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ABSTRACT
Computer numerical control (CNC) and machine center (MCT) machines are
mechanical devices that manipulate different tools using computer programming as
inputs. Predicting failures in CNC and MCT machines before their actual failure time
is crucial to reduce maintenance costs and increase productivity. This study is centered
around a novel deep learning-based model using a 1D convolutional neural network
(CNN) for early fault detection in MCT machines. We collected sensor-based data
from CNC/MCT machines and applied various preprocessing techniques to prepare
the dataset. Our experimental results demonstrate that the 1D-CNN model achieves
a higher accuracy of 91.57% compared to traditional machine learning classifiers and
other deep learning models, including Random Forest (RF) at 89.71%, multi-layer
perceptron (MLP) at 87.45%, XGBoost at 89.67%, logistic regression (LR) at 75.93%,
support vector machine (SVM) at 75.96%, K-nearest neighbors (KNN) at 82.93%,
decision tree at 88.36%, naïve Bayes at 68.31%, long short-term memory (LSTM) at
90.80%, and a hybrid 1D CNN + LSTM model at 88.51%. Moreover, our proposed
1D CNN model outperformed all other mentioned models in precision, recall, and
F-1 scores, with 91.87%, 91.57%, and 91.63%, respectively. These findings highlight
the efficacy of the 1D CNN model in providing optimal performance with an MCT
machine’s dataset, making it particularly suitable for small manufacturing companies
seeking to automate early fault detection and classification in CNC andMCTmachines.
This approach enhances productivity and aids in proactive maintenance and safety
measures, demonstrating its potential to revolutionize the manufacturing industry.

Subjects Human-Computer Interaction, Artificial Intelligence, Data Mining and Machine
Learning, Data Science, Neural Networks
Keywords Long short-term memory, Deep learning, 1D convolutional neural network, Machine
learning, Computer numerical controls (CNCs), Machine center (MCT)

INTRODUCTION
Managing failures in manufacturing processes is necessary in the manufacturing industry.
Manufacturing machines can cause a loss in the manufacturing process, sometimes
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Figure 1 Overview of machine center machine. Image source credit: vertical 5-Axis CNC machining
centres - Mills CNC.

Full-size DOI: 10.7717/peerjcs.2389/fig-1

because of their high complexity or default. An anomaly during production is not
beneficial to a company because it affects its overall success. In the case of a manufacturing
machine’s failure, an alternative solution should be used, such as a spare system in an
emergency. This will be very costly and will require regular maintenance, even if they
remain unused. Therefore, manufacturing industries seek cost-effective and efficient ways
to handle machine failures. Predictive maintenance is one of the options used for this
purpose; it provides a promising path to machine failures and avoids anomalies in the
manufacturing process (Barlow & Hunter, 1960; Hoppenstedt et al., 2018; Saxena et al.,
2008).

MCT and CNC machines are used in manufacturing processes to manufacture different
metals. These machines are handled by coding on a PC via a programming application.
Various kinds of commands are generated through coding to perform various operations.
Multiple data types are produced from these machines, such as temperature, vibration,
power, spindle, and noise. Many researchers have proved that from all kinds of data,
vibration, spindle, energy, and noise data are the main reasons for machine failure (Jiang
et al., 2019). Figure 1 shows a picture of an MCT machine (Kim et al., 2022).
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Moreover, the trend toward machine learning produces an interrogation of the
possibility of predicting manufacturing machine failure, thus detecting anomalies in
the manufacturing process. Although the manufacturing industry has witnessed some
technical developments to address these defects and failures, their practical application
remains a challenging task for many reasons (Hoppenstedt et al., 2018; Kammerer et al.,
2019). Based on these considerations, our study presents a real-world case conducted
in cooperation with a manufacturing company. The company uses computer numerical
control (CNC) and machine centers (MCT) to drill metals. Several defects during these
manufacturing processes can be observed, reducing the devices’ efficiency. Thus, for a
company, defect detection and prevention remain of utmost importance as they will
increase the productivity and efficiency of its machines. However, defect detection in
these machines remains a complex task that requires considerable time and effort. Thus
far, many manufacturing companies have employed selected choice experts to detect
anomalies based on their long-term experience. However, such experts are generally
expensive and sometimes ineffective. Moreover, these experts took too much time to
observe several machines. Based on sensor data collected from MCT machines, we aim to
minimize manual decisions regarding defect detection and improve productivity (Feng et
al., 2019; Sadaf, Athar & Azam, 2016; Schlechtendahl et al., 2015; Vodenčarević et al., 2011).

The company’s real-world data are related to an MCT machine that monitors records
during the drilling of the metals. The process must be continuously monitored to reduce
costly downtime. Continuous monitoring generates large amounts of sensor data related
to several MCT machine components.

This study aimed to assess and predict the early failure of MCT machines. Training
our proposed one-dimensional convolutional neural network (1D-CNN) base model that
can use sensor-based data collected from a manufacturing machine capable of predicting
defects will significantly contribute to our research. Our experimental results demonstrate
the 1D CNN’s superior performance in anomaly detection forMCTmachines. Themodel’s
ability to accurately identify anomalies, even with limited training data, underscores its
practical value in real-world manufacturing settings. This innovation enhances the fault
diagnosis process and contributes to the broader adoption of deep learning techniques in
the industrial sector. In the past, researchers have proposed different techniques to predict
early defects in these machines. Still, there are some drawbacks, such as some of them
using only vibration data and some of them using only spindle values in their research.
Also, some of the researchers did not perform feature engineering techniques. Moreover,
there is a need for comprehensive evaluation metrics that go beyond accuracy to include
precision, recall, F1-score, and statistical significance tests. Considering these factors, we
have tried to fill the research gap using a combination of three types of datasets obtained
from the CNC and MCT machine, and we also performed features engineering techniques
to enhance the performance of our proposed model. This 1D-CNN-based deep-learning
(Du, 2018; Lei, Pan & Huang, 2019) model assists small manufacturing companies in early
predicting anomalies in CNC andMCTmachines. Furthermore, we have conducted paired
t-tests to statistically evaluate the performance differences between the proposed 1D CNN
model and other traditional machine learning and deep learning models. This evaluation
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not only determines our model’s superior performance in terms of precision, recall, and F1
score but also confirms the statistical significance of the observed improvements, thereby
reinforcing the reliability and robustness of our approach.

A summary of our work is provided below:

• Applying a state-of-the-art 1D CNN deep learning model on a custom sensor dataset
from a private manufacturing company’s CNC and MCT machine.
• We are pioneers in using a combination of spindle datasets, power, and vibration data,
as it is easy for small companies to record spindle values in MCT and CNC machines.
• After applying different preprocessing techniques, we extracted seven features, a unique
combination that improved the accuracy of our proposed model. No one else used this
combination in research on manufacturing machines.
• To address the class imbalance problem, we utilized the class weight technique, which
helped balance both effective and defective classes.
• We trained a state-of-the-art 1D CNN deep learning model and compared its
performance with eight other machine learning classifiers, including Random Forest
(RF), XGBoost, multi-layer perceptron, logistic regression (LR), K-nearest neighbor
(KNN), Support vector machine (SVM), decision tree, and naïve Bayes.
• Furthermore, the proposed model’s performance was compared with other deep
learning models, such as long short-term memory (LSTM) and the hybrid CNN and
LSTM (CNN + LSTM) model.
• Finally, we have conducted paired t-tests to statistically evaluate the performance
differences between the proposed 1D CNN model and all other models.

The remainder of this paper is organized as follows:
Related work is discussed in ‘Related Work’, and ‘Materials & Methods’ describes the

methods andmaterials used. ‘Proposed Algorithm’ briefly explains the proposed algorithm.
The results are given in ‘Results’, and finally, ‘Conclusions and Future Work’ provides
conclusions and future directions.

RELATED WORK
Various machine and deep learning algorithms have been employed with notable success
in anomaly detection within manufacturing processes. However, the 1D-CNN utilized in
our research presents distinct advantages over these methods, particularly in CNC and
MCT machines and other manufacturing applications.

One-dimensional convolutional neural networks (1DCNNs) are particularly well-suited
for analyzing sequential data, such as the time-series data generated by sensors in MCT
and CNC machines. Unlike traditional machine learning methods, which often rely on
handcrafted features, 1DCNNs automatically learn the temporal dependencies and patterns
directly from the raw data. This capability is crucial for capturing the dynamic behavior of
manufacturing processes, where anomalies may manifest as subtle temporal variations in
the sensor readings (Hussain, Ali & Kim, 2022a; Yao et al., 2017).

Machine-learning algorithms detect anomalies using different datasets produced by
manufacturing machines. Recently, Pittino et al. (2020) investigated anomaly detection
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methods in in-production manufacturing machines. They demonstrated that the nature
of the available data, featuring any anomaly, was vital for algorithmic choice. In this study,
automatic anomaly detection methods using statistical machine learning and control
charts are developed and deployed effectively in an in-production environment. They
used support vector machine-based fault diagnostics for the induction motors. Their
study was based on vibration, current signals, and critical fault detection features. These
features were fed into the SVM as inputs to diagnose faults. The obtained model was
tested under several conditions and proven highly effective (Pittino et al., 2020). Chen et
al. (2019) proposed a method for predicting transient stability in power systems using the
XGBoost machine learning model. By simulating the New England 10-machine 39-bus
power system with PSASP, the study generates time-domain data to train the model.
The approach leverages feature selection techniques to enhance model performance and
emphasizes interpretability through decision rules and feature importance scores. Their
proposed XGBoost model outperforms other machine learning classifiers, including RF,
DT, SVM, and neural network (NN), in accuracy and efficiency (Chen et al., 2019). Using
NASA hypertext transfer protocol (HTTP) log datasets, Henriques et al. (2020) combined
XGBoost and K-means algorithms to detect anomalies in the dataset. The built model can
be used for forensic and compliance auditing analyses of security management (Henriques
et al., 2020). Gao, Ma & Yang (2002) used classifiers to assign anomaly labels to a set of
k-length windows obtained from a training dataset. The classifier can detect anomalous
windows that are either ignored or assigned a defect label (Gao, Ma & Yang, 2002). For a
sequence of sensor data collected from an operational aircraft system (Budalakoti et al.,
2006; Budalakoti, Srivastava & Otey, 2008; Sriastava, 2005) Anomaly detection techniques
were applied to handle sequence-based problem formulation and identify faulty functional
runs. Selvaraj & Min (2023) retrofitted a CNC machine to monitor energy consumption
and detect defects in real-time. Using data from a power meter, they extracted different
features across time, frequency, and time-frequency domains. They used five machine
learning classifiers for anomaly detection: DTs, RFs, k-NN, SVM, and Bagging classifiers.
Their proposed model achieved high accuracy and was deployed using AWS for real-time
monitoring (Selvaraj & Min, 2023).

Deep learning technology has risen quickly and achieved significant success in several
domains, including object detection, intelligent robots, saliency detection, sound event
detection for innovative city safety, UAV blade problem diagnostics, and parking garage
sound event detection. Researchers have used deep learning methods to detect product
defects and have improved productivity and quality (Yang et al., 2020). Intelligent
manufacturing, a cornerstone of Industry 4.0, heavily relies on machine vision-based
surface defect detection to ensure product quality. CNNs play a pivotal role in this context
by providing robust and automated solutions for detecting surface defects across diverse
industries, thus supporting the goals of Industry 4.0 (Khanam et al., 2024). Tao et al.
research makes two contributions: The first is a multitask 1D-CNN system for wire defect
detection, which combines object detection and object categorization networks. Second,
they suggested that deep learning should be applied in this area first. The real-world dataset
of an industrial production plant shows how well the proposed approach identifies defects
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(Tao et al., 2018). Kim et al. (2022) proposed an abnormal data classification method for
intelligent devices in CNC machines. They proposed a hybrid method that combined
singular spectrum analysis (SSA) techniques, which were very efficient in decreasing the
noise in time-series data,with convolutional autoencoder (CAE),which performed verywell
in their time-series data (Kim et al., 2022). Jiang et al. (2022) presented a novel approach
to counter-error prediction using deep learning and reinforcement. Gubernatorov et al.
proposed a method to detect faults in CNC machine gearboxes using vibration data.
They developed a CNN-based VGG model that distinguishes between healthy (OK) and
faulty (NOK) processes during high-speed machine operations. Their proposed research
integrates their model into an edge-to-cloud architecture for automated fault detection
and data annotation (Gubernatorov & Gavrilenkov, 2024). Chengyang, Sitong & Wansheng
(2021) proposed a method in which the axial and radial thermal errors of horizontal and
vertical spindles are modeled using a deep-learning convolutional neural network (CNN).
Their model blends thermocouple data with the thermal image to accurately reflect the
temperature field of the spindle (Chengyang, Sitong & Wansheng, 2021). Zhao et al. (2021)
proposed an improved target defect detection algorithm for steel surfaces. They improved
the target detection accuracy on the NUE-DET dataset by using the R-CNN algorithm
(Zhao et al., 2021).

Anomaly detection to natural language processing deep learning has been effectively used
in time series modeling and prediction problems in various application domains. Recurrent
neural networks (RNNs) were developed to address the limitations of conventional
feed-forward neural networks for modeling sequences. However, LSTM networks have
recently become popular for sequence and sequence-to-sequence learning because of the
well-known vanishing gradients problem of RNN (Brunelli et al., 2019). They used the
internal data of CNC machines to track errors in the feeding axis and modeled it as a
nonlinear auto-regressor LSTM (Jiang et al., 2022). Masci et al. proposed a multiscale
pooling technique that can detect flaws on steel surfaces and capture photos of various
sizes as inputs. Their proposed method outperformed many traditional methods available
in the market (Masci et al., 2013). Sharma, Chawla & Ram (2020) developed an automatic
CNC program for operating multiple types of holes in CNCmachines using support vector
machines and restricted Boltzmannmachines (RBM) with a deep belief network (DBN). Li,
Bedi & Melek (2023) proposed an LSTM Autoencoder-based method to detect anomalies
in CNC machines. They utilized transfer learning for this purpose. Their initial trained
model could distinguish between stable and unstable cutting conditions based on vibration
data obtained from the accelerometer. They introduced additional layers and re-trained
their model to enhance the detection accuracy. Experimental results validate the ability of
their proposed model to detect anomalies, with performance metrics showing promise for
industrial application in the automated manufacturing industry (Li, Bedi & Melek, 2023).

Table 1 provides a comprehensive comparative analysis of several research studies,
summarizing the machine used, dataset, model, and contribution of each study.

MATERIALS & METHODS
We followed different steps in this study. Each is explained below:
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Table 1 Summary of various studies on anomaly detection techniques andmodels applied in the manufacturing industry.

Paper Machin used Dataset Proposed model Feature used Summary & Findings

Pittino et al. (2020) Induction
motors

Vibration
current signal

SVM Average standard
deviation
Maximum
Minimum
Kurtosis

The study demonstrates the effectiveness of combining control charts and
anomaly classification algorithms to detect anomalies in the DEU.

Chen et al. (2019) 10-machine 39-Bus
Power
System

Generators’ Speeds
Rotor angles
Power

XGBoost Rotor Angle
Kinetic Energy

Utility of XGBoost in advancing transient stability prediction in power
systems, offering a robust framework that balances computational efficiency
with interpretability, thus enhancing its applicability in real-time operations
and emergency response scenarios.

Henriques et al. (2020) NASA
Kennedy
Space Centre

NASA HTTP logs XGBoost
K-means

IP address
Page Operation
Method
response.

The proposed method combines k-means clustering and XGBoost
classification to detect anomalies in large log datasets efficiently. It leverages
parallel computing to handle big data scenarios, providing a scalable solution
with interpretable results.

Selvaraj & Min (2023) CNC/MCT
Machines

Power consumption
data

Decision Tree
Random Forest
K-NN
SVM Bagging

Time domain
Frequency Domain
Time-Frequency
Domain

fault detection in CNC machines by leveraging power consumption data and
deploying advanced machine learning models

Kim et al. (2022) CNCMachine Vibration Data Convolutional
Autoencoder

N/A This paper demonstrates a robust approach to abnormal data classification
in CNC machines, leveraging advanced deep learning techniques and
efficient data preprocessing methods to achieve high accuracy in real-world
applications.

Gubernatorov & Gavrilenkov
(2024)

CNCMachine Vibration Data VGG Time Domain
Frequency
Domain

Detects CNC machine gearbox faults using vibration data and a VGG model,
leveraging raw time-domain and frequency-domain features.

Brunelli et al. (2019) CNC machines CAD files
containing information
about the dimensions
and features of the holes

Restricted
Boltzmann
Machine (RBM)
SVM

Tool Characteristics The study concludes that RBM with DBN is more suitable for large datasets
and offers better accuracy and classification results, while SVM is more
suitable for small datasets

Jiang et al. (2022) CNC/MCT
Machine

Contour errors NAR-LSTM
Time-Series Deep
Q-Network

Reference positions of
X & Y axes.
Velocity
Velocity Jerk

Effectively integrates deep learning and reinforcement learning to model and
compensate for errors in CNC machining

Li, Bedi & Melek (2023) CNCMachine Vibration Data LSTM Frequency domain Proposed an LSTM autoencoder network to detect anomalies in CNC
machines.
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Study design and subjects
Thiswas a cross-sectional andmulticenter observational study carried out at InjeUniversity.
The institutional review board approved this study of Kyungnam University, and all the
participants provided consent to participate in this study.

Data collection and data preprocessing
We used datasets from a single MCT machine, identified as number 0K43A16211,
provided by the manufacturing company. To ensure a controlled environment where
the machine’s operational parameters and external conditions remained consistent, we
utilized a one-day labeled dataset from July 7, 2021. Also, its representative nature, including
defective and effective classes, made it sufficient for our model’s training and validation.
It demonstrates the model’s capability to detect anomalies with limited data, reflecting
real-world manufacturing scenarios where extensive historical data may not always be
available.

The company collected the data using three sensors: current sensors for measuring
power, tachometers for spindle speed, and accelerometers for vibration levels. The sensors
recorded data at an average rate of 10 Hz per second, providing a detailed and continuous
data stream. This frequency sampling allowed for a thorough and granular analysis of the
machine’s operational parameters.

Our dataset comprises 26,126 records, divided into effective (normal) and defective
(abnormal) classes. Table 2 illustrates the division of the two classes.

Data processing and cleaning are essential steps in data science and play a vital role in
increasing the overall performance of AImodels. In the data extraction process,meaningless
data were removed to achieve better results. In our dataset, unnecessary attributes not
required for further processing were removed.

We used a one-hot (Potdar, Pardawala & Pai, 2017) representation to label defective and
effective datasets. ‘0’ is used to represent defective, and ‘1’ is used to describe an effective
dataset.

Our dataset contained some missing values, particularly in the power feature set.
Incorrect handling of these missing values yields a less accurate model and can decrease
the overall performance of the machine-learning models (Rahm & Do, 2000). We used
medians to fill the empty values in our dataset. Finally, we used StandardScaler (Athar et
al., 2021; Ghosh et al., 2021) to transform all values in a column to a range of mean 0 and
standard deviation 1. Figure 2 shows the steps involved in the data preprocessing.

Experimental procedure
We processed and analyzed our dataset using a system with the following specifications:
Windows 10 Pro-64-bit, 2.50 GHz Core i7-11700 processor, 16 GB RAM, Python, and
TensorFlow 2.7.0, manufactured by HP and sourced from Gimhae, South Korea.

Statistical feature engineering
The model’s performance depends on the features selected after the data preprocessing.
Identifying useful features and removing unnecessary features from large amounts of data
are difficult. Overfitting in an efficient machine learning model can be avoided by selecting
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Table 2 Overview of data distribution.

Class Total data No. of values
for power

No. of values
for spindle

No. of values
for vibration

Effective 9,811 9,811 9,811 9,811
Defective 16,315 16,315 16,315 16,315
Total 26,126 26,126 26,126 26,126

Figure 2 Data preprocessing steps.
Full-size DOI: 10.7717/peerjcs.2389/fig-2

a smaller number of excellent feature subsets (Hussain et al., 2022b). Seven more different
features for all three basic features were selected, including mean, standard deviation,
minimum, maximum, energy measure, interquartile range, and skewness (Kankar, Sharma
& Harsha, 2011; Rafiee, Rafiee & Tse, 2010). With the selection of these seven features, the
1D CNN model gave a maximum performance, as has been proved already in the research
study done by Hussain, Ali & Kim (2022a).

Class weight technique
Different techniques are used for data balancing, including the class weight. Using this
technique, we develop a weighting algorithm to calculate the loss function. Depending on
the imbalanced dataset, weights were assigned to both the majority and minority classes.
A threshold value should be defined to maintain balance among different classes. This
threshold value helps to increase or decrease class weights, so ultimately, it will prevent the
bias of the model toward any particular class (Hussain, Ali & Kim, 2022a). The class weight
is expressed in Eq. (1):

w i
=

n_instances
n_classes×n_instancesi

(1)

where,
wi = wight of each class and I = Each Class
n_instances = Total number of instances in the whole dataset
n_classes = Total number of classes
n_instancesi = Total number of rows in each class.

Table 3 shows an implementation of the class weight technique in our study. We
calculated the class weight using Eq. (1) and assigned 1.33 weights for the minority class
i.e., effective class. This gave more weight to the minority class than the majority class,
i.e., defective. Resultantly, it helped to address the data imbalance issue in our dataset and
improved the performance of our model.
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Table 3 Class weights.

Class Weight

Defective (0) 0.66
Effective (1) 1.33

Figure 3 Overview of proposed architecture. Created using PowerPoint.
Full-size DOI: 10.7717/peerjcs.2389/fig-3

Complete architecture of proposed methodology
A complete picture of our work is given in Fig. 3.

PROPOSED ALGORITHM
We used three different types of sensor data to develop our prediction algorithm.
Different types of data are power, spindle, and vibration. In addition, we applied the
other preprocessing techniques discussed in ‘Proposed Algorithm’ to make our data ready
for use in our proposed algorithm. Using this algorithm, we predicted the anomaly of the
CNC andMCTmachines. The function and Training of our proposed model are explained
by the pseudo-code given in Table 4.

Data format and measurements
We created a matrix of 24×30 = 720 feature vectors, where 24 denotes the total number
of attributes, and 30 is the number of rows in each window. Figure 4 explains this process,
later used for model training and testing while predicting the results.
To avoid robustness and overfitting of results, the entire dataset was divided into 80%

for training, 10% for validation, and 10% for testing. This division was implemented for
all eight machine learning and three deep learning models. This data division simplifies
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Table 4 Pseudo-code of function and training of 1D-CNN.

(a) Function of 1D CNNModel (b) Training of 1D CNNModel

Code: Code:
FUNCTION CNNMODEL(x) FEATURE← {’’POWER’’,’’SPINDLE’’,’’VIBRATION’’,

weight←DEFINEWEIGHTS ’’POWER_MIN’’,’’POWER_MAX’’,’’POWER_IR’’,’’POWER_SD’’,
biases←DEFINEBIASES ’’POWER_MEAN’’,’’POWER_SK’’,’’POWER_EM’’,’’SPINDLE_MIN’’,
x←RESHAPE(X) ’’SPINDLE_MAX’’,’’SPINDLE_IR’’,’’SPINDLE_SD’’,
conv1←RELU_ACTIVATION_FUNC(Conv1D(x)) ’’SPINDLE_MEAN’’,’’SPINDLE_SK’’,’’SPINDLE_EM’’,’’VIBRATION_MIN’’,
conv2←RELU_ACTIVATION_FUNC(Conv1D(x)) ’’VIBRATION_MAX’’,’’VIBRATION_IR’’,’’VIBRATION_SD’’,
conv3←RELU_ACTIVATION_FUNC(Conv1D(x)) ’’VIBRATION_MEAN’’,’’VIBRATION_SK’’,’’VIBRATION_EM’’,}
conv4←RELU_ACTIVATION_FUNC(Conv1D(x)) CLASSES←{’’EFFECTIVE’’,’’DEFECTIVE ’’}
conv5←RELU_ACTIVATION_FUNC(Conv1D(x)) X← dataset {FEATURES}.values
conv5←DROPOUT (0.1) Y← dataset {CLASSES}.values
conv5← FLATTEN (0.1) TRAINDATA,TESTDATA,VALIDDATATESTTRAINSPLIT (X ,Y ,0.2,0.5)

conv5←DROPOUT (0.1) BATCHSIZE← 4
dense1←RELU_ACTIVATION_FUNC() LOSSbinary_crossentropy,learningrate← 1e07,Epoches← 250
dense2←RELU_ACTIVATION_FUNC() 1DCNNMODEL.compile← (LOSS,learning_rate)
dense3←RELU_ACTIVATION_FUNC() 1DCNNMODEL.train← (TRAINDATA,EPOCHS,BATCHSIZE ,VALIDDATA)
RETURNoutput

END FUNCTION
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Figure 4 Window size and data scanning.
Full-size DOI: 10.7717/peerjcs.2389/fig-4

the analysis and ensures that our model’s performance metrics are more straightforwardly
interpretable.

Architecture of 1D CNN
In our study, we used deep learning techniques to predict the effectiveness of our sensor
data. Among these deep learning techniques, the 1D CNN model is very efficient for a
small dataset, as our results prove.

Deep learning has an additional benefit over traditional AI, which consists of
classification and feature extraction (Bibbò & Carotenuto, 2021) We can automatically
extract the most relevant and essential features using these deep learning models. The 1D
CNN is another highly effective artificial neural network (ANN) model used for feature
extraction and classification.

Input layer
The data with dimensions (30×24) were fed into the input layer of the 1D CNN. Where
30 is the window size, and 24 represents the number of features.

Convolution layer
Convolutional operations were applied to the input data with a stride size 1. The five
convolutional layers use a kernel size of 4. The filter sizes in these four convolutional layers
were 4, 4, 4, 4, and 8.
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Dropout
Dropout helps avoid overfitting the model. In our dropout layers of the 1D CNN model,
we used a dropout value of 0.5.

Output
The performance of the CNN model is highly dependent on the activation function. In
our model, we used a rectified linear unit (ReLU) as an activation function in two dense
layers in our experiments to obtain a better result, and the sigmoid function was used as
an activation function in the third dense layer of our proposed model. We also applied
Stochastic gradient descent (SGD) in our model, and a learning rate of 0.0001 was applied.
Finally, binary_crossentropy was used as a loss function to measure the total loss between
the predicted and actual numbers.

We conducted a series of preliminary experiments to fine-tune selected parameters and
ensure that the chosen configuration offers a balance between model performance and
training efficiency.

Table 5 gives a summary of these fine-tuned parameters.

RESULTS
In this section, we discuss our study’s experimental results. We compared the performance
of our proposed 1D CNN model with eight machine learning models—random forest,
XGB, MLP, LR, SVM, KNN, DT, and naïve Bayes—and one deep learning model, the
LSTM. Additionally, we evaluated a hybrid model combining 1D CNN and LSTM (1D
CNN+LSTM).

Performance measures
We utilized various performance metrics to evaluate the models, including accuracy,
precision, recall, F1-score, and the AUC-ROC curve. The following equations define these
metrics:

Accuracy =
TP+TN

TP+TN +FP+FN
(2)

Precision=
TP

TP+FP
(3)

Recall =
TP

TP+FN
(4)

F1−Score =
2×Precision×Recall
Precision+Recall

. (5)

Table 6 highlights the superior performance of our proposed 1D CNNmodel compared
to ten other models, which include eight machine learning models and two deep learning
models. This table provides a comprehensive comparative analysis of all the models
evaluated.

Athar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2389 13/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2389


Table 5 Parameters and their descriptions.

Parameter Value Description

Initial learning rate 0.0001 Starting learning rate for training.
Learning rate schedule Exponential decay Learning rate decay method.
Optimizer SGD with nesterov momentum Optimization algorithm used for training.
Momentum 0.9 Momentum parameter for SGD.
Epochs 250 Number of training iterations.
Batch size 4 Number of samples per gradient update.
Conv1D layers 6 Layers The number of convolutional layers.
Filters 4, 4, 4, 8, 8 Number of filters in each Conv1D layer.
Kernel size 2 Size of the convolutional kernels.
Activation function ReLU Activation function for Conv1D layers.
Dense layers 3 Layers Number of dense layers.
Activation ReLU, ReLU, Sigmoid Activation functions for the dense layers.
Loss function Binary crossentropy Loss function used for training.

Table 6 Precision, recall and F1-score of individual classes in all models.

Precision (%) Recall F1-Score

Defective (0) 81.32 79.78 80.54
Logistic regression

Effective (1) 67.39 69.52 68.44
Defective (0) 81.14 80.15 80.64

Support vector classifier
Effective (1) 67.63 69.01 68.31
Defective (0) 87.11 85.29 86.19

K-Nearest neighbors
Effective (1) 76.35 79.00 77.66
Defective (0) 90.49 90.93 90.71

Decision tree
Effective (1) 84.79 84.10 84.44
Defective (0) 97.74 50.43 66.53

Naive bayes
Effective (1) 54.32 98.06 69.91
Defective (0) 91.84 91.67 91.75

Random forest
Effective (1) 86.18 86.44 86.31
Defective (0) 92.99 90.26 91.60

XGBoost
Effective (1) 84.55 88.69 86.57
Defective (0) 90.15 89.71 89.93

MLP
Effective (1) 83.01 83.69 83.35
Defective (0) 93.21 92.07 92.64

LSTM
Effective (1) 86.87 88.66 87.76
Defective (0) 96.53 84.76 90.26

Hybrid
Effective (1) 78.63 94.85 85.98
Defective (0) 95.51 90.85 93.131D-CNN

(the proposed model) Effective (1) 85.71 92.78 89.11
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Table 7 Overall result summary of all models.

Precision Recall (%) F1-Score (%) Accuracy (%)

RF 89.71 89.71 89.71 89.71
XGB 89.82 89.67 89.71 89.67
MLP 87.47 87.45 87.47 87.45
LR 76.09 75.93 76.00 75.93
SVM 76.07 75.96 76.01 75.96
K-NN 83.07 82.93 82.99 82.93
DT 88.35 88.36 88.36 88.36
NB 81.44 68.31 67.80 68.31
LSTM 90.85 90.80 90.82 90.80
1D CNN+ LSTM 89.88 88.51 88.67 88.51
1D-CNN
(the proposed model)

91.87 91.57 91.63 91.57

Table 7 summarizes the average accuracy achieved by the 1D CNN and the ten other
models. Our proposed model performed very well on testing data and got maximum
accuracy of 91.57%, 91.87% Precision, 91.57% Recall, and 91.63% F1-Score measures
compared to other machine learning and deep learning models.

Additionally, it presents the confusion matrix, which is crucial for understanding the
performance of the machine learning models. The confusion matrix includes four metrics:
true positive (TP), true negative (TN), false positive (FP), and false negative (FN). True
positives and true negatives represent correctly classified instances, while false positives and
false negatives represent type I and type II errors, respectively. For a detailed performance
breakdown, the normalized confusion matrices of each model are illustrated in Table 8.

Auc-Roc curve
The AUC-ROC curve is a crucial performance criterion for evaluating deep learning and
machine learning models. A higher AUC indicates a more robust and superior model for
differentiating between classes. Figure 5Apresents a comparison of the 1D-CNNmodel with
naïve Bayes, XGBoost, LR, LSTM, and a hybrid model of LSTM and 1D-CNN. Similarly,
the AUC-ROC curve in Fig. 5B compares the 1D-CNN with the other remaining five
models. These images clearly demonstrate that our proposed 1D-CNN model significantly
outperforms the other ten models.

Paired t-tests
We conducted paired t-tests to assess the statistical significance of the differences in
accuracies between the 1D-CNN model and each of the other models. The results are
summarized in Table 9. This table presents the results of paired t-tests assessing the
statistical significance of differences in peak accuracy between the 1D-CNN and other
models. The t-statistic and p-value for each comparison are provided to determine whether
the differences are statistically significant. All comparisons show statistically significant
differences (p< 0.05), indicating that the CNN model outperforms the other models’
accuracy.
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Table 8 Confusionmatrix of each model.

Model
Positive Negative

Positive 0.92 0.08
Random forest (RF)

Negative 0.14 0.86
Positive 0.90 0.10

XGBoost
Negative 0.11 0.89
Positive 0.90 0.10

MLP
Negative 0.16 0.84
Positive 0.80 0.20

LR
Negative 0.30 0.70
Positive 0.80 0.20

SVM
Negative 0.31 0.69
Positive 0.85 0.15

K-NN
Negative 0.21 0.79
Positive 0.91 0.09

DT
Negative 0.16 0.84
Positive 0.50 0.50

NB
Negative 0.02 0.98
Positive 0.92 0.08

LSTM
Negative 0.11 0.89
Positive 0.85 0.15

Hybrid model
Negative 0.05 0.95
Positive 0.91 0.09

1D CNN
Negative 0.07 0.93

CONCLUSIONS AND FUTURE WORK
While several researchers have focused on manufacturing, research on MCT and CNC
machines remains sparse. This study addresses this gap by applying a 1D-CNN deep
learning model for anomaly detection in MCT/CNC machines. Our results demonstrate
that the 1D-CNNmodel effectively predicts MCTmachines’ operational status and defects,
outperforming eight traditional machine learning models and one deep learning model.
Our model achieved the highest accuracy and outperformed a hybrid 1D CNN and LSTM
model, even with a small dataset.

Although our study was limited to data collected for a single day, the 1D CNN’s strong
performance suggests its potential for effective anomaly detection with limited data. Future
work will use data frommultiple days and varying operational conditions to further validate
our findings to ensure the model’s robustness and adaptability. Exploring more advanced
deep learning techniques may enhance MCT machine productivity.
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Figure 5 AUC-ROC curve.
Full-size DOI: 10.7717/peerjcs.2389/fig-5

Table 9 T-test summary.

Model comparison t-statistic p-value Statistical significance

1D-CNN vs LSTM 9.4632 2.0721e−20 Significant (p< 0.05)
1D-CNN vsHybrid (LSTM+ 1D CNN) 36.8330 2.7106e−188 Significant (p< 0.05)
1D-CNN vs Naive Bayes 377.6534 0.0000e+00 Significant (p< 0.05)
1D-CNN vs Random Forest 353.1712 0.0000e+00 Significant (p< 0.05)
1D-CNN vs Logistic regression 345.0091 0.0000e+00 Significant (p< 0.05)
1D-CNN vs Support vector classifier 323.3016 0.0000e+00 Significant (p< 0.05)
1D-CNN vs K-Nearest neighbors 331.7052 0.0000e+00 Significant (p< 0.05)
1D-CNN vs Decision tree 313.1611 0.0000e+00 Significant (p< 0.05)
1D-CNN vs XGBoost 349.6871 0.0000e+00 Significant (p< 0.05)
1D-CNN vsMLP 342.2846 0.0000e+00 Significant (p< 0.05)
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