Peer.

Submitted 19 April 2024
Accepted 13 September 2024
Published 9 October 2024

Corresponding author
Chunyang Zhang,
zhangcueb@126.com

Academic editor
Trang Do

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj-cs.2387

() Copyright
2024 Zhang and Han

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Ensembles of decision trees and gradient-
based learning for employee turnover rate
prediction

Chunyang Zhang' and Wenjing Han”

' School of Labor Economics, Capital University of Economics and Business, Beijing, China
% School of Government, Beijing Normal University, Beijing, China

ABSTRACT

Employee turnover has a negative impact on business profitability. To tackle this
issue, we can utilize computational advancements to forecast attrition and minimize
expenses. We employed an HR Analytics dataset to investigate the feasibility of using
these predictive models in decision support systems. We developed an ensemble of
gradient-based decision trees that accurately predicted employee turnover and
performed better than other sophisticated techniques. This approach demonstrates
exceptional performance in handling structured and imbalanced data, effectively
capturing intricate patterns. Gradient-based decision trees provide scalable solutions
that effectively balance predictive accuracy and computational efficiency, making
them well-suited for strategic business analysis. The importance of our findings lies
in their ability to offer dependable insights for making well-informed decisions in
business settings.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Data Science

Keywords Decision trees, Gradient learning, Data science, Turnover rate prediction, Machine
learning

INTRODUCTION

The employee turnover rate is a key business metric that quantifies the rate at which
employees leave a company within a specific period, usually expressed as a percentage
(Woods, 2015; Chiat & Panatik, 2019; Bolt, Winterton & Cafferkey, 2022). This rate is a
ratio between the number of employees who have left the company and the average
number of people who are working during the same period (Hurley ¢ Estelami, 2007; Li
et al., 2016). A high turnover rate can indicate various underlying issues, such as job
dissatisfaction, poor workplace culture, inadequate compensation, or lack of career
advancement opportunities (Ross ¢ Zander, 1957; Raza et al., 2022). Conversely, a low
turnover rate often reflects a positive working environment, job satisfaction, and effective
employee retention strategies (Ross ¢ Zander, 1957; Raza et al., 2022). Furthermore,
employee turnover rates can be influenced by cultural (Yao ¢» Wang, 2006; Wu, Rafig ¢
Chin, 2017) and national factors (Peretz ¢ Fried, 2012; Kwakye, 2018; Ilmi et al., 2019).
Different regions have distinct workplace norms, job expectations, and employee
engagement practices that can significantly impact retention and turnover (Bolt, Winterton
¢ Cafferkey, 2022). In cultures where long-term job stability is highly valued, turnover
rates might be lower (Hamermesh, Hassink ¢» van Ours, 1996). On the other hand,
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environments that emphasize career progression and individual achievement may exhibit
higher turnover rates as employees pursue better opportunities for advancement (Dipietro
¢ Condly, 2007). Additionally, the legal and economic framework of a country also
significantly affects turnover, with stricter labor laws leading to lower turnover rates and
more flexible labor markets experiencing higher rates (Guthrie, 2000; Zhang, 2016).
Therefore, understanding the cultural and national context is essential for multinational
companies aiming to develop effective human resource strategies that meet the diverse
expectations and norms of their global workforce (Bolt, Winterton ¢ Cafferkey, 2022).
Monitoring and analyzing turnover rates helps organizations identify trends, assess the
effectiveness of their human resource policies, and implement measures to improve
employee engagement and retention, ultimately impacting the organization’s performance
and stability (Wulansari, Meilita ¢ Ganesan, 2020). Attrition rate, another business metric
for the same purpose, captures the concept of workforce reduction over time (Peng, 2022).
While the ‘turnover rate’ specifically refers to the rate at which employees leave and are
replaced within an organization, the ‘attrition rate’ is more broadly focused on the net
reduction of the workforce (Pallathadka et al., 2022). In case data for calculating the
‘turnover rate’ are not available or missing, the ‘attrition rate’ can be employed as a more
generalized way to discuss workforce reduction without needing to quantify the inflow and
outflow of employees precisely (Speer et al., 2019). In fact, datasets for ‘turnover rate’
calculation are usually smaller than those for ‘attrition rate’ calculation since companies
usually need to spend a bigger budget for collecting ‘turnover rate’ data rather than for
collecting ‘attrition rate’ data. The ‘attrition rate’ data are usually stored in the company’s
databases and can be easily retrieved for further analysis. In other words, in the prediction
of the turnover rate, ‘attrition rate’ data can be used for the same purpose, and even better
for a broader scale analysis of job quitting factors.

Attrition has complex consequences for any organization, impacting it in both
beneficial and detrimental ways (Peng, 2022). On the plus side, attrition can streamline the
workforce by naturally eliminating less effective or disengaged employees. This process
opens opportunities for fresh talent to enter, bringing innovative ideas and new energy,
which can boost organizational productivity and better align the workforce with evolving
market demands (Reeder, Henderson ¢ Sullivan, 1982). Attrition can also help in financial
management by eliminating the need for forced redundancies, thus allowing a more
natural adjustment of staff levels in line with business cycles or strategic changes (Bellucci,
2014). On the downside, attrition can be disruptive, especially when it results in the loss of
critical staff. Such departures can lead to gaps in knowledge and expertise, disrupting
workflows and affecting the quality and continuity of business operations (Marchiondo,
Cortina & Kabat-Farr, 2018). This is particularly problematic in industries where skilled
professionals are rare and difficult to replace, heightening operational vulnerabilities and
increasing the workload on remaining employees (Hughes ¢ Trafimow, 2011). A high rate
of attrition might also reflect deeper problems within the organization, such as poor
management, inadequate compensation, or insufficient opportunities for career
progression (Li et al., 2023). A recent survey has pointed out that nearly one-third of new
employees tend to resign within their first 6 months of employment (Peng, 2022).
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According to the Job Openings and Labor Turnover Survey (JOLTS), the United States
sees around 4.5 million job resignations monthly. Apollo Technical’s findings suggest that
the attrition rate hovers around 19% across different sectors. In contrast, the Bureau of
Labor Statistics reports a spike in the attrition rate, reaching above 57% in 2021 within the
U.S. (Raza et al., 2022). For a business to operate effectively, maintaining a high employee
retention rate, ideally around 90%, is crucial, while keeping the attrition rate under 10%.
It’s essential for companies not only to monitor these rates but also to understand the
reasons behind employee departures. Implementing strategies to address these reasons can
lead to improved employee satisfaction and loyalty, thereby enhancing overall
organizational stability and performance (Raza et al., 2022).

Recent years have seen an outgrowth of artificial intelligence in the age of information
explosion (Berman, 2008). The availability of enormous sources of data has motivated the
development of numerous computational frameworks to tackle problems in diverse fields
of life (Ourmazd, 2020). Machine learning-based frameworks, therefore, have been created
to address existing issues or improve limitations of present technologies (Shinde ¢» Shah,
2018). As an essential sub-domain of artificial intelligence, machine learning models are
trained to assist decision-making processes (Xu, Li ¢» Donta, 2024). In today’s business,
most companies are supported by machine learning-based analytics tools to enhance
working efficiency. The complexity of these tools depends on the purpose of use (Bose ¢
Mahapatra, 2001; Song, Cao & Zhang, 2018; Leow, Nguyen & Chua, 2021). Qutub et al.
(2021) developed a computational model for employee attrition prediction. To find the
most suitable model, they used multiple machine learning algorithms in combination with
data retrieved from the database on employees at IBM. Habous, Nfaoui ¢ Oubenaalla
(2021) constructed various prediction frameworks using random forest, AdaBoost,
gradient boosting, decision tree, and logistic regression to predict employee attrition. Their
findings indicated that the model developed with logistic regression outperformed the
others in terms of accuracy. Najafi-Zangeneh et al. (2021) also employed logistic regression
for modeling with an accuracy of 81%. In their work, max-out feature selection was used to
reduce the input vector’s dimension. Pratt, Boudhane ¢» Cakula (2021) performed an
extensive survey on the performance of a wide range of learning algorithms to suggest the
most adaptive ones for developing models that can effectively predict attrition rate. Sadana
& Munnuru (2022) conducted a study to address the attrition issues in IT firms using
machine learning approaches. Their results raise several problems in managing activity
and working environment. Kaya ¢ Korkmaz (2021) trained a series of machine learning
models for measuring the staff turnover rate. Since the dataset was not balanced, class
rebalancing techniques were used, and feature selection and bootstrapping were employed
to improve prediction efficiency. Access to such insights has empowered companies to
swiftly implement measures aimed at retaining employees who were unhappy with various
aspects of their job, such as the workplace environment, work-life balance, chances for
promotion, and other significant elements. These innovative methods contribute to
boosting employee contentment by providing a more precise forecast of turnover trends.
However, most existing approaches in this field are based on classical machine learning
algorithms (Wang, Nguyen ¢» Nguyen, 2020). Although these methods yield promising
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results, there is significant room for improvement. Exploring more efficient computational
methods is critical not only for prediction accuracy, but also for adapting to the increasing
complexity and scale of data in organizational contexts.

In an effort to address this problem, we aim to develop a more effective computational
model using ensembles of multiple decision trees under gradient-based learning. Ensemble
learning, which combines multiple models to improve overall performance, has proven
highly effective across various domains (Pham et al., 2019; Nguyen et al., 2022; Wang,
Chukova ¢ Nguyen, 2023a) by leveraging the strengths of diverse algorithms to achieve
superior predictive accuracy and robustness. Our approach is specifically designed to be
well-adapted to tabular data, which is commonly used in many business and industrial
applications. For our study, we utilized the HR Analytics dataset to train and assess the
performance of our model, ensuring its applicability in real-world scenarios involving
employee turnover and retention predictions. Given that most existing prediction models
in this field rely on classical machine learning techniques, our model is benchmarked
against those built on seven widely-used machine learning algorithms: eXtreme Gradient
Boosting (XGB) (Chen & Guestrin, 2016), AdaBoost (AB) (Friedman, 2002, 2001), random
forest (RF) (Breiman, 2001), logistic regression (LR) (LaValley, 2008), decision tree (DT)
(de Ville, 2013), k-nearest neighbors (k-NN) (Kramer, 2013), and support vector machine
(SVM) (Suthaharan, 2016), and two advanced Transformer-based deep learning
algorithms: TabTransformer (Huang et al., 2020) and FT-Transformer (Gorishniy et al,
2021). This comprehensive evaluation aims to demonstrate the enhanced accuracy and
generalization capabilities of our ensemble approach for predictive modeling in HR
analytics and beyond.

EXPERIMENT DESIGN

Our study focuses on developing a prediction model based on ensembles of decision trees
and gradient-based learning to predict employee turnover rate. To develop our model, we
used the HR Analytics dataset. Detailed information on the dataset and how the data were
sampled is provided in the next section. Besides our proposed model, we also developed
seven conventional machine learning models and two deep learning models to fairly assess
the model performance. All models were trained, optimized, and tested with the same
datasets. For machine learning models, the training and validation sets were merged to
create a new training set. The training set was then used for model optimization with 5-fold
cross-validation. For deep learning models, the optimal models were obtained based on the
validation loss. The deep learning models were trained over 100 epochs, with a learning
rate of 0.001 and optimized by AdamOptimizer.

DATASET

We used the HR Analytics dataset from Sisodia, Vishwakarma ¢ Pujahari (2017) to
develop our prediction model. The original dataset contained 15,000 samples. After
removing unqualified samples, we obtained a refined dataset of 14,499 samples. This
refined dataset was randomly split into two sets: training data (80%) and test data (20%).
From the training data, we allocated 15% to create a validation set, resulting in 1,800
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samples for validation and 10,199 samples for training; the test set consisted of 3,000
samples. Samples are defined by six continuous variables, including: satisfaction_level,
last_evaluation, number_project, average_montly_hours, time_spend_company,
work_accident, and two categorical variables: ‘department’ and ‘salary’. Detailed
information about these datasets is provided in Table 1. Figure 1 shows the proportion of
employees who left, segmented by department and by salary level. The plot reveals that the
Human Resource (HR) department has a higher proportion of resignations compared to
others. In contrast, Management and Research and Development (R&D) departments
have a lower proportion of resigned employees. Additionally, workers receiving low
salaries tend to leave their jobs more frequently than those earning medium or high
salaries.

Figure 2 displays the correlation among the variables in the dataset, using Pearson’s
correlation coefficient (r) as the metric. Most variables exhibit an absolute Pearson’s r
value of less than 0.5, with the range extending from approximately —0.4 to 0.4. This mild
correlation indicates that no variable strongly influences another, which suggests a diverse
set of features for analysis. Following a comprehensive correlation analysis of all variables,
it was decided to retain all of them for the modeling process to ensure a holistic
representation of the factors affecting the outcome.

METHODOLOGY

Method overview

Figure 3 summarizes all the stages in our study. First, after refining the dataset, a test set
accounting for 20% of the total samples is created using random sampling. The remaining
data is then used to create a training set and a validation set with a ratio of 85:15. The class
distribution of these three datasets is kept unchanged using stratified sampling. The
training set is used for model construction, while the validation set is responsible for
finding the best hyperparameters for the machine learning models and the stopping epoch
for deep learning models. Once model optimization is completed, all hyperparameter-
refitted models from each algorithm are gathered for testing using the test dataset.

Gradient-based decision tree

Decision trees are powerful algorithm used for both classification and regression tasks,
characterized by their hierarchical structure that facilitates decision-making. Their
interpretability and flexibility make them popular in various fields. Gradient-based
decision tree algorithm enhances traditional tree-based algorithms by incorporating the
principles of gradient boosting, leading to a more dynamic and powerful model often used
in ensemble learning methods. These trees operate on the principle of optimizing a
specified loss function, which can be tailored for various types of predictive modeling tasks,
including regression and classification. Unlike traditional decision trees provide a simple
and interpretable model, The gradient-based decision tree involves constructing weak
learners, specifically decision trees, in a stage-wise fashion where each tree is built to
correct the errors of its predecessors, effectively implementing a gradient descent-like
approach to minimize the overall model error (Marton et al., 2023). The gradient-

Zhang and Han (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2387 517


http://dx.doi.org/10.7717/peerj-cs.2387
https://peerj.com/computer-science/

PeerJ Computer Science

0.30 1

0.25 1

Proportion of employees who left

0.05 1

0.00

Table 1 Information on training, validation, and test sets.

0.20 1

0.15 A

Data Number of samples
Positive Negative Total
Training 2,442 7,757 10,199
Validation 428 1,372 1,800
Test 701 2,299 3,000
Total 3,571 11,428 14,999
Sales A —
Accounting
HR 4
Technical 1 el
%’ Support
£
e
@®
% Management
o

Product Manager

Marketing

R&D

Low

T
Medium
Salary level

High 0.00 0.05 0.10 0.15 0.20 0.25
Proportion of employees who left

0.30

Figure 1 Proportion of employees who left, segmented by department.

Full-size K&l DOT: 10.7717/peerj-cs.2387/fig-1

algorithm to adaptively refine the model by focusing on the difficult parts of the prediction

task, thereby gradually enhancing its predictive accuracy. Gradient-based decision trees are

known for their flexibility, allowing them to tackle different data and problem types.

Additionally, they possess a strong predictive power with the capability of handling

complex, non-linear relationships. Moreover, they include regularization features that help

in controlling overfitting, making them robust against training on noisy data. eXtreme
Gradient Boosting (Chen ¢ Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost
(Prokhorenkova et al., 2018) are typical learning algorithm developed based on gradient-

based decision trees. A normal decision tree t with depth d is defined as:
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Figure 2 Heat map for correlation analysis on all variables.
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t(x|4,t,1) Z/II]L x|, 7, 1) (1)

where L is a function that determines whether a sample x € R” belongs to a leaf I, 1 € C**

indicates the class of the sample associated with a single leaf node, 7 € R

represents the
threshold for splitting, and 1 € N2"" denotes the index of features for each internal node.
Given a gradient-based decision tree g at depth j with leaf node /, the function of tree is

rewritten as:

241

gx|A, T,1) = > AL(x|, T,I), 2)
=0
d

L(x|2,T,1) =] (1 - )S(x|Lieys Tiryy) + p(LJ) (L = S(xlLi ), Tigy)))s (3)
j=1

where p is binary probability with p = 0 or 1 when the left or right branch is taken,
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T € R@-Dxn and | € RZ'~1*" are matrixized transformations of the threshold for
splitting and index of features, respectively, and S(x) represents for the logistic function.

While traditional decision trees provide a simple and interpretable model, GBDT
enhances predictive accuracy through an ensemble approach that sequentially builds trees
to correct errors, incorporates regularization, and optimizes performance via gradient
descent. This makes GBDT a powerful tool in machine learning, particularly for complex
datasets where traditional methods may fall short.

Ensembles of gradient-based decision trees

To empower the gradient-based decision tree, we designed an ensemble learning algorithm
leveraging a large number of trees. The ensemble of gradient-based decision tree G is
expressed as:

E
G(x|w, L, T,1) = > weg(x[L, T, L), (4)
e=0

where E and w are the number of trees and weight vector, respectively. Having end-to-end
learning process driven by gradient descent, our method is expected to address limitations
of traditional non-gradient-based tree methods like XGBoost (Chen ¢» Guestrin, 2016) or
CatBoost (Prokhorenkova et al., 2018). Figure 4 visualizes the architecture of ensembles of
gradient-based decision trees.
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Figure 4 Architecture of ensembles of gradient-based decision trees.
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RESULTS AND DISCUSSION

Model implementation

After completing the model design, we trained and optimized our model using the training
and validation sets, respectively. To evaluate our model fairly, we implemented seven
machine learning models, including XGB (Chen & Guestrin, 2016), AB (Friedman, 2002,
2001), RF (Breiman, 2001), LR (LaValley, 2008), DT (de Ville, 2013), k-NN (Kramer, 2013),
and SVM (Suthaharan, 2016). Additionally, two advanced Transformer-based deep
learning models: TabTransformer (Huang et al., 2020) and FT-Transformer (Gorishniy
et al., 2021) were also implemented for comparison. All models were implemented under
the same conditions. Once obtained, these models were evaluated on an independent test
set to verify their predictive power.

Assessment metrics

We utilized several metrics to assess model performance, including area under the receiver
operating characteristic curve (AUCROC), area under the precision-recall curve
(AUCPR), and accuracy (ACC). Derived from true positive, false positive, true negative,
and false negative rates, these metrics are pivotal in machine learning for evaluating
classification models. AUCROC gauges a model’s ability to discriminate between positive
and negative classes, while AUCPR is crucial for analyzing the precision-recall trade-off,
particularly in datasets with uneven class distribution. These indicators not only provide a
holistic view of model efficacy but are also adept at managing class imbalances, thus
facilitating the evaluation process. Their comprehensive nature enables a nuanced analysis
of a model’s predictive quality, greatly influencing model selection and optimization
strategies and offering insights into the classifier’s discriminative capability. Additionally,
we employed balanced accuracy (BA), Matthew’s correlation coefficient (MCC), Cohen’s
kappa (CK), sensitivity (SN), specificity (SP), precision (PRE), and F1 score (F1) to further

enrich our evaluation framework.
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Table 2 Benchmarking results between our proposed method and the others.

Method Metric
ROCAUC PRAUC BA MCC CK SN SP PRE F1

XGB 0.9794 0.9605 0.9555 0.9342 0.9158 0.9952 0.9832 0.9483 0.9333
AB 0.9578 0.8966 0.8420 0.7647 0.6976 0.9865 0.9404 0.8010 0.7515
RF 0.9621 0.8895 0.9621 0.9170 0.9472 0.9769 0.9261 0.9365 0.9169
LR 0.8065 0.4908 0.5852 0.2228 0.2496 0.9208 0.4902 0.3308 0.2055
DT 0.9793 0.9315 0.9793 0.9503 0.9743 0.9843 0.9499 0.9619 0.9502
k-NN 0.9685 0.8873 0.9371 0.8462 0.9272 0.9469 0.8420 0.8825 0.8445
SVM 0.8093 0.5555 0.5863 0.2686 0.2126 0.9600 0.6183 0.3164 0.2235
TabTransformer 0.9789 0.9290 0.9789 0.9486 0.9743 0.9835 0.9473 0.9606 0.9484
FT-Transformer 0.9795 0.9328 0.9795 0.9512 0.9743 0.9848 0.9513 0.9627 0.9511
Ours 0.9892 0.9795 0.9573 0.9333 0.9215 0.9930 0.9758 0.9479 0.9326

Model benchmarking

Table 2 provides benchmarking results comparing our proposed method with others. The
results show that our model is more effective compared to other methods in terms of
ROCAUC and PRAUC. Our model achieves a ROCAUC value of 0.9892, followed by the
FT-Transformer model, the TabTransformer model, and other conventional machine
learning models. Among these conventional machine learning models, the XGB model is
the best model, followed by DT, k-NN, RF, AB, and other models. For PRAUC, our model
obtains a value of 0.9795. The LR and SVM models have the smallest PRAUC values, at
0.4908 and 0.5555, respectively. Except for the AB and k-NN models, all other models have
PRAUC values over 0.9. MCC is a statistical metric used to evaluate the quality of binary
classifications. As it accounts for true and false positives and negatives, it is a balanced
metric suitable even when the classes are of very different sizes. The MCC value for the FT-
Transformer model is 0.9512, which is higher than that for the DT model, the XGB model,
and our method, with 0.9503, 0.9342, and 0.9333, respectively. Our method ranks as the
fourth best based on MCC, with a threshold of 0.5. In terms of sensitivity, specificity, and
precision, our model’s performance is only slightly lower than that of the XGB model.
Compared to the other models, the FT-Transformer model has the highest F1 score.

Repeated experiments

To investigate the robustness of our proposed method, we repeated the experiments 20
times with 20 different test sets created by random sampling (Table 3). The results show
that the average ROCAUC and PRAUC values vary within small ranges of 0.0043 and
0.0161, respectively. Across 20 runs, the ROCAUC values ranged from 0.96 to 0.98, and the
PRAUC values from 0.90 to 0.97 (Fig. 5). Although the PRAUC value exhibits a larger
standard deviation compared to other metrics, it remains small and acceptable. The
findings of this experiment demonstrate that our proposed method is both effective and
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Table 3 Results of repeated experiments for assessing the robustness of the model.

Trial ROCAUC PRAUC BA MCC CK SN Sp PRE F1
1 0.9892 0.9795 09573 09333  0.9215 09930 09758 09479  0.9326
2 0.9743 0.9121 09743 09359 09705 09781 09326 09512  0.9356
3 0.9741 0.9226 09741 09418 0.9659 0.9824 09465 0.9561  0.9417
4 0.9774 0.9328 09774 09496 09699 09850 0.9542 0.9620  0.9496
5 0.9746 0.9226 09746 09426  0.9663  0.9829 09464 0.9562  0.9425
6 0.9778 0.9320 09778 09495 09710 09846 09526 09617  0.9494
7 0.9780 0.9302 09780 09485 0.9723  0.9838 09499 09610  0.9484
8 0.9733 0.9248 09733  0.9442 09605 09862 0.9535 09570  0.9442
9 0.9778 0.9182 09778 09408 09781 09775 09333 09552  0.9403
10 0.9767 0.9224 09767 09434 09717 09817 09424 09568  0.9432
11 0.9676 0.9137 09676 09334 09523 09828 09472 09497 0.9334
12 0.9747 0.9023 09747 09301 09760 09734 09188 09465  0.9293
13 0.9833 0.9407 09833 09569 0.9825 09840 09531 09676  0.9567
14 0.9764 0.9182 09764 09405 09734 09794 09367 09547  0.9402
15 0.9778 0.9323 09778 09493 09716 09841  0.9523 09619  0.9492
16 0.9769 0.9266 09769 0.9461 09704 09834 0.9477 09589  0.9460
17 0.9727 0.9228 09727 09414 09616 0.9837 09499 09557  0.9414
18 0.9760 0.9120 09760 09369 09741 09779 09300 09515  0.9365
19 0.9727 0.9080 09727 09333 09666 09788  0.9315 0.9487  0.9331
20 0.9778 0.9376 09778  0.9526 09689 09867  0.9598 09643  0.9526
Mean  0.9765 0.9256 09749 09425 09673 09825 09457 09562  0.9423
Std 0.0043 0.0161 0.0052  0.0072  0.0126  0.0042  0.0126  0.0058  0.0074

stable. Table 4 presents computed confidence interval (CI) over 20 repeated trails with o
values of 0.01, 0.05, and 0.1 correponding to 99%CI, 95%CI, and 90%ClI, respectively.

Limitations and future work

While gradient-based decision trees offer significant advantages in terms of predictive
power and flexibility, they also come with limitations related to overfitting, computational
demands, and interpretability (Grinsztajn, Oyallon ¢» Varoquaux, 2022). Their
applicability is strongest in structured data environments, particularly where feature
importance and handling of imbalanced datasets are crucial. Understanding these factors
is essential for effectively leveraging the performance of machine learning models based on
this algorithm.

To further enhance the robustness and generalizability of models using gradient-based
decision trees, future work could explore the integration of generative models or advanced
resampling methods for tabular data. Generative models could be employed to synthesize
realistic data samples, thereby mitigating issues of data scarcity and imbalance (Wang
et al., 2024). Additionally, advanced resampling techniques designed specifically for
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Figure 5 Area under the curves of all implemented models. (A) Receiver operating characteristic (ROC) curve. (B) Precision-Recall (PR) curve.
Full-size K&l DOT: 10.7717/peerj-cs.2387/fig-5

Table 4 Confidence interval over 20 repeated trials.

Metric

Confidence interval

99%

95%

90%

ROCAUC
PRAUC
BA

MCC

CK

SN

SP

PRE

F1

[0.9749-0.9781]
[0.9197-0.9315]
[0.9730-0.9768]
[0.9399-0.9451]
[0.9627-0.9719]
[0.9810-0.9840]
[0.9411-0.9503]
[0.9541-0.9583]
[0.9396-0.9450]

[0.9746-0.9784]
[0.9185-0.9327]
[0.9726-0.9772]
[0.9393-0.9457)
[0.9618-0.9728]
[0.9807-0.9843]
[0.9402-0.9512]
[0.9537-0.9587]
[0.9391-0.9455]

[0.9756-0.9774]
[0.9222-0.9290]
[0.9738-0.9760]
(0.9410-0.9440]
(0.9646-0.9700]
(0.9816-0.9834]
[0.9430-0.9484]
[0.9550-0.9574]
(0.9407-0.9439]

tabular data (Wang, Chukova & Nguyen, 2023b) could help address class imbalance and
improve model performance. Incorporating these approaches could enhance the model’s

ability to generalize across diverse datasets and further reduce the risks of overfitting,

making gradient-based decision trees even more powerful and applicable to a broader

range of real-world problems.
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CONCLUSION

In this study, we developed a computational framework to predict employee turnover rate
using ensembles of gradient-based decision trees. The results show that our model
performs more effectively compared to other methods. While gradient-based decision
trees offer the strength of handling various types of data and capturing complex nonlinear
relationships, they can also be computationally intensive and sensitive to overfitting,
especially with large datasets. Despite these challenges, the flexibility and predictive power
of this approach are significant, particularly when enhanced with appropriate
regularization techniques. Future improvements could focus on optimizing computational
efficiency and further minimizing the risk of overfitting. This method holds potential for
addressing a wide range of problems beyond employee turnover, suggesting its
applicability in diverse analytical scenarios.
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