, Md Sultan AB, Sharif K. 2013.
How grounded theory can facilitate research studies in context of agile software
development. Science International 25(4):1131-1136.

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 19/20

https://peerj.com
http://dx.doi.org/10.1016/j.infsof.2007.11.002
http://dx.doi.org/10.1049/ic.2011.0001
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.2307/258231
http://dx.doi.org/10.1016/j.jss.2016.11.024
http://dx.doi.org/10.1037/10055-003
http://hdl.handle.net/10063/1617
http://dx.doi.org/10.1145/1833310.1833312
http://dx.doi.org/10.1007/s10664-011-9161-0
http://dx.doi.org/10.1109/TSE.2012.30
http://dx.doi.org/10.1016/j.infsof.2017.01.007
http://dx.doi.org/10.7717/peerj-cs.241

PeerJ Computer Science

Karhatsu H, Ikonen M, Kettunen P, Fagerholm F, Abrahamsson P. 2010. Building
blocks for self-organizing software development teams a framework model and em-
pirical pilot study. In: Kettani H, ed. 2nd international conference on software technol-
ogy and engineering (ICSTE), 2010. Piscataway: IEEE
DOI 10.1109/1CSTE.2010.5608848.

Langfred CW. 2000. The paradox of self-management: individual and group au-
tonomy in work groups. Journal of Organizational Behavior 21(5):563-585
DOI 10.1002/1099-1379(200008)21:5<563::AID-JOB31>3.0.CO;2-H.

Lenberg P, Feldt R. 2018. Psychological safety and norm clarity in software engineering
teams. In: Sharp H, de Souza CRB, Graziotin D, Levy M, Socha D, eds. Proceedings
of the 11th international workshop on cooperative and human aspects of software
engineering—CHASE ’18. New York: ACM Press,.

Lenberg P, Feldt R, Wallgren LG. 2015. Behavioral software engineering: a definition
and systematic literature review. Journal of Systems and Software 107:15-37
DOI 10.1016/j.jss.2015.04.084.

Magpili NC, Pazos P. 2018. Self-managing team performance: a systematic review of
multilevel input factors. Small Group Research 49(1):3-33
DOI10.1177/1046496417710500.

Moe NB, Dingsoyr T, Dyba T. 2008. Understanding self-organizing teams in
agile software development. In: Hussain FK, ed. 19th Australian conference
on software engineering, 2008. Los Alamitos: IEEE Computer Soc, 76-85
DOI 10.1109/ASWEC.2008.4483195.

Newman A, Donohue R, Eva N. 2017. Psychological safety: a systematic review of the lit-
erature. Human Resource Management Review 27(3):521-535
DOI 10.1016/j.hrmr.2017.01.001.

Salleh N, Mendes E, Grundy J, St. Burch GJ. 2009. An empirical study of the effects
of personality in pair programming using the five-factor model. In: ESEM "09:
Proceedings of the 2009 3rd international symposium on empirical software engi-
neering and measurement. Washington, D.C.: IEEE Computer Society, 214-225
DOI 10.1109/ESEM.2009.5315997.

Stol K-J, Ralph P, Fitzgerald B. 2016. Grounded theory in software engineering research.
In: Dillon L, Visser W, Williams L, eds. ICSE’16. New York: ACM, Association for
Computing Machinery, 120-131 DOI 10.1145/2884781.2884833.

Sutherland J, Schwaber K. 2016. The scrum guide: the definitive guide to scrum: the
rules of the game.

Whitworth E, Biddle R. 2007. The social nature of agile teams. In: Eckstein J, ed. Agile
2007. Los Alamitos: IEEE Computer Soc, 26-36 DOI 10.1109/AGILE.2007.60.

Barke and Prechelt (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.241 20/20

https://peerj.com
http://dx.doi.org/10.1109/ICSTE.2010.5608848
http://dx.doi.org/10.1002/1099-1379(200008)21:5<563::AID-JOB31>3.0.CO;2-H
http://dx.doi.org/10.1016/j.jss.2015.04.084
http://dx.doi.org/10.1177/1046496417710500
http://dx.doi.org/10.1109/ASWEC.2008.4483195
http://dx.doi.org/10.1016/j.hrmr.2017.01.001
http://dx.doi.org/10.1109/ESEM.2009.5315997
http://dx.doi.org/10.1145/2884781.2884833
http://dx.doi.org/10.1109/AGILE.2007.60
http://dx.doi.org/10.7717/peerj-cs.241

