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ABSTRACT
Rapid advancement in information technology promotes the growth of new online
learning communities in an e-learning environment that overloads information and
data sharing. When a new learner asks a question, how a system recommends the
answer is the problem of the learner’s cold start. In this article, our contributions are:
(i) We proposed a Trust-aware Deep Neural Recommendation (TDNR) framework
that addresses learner cold-start issues in informal e-learning by modeling complex
nonlinear relationships. (ii) We utilized latent Dirichlet allocation for tag modeling,
assigning tag categories to newly posted questions and ranking experts related to
specific tags for active questioners based on hub and authority scores. (iii) We
enhanced recommendation accuracy in the TDNR model by introducing a degree of
trust between questioners and responders. (iv) We incorporated the questioner-
responder relational graph, derived from structural preference information, into our
proposed model. We evaluated the proposed model on the Stack Overflow dataset
using mean absolute precision (MAP), root mean squared error (RMSE), and
F-measure metrics. Our significant findings are that TDNR is a hybrid approach that
provides more accurate recommendations compared to rating-based and social-
trust-based approaches, the proposed model can facilitate the formation of informal
e-learning communities, and experiments show that TDNR outperforms the
competing methods by an improved margin. The model’s robustness, demonstrated
by superior MAE, RMSE, and F-measure metrics, makes it a reliable solution for
addressing information overload and user sparsity in Stack Overflow. By accurately
modeling complex relationships and incorporating trust degrees, TDNR provides
more relevant and personalized recommendations, even in cold-start scenarios. This
enhances user experience by facilitating the formation of supportive learning
communities and ensuring new learners receive accurate recommendations.
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INTRODUCTION
With the advancement in Internet technologies, many e-learning websites are now
deployed, e.g., Khan Academy (www.khanacademy.org/), Udemy (www.udemy.com/),
Coursera (www.coursera.org/), and Stack Overflow (www.stackoverflow.com/). These
websites offer numerous expertise, online courses, and other information sharing.
Recommender systems can help learners select the most appropriate topic or expert based
on their previous history of interests. Learners use formal and informal e-learning
prospects to create continuous development, knowledge, and skills needed for their career
and personal development (Cao et al., 2021). Formal e-learning refers to structured and
systematic learning settings where institutions organize educational activities and follow a
specific curriculum. For instance, online courses offered by universities or platforms like
Coursera, where learners aim to achieve official certifications or degrees. Informal
e-learning refers to more casual, self-directed learning activities where individuals engage
in educational pursuits without the goal of obtaining formal qualifications, such as Stack
Overflow, Stack Exchange (Xu et al., 2024). An e-learning community consists of friends
sharing information in the same domain of interest (Xu et al., 2024). Since the knowledge
is distributed across the network, e-learning communities focus on building knowledge
through collaborative efforts. Therefore, learners need to organize and improve their
e-learning abilities to achieve their learning goals (Huang et al., 2023; Xu et al., 2023).
Learners in the digital age have access to a vast number of e-learning resources from a
variety of formal and informal settings. Potential learners require some practical strategies
to assist them in identifying resources from a diversity of varieties. Learners often retrieve a
large amount of knowledge, comments, and e-learning resources, but they cannot filter out
the valuable information, resulting in the issue of information overload (Dang et al., 2024;
Shahrzadi et al., 2024). Educational recommender systems have recently attracted much
academic attention (Maqbool et al., 2024). To meet the goals and needs of the learners, the
recommender systems related to education can provide personalized guidance to the
learners. Liu et al. (2021) presented a novel approach to improving industrial
recommender systems by integrating deep matrix factorization with review feature
learning. The proposed EDMFmodel enhances traditional matrix factorization techniques
by leveraging review text data to capture more nuanced user preferences and item
characteristics (Liu et al., 2021). Liu et al. (2022) defined a unified graph-based framework
integrating multiple perspectives, including user-item interactions, social relationships,
and user-generated content. Li et al. (2021) designed CARM: a confidence-aware
recommender model that accounts for the varying reliability of reviews and user ratings.
Recommender systems provide a user with suggested actions, items, or decisions. They can
be viewed as tools that process information to extract relevant or significant aspects, thus
facilitating the problem of information overload (Dang et al., 2024; Shahrzadi et al., 2024).
The availability of massive amounts of information over the Internet and the number of
website visitors pose other main challenges for recommendation systems. Some of these
are the cold-start problem (Ban et al., 2024; Yin et al., 2024; Parvin, Moradi & Esmaeili,
2019; Ahmed et al., 2020; Ahmed et al., 2021) and data sparsity (Jiang et al., 2024;
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Zhu, 2023). The predictive ability of collaborative filtering algorithms is limited due to data
sparsity. Concerning cold-start users, standard collaborative filtering techniques fail and
cannot generate recommendations (Jing et al., 2014).

The collaborative-filtering methods predict the ratings and suggest items to users who
have been recommended similar ones (Montaner, López & De La Rosa, 2003). Traditional
collaborative filtering approaches often lack sufficient historical user behavior data, which
limits their ability to generate high-quality recommendations. Additionally, these
recommender systems may suffer from changes in trust relationships among users over
time (Deng, Huang & Xu, 2014). Moreover, the ratings provided by users through these
systems may become outdated or noisy (Ahmed et al., 2021). Matrix factorization
techniques, which rely on factorized latent models (Xiao et al., 2017), are used to calculate
the accuracy and popularity of preferences (Koren, 2008). However, these models have
limitations, such as (i) assuming that valued item features are suitable for all users
(Cremonesi, Tripodi & Turrin, 2011), (ii) failing to capture conditional preferences, and
(iii) ignoring social effects on user preferences, including various types of social
relationships, peer influence, and the homophily effect (Lewis, Gonzalez & Kaufman,
2012).

Data sparsity poses a challenge for collaborative filtering systems, making it hard to
produce accurate predictions. Recommender systems, which often operate within specific
domains, struggle with sparsity issues and challenges related to new users and items. In
situations of data sparsity, users may rate only a few items or may not provide ratings at all
(Khusro, Ali & Ullah, 2016).

The cold start problem is currently a significant challenge for recommender systems.
This issue arises when the system cannot generate a recommended list of items for users,
typically due to a lack of sufficient data. The cold start problem is particularly associated
with scenarios involving new users, items, or communities (Khusro, Ali & Ullah, 2016).

Many types of research have been conducted in this direction, including hybrid models.
These models use auxiliary and side information to overcome the cold start problem. As
knowledge is disseminated across different networks with various digital formats,
knowledge and learning are called “rest in diversity of opinions” (Sobaih, Palla & Baquee,
2022). In informal e-learning environments, learners may face the issue of knowledge
overload and metacognition. From a learning point of view, connections among e-learning
communities play a more important role than those formed through formal education.

Informal e-learning communities are typically located closer to geographic locations
(Neubauer et al., 2011). E-learning communities can now be developed and maintained
online because of the advancement in information technologies. However, organizing
information and addressing the problem of information overload (Shahrzadi et al., 2024)
requires additional time and effort from learners (Neubauer et al., 2011). Recommender
systems have found great success in social media, giving rise to a novel area of research
known as trust-aware recommender systems. In contrast to traditional recommender
systems that primarily rely on user-item ratings, trust-aware recommender systems go a
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step further by incorporating trust-related information among users alongside rating data
(Ahmed et al., 2022; Li et al., 2021).

The main properties of the proposed TDNR model are:

. The proposed model automatically learns features using deep neural networks to tackle
the important rating prediction task. However, the model’s performance may suffer if
raw features introduce noise. As a result, deep neural networks have become a preferred
option for feature representation (Elkahky, Song & He, 2015).

. Similarly to the latent factor model (Koren, 2008), proposed model leverages user
preferences; however, unlike the latent factor model, it also incorporates trust networks
and their influences. The proposed model integrates trust information implicitly,
enhancing its effectiveness.

. We also aspire to address the issue of developing efficient recommendation models with
deep neural architectures to tackle the learner cold start problem. In contradiction to
linear models such as matrix factorization (Koren, 2008) that only capture the linear
relationship in data, the deep neural networks model captures the non-linearity of user-
item interactions with nonlinear activation functions such as sigmoid, relu, tanh, etc.
(Elkahky, Song & He, 2015).

Main contributions
In this article, our contributions are

. We proposed a Trust-aware Deep Neural Recommendation framework called TDNR. It
models complex nonlinear relationships for solving learner cold-start problems in an
informal e-learning environment and generates recommendations based on experts’
trust and their answers.

. We performed tag modelling using latent Dirichlet allocation and identified the tag
category for a newly posted question.

. We introduced the concept of trust degree between the questioner and responder and
integrated this trust information into the TDNR model to improve recommendation
accuracy.

. We also introduced the questioner-responder relational graph from structural
information of preferences related to questions and responders and embedded this in the
proposed model.

The rest of the article is structured as follows. “Related Work” describes the related
work, “Materials and Methods” discusses the proposed approach, “Results” explains the
experimental setup and results, and “Conclusions and Discussion” discusses the
conclusion.
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RELATED WORK
We categorized the related work into hybrid models used for recommender systems in
e-learning, deep learning approaches, and trust-aware recommender systems based on
e-learning.

Hybrid recommendation models for e-learning
Previous research has shown that combining different recommendation approaches, such
as collaborative filtering and content-based, into a hybrid approach can be more effective.
Both approaches have limitations. Collaborative filtering cannot give better results against
new items, but their combination produces better results and solves the common problems
of data sparsity and cold start in recommender systems (Yin et al., 2024; Maqbool et al.,
2024). A commercial example of a hybrid recommendation system is Netflix. Another
commercial hybrid recommender system is the Google News recommender system (Peng,
Zhao & Hu, 2023). Some of the hybridization techniques are weighted (Luo et al., 2022),
cascade (Imran et al., 2024), and mixed (Hussain et al., 2024). Data sparsity is a crucial
challenge for collaborative filtering and content-based recommenders (Shahzad et al.,
2024), even though collaborative filtering (Shahzad et al., 2023) is the most common
educational recommendation algorithm. Nowadays, a hybrid approach is getting popular
and is not sensitive to these issues (Sobhanam & Mariappan, 2013). E-learning
recommender systems adopted the best features of a hybrid approach and overcame the
drawbacks of existing approaches (Çano & Morisio, 2017). In 2021, Souabi et al. (2021)
surveyed important social and e-learning approaches that enhance learning. Buder &
Schwind (2012) emphasized how non-technical aspects should be considered when
developing personalized educational recommender systems. Drachsler, Hummel & Koper
(2009) discussed that the recommender systems in informal e-learning differ from formal
e-learning. Therefore, the researchers suggested that more efforts are required to produce
quality among informal e-learning communities. Learning occurs through conversions,
which link collaborative learning’s interactive and cognitive elements. Therefore, several
studies followed a hybrid approach based on trust and collaborative filtering algorithms
because trust is a relationship that establishes and cultivates interactions among users of
e-learning communities. Trust is a cognitive and social mechanism that helps people
manage various levels of uncertainty and risk (Bailey, Almusharraf & Almusharraf, 2022).
Due to users’ social interactions, learners with similar e-learning preferences may assign
varying scores to a post. In an e-learning environment, communities are essential, and the
recommender system should consider learners’ social connections and affiliations
(Serrano-Iglesias et al., 2019). In Ahmed et al. (2021), a deep neural network-based custom
recommendation model for educational resources is proposed. The model, constructed
after a multilayer perceptron-based prediction, demonstrated a consistent reduction in the
average absolute error as the number of iterations increased, reaching an average of 0.704,
and the loss value stabilized around 0.6. In Tzeng et al. (2023), authors proposed a
recommendation system to be integrated into massive open online courses (MOOCs),
following a hybrid architecture, where e-learning resources are described by a set of terms
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extracted directly from the supporting texts in the MOOC. Ahmed et al. (2022) developed a
recommendation model for aliexpress based on autoencoder.

Deep learning-based recommender systems for e-learning
Deep learning has recently succeeded in collaborative filtering-based recommender
systems, making it a better choice for e-learning recommender systems
(Zhang et al., 2019). To assess the learner’s ability, Ahmed et al. (2021) defined a framework
based on a neural network that is integrated with nearest neighborhood collaborative
filtering approaches (Wang et al., 2017). Several recently proposed deep learning-based
recommendation architectures to solve the two critical problems of data sparsity and cold
start (Wei et al., 2017; Wang, Wang & Yeung, 2015). Shen et al. (2019) developed a novel
approach that combines deep variational matrix factorization with knowledge embedding
to enhance recommendation accuracy. The proposed method captures complex user-item
interactions and integrates external knowledge, improving prediction performance. In
2019, Yi et al. (2019) introduced a technique that combines matrix factorization with
implicit feedback embedding to enhance recommendation accuracy. While the approach
effectively captures user preferences and improves prediction accuracy, it may still struggle
with scalability and computational efficiency, especially in large-scale datasets.
Additionally, the reliance on implicit feedback could limit the model’s ability to fully
understand nuanced user behaviors, potentially impacting recommendation quality in
complex scenarios (Yi et al., 2019). Shu et al. (2018) focused on recommending educational
content by analyzing and matching resource features to user preferences. While the
approach effectively personalizes learning experiences, it may be limited by its reliance on
content descriptions, potentially missing out on capturing the broader context of user
needs.

Trust-aware recommender systems for e-learning
In 2021, Mohamadrezaei & Ravanmehr (2021) proposed a trust-based e-learning
recommender system that addresses conventional e-learning systems’ limitations by
incorporating learners’ previous interactions and interests. The system clusters users and
predicts suitable learning courses using fuzzy clustering and weighted association rules,
improving recommendation accuracy and efficiency. The approach, tested on the Moodle
dataset, showed reduced MAE and RMSE, leading to more accurate and personalized
course recommendations. Trust relationships and fuzzy clustering help to mitigate data
sparsity and enhance the recommendations’ relevance in large-scale e-learning
environments (Mohamadrezaei & Ravanmehr, 2021). In Chen et al. (2017), presented an
App recommender system for GooglePlay with a deep neural network model. Studies in Lü
et al. (2012),Weerathunga et al. (2021), Dwivedi & Bharadwaj (2013) developed education
recommender systems by integrating trust with collaborative filtering techniques.
However, these approaches cannot alleviate the issue of data sparsity in recommender
systems. According to Goodfellow, Bengio & Courville (2016), most feedforward deep
networks are built on “core parametric function approximation”. They observed that
supervised learning, such as KNN, logistic regression, and Bayesian classifiers, gave the
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best results statistically and computationally compared to unsupervised learning. Most
machine learning algorithms in supervised learning overcome the high dimensionality of
random variables. However, unsupervised learning algorithms are still not mature
(Goodfellow, Bengio & Courville, 2016). Feedforward deep network consists of modern
neural networks such as recurrent neural networks, convolutional neural networks, and
others. These networks are widely used for developing recommendation frameworks (You
et al., 2019). To enable a hierarchical analysis of user preferences, authors integrated RNN
with a unique Temporal Neural Network to capture the historical impact on users’
decisions (You et al., 2019). In 2019, Sarwar et al. (2019) proposed a framework for e-
learning based on course summary information that provides personalized
recommendations to learners. They integrated MLPs with ontology, which effectively
model features. Shen et al. (2016) suggested a customized CNN-based algorithm for
recommending course resources. This approach extracted the features of learning and
student preferences using CNN and predicted the learner ratings. Mrhar & Abik (2019)
proposed an architecture that facilitates communication between MOOCs and formal
e-learning platforms. It allows the system to suggest MOOC courses to learners similar to
those they have already taken on the formal platform (Mrhar & Abik, 2019). In 2018, Zhou
et al. (2018) proposed a recommendation framework that found the similarity among the
learners, predicted the users’ learning path based on LSTM, and recommended the course.
This approach reduced the model training time for larger datasets (Zhou et al., 2018). Xu &
Zhou (2020) designed a course recommendation model based on multimodal features
using LSTM. Li et al. (2021) introduced a novel recommendation model named AutoLFA.
This model is a hybrid approach that integrates Autoencoder and Latent Feature Analysis
techniques. AutoLFA independently utilizes an autoencoder and an LFA model to create
two recommendation models. A limitation of this model that is not addressed by Guo et al.
(2023) is how varying hyperparameters in the dataset’s characteristics might affect the
performance of the AutoLFA model.

Recommender systems based on e-learning
Khanal et al. (2019) systematically reviewed machine learning-based recommendation
systems in e-learning. They categorized recommendation techniques, machine learning
algorithms, and application areas, emphasizing the importance of appropriate validation
and evaluation approaches (Khanal et al., 2019). Srivastav & Kant (2019) conducted a
comparative study of deep learning-based e-learning recommender systems, exploring
how these techniques addressed challenges like cold-start and sparsity problems. In 2019,
Aeiad & Meziane (2019) discussed an adaptable and personalized e-learning system using
an ontology-based approach. The system integrates VARK learning styles with
background knowledge to improve learning outcomes. The system heavily relies on the
quality of ontologies and semantic relations, which can be challenging to maintain and
update (Aeiad & Meziane, 2019). Ibrahim et al. (2020) proposed a fog-based
recommendation system to enhance e-learning performance, improving personalization
and response times. The reliance on fog computing infrastructure may limit the system’s
applicability in environments where such infrastructure is unavailable (Ibrahim et al.,
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2020). In 2019, Bhaskaran & Santhi (2019) introduced a trust-aware hybrid recommender
system integrating K-means clustering, Firefly algorithm, and Apriori, showing improved
accuracy and efficiency. A limitation is that the model’s complexity could be a barrier to
implementation in large-scale systems, requiring significant computational resources
(Bhaskaran & Santhi, 2019). Wan & Niu (2019) proposed a self-organization-based
recommendation approach, improving adaptability and personalization in e-learning. The
study lacks explicit performance evaluations, making it difficult to assess the practical
effectiveness of the approach (Wan & Niu, 2019). Kolekar, Pai &Motta (2019) developed a
rule-based adaptive user interface for e-learning systems that adjusts dynamically based on
FSLSM learning styles, enhancing user engagement. One of the limitations of this model is
that the rule-based system may not scale well with increasing complexity in learning
content and user diversity (Kolekar, Pai & Motta, 2019).

Based on the challenges mentioned in a literature review, we adopt a hybrid approach in
which we integrate the trust and structural information of the learners with deep neural
networks to solve the problem of learners cold starting in an informal e-learning
environment.

MATERIALS AND METHODS
Rationale for proposed framework
The TDNR framework addresses challenges in e-learning environments, particularly the
cold-start problem where new users (learners) have insufficient interaction history for
generating accurate recommendations. Traditional recommendation systems struggle with
this issue due to data sparsity and the inability to effectively model complex, nonlinear
relationships between users and items. By integrating trust and structural information of
learners into a deep neural network, TDNR aims to provide more accurate and
personalized recommendations. The rationale for this approach lies in the observation that
trust relationships and historical interactions between learners and experts can
significantly enhance recommendation accuracy. As a social and cognitive mechanism,
trust helps manage uncertainties and risks associated with recommendations, thereby
improving the system’s effectiveness.

Deep neural networks (DNNs) and trust-sensitive systems are particularly effective in
addressing the cold start problem in recommendation systems. DNNs excel at capturing
complex, nonlinear relationships in data, allowing them to generalize from existing
patterns even when there is limited interaction data for new users or items. This capability
is crucial in cold start scenarios, where direct data is sparse. Trust-sensitive systems, on the
other hand, leverage social trust relationships to make recommendations. When new users
have little to no interaction history, their trust connections with more established users can
inform the system of likely preferences. Combining DNNs’ pattern recognition with trust-
sensitive insights enables more accurate and personalized recommendations for users in
cold start situations.
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Proposed framework
We propose a model called Trust-aware Deep Neural Recommender in which we combine
the learner preferences information with neural networks (He et al., 2017) and generate
recommendations based on trust present among the responders (experts). The architecture
of the TDNR model is shown in Fig. 1. This model consists of four modules. The first
module, TagModelling, assigns a particular tag to a new question using the LDA approach.
The second module, Ranking Experts, filters out experienced responders based on hub and
authority scores. The third module is Computing Trust, which estimates the trust intensity
among responders, and the fourth module predicts the voting for an active questioner.

Problem definition
To solve a problem of a user (questioner) cold start in an e-learning environment, we
formulate the problem as, “If a new user (questioner) comes and asks/posts a question in
an e-learning environment, then how will a system recommend the expert based on
tagging information and the vote?” For each questioner q � Ne, the goal is to predict the
vote for an answer related to Ae on an e-learning community by incorporating the
structural information adopted by trusted neighbors of q.

Let us assume that Q ¼ q1; q2; . . . ; qnf g be the set of all questioners,
A ¼ a1; a2; . . . ; amf g be the set of all answers provided by experts, T ¼ t1; t2; . . . ; tkf g be
the set of tags associated with questions and T ¼ t1; t2; . . . ; tkf g be the set of votes given to
answers.

Figure 1 Proposed architecture of TDNR. Full-size DOI: 10.7717/peerj-cs.2386/fig-1
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Suppose a new user qnew posts a question q in the e-learning environment. The question
q is associated with a tag ti 2 T based on its content. No historical data is available for qnew,
making it a cold start problem.

Let Ne qnewð Þ represent the set of trusted neighbors of qnew (i.e., other users who have
interacted with similar questions or have a trust relationship with qnew). The goal is to
predict the vote vaq for the answer aj based on the tag ti and the votes given by the trusted
neighbors in Ne qnewð Þ for a cold start user qnew.

Tag modeling
The motivation behind tag modeling is that in an e-learning environment such as Stack
Overflow, if a new questioner enters the wrong tags at the time of posting a question, then
the system posts a question under the wrong tag category, and learner (questioner) may get
suffer from wrong answers from experts. Figure 2 shows the screenshot taken from the web
interface of Stack Overflow for the new learner.

Here, the new learner posts the question, “Is there any function in Python that performs
regularization in a CNN model?” and enters the wrong tag, ‘English’ instead of Python or
deep learning, so the system will post this question under the wrong tag categories. Due to
this manual false selection, the performance of the system is affected. We predicted the tag
category for a question that an active questioner posts and categorized it according to given
tag categories using latent Dirichlet allocation (LDA). We also observed how each question
belongs to each tag category based on the text in a question. Figure 3 shows some possible
tags present in a Stack Overflow dataset.

Figure 2 Stack overflow interface. Full-size DOI: 10.7717/peerj-cs.2386/fig-2
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We use LDA (Ali et al., 2022) to solve the problem of assigning a tag to the question. The
questions are grouped according to the tags. We treat each question as a document. LDA
infers the structure of hidden topics using the observed words. There are Q documents
(questions) in an e-learning corpus C denoted by C ¼ fq1; q2; . . . :qQg and each question q
has N words denoted by w ¼ fw1;w2; . . . :wNg. All words are categorized into k tags
(topics) using the approach discussed in Ali et al. (2022). The key assumption is that each
document represents a question on Stack Overflow and is a mixture of topics, and each
word in the document is drawn from one of these topics.

LDA assumes that for each document q (a question in our case), there is a distribution
over topics denoted by hq, which is drawn from a Dirichlet distribution with parameter a:

hq � Dirichlet að Þ

Similarly, for each topic (tag) k, there is a distribution over words denoted by bk, which
is also drawn from a Dirichlet distribution but with parameter g:

bk � Dirichlet gð Þ

Here, a and g are hyperparameters that control the sparsity of the distributions hq and
bk respectively.

For each word w in a document (question) q, a topic z is chosen from the document’s
topic distribution hq is represented as

zqn � Multinomial hq
� �

v

where zqn indicates the topic assigned to the nth word in the document q:
Once a topic zqn is chosen, the actual word wqn is drawn from the corresponding topic’s

word distribution bzqn :

Figure 3 List of tags available at stack overflow dataset. Full-size DOI: 10.7717/peerj-cs.2386/fig-3
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wqn � Multinomial bzqn

� �
:

This step generates the observed word from the selected topic’s word distribution.
We used the perplexity metric to evaluate tag modeling. Perplexity tells us how well the

model predicts the samples. Figure 4 shows the evaluation of the tag model based on the
perplexity score depending on the number of tags. It is evident from Fig. 4 that the lowest
perplexity value is for 18 tags, so we trained the LDA model with 18 tags (topics).

Ranking experts

The output of the tag modeling phase is identifying a tag for a particular question about an
active questioner. After identification of the tag, we filter out all the questioners and
responders related to that tag and then construct a hub authority graph among them. HITS
algorithm performs ranking and filters the most experienced experts and their answers
(votes) (Easley & Kleinberg, 2010). For computing a hub and authority score, we used the
formulas proposed by Easley & Kleinberg (2010), based on a bipartite graph that consists of
questioners as authorities and responders as hubs, as shown in Fig. 5. In a given graph, we
assume that node ‘1343’ is an authority (questioner) node and other nodes are called hubs
(responders). We chose those responders as experts for an active questioner with a hub
score greater than or equal to the threshold value of 0.5. Therefore, the experts for an active
questioner ‘1343’ in the ‘3D Graphics Model’ tags are ‘1131’, ‘2666’, ‘57625’, and ‘1527’. In
this way, we ranked the experts based on the hub score.

Figure 4 Evaluation of tag modeling using perplexity score.
Full-size DOI: 10.7717/peerj-cs.2386/fig-4
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Computing trust
After ranking the experts, we defined the trust degree T q; rð Þ between questioner q and
responder (expert) r of the e-learning community by combining similarity and confidence
using Eq. (1).

T q; rð Þ ¼ 2� similarity q; rð Þ � confidenceðrjqÞ
similarity q; rð Þ þ confidenceðrjqÞ : (1)

Equation (1) describes that, T q; rð Þmay not be the same as T q; rð Þ that is true in real-life
scenarios (Bedi & Sharma, 2012). Here, similarity(q, r) is the Pearson correlation
coefficient for computing similarity between the questioner q and responder r, and this
similarity can be computed using Eq. (2).

similarity q; rð Þ ¼
P

sq;a ��sq
� �

sr;a ��sr
� �

rqrr
(2)

where sq;a and sr;a denote the vote of questioner q and responder r for answer ‘a’,
respectively. �sq is the average voting of questioners q and �sr shows the average voting of
responder r, respectively. rq and rr are the standard deviations of voting given by q and r,
respectively. The similarity value lies between [0, 1]. If similarity q; rð Þ � 0, shows that the
q and r are correlated.

The confidence(r|q) is the confidence that represents how much a questioner q is
interested in responder r and vice versa. The confidence can be computed using Eq. (3).

confidence rjqð Þ ¼ No: of answers voted by q and r in common
No: of answers voted by q

: (3)

The confidence(r|q) is large if the voting overlap between q and r is high; otherwise,
confidence(r|q) has less value.

Figure 5 Hub and authority graph for ‘3D Graphics Model’ Tag: A node in blue color represents
authority, and nodes in orange color represent a hub. Full-size DOI: 10.7717/peerj-cs.2386/fig-5
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In TDNR, we used trust as an outcome for learner interaction and a basis for the
recommendation model. Trust information significantly influences the recommendation
process in the TDNRmodel. The model incorporates trust degrees into the final prediction
of how a questioner would vote on an answer provided by a responder. This integration of
trust helps the model better predict the questioner’s preferences, particularly in cold-start
scenarios where traditional recommendation methods might struggle due to a lack of
historical data. By leveraging trust, the TDNR model can provide more personalized and
accurate recommendations, improving the overall effectiveness of the e-learning platform.
This approach ensures that even with minimal direct interaction data, the system can still
make informed recommendations by relying on the trust relationships within the
community, thereby addressing the challenges associated with the cold-start problem.

Prediction

Figure 6 illustrates the responder relational graph construction process. The graph is formed
based on the interaction matrix, linking two responders when they share the same row in
the interaction matrix, effectively representing the accurate coexistence of responders. For
instance, if the first questioner engages with both responder r2 and responder r5, an edge
exists between node r2 and node r5. Easily derived from the responder graph, the adjacency
matrix indicates whether pairs of responders are adjacent or not. Let A 2 RN�N be the
adjacency matrix of the responder graph. LetA ið Þ ¼ Ai1;Ai2; . . . ::AiMf g denote the ith row,
indicating the relationships between responder r and remaining responders. The adjacency
matrix keeps the structural information of the responder relational graph. The Trust-aware
Neural Network (TNN) prediction module consists of two parallel neural networks, the
outputs of which are weighted and summed up for final prediction. A TNN learns
responder representations from both questioner-responder and responder-responder
structural Information. The final scoring layer is formed by combining the predictions from
both networks.

1) Input and embedding layer
The input of TNN consists of responder interaction behavior, denoted as B ið Þ and

responder structural information denoted as A ið Þ. There are two main reasons for using B ið Þ
and A ið Þ as inputs: first, the responder index alignment is maintained, allowing for the

Figure 6 Constructing responder relationship graph from questioner behaviours.
Full-size DOI: 10.7717/peerj-cs.2386/fig-6
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incorporation of responder graph structure. As a result, the two sub-networks can be
trained simultaneously. Secondly, the use of B ið Þ and A ið Þ is based on the concept of
responder similarity. Interaction distributions per responder are typically more stable than
per questioner (Atawneh et al., 2020). Additionally, there is a responder embedding,

Pi 2 Rd , illustrated in Fig. 1: Pi 2 RN�d represents a learnable parameter and can be
considered a responder latent factor in matrix factorization.

2) Hidden layer
Based on the provided minimal inputs B ið Þ and A ið Þ, we apply non-linear

transformations to convert them into compact, high-density representations. These
transformed states are represented as HB

ið Þ for B ið Þ and HA
ið Þ for A ið Þ: The methodology for

this transformation is modeled in Eqs. (4) and (5).

HB
ið Þ ¼ f B ið ÞWB

1 þ bB1
� �

(4)

HA
ið Þ ¼ f A ið ÞWA

1 þ bA1
� �

(5)

where WB
1 2 RM�d , WA

1 2 RN�d , bB1 2 Rd, bA1 2 Rd are weights and biases. f is the
activation function illustrating the advantageous impact of introducing non-linearity on
the model’s efficacy. These two dense embeddings encode responder information from
different perspectives, with HB

ið Þ for responder relationships.
3) Prediction layer
In the TNN framework, every individual sub-network includes a layer for intermediate

predictions. The notation ZB
ið Þ 2 RM represents the scores derived from the structure of

information exchange between the questioner and responder. Similarly, ZA
ið Þ 2 RM

signifies the scores expected from the interactions and relationships between different
responders, as written in Eqs. (6) and (7).

ZB
ið Þ ¼ r HB

ið Þ W
B
2 þ bB2 þ Pi

� �
(6)

ZA
ið Þ ¼ r HA

ið Þ W
A
2 þ bA2

� �
(7)

where WB
2 2 Rd�M; WA

2 2 Rd�M; bB2 2 RM , bA2 2 RM are weights and biases. r
represents sigmoid function. The embedding of the responder, denoted as Pi It is input
into Eq. (6), which functions as a unique bias adapted for voting prediction. Specifically,

WB
2 and WA

2 can be considered as latent factors associated with the questioner in matrix

factorization.
In Eq. (8), we incorporated the trust intensity that is T q; rð Þ as derived using Eq. (1), as

the product of the trust between questioner q and their neighbor r. The ultimate score is
derived by merging ZB

ið Þ and Z
A
ið Þ, taking into account a weight factor α along with a measure

of trust intensity. Consequently, we have

B̂ ið Þ ¼ a ZB
ið Þ þ 1� að Þ ZA

ið Þ �
Y
r2Nq

Tqr (8)

where B̂ ið Þ 2 RM represents the preference of all questioners over responders r, including
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B̂1r; B̂2r; . . . ::BMr . The factor a � 0; 1½ � determines the extent to which various structural
information influences the prediction outcome.

We have given TNN a probabilistic interpretation. The probability of all feedback in the
dataset is represented in Eq. (9).

P Bj�ð Þ ¼
Y
q;rð Þ�Bþ

B̂qr þ
Y
q;rð Þ�B�

ð1� B̂qrÞ �
Y
r2Nq

Tqr (9)

where Bþ represents the set of questioner-responder pairs where Bqr ¼ 1, and B�

represents the set where Bqr ¼ 0. By applying the negative logarithm to the likelihood, the
resulting expression as modeled in Eq. (10) is a cross-entropy loss.

‘ �ð Þ ¼ �
X
q;rð Þ�Y

Bqr log B̂qr
� �þ 1� Bqr

� �
log 1� B̂qr

� �
(10)

Algorithm 1 TNN: prediction.

Input: Interaction behavior matrix: B ið Þ; Structural information matrix: A ið Þ for each responder, Trust
intensity T q; rð Þ between questioner q and responder r, Weight factor: α

Output: Prediction score B ið Þ

1. for each responder i:

2. Input B ið Þ and A ið Þ

3. Initialize responder embedding Pi

4. end for

5. for each responder i:

6. Transform B ið Þ to HB
ið Þ using Eq. (4).

7. Transform A ið Þ to HA
ið Þ using Eq. (5).

8. end for

9. for each responder i:

10. Compute ZB
ið Þ using Eq. (6).

11. Compute ZA
ið Þ using Eq. (7).

12. Compute predicted score B̂ ið Þ using Eq. (8)

13. Compute P Bj�ð Þ using Eq. (9).

14. Compute cross-entropy loss ‘ �ð Þ using Eq. (10).

15. Train the network by minimizing cross-entropy loss

‘ �ð Þ.
16. Use regularization techniques like dropout and ‘2 norm

and apply an adaptive gradient algorithm for parameter

learning.

17. end for

18. return B̂ ið Þ
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In Eq. (10), � encompasses the model’s parameters, such as the responders’ weights,
biases, and embeddings. To regulate these parameters in �, the ‘2 norm, along with a
regularization rate k, is employed. The dropout method, which is set to zero for the output
of each hidden neuron with a 50% probability, is utilized for regularization. The network
undergoes end-to-end training to minimize cross-entropy loss. Specifically, the adaptive
gradient algorithm (Duchi, Hazan & Singer, 2011) is used for parameter learning, as it
helps in reducing the need for extensive tuning of the learning rate.

Algorithm 1 describes the prediction process adopted by Trust-aware Neural Network.

Time complexity
To analyze the computational complexity of Algorithm 1 line by line, we performed
complexity analysis based on the number of responders, denoted as n, and the size of the
matrices B ið Þ and A ið Þ is represented asm�m. Line 1 for loop runs for each responder, so
its time complexity is O nð Þ: Line 2: Inputting B ið Þ and A ið Þ can be considered O 1ð Þ: Line 3:
Initializing the responder embedding Pi is O 1ð Þ: The loop runs for each responder, making
the total complexity for lines 5–7 Oðn�m2Þ. Lines 9–16 are executed for each responder i,
contributing O nð Þ. Each operation within this loop (including forward pass, backward
pass, and parameter updates) contributes O cost per trainingð Þð Þ: Since the training
process involves multiple iterations k, the overall complexity for these lines becomes
O k� n� cost per trainingð Þð Þ:Here k represents the total number of iterations or epochs
over which the model is trained. Typically, deep learning models require multiple passes
over the entire training dataset to converge to a minimum loss. cost per training
represents the computational cost of a single iteration of training, which includes the cost
of forward propagation (computing outputs) and backpropagation (updating weights).
This cost is influenced by the size of the model (number of parameters, which depends on
the dimensions of the input and hidden layers) and the complexity of the operations (such
as matrix multiplications, non-linear activations, and regularization). Lines 9–16 typically
involve multiple iterations over the entire data, so this could be O(k × n ×
cost_per_training), where k is the number of iterations. Line 18 takes O 1ð Þ time. Thus, the
overall time complexity of Algorithm 1 is Oðn�m2Þ.

Time complexity analysis

Consider implementing the Trust-aware Neural Network (TNN) model from Algorithm 1
for a recommendation system on a large e-learning platform. Suppose the platform has
10,000 responders (users who answer questions), with each responder represented by a
feature vector of size 100 and an embedding dimension of 50. The model has trained over
100 iterations (epochs). Each operation, including matrix multiplications and non-linear
transformations, has a complexity of O m� dð Þ, where m is the feature size, and d is the
embedding dimension. The total cost per iteration for each responder, combining forward
pass, loss computation, and parameter updates, sums up to O(25,000). With 10,000
responders, the complexity for one iteration is O(250,000,000), leading to a total
complexity of O 25� 109ð Þ for 100 iterations. This complexity analysis shows that the
algorithm incurs a significant computational cost, especially when scaled to real-world
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scenarios with large datasets. If the platform doubled the number of responders or
increased the feature size, the complexity would grow exponentially.

RESULTS
We scrapped the data from Stack Overflow using Google Chrome API and collected it
publicly from ‘www.stackoverflow.com’, an online e-learning environment. We collected
about 236,789 answers and 15,098 unique users. The dataset is sparse because each
questioner has given answers to less than fifty questions. The Stack Overflow dataset
consists of the following attributes: QuestionerID, QuestionID, QuestionText, Tags,
AnswerID, AnswererID, Vote, and AnswerTime. Figure 7 shows the number of votes for
answers present in a dataset. The vote for the answer lies within the range of 1 to 10.
Within a social network, users indicate their trust towards others using a binary form
[0, 1]. A value of one denotes trust, while a lack of trust is represented by 0. In the Stack
Overflow dataset, no explicit trust relations are available among questioners and
responders, so we generated implicit trust relationships among users. For the sampling of
data used in TDNR model, we split the data on a ratio of 30% for test set and 70% for the
training set, related to all views of data.

We have performed the experiments on Core i-7 machine with 64 GB RAM related to
proposed model and baselines. Our experimental study utilized different machine learning
libraries or frameworks such as TensorFlow, pandas, sci-kit learn, and matplotlib.

Views of data
We evaluated the TDNR model based on different views of data, including:

All Learners: A set of learners is assigned to vote for answers from 1 to 10.
Cold Start Learners: These learners are assigned to vote for less than three answers.

There are about 3.33% cold start learners in the Stack Overflow dataset.

Figure 7 Number of votes for answers present in a stack overflow dataset.
Full-size DOI: 10.7717/peerj-cs.2386/fig-7
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Heavy Learners: A set of learners who voted higher than five answers. In this dataset,
the rich learners are about 5.55%.

Evaluation metrics and baselines
TDNR’s performance is assessed using the root mean square error (RMSE) and mean
absolute error (MAE) metrics (Ahmed et al., 2020). The evaluation involves the application
of the RMSE metric, calculated in Eq. (11).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
q;a

ðvqa � v̂qaÞ2

N

vuut
(11)

vqa is the actual vote, v̂qa is predicted to vote for an answer about active questioner q. N

is the total number of votes under evaluation. The MAE metric is represented in Eq. (12).

MAE ¼ 1
N

XN
a¼1

vqa � v̂qa
�� ��: (12)

According to Deng, Huang & Xu (2014), F-measure is defined in Eq. (13).

F measure ¼ 2 � precision � coverage
precisionþ coverage

: (13)

We have also evaluated the results of TDNR model by comparing it with rating-based,
trust-based, and deep learning-based methods.

BasicMF: Koren (2008) introduced a method of matrix factorization based on user and
item features and predicted the ratings of an item.

SVD: Koren, Bell & Volinsky (2009) proposed a temporal-based recommender model
combining neighborhood model and matrix factorization to improve the prediction
accuracy.

SocialMF: Jamali & Ester (2010) proposed an approach called SocialMF for solving a
cold start problem in trust-based recommendations.

SoReg: Ma et al. (2011) developed a recommendation framework and improved the
prediction accuracy.

NNMF: Dziugaite & Roy (2015) combined the multilayer neural networks with a matrix
factorization approach and proposed a new model for rating prediction.

TrustCTR: Ahmed et al. (2020) proposed a rating-based recommendation framework
using implicit and explicit trust relations present among the users of social networks.

RSTE: Ma, King & Lyu (2009) proposed a hybrid recommendation model called RSTE
that is based on social network and matrix factorization.

LOCABAL: This technique combines the local and global social media context to
produce recommendations (Tang et al., 2013).
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Parameter settings and analysis
Table 1 describes the parameters used in our experimental study. These parameters are
used for baselines and proposed model. For the TDNRmodel, these parameters are chosen
after performing comprehensive experiments over 100 iterations. The learning rate of
TDNR is fixed to 0.001 without further tuning since we adopt the adaptive gradient
learning method. Regularization rate is tuned amongst {0.1, 0.2, 0.3, 0.04, 0.09}.
Regularization helps penalise larger coefficients, ensuring that the model generalizes well
to unseen data. The dimensions of the hidden layer are adjusted within the range of {100,
200, 300, 400, 500}.

Table 1 Parameter settings for TDNR and baselines.

Methods learning rate (λ) a Hidden neurons Latent dimensions

BasicMF 0.03 – – –

SVD 0.05 – – –

SoReg 0.1 – – –

Social MF 0.05 0.3 – –

RSTE 0.001 0.6 – –

LOCABAL 0.03 0.4 – –

TrustCTR 0.03 0.3 – 50

NNMF 0.01 – 100 10

TDNR 0.001 0.2 100 100

Figure 8 MAE Results for varying number of a on stack overflow for all learners using TDNRmodel.
Full-size DOI: 10.7717/peerj-cs.2386/fig-8

Rehman et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2386 20/36

http://dx.doi.org/10.7717/peerj-cs.2386/fig-8
http://dx.doi.org/10.7717/peerj-cs.2386
https://peerj.com/computer-science/


Impact of a on TDNR
We analyze the performance of the TDNR model for all learners, as shown in Fig. 8, based
on a. Setting a to 1 means only questioner-responder structural information is used, while
0 means only responder-responder structural information is retained. If the value of a lies
between 0 and 1, then it means that both of the structural information play a role. We
obtained the best value of MAE with a ¼ 0:2, and it determined that the questioner-
responder structural information significantly improves vote prediction.

Impact of hidden neurons on TDNR
We investigate how deep learning models help produce trust-based recommendations in
an informal e-learning environment because there is minimal research on generating
recommendations via deep neural networks. In this way, we explored the neural networks
with different hidden dimensions on the Stack Overflow dataset for all learners, as shown
in Fig. 9.

The hidden neurons of 100, 200, 300, 400, and 500 are evaluated using the proposed
model. This range was explored to determine the best network depth and width that could
effectively capture the nonlinear relationships between the questioners and responders. It
is observed that the performance of TDNR can be improved by increasing the hidden
neurons. In training the model, the neural networks acquire a hidden representation by
reducing the loss in the reconstruction phase. Consequently, adding more hidden neurons
can enhance the model’s effectiveness. Additionally, it has been noted that merely
concatenating feature vectors of questioner and responder is insufficient for accurately
modeling their interactions. Hence, a transformation using hidden neurons is necessary.

Figure 9 Results of RMSE with various hidden neurons for all learners on stack overflow.
Full-size DOI: 10.7717/peerj-cs.2386/fig-9
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Figure 10 MAE Results with varying learning rates for all learners on Stack Overflow.
Full-size DOI: 10.7717/peerj-cs.2386/fig-10

Table 2 Comparison of TDNR with baselines.

Methods Error metrics All learners Cold start learners Heavy learners

BasicMF MAE 0.802 0.741 0.816

RMSE 1.152 0.970 0.981

F-measure 0.827 0.868 0.849

SVD MAE 0.793 0.712 0.801

RMSE 1.134 0.926 0.965

F-measure 0.841 0.877 0.836

RSTE MAE 0.923 0.804 0.854

RMSE 1.207 1.107 1.062

F-measure 0.813 0.834 0.801

SoRec MAE 0.822 0.731 0.859

RMSE 1.199 1.021 1.018

F-measure 0.828 0.852 0.850

SocialMF MAE 0.847 0.723 0.825

RMSE 1.166 1.004 1.054

F-measure 0.825 0.865 0.847

LOCABAL MAE 0.914 0.716 0.850

RMSE 1.213 0.997 1.033

F-measure 0.802 0.868 0.831

TrustCTR MAE 0.821 0.799 0.722

RMSE 1.100 0.917 0.928

F-measure 0.818 0.853 0.826
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Impact of learning rate on TDNR
Figure 10 indicates that a learning rate of 0.001 is ideal, resulting in enhanced performance
of the proposed model following 100 iterations. The chosen learning rate of 0.001 was
selected after testing various rates, balancing the model’s convergence speed and stability.
This rate was optimal, particularly when using the adaptive gradient method, which
adjusts learning rates during training, thereby reducing the need for extensive manual
tuning. The convergence analysis shows that increasing the number of iterations can
enhance model accuracy. This evidence supports the effectiveness of cross-entropy log loss
in optimizing the proposed objective function.

Comparison with baselines
We observed that the TDNR model performs very competitively and achieves the best
performance across the Stack Overflow dataset. Table 2 shows that our TDNR model gives
better results than other state-of-the-art methods regarding MAE, RMSE, and F-measure
in the view of All Learners. In the experiments performed for All Learners, the TDNR
model converged after 70 out of 100 iterations, whereas other baseline methods converged
after 81 iterations. For All Learners and Heavy Learners, the proposed model gives
improved results compared to baselines and converges after 75 and 78 iterations for All
Learners and Heavy Learners, respectively. The performance of the TDNR model is also
evaluated by computing the mean improvement value of MAE concerning different user
views. We have found an improvement rate of 8.42%, 15.55%, and 5.66% for All Learners,
Cold Start Learners, and Heavy Learners, respectively.

Table 2 reports that the model shows the main improvement of about 15.55% for Cold
Start Learners.

Convergence analysis
We have performed convergence analysis for All Learners and Cold Start Learners, as
shown in Figs. 11 and 12, respectively. Figures 11 and 12 show that the TDNR model
converged to lower MAE values in later iterations, similar to other methods. It is also
observed that the TDNR model can outperform traditional methods such as BasicMF,
SVD, SoReg, and SocialMF and achieve better MAE values than neural network-based
approaches such as NNMF, confirming the effectiveness of incorporating trust and

Table 2 (continued)

Methods Error metrics All learners Cold start learners Heavy learners

NNMF MAE 0.877 0.885 0.799

RMSE 1.141 1.112 0.982

F-measure 0.874 0.845 0.825

TDNR MAE 0.957 0.909 0.868

RMSE 1.224 1.156 1.076

F-measure 0.892 0.888 0.867

Improve 8.421% 15.552% 5.662%
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structural information. Unlike these baseline approaches, TDNR leverages the non-
linearity inherent in neural networks and incorporates two distinct structural elements,
enhancing the model’s representative capacity.

Figure 11 Convergence analysis of TDNR with baselines for all learners.
Full-size DOI: 10.7717/peerj-cs.2386/fig-11

Figure 12 Convergence analysis of TDNR with baselines for cold start learners.
Full-size DOI: 10.7717/peerj-cs.2386/fig-12
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Impact of trust on TDNR
We also compared the performance of the proposed TDNR model by incorporating trust
and without-trust information. Figure 13 shows that the TDNR model performed well by
combining trust information with improved RMSE values compared to TDNR, which has
no trust information.

Comparison of TDNR with trust-based recommendation models
We have compared the TDNR framework with the following trust-based recommendation
models:

Trust-aware Recommender Systems (TARS): TARS (Bedi & Sharma, 2012) is built on
ACO, which creates an implicit trust graph using rating values. However, it does not
consider explicit trust relationships when generating recommendations, which can
negatively impact its performance in scenarios with sparse data. However, the TDNR
model enhances the traditional trust-aware model by incorporating deep neural networks,
allowing it to model complex nonlinear relationships between users and items. This results
in improved recommendation accuracy, particularly in cold-start scenarios. TARS model
is generally less computationally intensive than TDNR, making it more suitable for
environments with limited computational resources.

SoReg: It incorporates social regularization into matrix factorization models, utilizing
social trust networks to improve recommendation accuracy. TDNR’s deep learning
architecture allows it to capture more complex patterns in user interactions than the linear
models used in SoReg. The inclusion of both trust and structural information further
enhances its performance in informal e-learning environments. TDNR’s deep learning
approach requires more computational resources and may have longer training times than
SoReg (Ma et al., 2011).

Figure 13 Performance of TDNR with trust and without trust on stack overflow.
Full-size DOI: 10.7717/peerj-cs.2386/fig-13
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Table 3 Comparison of TDNR with approaches address cold start problem.

Approach used Cold start solution Key features Advantages Limitations

Proposed TDNR Combines deep neural networks
with trust and structural
information to predict
recommendations for new users
in e-learning environments.

– Tag modeling using LDA

– Trust degree computation
between questioner and
responder

– Structural information
integration

– Effectively handles complex
nonlinear relationships.

– Incorporates trust and
structural information for
enhanced accuracy.

– Excellent in cold-start
scenarios.

– High computational
complexity.

– Requires significant
computational
resources.

BasicMF (Koren,
2008)

Predicts ratings using matrix
factorization based on user and
item features.

– Decomposes user-item
interaction matrix.

– Captures latent factors
influencing preferences.

– Simple and effective.

– Widely used and easy to
implement.

– Limited by linear
assumptions.

– Doesn’t handle cold-
start or temporal
dynamics well.

SVD (Koren, Bell
& Volinsky,
2009)

Uses a temporal-based model
combining neighborhood
information and matrix
factorization for cold start.

– Incorporates temporal
dynamics.

– Uses neighborhood models.

– Adapts to changes in user
preferences over time.

– More accurate than basic MF.

– Higher computational
complexity.

– Requires more data for
effective modeling.

SocialMF
(Jamali &
Ester, 2010)

Integrates social trust into matrix
factorization to improve
recommendation accuracy for
new users.

– Uses social trust networks.

– Adjusts predictions based
on trusted users.

– Effective in cold-start scenarios.

– Leverages trust for better
recommendations.

– Relies on the availability
of trust data.

– May struggle if trust
data is sparse.

SoReg (Ma et al.,
2011)

Uses social regularization in
matrix factorization, enforcing
similar preferences among
socially connected users.

– Incorporates social
relationships.

– Regularization to enforce
similarity.

– Enhances accuracy by
leveraging social context.

– Simple and effective for social
networks.

– Assumes uniform
influence across
connections.

– Less effective in
complex scenarios.

NNMF
(Dziugaite &
Roy, 2015)

Combines matrix factorization
with neural networks to handle
nonlinear interactions in cold
start situations.

– Uses deep learning to model
complex patterns.

– Captures nonlinear
relationships.

– High predictive accuracy.

– Ideal for complex
recommendation tasks.

– Computationally
expensive.

– Risk of overfitting.

TrustCTR
(Ahmed et al.,
2020)

Integrates trust-aware
recommendations with
collaborative topic regression to
handle cold starts.

– Combines topic modeling
with trust.

– Uses both explicit and
implicit trust.

– Contextually relevant
recommendations.

– Effective in content-rich
environments.

– Relies heavily on quality
of topic modeling.

– Less effective with
sparse content.

RSTE (Ma, King
& Lyu, 2009)

Combines social trust and matrix
factorization to create ensemble
predictions for new users.

– Trust propagation.

– Hybrid of trust-based and
collaborative filtering.

– Robust in social networks.

– Enhances accuracy in cold-start
scenarios.

– Computationally
intensive.

– Depends on social
network data quality.

LOCABAL
(Tang et al.,
2013)

Uses local and global social
context to provide
recommendations in cold-start
scenarios.

– Combines local (direct) and
global (indirect) social
contexts.

– Leverages broader social
influence.

– Comprehensive social influence
analysis.

– Accurate and relevant
recommendations.

– Increased model
complexity.

– Requires more
computational
resources.
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SocialMF: SocialMF (Jamali & Ester, 2010) combines matrix factorization with social
trust propagation, aiming to improve recommendation accuracy by considering both user-
item interactions and social trust relationships. While SocialMF uses trust relationships to
enhance matrix factorization, TDNR’s use of deep neural networks allows it to model
nonlinear relationships more effectively. SocialMF is generally faster and less resource-
intensive, making it more feasible for real-time applications. TDNR’s higher
computational complexity may limit its use in environments requiring quick
recommendations.

SocialFD: SocialFD (Yu et al., 2017) applies matrix factorization combined with
denoising techniques to address noise in trust data, aiming to improve the robustness and
accuracy of recommendations. TDNR’s use of deep learning allows it to naturally handle
noise and outliers in the data, potentially offering better accuracy than SocialFD denoising
approach. TDNR also benefits from its ability to incorporate both questioner-responder
and responder-responder structural information. The SocialFD approach might be more
efficient in scenarios with significant noise in the trust data, where TDNR’s complexity
could lead to longer processing times.

Trust-aware Denoising Autoencoder (TbDAE): TbDAE (Ahmed et al., 2022)
integrates trust information into a denoising autoencoder to improve recommendation
accuracy by learning robust latent representations. TDNR’s architecture, which integrates
deep neural networks with trust and structural information, allows it to model a wider
range of interactions than TbDAE’s focus on latent representation. TDNR’s ability to
address cold-start problems is also a significant advantage. TbDAE’s focus on denoising
may offer better performance in scenarios where data quality is an important issue.
Additionally, TbDAE might be less computationally demanding than TDNR, making it
more suitable for applications with resource constraints.

Comparison of TDNR with approaches address cold start problem
The proposed TDNR model stands out in its ability to effectively tackle the cold-start
problem in informal e-learning environments by incorporating both deep learning and
trust-based methods. Compared to other approaches, it offers enhanced accuracy through
its comprehensive modeling of nonlinear relationships and trust structures, though it
requires significant computational power. Table 3 compares the TDNR model with
existing approaches that address the cold start problem.

CONCLUSIONS AND DISCUSSION
Informal e-learning has gained popularity during the last few years and has gotten more
attention due to the lockdowns caused by the COVID-19 outbreak. E-learning, often
known as online learning, has become essential for learners to acquire knowledge in their
professional and social lives. The most common problems recommender systems face are
data sparsity and cold start in e-learning systems. If a new questioner (learner) comes, how
a recommender system can recommend an expert or answer the new questioner is
challenging. Generating trust-based recommendations in the e-learning community is
getting more attention nowadays. This article solved a learner cold-start problem by
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incorporating trust and structural information about preferences. We designed a TDNR to
incorporate questioner-responder and responder-responder structures. We proposed a
TDNR model that models the complex non-linear relationships of the questioner and
responder and their structural information based on trust. TDNR predicted the vote for
the responder based on experts’ trust. We evaluated TDNR on the Stack Overflow data
using MAE and RMSE metrics and found reasonably good, dependable results. We have
also compared TDNR with baseline algorithms and found improved results. The results
depict that recommendation accuracy does not correlate with the quality of user
experience.

Several factors support the validity of the TDNR framework. First, it builds on
established concepts in collaborative filtering and deep learning, combining these with
trust-aware mechanisms to tackle the cold-start problem. The framework incorporates
latent Dirichlet allocation for tag modeling, which helps categorize questions accurately
based on content, thereby improving the initial tagging process. This ensures that new
questions are classified correctly, avoiding the issue of incorrect tag assignments, which
can lead to irrelevant recommendations. Moreover, using a hierarchical temporal neural
network (TNN) enables the framework to capture both questioner-responder and
responder-responder interactions, enhancing the model’s ability to understand and predict
user preferences accurately. The framework has been validated using metrics such as
RMSE and MAE, demonstrating its effectiveness in various e-learning scenarios.

The advantages of the TDNR model are that the TDNR framework integrates trust
intensity between questioners and responders, significantly improving recommendations’
accuracy, especially in addressing the learner cold-start problem. The model can better
capture complex nonlinear relationships by incorporating questioner-responder and
responder-responder structural information, leading to more accurate and personalized
recommendations. Another advantage is that TDNR used the LDA for tag modeling,
which helps categorize questions accurately, even when users input incorrect tags. This
ensures that questions are appropriately classified and matched with relevant experts,
improving the quality of recommendations.

One of the limitations of proposed TDNR model is that, due to its deep neural network
architecture and the inclusion of multiple modules such as trust computation and tag
modeling, it may have a high computational complexity. This can lead to longer processing
times and require significant computational resources, which might not be feasible in all
practical applications.

We implemented TDNR framework using python with TensorFlow, keras, pandas and
other machine-learning libraries.

Practical implications
Enhanced learning experience in e-learning platforms
The TDNR model can significantly improve the user experience on e-learning platforms
such as Coursera, Khan Academy, and Stack Overflow by providing personalized
recommendations based on trust and deep learning mechanisms. For instance, in scenarios
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where new users have little to no interaction history (a cold start), the TDNR model can
still provide accurate course or content recommendations by leveraging the trust
relationships within the platform. This helps new users find relevant resources more
quickly, enhancing their learning journey.

Application in community-driven platforms
In community-driven platforms like Stack Overflow, where users often seek help from
experts, the TDNR model can identify and recommend the most trustworthy and relevant
experts to answer new questions. By analyzing both the content of the questions and the
trust relationships between users, the model can rank experts effectively, ensuring that
questions are answered by those with the highest authority and reliability, thereby
improving the quality of the responses and overall user satisfaction.

Corporate training and knowledge management

Organizations that use internal e-learning systems for employee training and development
can implement the TDNR model to tailor training materials to individual employees. By
incorporating trust metrics, the model can recommend content that aligns with the
employees’ learning preferences and the expertise of their peers or mentors within the
organization. This can lead to more effective and engaging training programs, ultimately
enhancing skill development and productivity.

A case study
Consider a large multinational corporation using an internal e-learning platform to train
its employees. New employees, especially those in specialized roles, often struggle to find
the most relevant training materials due to the vast content available. Implementing the
TDNR model, the platform could analyze the trust relationships between new employees
and their assigned mentors or colleagues. It would then recommend training modules that
those trusted individuals have highly rated. As a result, new employees would receive more
relevant and effective training recommendations, reducing the onboarding time and
increasing productivity.

Future work
In the era of information overload, there is a crucial need for recommendation systems to
help learners discover better knowledge in informal e-learning environments.

In the future, we would like to incorporate questioner/responder context information to
improve the recommendation quality. Further, the dynamics of the learners’ communities
can be investigated. One potential area for future research is integrating contextual
information into the TDNR model. Currently, the model primarily relies on static trust
relationships and user interactions without considering the broader context in which these
interactions occur. By incorporating factors such as the interaction time and the specific
learning environment, the model could provide even more personalized and relevant
recommendations. Additionally, exploring dynamic trust relationships that evolve could
significantly enhance the model’s adaptability, allowing it to reflect changes in user
behavior and social connections.
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The limitation of proposed TDNR model is the high computational complexity
associated with its deep learning architecture and the integration of multiple modules,
which can lead to longer processing times and require substantial computational resources.
Future research should aim to optimize the model’s structure or develop more efficient
algorithms to reduce this computational burden while maintaining or enhancing its
accuracy. Another limitation is the model’s reliance on the availability and accuracy of
trust data, which may not be consistently available in all e-learning environments. This
dependency could limit the model’s applicability, so future research could explore
alternative methods for handling trust data or develop techniques to infer trust
relationships in environments where explicit data is scarce. Additionally, the current
study’s evaluation is primarily based on the Stack Overflow dataset, which, while
representative, may not encompass the diversity of potential e-learning environments.
Future studies should test the model across various datasets from different domains to
ensure its generalizability.
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