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ABSTRACT
Recent advances in auditory attention detection from multichannel
electroencephalography (EEG) signals encounter the challenges of the scarcity of
available online EEG data and the detection of auditory attention with low latency.
To this end, we propose a complete deep auditory generative adversarial network
auxiliary, named auditory-GAN, designed to handle these challenges while
generating EEG data and executing auditory spatial detection. The proposed
auditory-GAN system consists of a spectro-spatial feature extraction (SSF) module
and an auditory generative adversarial network auxiliary (AD-GAN) classifier. The
SSF module extracts the spatial feature maps by learning the topographic specificity
of alpha power from EEG signals. The designed AD-GAN network addresses the
need for extensive training data by synthesizing augmented versions of original EEG
data. We validated the proposed method on the widely used KUL dataset. The model
assesses the quality of generated EEG images and the accuracy of auditory spatial
attention detection. Results show that the proposed auditory-GAN can produce
convincing EEG data and achieves a significant i.e., 98.5% spatial attention detection
accuracy for a 10-s decision window of 64-channel EEG data. Comparative analysis
reveals that the proposed neural approach outperforms existing state-of-the-art
models across EEG data ranging from 64 to 32 channels. The Auditory-GAN model
is available at https://github.com/tasleem-hello/Auditory-GAN-/tree/Auditory-
GAN.
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INTRODUCTION
Auditory attention is a cognitive process in which the brain selectively focuses on specific
auditory stimuli while filtering out irrelevant or distracting sounds in a multi-speaker
situation, commonly termed “cocktail party scenario” (Mesgarani & Chang, 2012). This
ability to selectively focus on specific sounds is critical for daily communication, but
individuals with hearing loss face challenges in such environments (Das, Francart &
Bertrand, 2019). Several auditory assistive devices developed with noise suppression
algorithms often struggle to accurately select the targeted speaker in cocktail party
scenarios, hindering speech enhancement.

Recent neuroscience research shows that auditory attention may be realized directly
from brain signals such as electrocorticography (EEG) data (O’Sullivan et al., 2015;
Mirkovic et al., 2015; Das, Francart & Bertrand, 2019; Das, Bertrand & Francart, 2018;
Zhao et al., 2018) termed auditory attention detection (AAD). The aforementioned
findings from studies inspire researchers to create new hearing aids known as neuro-
steered hearing aids, that improve the target speaker by explicitly decoding attention-
related features from brain signals. Several AAD approaches for brain-computer interface
(BCI) have been published. Multiple studies have investigated the responses and speech
stimuli for AAD. For instance, O’Sullivan et al. (2015) employed a stimulus reconstruction
method considering the decoding of the speech envelope corresponding to the attended
speaker. Brain signals are utilized to approximate the speech envelope perceived by the
subject and speaker bearing an elevated correlation coefficient, considered the attended
speaker. In literature, different variants of the stimulus reconstruction algorithms have
been projected to increase the AAD efficiency (Das, Francart & Bertrand, 2019; Miran
et al., 2018; de Cheveigné et al., 2018; Aroudi & Doclo, 2020; de Taillez, Kollmeier & Meyer,
2020).

However, stimulus reconstruction-based AAD decoders still experience several
imitations. To achieve vital AAD, the temporal resolution of stimulus reconstruction
techniques is typically around ten to tens of seconds, which is considered practically
inapplicable for real-time BCI operations (Stegman et al., 2020; Abiri et al., 2020; Robinson,
Chester & Kg, 2021). Mainly, uncertainties in correlations among the rebuilt and the actual
speech envelopes happen when computed over a small window length that contains little
speech information (Robinson, Chester & Kg, 2021; Geirnaert, Francart & Bertrand, 2020).
However, humans can shift their attention from one target speaker to another with a
temporal resolution of approximately 1 s. Therefore, it is challenging for the stimulus
reconstruction based AAD decoders to perform the AAD over such a high temporal
resolution. Likewise, the stimulus reconstruction methods require clean speech signals to
perform reliable auditory attention detection, which limits their use in real-world
applications. For example, in the process of voice acquisition through robots, a system is
anticipated to execute tasks in complicated acoustic surroundings of multiple speakers. In
several existing studies, speech separation algorithms (Van Eyndhoven, Francart &
Bertrand, 2017; Das et al., 2020; Ceolini et al., 2020) have been proposed to extract speech
envelopes for AAD systems. The demixing process adds to the computation burden and
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increases the computational cost, leading to decreased efficiency of the AAD models, and
limiting their success in real-life applications (Geirnaert, Francart & Bertrand, 2021a).

Motivated by the above findings, it is anticipated that the spatial location of auditory
attention is neurally encoded (Kerlin, Shahin & Miller, 2010; Frey et al., 2014; Wöstmann
et al., 2016; Bednar & Lalor, 2020; Deng, Choi & Shinn-Cunningham, 2020; Geirnaert,
Francart & Bertrand, 2021b). The hypothesis can be set that the locus of auditory attention
can be cracked from neural/brain activities. This paradigm can perform auditory attention
detection without speech stimulus envelopes, making the AAD exceedingly capable for
neuro-steered hearing aids to achieve high efficiency exclusive of clean speech stimuli as
the source. Recently, a convolutional neural network (CNN)-based approach has been
developed by Vandecappelle et al. (2021), which decoded the location of auditory attention
directly from EEG signals. This approach achieved a high detection accuracy of 80.8% for
the 1-s decision window, but the multivariate temporal information had not yet been
effectively exploited in the spatial domain. In another study, authors designed a spatio-
spectral feature (SSF) representation-based AAD method that outperformed the up-to-
date models in AAD tasks. Vandecappelle et al. (2021) used the alpha power (8–13 Hz) of
EEG signals to identify the spatial attention (left and right). The topographical specificity
of alpha power indicated the direction of auditory attention to speech (Kerlin, Shahin &
Miller, 2010; Frey et al., 2014; Bednar & Lalor, 2020; Deng, Choi & Shinn-Cunningham,
2020). Cai et al. (2022) used the SSF representation and employed the spiking neuron
model to design a neural-stimulated EEG-based AAD system. This model performed
auditory attention detection from EEG without a clean speech envelope.

To further improve spatial auditory detection accuracy, another SSF study (Jiang, Chen
& Jin, 2022) takes into account multiple frequency bands to extract the spectro-spatial
feature (SSF) for AAD instead of relying on a single frequency band.

Several studies have highlighted the effectiveness of GCNs for EEG-based emotion
recognition (Ceolini et al., 2020; Geirnaert, Francart & Bertrand, 2021a) sleep stage
classification (Kerlin, Shahin & Miller, 2010), motor imagery classification (Frey et al.,
2014) and epileptic seizures detection from EEG signals (Saminu et al., 2022). Wöstmann
et al. (2016) employed the GCN model in EEG-based AAD task to obtain state-of-the-art
detection performance.

In recent studies, the effectiveness of graph convolutional networks (GCNs) has been
studied for spatial auditory attention detection using EEG signals. Cai, Schultz & Li (2024)
designed an EEG-Graph Net model based on brain topology for the EEG-enabled AAD
task. They achieved state-of-the-art results by employing a neural attention mechanism.
However, this study mainly relied on predefined graph structures derived from prior
knowledge, such as 2D or 3D spatial positions of EEG electrodes. More recently, the
AGSLnet framework has been designed (Zeng, Cai & Xie, 2024). This model leverages
latent relationships between EEG channels to improve AAD performance.

However, high-accuracy detection of auditory attention within small time intervals
remains challenging. It is also well-established that the detection performance of deep
learning-based methods is affected by the quality and quantity of training data (Mokayed
et al., 2022). The advent of deep learning models, particularly convolutional neural
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networks (CNNs) (Liu et al., 2022a, 2022b; Li et al., 2021) requires vast training data
volumes to enhance performance while preventing overfitting. The deep models, especially
convolution neural networks, consist of a sequence of hidden layers and millions of free
parameters that need to be well-trained with abundant data. However, a large public EEG
training dataset is not available online. The lack of online available brain data for AAD
tasks led us to explore ways of expanding EEG datasets.

Data augmentation is another technique used to artificially generate the dataset based
on real-time existing data employing various transformations. Data augmentation is
widely used in machine learning and plays a vital role in improving performance (Liu et al.,
2023a, 2023b; Zhang et al., 2023a), reducing overfitting, and reinforcing the generalization
capabilities of deep models (Chlap et al., 2021; Garcea et al., 2023; Li, Hou & Che, 2022).
The GANs and their variants have shown potential in the image (Zhang et al., 2023b; Han,
Liu & Chen, 2023; Kausar et al., 2023), artificial audio (Donahue, McAuley & Puckette,
2019), and electroencephalographic (EEG) brain signals generation (Xu et al., 2022).
Initially, the GAN model (Goodfellow et al., 2020) was developed to generate artificial
image datasets. It has the prominent capability to synthesize augmented versions of
original images to enrich available training datasets. Nevertheless, the original vanilla GAN
network (Goodfellow et al., 2020) encounters challenges with training stability, and detailed
regularization is required to achieve desirable performance. In this regard, several research
approaches have been projected to achieve the GAN network training stability and
improve its generation efficiency.

Several variants of traditional GAN networks have been investigated. For instance,
Wasserstein GAN (WGAN) (Gulrajani et al., 2017) employed a new loss function by using
the Wasserstein distance formula that contributes to improving the model stability and
quality of generated images. They proposed an improved training strategy to ensure stable
training of various GAN architectures. Radford, Metz & Chintala (2016) designed deep
convolutional generative adversarial networks (DCGANs) for representations of objects.
Chang, Chen & Chung (2018) established a semi-supervised learning-based GAN to
generate class labels in a discriminator network and develop the quality of generated
images. Odena, Olah & Shlens (2017) proposed a new variant of GAN called auxiliary
classifier GAN (ACGAN) which used label information and synthesized high-quality
images to achieve robust performance in classification tasks.

However, GAN applications in AAD for data augmentation are still unexplored. In this
article, we proposed an auditory-GAN system consisting of an SSF module and an auditory
generative adversarial network auxiliary (AD-GAN) classifier. Integrating AD-GAN and
SSF representation is an innovative work in this context aiming to revolutionize the
research in auditory attention detection. The proposed auditory-GAN framework
represents a groundbreaking approach toward addressing the challenges of data scarcity
and enhancing the classification of auditory spatial attention in EEG signals. The
experimental analysis reveals that the proposed auditory-GAN system generated
convincing EEG data and obtained a significant performance. Our designed auditory-GAN
system model is a promising tool for real-time auditory spatial attention detection, with
potential applications in brain-computer interfaces and neurofeedback systems.

Kausar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2394 4/26

http://dx.doi.org/10.7717/peerj-cs.2394
https://peerj.com/computer-science/


The key contributions of this paper are as follows:

. We introduce a novel auditory-GAN system comprising two modules: the SSF module
and an end-to-end AD-GAN classifier. The SSF module extracts spatial feature maps by
capturing the topographic specificity of alpha power from EEG signals, while the AD-
GAN network mitigates the need for extensive training data by synthesizing augmented
versions of the original EEG data.

. We implemented and validated our model, comparing its performance with other state-
of-the-art auditory attention decoders. The results confirm the effectiveness of our
proposed approach.

METHODOLOGY
As illustrated in Fig. 1, the proposed auditory attention detection system, i.e., AD-GAN,
consists of two essential modules: an SSF extraction module and an AD-GAN network.
The SSF module extracts the spatial features by learning the topographical specificity of
alpha power from EEG signals (Frey et al., 2014; Cai et al., 2021). The designed AD-GAN
network generates the augmented version of EEG data and performs auditory spatial
attention detection (left/right), as depicted in Fig. 2. In the first phase, we designed an SSF
extraction module to perform the feature extraction, as well as to combine spectral and
spatial features from the EEG alpha strip.

In the SSF extraction process, the fast Fourier transform (FFT) is applied on a
continuous time series related to each electrode, and the power spectrum of the EEG signal
is computed. Subsequently, the measurement value of each electrode is found by
computing the average squared absolute value in the frequency band. To exploit the
potential of the spatial features of EEG signals, measurements of various decision windows
are converted into a sequence of 2-D images. The Azimuth Equidistant Projection
technique (Snyder, 1987) is applied to project all the EEG electrodes from the 3-D space
onto a 2-D plane. To ensure that all points are precisely spread out from the center, all
points are projected onto a plane tangent to the earth, and all latitude and longitude lines
are split into identical parts. Likewise, to represent the spatial distribution of EEG signals, a
28 × 28 mesh using the Clough-Tocher interpolant method is employed to evaluate each
grid (Amidror, 2002).

This approach enables the generation of topographical activity maps from EEG signals,
obliterating the requirement of manual feature crafting. These maps depict the alpha
frequency band in specific time windows (Deng, Choi & Shinn-Cunningham, 2020),
referred to as SSF maps hereafter. The SSF maps, obtained from successive time windows,
capture the temporal evolution of brain actions. The SSF maps, presented as 2-D images,
act as input to the succeeding AD-GAN network.

In the second phase, the SSF maps, representing “real EEG images,” are inserted into the
proposed AD-GAN network to generate extensive EEG training data. A standard GAN
network comprises two modules, the generator (G) and the discriminator (D), which are
trained competitively (Goodfellow et al., 2020). The GAN network leverages the adversarial
networks to enhance the quality of generated images. The proposed scheme adopted and
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modified the ACGAN network (Odena, Olah & Shlens, 2017), a variant of standard GAN
(Goodfellow et al., 2020) that mixes class conditional architecture and supplementary
network for categorization. The ACGAN (auxiliary classifier generative adversarial
network) employs additional class labels to train the network while improving the
excellence of generated image samples. Furthermore, the discriminator in ACGAN has an
auxiliary part to generate specific class labels. This class conditional generation process in
the ACGAN discriminator recognizes the generated images and differentiates the various
classes. In contrast to traditional GANs, ACGAN can generate the best-quality images and
deliver label data concurrently.

The proposed AD-GAN network is based on the latest ACGAN network (Odena, Olah
& Shlens, 2017). Mathematically, both random noise n and image labels y are fed to the
generator module in the AD-GAN model to produce augmented EEG image samples
Xg ¼ Gðn;yÞ, and discriminator output probability values on input EEG images and class

Figure 1 Workflow diagram of the proposed auditory-GAN system consisting of an SSF module and an auditory generative adversarial
network auxiliary (AD-GAN) classifier. The auditory-GAN system works in three stages: Spectro-spatial feature map formation, a. The 2D
images shown in the picture are spectro-spatial feature maps generated from EEG signals using the SSF module. They were not directly downloaded
from any online dataset. EEG signal dataset is available at Das, Francart & Bertrand (2019). Full-size DOI: 10.7717/peerj-cs.2394/fig-1
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labels. The given objective function in Eq. (1) comprises two log-likelihoods related to the
correct image trace.

Lsource ¼ Ex:Pdata log Pðs ¼ real xrj½ � þ En � PðnÞ½log Pðs ¼ generated xgÞ�
�
� (1)

Lclass ¼ Ex:Pdata ½logPðClass ¼ c xrÞ�j þ En � PðnÞ½log PðClass ¼ c xgÞ�
�
� (2)

where Pdata denotes the actual distribution of the data, PðnÞ past distribution on noise
vector n, Ex�Pdata is the expectation of x from real data distribution Pdata, and En � PðnÞ
denotes expectation of n sampled from noise.

The discriminator is trained to maximize log likelihood Lclass + Lsource, while for the
generator, the training goal is to maximize Lclass�Lsource loss. The designed architecture of
AD-GAN shows superiority in generating high-quality image samples. This augmentation
shows that the AD-GAN is particularly well-suited for EEG image augmentation and
auditory attenuation detection. The workflow diagram of the proposed AD-GAN system is
given in Fig. 2.

The detailed architecture of our designed AD-GAN network, consisting of the generator
and the discriminator, is given in Table 1. The generator produces the images from latent
space with distinctive labels, aiming to fool the discriminator. Real EEG images, i.e., SSF
maps, from the KUL AAD dataset (Ji et al., 2022) and generated EEG images by the
designed AD-GAN network, are shown in Table 1. Before feeding the data to the
discriminator, generated image data and real training data are combined. For each input
image, the discriminator generates two distinct labels: one to determine whether the image
is actual (output 1) or generated (output 0) and another to identify the specific category it
belongs to (left or right auditory spatial attention). After generating the artificial versions
of EEG images, the dataset is augmented using generated and real images. In the next

Figure 2 The designed AD-GAN network based on an auxiliary classifier generative adversarial network.
Full-size DOI: 10.7717/peerj-cs.2394/fig-2
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Table 1 Real and generated samples. (A) Real EEG images (SSF maps) from the KUL AAD dataset; (B)
Generated EEG images by designed AD-GAN model. A simple visual analysis reveals an approximate
similarity between the generated and real images. The 2D images shown in the picture in (A) are spectro-
spatial feature maps generated from EEG signals using the SSF module. They were not directly down-
loaded from any online dataset. In (B) the shown pictures are the SSF maps generated using AD-GAN
model. EEG signal dataset is available at Das, Francart & Bertrand (2019).
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phase, the condition of the generated data is gaged by applying both the real and generated
data to the real problem, i.e., auditory spatial attention detection. The statistical
characteristics are inspected, and experimental analysis is executed to ascertain the efficacy
of the produced data.

Table 2 The design hierarchy of the proposed AD-GAN network consisting of (A) generator and (B)
discriminator.

Layer Output shape Parameters

(a)

FC (12544) 1266944

BN (12544) 50176

Activation (12544) 0

Reshape (7, 7, 256) 0

Dropout (7, 7, 256) 0

Conv2D Transpose (7, 7, 128) 819328

BN (7, 7, 128) 512

Activation (7, 7, 128) 0

Up Sampling2D (14, 14, 128) 0

Conv2D Transpose (14, 14, 64) 73792

BN (14, 14, 64) 256

Activation (14, 14, 64) 0

UpSampling2D (28, 28, 64) 0

Conv2D Transpose (28, 28, 32) 18464

BN (28, 28, 32) 128

Activation (28, 28, 32) 0

Conv2D Transpose (28, 28, 1) 289

Activation (28, 28, 1) 0

(b)

Conv2D (14, 14, 64) 640

Leaky ReLU (14, 14, 64) 0

Dropout (14, 14, 64) 0

Conv2D (7, 7, 128) 73856

LeakyReLU (7, 7, 128) 0

Dropout (7, 7, 128) 0

Conv2D (4, 4, 256) 295168

LeakyReLU (4, 4, 256) 0

Dropout (4, 4, 256) 0

Conv2D (4, 4, 512) 1180160

LeakyReLU (4, 4, 512) 0

Dropout (4, 4, 512) 0

Flatten (8192) 0

FC (Activation: sigmoid) (1) 8193
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The architecture of the proposed AD-GAN network consisting of the generator and the
discriminator is given in Table 2. The 2D-dimensional convolution operation is employed
to build the AD-GAN network. Convolutional operations can extract local features from
images, multi-layered architecture of convolutions can learn the hierarchical
representations. Unlike unsupervised learning algorithms, class-based conditional neural
networks use the auxiliary data of the category labels that assist in model convergence. In
the proposed AD-GAN network, Batch normalization is utilized to mitigate the effect of
gradient vanishing during model training. The generator is designed to generate images
using a latent vector ‘n’ drawn from a uniform distribution (−1, 1), represented as n (−1, 1).
The images produced by the generator are augmented versions of the original data. The
augmented images along with original images are fed to the discriminator. In the
discriminator, the sigmoid function is employed to predict sampled images, and SoftMax
function to predict specific labels. For the proposed AD-GAN network, model parameters
are updated iteratively based on the loss function given in Eqs. (1) and (2). To analyze the
effect of hyperparameters, several experiments were performed with different values. These
hyperparameter settings led to optimal performance. The hyperparameter values and
model accuracies are listed in Table 3. After multiple rounds of experiments, the best
hyperparameter values were selected. In the first, second, and third experiments, the model
was trained for 90, 130, and 200 epochs, respectively. The best performance was achieved
when the training was performed for 200 epochs using a batch size of eight and a learning
rate of 0.0001 for the discriminator and 0.0002 for the generator with the ADAM
optimizer. The training process is carried out in the following steps. In the first step, the
generator generates image samples from random noise using specific labels. In the second
step, generated images and original images are mixed and input to the discriminator. In the
third step, the discriminator is trained using the augmented image data and labels while
parameters are updated iteratively. The discriminator architecture starts its training
process after the training is complete. Finally, the parameters of the discriminator are
frozen, and it remains untrainable. During this process, only parameters in the generator
are updated and trained to generate more accurate EEG image samples. Once the
combined structure has been trained (after finishing epoch iteration) the training process
starts again from the first step, and multiple training iterations are repeated to balance the
discriminator and generator. After enough iterations, both the generator and discriminator
losses reach Nash Equilibrium enabling the generator to generate more realistic images
when provided with specific labels.

Table 3 Hyper-parameter settings for model training on the KUL dataset of 64 channels using a decision window of 10 s.

Experiments Learning rate (Generator) Learning rate (Discriminator) Batch size Epochs Accuracy (%)

1 0.0001 0.0002 256 90 95.5

2 0.0003 0.0002 64 130 96.2

3 0.0002 0.0001 8 200 98.5
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DATASET AND EXPERIMENTAL SETTINGS
EEG dataset and data preparation
For the analysis of the performance of the designed system, the auditory attention
detection analysis is performed using the KUL AAD dataset (Ji et al., 2022). The 64-
channel KUL ADD dataset is acquired from 16 normal-hearing individuals consisting of
eight males and eight females. The EEG data was collected in a soundproof and
electromagnetic-shielded room where the subject paid attention to one of two competing
speakers. The 64-channel EEG data is acquired using BioSemi Active Two device. The
sampling frequency is offset at 8,192 Hz. The electrode positioning that adheres to the
international 10–20 system is set. A low-pass filter of 4 kHz cut-off frequency is applied to
auditory signals and then delivered at a 60 dB volume level using a pair of in-ear earphones
(Etymotic ER3). The audio stimuli were displayed dichotically (one speaker per ear) or
simulated using head-related transfer function (HRTF) filtering with two speakers coming
from 90 degrees to the left and the right of the subject, respectively. During the
experiments, the arrangement of presentation for both conditions was randomized to
different subjects.

A total of 20 trials are conducted for each subject, the first eight trials are of 6 min
duration while 12 trials are of 2 min duration. In order to make a fair comparison with the
existing state-of-the-art methods, we performed experiments on the data collected in the
first eight trials. Therefore, 12.8 h of EEG data for all 16 subjects (8 × 6 min = 48 min of
EEG data per subject) is collected and used in our experiments.

Data preparation: Each trial is filtered using high pass with a 0.5 Hz cut-off frequency
and then down sampled to 70 Hz. In the data preprocessing stage, the data segments are
generated using a sliding time window method of five durations T = 0.5, 1, 2, 5, and 10 s
with an overlap of 50%. Therefore, with a decision window of 0.1 s, 5,760 decision windows
are generated in the test set for each subject, accumulating 92,160 decision windows. In
addition, zero mean and unit variance is retained by, normalizing the dataset channels for
each trial. To prepare for the SSF extraction from EEG signals, the SSF module is
implemented utilizing MATLAB R2014a. The AD-GAN model is executed employing the
widely used TensorFlow (Abadi et al., 2016) and Keras (Chollet, 2018) libraries. A PC
Intel�Xeon�CPU E5-1620 v3 PC with 3.54.00 GHz is used. With a memory of 12 GB
NVIDIA Tesla M40 GPU is employed.

Performance evaluation:We divide the data into training data (80%), and testing data
(20%). For the detection of auditory spatial attention, the proposed AD-GAN network not
only uses the real training data to train the model but also uses the generated samples for
training. In the testing phase, the testing dataset is employed to validate the AD-GAN
network to observe the quality of generated samples. The testing data is not training
procedure. To optimize the model learning, the ADAM optimizer bearing 32 batch size is
used. The following metrics are computed to mainly measure the performance in the
detection of the proposed auditory-GAN model.
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Precision ¼ TP
TP þ FP

(3)

Recall ¼ TP
TP þ FN

(4)

F score ¼ 2 � Recall � Precision
Recall þ Precision

(5)

Total accuracy ¼
P

TP
Total images

(6)

where TP, FP, and FN represent true positives, false positives, and false negatives,
respectively.

RESULTS AND DISCUSSION
Generated data evaluation and application in auditory attention detection: After
training the auditory-GAN model, it generated artificial versions of the original training
images. The generated image and real samples are shown in Table 1. From a simple visual
analysis, we can approximately find the similarity between generated and real images. A
statistical analysis is performed to determine the excellence of generated images. The
Euclidean Distance (ED) metric (Dokmanic et al., 2015) is measured, which shows the gap
between generated EEG images and the original EEG images, smaller value indicates more
similarity between generated and original images, and high value indicates less similarity.
To check the distribution consistency between generated and original images the
Kullback–Leibler Divergence (K–LD) metric (Ji et al., 2022) is computed. The higher K–
LD value shows more divergence between the two distributions which is an indication of
worse performance. In contrast, the percentage of consonants correct (PCC) metric
(Shriberg et al., 1997) is computed to check the correlation between the generated samples
and the original image. A high value of PCC over 0.8 represents a strong similarity between
generated and original images. The values given in Table 4 are an indication of the better
performance of our proposed scheme in comparison to other existing schemes which
represents that the generated images are much closer to the real ones.

To inspect the efficacy of the AD-GANmodel in enhancing AAD (when training data is
limited), we have performed numerous experiments with diverse sets of data. In these
experiments, the effect of data quantity on model learning is confirmed corrodingly. In
various scenarios, different sizes of original and generated datasets et and details of the
setting of each scenario have been shown in Table 5. The detection performance of each
model in the mentioned circumstances after adequate training has been given in Table 5.

Table 4 Statistical analysis with conventional GAN (Goodfellow et al., 2020) and proposed auditory-
GAN networks.

Model ED PCC K-LD

SSF+GAN 0.1384 0.8256 0.1576

SSF+AD-GAN (auditory-GAN) 0.0077 0.8987 0.1465
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The model trained on the larger scale data shows better performance. From the results
given in Table 5, it is evident that the model trained on the mixed data (real + generated)
achieves highly accurate predictions in contrast to the model trained only on generated
data. For enough training iterations, the model trained with generated data achieves
superior performance.

Several scenarios explored by employing several ratios of the existing training data are
explained in the following. Classification analysis is given in Table 6 under distinctive
settings of training data. With various proportions of training data, we used different
numbers of generated samples. As well as comparative analysis is performed without data
augmentation. From the results given in Table 6, it is evident that when the training data is
sufficient, AD-GAN based data augmentation strategy does not significantly influence the
performance, there is small improvement in classification accuracy. The performance
improvement is obvious, when available training data proportion drops to 20%, which
confirms the efficacy of the proposed method. Our GAN-based strategy for data
augmentation starts a concern in producing raw EEG samples in auditory attention
detection.

Table 6 Detection accuracy (%) under various proportions of available real data using a decision
window of 10 s.

Further generated samples Existing real data

25% 50% 100%

0 65.8 68.9 75.6

35,792 67.9 71.5 79.5

48,688 69.6 73.5 81.9

61,584 70.3 76.2 90.8

84,480 74.2 87.9 98.5

Table 7 The accuracy achieved using different traditional augmentation techniques.

Experiments Techniques Accuracy (%)

1 Original set 75.6

2 Rotated images 79.3

4 Scaled images 74.2

5 Original + rotated + scaled 85.2

Table 5 Effect of data augmentation on auditory-GAN detection accuracy using a decision window
of 10 s.

Real training images 12,896 12,896 12,896 12,896 12,896

Generated images 0 35,792 48,688 61,584 84,480

Accuracy (%) 75.6 79.5 81.9 90.8 98.5
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The superiority of the AD-GAN model over traditional data augmentation
techniques: Detection performance with different data augmentation techniques is
analyzed, and their effectiveness is compared with the AD-GAN model. The dataset is
augmented using traditional data augmentation techniques, specifically rotation and
scaling. This data augmentation increases the size of the dataset. The augmented images
are directly input to the CNN model without involving the generated images from the
GAN model.

The performance achieved with different data augmentations is given in Table 7. In the
first experiment, original training data (without any augmentation) are used for model
training. In the second experiment, the rotated images (using preset values of 45°, 90°,
135°, 180°, and 220°) are used for the training process. In the third experiment, the scaled
images (using nearest-neighbor interpolation (Rukundo & Cao, 2012) with a zooming
factor of 0.85) are used. In the fourth experiment, all the original and augmented images
obtained with different augmentations are used in training. These experiments show that
augmentation increases the performance of the model compared to using original data
alone. The model trained on the augmented set of images shows better results in
comparison to the model trained on original images. However, the detection performance
obtained with GAN-generated data (reported in Table 6) is superior compared to
traditional augmentation techniques (reported in Table 7).

Detection performance across different window sizes: Our auditory-GAN model
determines between right and left spatial attention considering each EEG data segment.
Since the test is evenly distributed between right-left attention, there is 50% chance-level.
The average per-subject accuracy across five decision windows (0.1, 1, 2, 5, 10) is reported
in Table 8. Our auditory-GAN model attains an accuracy of 79.3% (SD: 3.77) for 0.1 s,
84.9% (SD: 4.22) for 1 s, 89.5% (SD: 5.12) for 2 s, 96.8% (SD: 4.41) for 5 s and 98.5% (SD:
3.98) for the 10 s decision window. From the results, it’s apparent that detection accuracy
for longer decision windows is higher than the smaller length of decision windows. To
carry out the fair comparison, the results are compared with the previous state-of-the-art
(Cai et al., 2021; O’Sullivan et al., 2015; Cai et al., 2022; Vandecappelle et al., 2021; Jiang,
Chen & Jin, 2022; Zeng, Cai & Xie, 2024).

Table 8 Detection accuracy (%) across five different decision window sizes on the 64 channel KUL
dataset.

Model Auditory stimulus Decision window

0.1 s 1 s 2 s 5 s 10 s

Linear decoder (O’Sullivan et al., 2015) With – 58.1 61.3 67.5 75.8

CNN (Vandecappelle et al., 2021) Without 65.9 80.8 82.1 83.6 85.6

SSF-CNN (Cai et al., 2021) Without 67.2 81.7 84.7 90.5 94.6

Ni-AAD (Cai et al., 2022) Without 73.1 82.8 87.1 91.2 –

MBSSFCC (Jiang, Chen & Jin, 2022) Without 80.7 89.2 91.5 93.8 –

AGSLnet (Zeng, Cai & Xie, 2024) Without 88.1 93.6 94.1 – –

SSF+AD-GAN (auditory-GAN) Without 79.3 84.9 89.5 96.8 98.5

Kausar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2394 14/26

http://dx.doi.org/10.7717/peerj-cs.2394
https://peerj.com/computer-science/


The linear decoder (O’Sullivan et al., 2015) is considered to be one of the best linear
auditory attention detection decoders to date (Geirnaert, Francart & Bertrand, 2020). The
linear decoder (O’Sullivan et al., 2015) is stimulus (speech envelope) reconstruction model
that involves approximating the envelope of the attended speech using EEG signals. The
linear decoder requires speech stimuli as the reference, and our auditory-GAN decodes
human attention purely from the brain signals themselves. Other tested nonlinear auditory
attention models also used direct classification without explicitly reconstructing the speech
envelope (stimulus).

It is significant to notice that our model shows a more consistent accuracy trend across
different window sizes compared to other baseline models i.e., Ni-ADD (Cai et al., 2022),
CNN (Vandecappelle et al., 2021), and SSF-CNN (Cai et al., 2021) with a fewer number of
exceptions. This accuracy difference becomes more noticeable, particularly with shorter
window lengths. Specifically, there is a notable decrease in accuracy for the linear decoder,
i.e., 58.1% with 1 s decision window, while the decrease in accuracy of the SSF-CNNmodel
(81.7%) is less compared to the linear model, while our AD-GAN model retains
performance level reasonably well (84.9%). The results shown in Table 8 demonstrate that
variation in decoding accuracy with different window lengths is consistent with the
literature (Cai et al., 2021;O’Sullivan et al., 2015; Cai et al., 2022; Vandecappelle et al., 2021;
Jiang, Chen & Jin, 2022; Zeng, Cai & Xie, 2024).

The comparative analysis of the detection performance of the proposed AD-GAN
system with benchmark techniques has been given in Table 8. In addition, to confirm that
the proposed AD-GAN model significantly improves over its counterpart, we performed a
paired t-test, p = 0.028. The major difference between the designed AD-GAN model and
SSF-CNN lies in the data augmentation strategy, the performance improvement is due to
the training of the classifier with the massive amount of artificial training data generated by
the deep GAN model. Since the time delay needed by humans to shift their attention
during decision-making processes is 1 s, therefore, we aimed to explore the limits
concerning decision window lengths. To check the effect of window length on model
performance, we tested the AD-GAN and SSF-CNN models with window lengths shorter
than 1 s (0.1 ms). It is important to notice that the AD-GAN model not only surpasses the
SSF-CNN and NI-AAD on shorter window lengths of 0.1 s but also on the window lengths
of 1 and 2 s. Results show that the model presents good accuracy on the KUL dataset with
all decision windows (0.1 to 10 s). Since it eliminates the need for additional data for
training, the proposed AD-GANmodel is considered very viable for neuro-steered hearing
aids that can be used in other everyday applications and remains an appropriate solution
even for the requirement of low-latency.

The detection accuracies of the auditory-GAN system on DTU dataset (Fuglsang,
Wong & Hjortkjær 2018): To further evaluate the model’s AAD ability, performance was
tested with the DTU dataset. DTU dataset was acquired from 18 normal-hearing
individuals. The two speech streams were presented to the subjects lateralized at −60° and
+60° along the azimuth direction. A BioSemi Active system was used to record the 64-
channel EEG signals at a sampling rate of 512 Hz. Fifty minutes of data were recorded for
each subject, resulting in a total of 15 h of EEG data collected from all subjects. For model
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training on the DTU dataset, the same experimental settings are followed as was set for
KUL dataset. Similar to KUL dataset, the accuracies of audiotry-GAN system on the DTU
dataset (given in Table 9) is compared with other recently proposed state-of-the-art
methods (Cai et al., 2021, 2022; O’Sullivan et al., 2015; Vandecappelle et al., 2021; Jiang,
Chen & Jin, 2022; Zeng, Cai & Xie, 2024) using different decision windows. In comparison
to the KUL dataset, the performance on DTU is slightly low. This analysis shows that the
AD-GAN model outperforms the other techniques Specifically, for 5 and 10 s decision
windows.

In Tables 8 and 9, for comparative analysis, the SSF-CNN model (Cai et al., 2021) has
been reimplanted with our experimental setup while the other methods reported with their
original setting.

The detection accuracies of auditory-GAN system with various machine vision
classifiers: To evaluate the impact of different machine vision classifiers on the detection

Table 10 Attention detection accuracy (%) of the proposed auditory-GAN model using various
machine vision classifiers.

Auditory-GAN-RF Auditory-GAN-SVM Auditory-GAN-SoftMax Auditory-GAN-FC

Precision 88.9 91.5 93.7 97.7

Recall 90.2 90.2 94.8 98.8

F Score 89.5 90.8 94.2 98.2

Accuracy 91.4 93.5 96.4 98.5

Table 11 Detection accuracy (%) across five different decision window sizes on the KUL dataset of 32
channel.

Model Auditory stimulus Decision window

0.1 s 1 s 2 s 5 s 10 s

SSF-CNN (Cai et al., 2021) Without – 76.1 80.1 86.2 89.4

SSF+AD-GAN (auditory-GAN) Without – 79.8 85.6 91.3 95.3

Table 9 Detection accuracy (%) across five different decision window sizes on the DTU dataset
(Fuglsang, Wong & Hjortkjær 2018) of 64 channels.

Model Auditory stimulus Decision window

0.1 s 1 s 2 s 5 s 10 s

CNN (Vandecappelle et al., 2021) Without – 69.2 71.2 71.9 –

SSF-CNN (Cai et al., 2021) Without 62.2 63.4 66.1 70.0 –

Ni-AAD (Cai et al., 2022) Without 59.7 61.6 63.2 61.5 –

MBSSFCC (Jiang, Chen & Jin, 2022) Without 66.2 76.8 82.8 82.87 –

AGSLnet (Zeng, Cai & Xie, 2024) Without 76.1 80.8 81.3 – –

SSF+AD-GAN (auditory-GAN) Without 71.1 76.3 80.2 88.3 90.1

Kausar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2394 16/26

http://dx.doi.org/10.7717/peerj-cs.2394
https://peerj.com/computer-science/


performance of the proposed model, distinct experiments are performed with four state-
of-the-art machine vision classifiers, namely, RF (Pal, 2005), support vector machine
(SVM) (Burges, 1998), Softmax (Peng et al., 2017), and fully connected (FC) layers in the
discriminator model. The detection results with various classifiers are given in Table 10.
The results in Table 10 reveal that the highest accuracy is achieved when FC layers are
employed with our model in comparison to other tested classifiers. Therefore, we
considered FC layers the most robust classifier to use in the final auditory-GAN model.

Performance using 32 channels of EEG data: The results discussed above are based on
64-channel dataset of EEG. A smaller sum of electrodes in EEG signal equalization has
many advantages. Therefore, 32-channel EEG data, acquired by reducing electrodes from
64 to 32 channels (Das, Francart & Bertrand, 2019), is also used in our experiments. The
performance of the auditory-GAN system on 32-channel data is given in Table 11. The
auditory-GAN achieves 79.8% (SD: 5.22), 85.6% (SD: 5.26), 91.3% (SD: 5.04), and 92.4%
(SD: 6.45) for 1, 2, 5, and 10 s decision windows of 32 channels data, respectively. It is
observed that accuracy achieved on 32-channel data is moderately low as compared to 64-
channel data. However, the auditory-GAN outperforms the formerly proposed SSF-CNN
technique using 32-channel data by a large margin of about 5% on overall decision
windows and compares constructively for 64-channel data.

Model robustness against input noise perturbations: EEG signals are acquired using
various types of equipment and in different laboratories, leading to contamination with
various kinds of noise. These noises can occur during the signal acquisition, transmission,
and storage processes. Such noise perturbations can lead to misclassification by deep
models. To test the robustness of the proposed AD-GAN model against input noise
perturbations, including multiplicative and additive noise, we introduced multiple levels of
Gaussian noise signals (Kusk & Lysdahlgaard, 2023) to the test EEG images. Noise
perturbation can be represented as:

X ¼ n:X þm:randnðx1; x2; 3Þ (7)

where X represents the corrupted image of original image X bearing size x1 � x2 � 3. The
randn() denotes the Gaussian noise function. The levels of noise are set as n = 0.5 andm =
1, 3, 5, 7, 9, 11. Noise robustness test is performed while adding noise at different levels to
the input EEG images to contaminate them. In contaminated or corrupted images, the
overstepping pixel values are restricted to the bounds [0, 255]. The box plots given in
Table 12 show the strength of the developed auditory-GAN against different Gaussian
noise levels. In the next step, contaminated EEG test images are fed to the AD-GANmodel,
and output accuracy is observed. The results shown in Table 13 reveal that there is a trivial
decrease in accuracy for various noise levels which shows the strong robustness of AD-
GAN against input noise perturbations.

Performance of AD-GAN network for intra-subject auditory attention detection: To
perform intra-subject auditory attention detection, the training and test data for machine
learning came from the same subject. We conducted intra-subject AAD experiments with
the AD-GAN network using 16 subjects from the KUL AAD dataset. The AD-GAN
network was trained subject by subject. The data were split into five folds, and model
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Table 12 Results of noise robustness test (A) accuracy on 64-channel EEG images contaminated with
different noise values, and (B) 32-channel EEG images contaminated with various noise levels.
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evaluation was carried out using inner 5-fold cross-validation (Wong et al., 2018) for each
subject. Specifically, the AD-GAN network generated a total of 5,280 samples per subject,
resulting in 84,480 samples for the 10-s window case. In this analysis, the performance of
the subject-dependent validation strategy was evaluated by training the model subject by
subject. For each subject, the data were randomly split into five folds according to inner
five-fold cross-validation (Wong et al., 2018). One fold was used for testing, while the
remaining four folds were used for training the model. The training process was repeated
five times, and average results were calculated. The reported results represent the average
performance across all testing folds. Table 14 shows the accuracies of the AD-GAN
network for each subject.

Table 14 Performance accuracy (%) of the AD-GAN network for the 16 subjects in the KUL AAD dataset.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

Precision 86.2 89.5 90.8 92.6 96.7 94.4 95.1 95.7 97.1 97.3 98.7 98.2 95.6 98.7 96.4 98.6

Recall 88.5 87.2 91.2 93.7 97.2 96.3 94.8 96.5 98.3 98.2 99.1 97.8 97.8 97.8 97.7 98.7

F Score 87.3 88.3 90.9 93.1 96.9 95.3 94.9 96.0 97.6 97.7 98.8 97.9 96.6 98.2 98.2 98.6

Accuracy 90.4 92.4 94.3 95.5 98.3 95.5 96.2 97.4 98.6 98.1 97.2 99.0 95.5 98.4 96.5 97.1

Table 15 McNemar’s statistical (McNemar, 1947) test using different datasets.

Models KUL dataset (Das, Francart & Bertrand, 2019)
p-value

Linear decoder (O’Sullivan et al., 2015) 0.01

CNN (Vandecappelle et al., 2021) 0.01

SSF-CNN (Cai et al., 2021) 0.04

Ni-AAD (Cai et al., 2022) 0.02

MBSSFCC (Jiang, Chen & Jin, 2022) 0.01

AGSLnet (Zeng, Cai & Xie, 2024) 0.03

Table 13 Robustness of proposed auditory-GAN against different noise levels n = 0.5 and m = 1, 3, 5,
7, 9, 11. With decision window 10 s.

Noise levels 64-channel images contaminated with
various noise levels

32-channel images contaminated with
various noise levels

Accuracy (%) Accuracy (%)

Image without
noise

98.5 92.4

m = 1 97.9 90.1

m = 3 97.1 88.3

m = 5 96.8 87.2

m = 7 95.4 86.5

m = 9 95.1 85.6
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McNemar’s statistical test (McNemar, 1947): To check the robustness of the proposed
auditory-Gan system in comparison to the other classifiers, the McNemar’s statistical test
is performed. This test checked whether the designed technique is significantly better than
the other methods in terms of error rates. For this test, the value of significance level is set
to 0.05. The McNemar’s p-values from various tests are reported in Table 15. The reported
results demonstrate that the proportion of errors is uniform among all compared methods,
and differences in accuracies can be ignored. This robustness test demonstrates that
auditory-GAN model outperforms the other methods.

CONCLUSION
The evolution of deep models relies heavily on large amounts of labeled data. However, the
high cost associated with data collection makes attention detection with small-scale
datasets a challenging task during model training. To address this, this article presents a
system for generating artificial EEG data and detecting auditory spatial attention. The
proposed Auditory-GAN system utilizes spatial feature maps of EEG signals to meet the
need for extensive training data while performing auditory spatial attention detection. The
Auditory-GAN strategy achieves encouraging results and surpasses existing models, even
with a small decision window of 0.1 s. It has significant applications in fields such as neuro-
steered hearing aids, cochlear implants, and speech recognition systems. The investigations
into the impact of data augmentation on auditory detection, proposed in this article, could
potentially transform the landscape of auditory attention detection research.

Despite EEG data sparsity challenges, the AD-GAN is a promising solution for the AAD
task. The AD-GAN is a promising solution for AAD tasks. The noise robustness analysis
also demonstrates the strong generalization of the designed techniques to accept diverse
datasets with inevitable noise perturbations.

Despite EEG data sparsity challenges, the AD-GAN is a promising solution for the AAD
task. The noise robustness analysis also demonstrates the strong generalization of the
designed techniques to handle diverse datasets with inevitable noise perturbations.
However, the auditory-GAN system has few limitations. The EEG datasets available online
may not encompass the full range of AAD scenarios, which could affect the model’s
performance in unseen environments. Experimental analysis shows that model
performance varies across different datasets; for example, the detection accuracy for the
KUL dataset is higher compared to the DTU dataset. This variation is due to differences in
recording equipment, EEG signal characteristics, environmental noise, and subject
variability. Detection accuracy is also sensitive to the choice of hyperparameters.

Further research on designing robust generative models with efficient training strategies
can improve auditory attention detection. In the future, the validity of the model can be
tested in practical applications by incorporating real-world data. Moreover, the robustness
of the proposed model can be further assessed across various datasets by using additional
data preprocessing techniques. Considering the effectiveness of deep learning techniques
in EEG analysis, researchers might also explore data augmentation with other deep
models, such as GCNs.
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