Peer.

Submitted 2 May 2024
Accepted 12 September 2024
Published 31 October 2024

Corresponding author
Eyup Emre Ulku,
emre.ulku@marmara.edu.tr

Academic editor
Paulo Jorge Coelho

Additional Information and
Declarations can be found on
page 33

DOI 10.7717/peerj-cs.2384

() Copyright
2024 Mutlu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A web scraping app for smart literature
search of the keywords

Muhammed Ali Mutlu’, Eyup Emre Ulku® and Kazim Yildiz”

! Head of Data Platforms, NTT DATA Business Solutions, Istanbul, Istanbul, Turkey

% Faculty of Technology, Computer Engineering Department, Marmara University, Istanbul,

Turkey

ABSTRACT

Detailed literature search and writing is very important for the success of long
research projects, publications and theses. Search engines provide significant
convenience in research processes. However, conducting a comprehensive and
systematic research on the web requires a long working process. In order to make
literature searches effective, simple and comprehensive, various libraries and
development tools have been created and made available. By using these
development tools, research processes that may take days can be reduced to hours or
even minutes. Literature review is not only necessary for academic studies, but it is a
process that should be used and performed in every field where new approaches are
adopted. Literature review is a process that gives us important ideas about whether
similar studies have been conducted before, which methods have been used before
and what has not been addressed in previous studies. It is also of great importance in
terms of preventing possible copyright problems in future studies. The main purpose
of this study is to propose an application that will facilitate, speed up and increase the
efficiency of literature searches. In existing systems, literature searches are performed
by browsing search sites or various article sites one by one and using the search tools
provided by these sites. It is simple to use, allows the entire World Wide Web
environment to be searched, and provides the user with the search findings. In this
study, we have implemented an application that allows the crawling of the entire
World Wide Web environment, is very simple to use, and quickly presents the crawl
findings to the user.

Subjects Autonomous Systems, Databases, Digital Libraries, Natural Language and Speech, World
Wide Web and Web Science

Keywords Literature search framework, Web crawling, Web scraping, Smart literature search,
Scraping and crawling bots, Knowledge discovery, Information access

INTRODUCTION

Literature review is a process that contributes significantly to the success of every
innovative study, such as a project, article, or thesis. A literature review is defined as the
process of researching a particular subject in detail among the available resources and
systematically collecting data on that subject (Snyder, 2019). In other words, it determines
the roadmap for the research subject. It is not a correct point of view to think of a literature
review as only quoting and benefiting from sources. The literature review plays an
important role in obtaining answers to important questions such as whether the subject of
interest has been studied before, from which angles the subject is handled and by which

How to cite this article Mutlu MA, Ulku EE, Yildiz K. 2024. A web scraping app for smart literature search of the keywords. Peer]
Comput. Sci. 10:e2384 DOI 10.7717/peerj-cs.2384

http://dx.doi.org/10.7717/peerj-cs.2384
mailto:emre.�ulku@�marmara.�edu.�tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2384
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

methods it is carried out and, which problem or problems in the literature it offer a
solution. In line with these answers, a basis for an innovative study can be formed
(Winchester ¢» Salji, 2016). The first step of the research process is to identify the problem
and the keywords related to the it. Existing literature review methods are often time-
consuming and may miss relevant studies. This study aims to develop an application that
addresses these inefficiencies by automating the literature search process, thus enhancing
both speed and comprehensiveness. The primary research question guiding this study is:
How can web scraping and crawling techniques be utilized to enhance the efficiency and
comprehensiveness of academic literature searches? In addition, it is very important to
determine which areas of the researched subject are focused on and which areas are
missing in previous studies (Anastasiadis, Rajan ¢ Winchester, 2015). The materials and
instruments we will utilize to do the literature study must be decided upon in the second
phase. Identifying access to resources is also needed. Thus, the target resources and tools
needed for the literature review are determined. The quality of the studies conducted is
directly proportional to the reliability of the sources examined in the literature review. It is
crucial to use reliable websites and databases to obtain the examined sources because of
this. Reliable sources that are widely known should be chosen, and the author and
publication environment of the source should be examined. All studies in all sources
connected to the research issue should be substituted with scientific sources. You can use
easily accessible online books, articles, theses, and encyclopedias that are written on the
subject for this purpose. The resources to be researched can be determined by looking at
the academic environments in which the resources are published and the number of
reviews. After the problem and the reliable tools and resources to be used to examine this
problem are determined, the literature review should be planned, divided into subsections
and classified. The problem-solving methodology, the resources consulted, the comparison
of the generated solutions and the identification of their commonalities are all covered in
detail in each subsection. As a result, it is guaranteed that the investigation will be
conducted in a methodical manner. A conclusion summarizing the circumstances,
shortcomings, and findings of the literature should be included at the end of the literature
review. Critical assessments of contemporary problems and approaches should be
conducted by incorporating data from the sources consulted for the literature review. The
deficiencies identified as a result of the literature review and the determination of how to
eliminate these deficiencies are very important in supporting the innovative aspect of the
researched subject. When the described literature review stages are followed sequentially
and systematically, it will be determined exactly which gap in the literature will be filled by
the study. The literature research should be conducted again till the study’s conclusion in
order to verify its veracity and creative elements. A thorough and accurate examination of
the literature is crucial to the effectiveness of the studies that are conducted. How web
scraping and crawling techniques can be used to improve the efficiency and
comprehensiveness of academic literature searches is the primary research question
guiding this study. This study presents a smart literature review application that intends to
guarantee thorough, quick, and efficient review processes as well as the inclusion of
reputable sources in the review. Search engines have made it easier and faster than ever to

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 2/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

access the materials you're looking for. Search engines are provided to users by virtual
libraries, which have supplanted physical libraries. These World Wide Web search engines
also provide access to the resources required for a literature study. While the user may
quickly and readily access information from search engines, navigating the websites that
provide results and finding the content on each one is a highly challenging task. Search
engine literature reviews take a lot of time to complete. While browsing the sites, there can
be crucial information in these manual processes that is missed but will improve the task.
Numerous investigations are conducted with the aim of enhancing the methodical
literature review procedure (Waffenschmidt et al., 2019; Macura et al., 2019; Gusenbauer ¢
Haddaway, 2020; Haddaway et al., 2018). In recent years, studies aiming to automate
literature review processes have been tried to be carried out so that researchers can perform
these processes more quickly and efficiently (Van Dinter, Tekinerdogan ¢ Catal, 2021;
Asmussen & Mopller, 2019). Studies using approaches such as text mining, natural language
processing and machine learning are presented in order to develop easy-to-use and fast-
running systems by automating the literature review processes (Feng, Chiam ¢ Lo, 2017;
Zdravevski et al., 2019; Marshall & Wallace, 2019). Various methods have been developed
so that users can automate their research faster and more efficiently. The basis of these
methods is web crawling and web scraping techniques. Web crawling and web scraping are
the primary techniques that can be used as a basis for developing systems that will perform
literature searches autonomously (Haddaway, 2015). Bots that are coded to scan the entire
World Wide Web (WWW) environment to search the web and obtain the associated site
addresses are defined as web crawler bots and bots that are used to extract meaningful
information from the obtained site addresses are defined as web scraper bots. The whole
process of combining these developed bots with appropriate algorithms and making them
able to carry out operations systematically and automatically and extracting meaningful
data is called web crawling and scraping. These search tools help to create structured
databases by obtaining relevant data in a meaningful way (Khalil ¢ Fakir, 2017; Ferrara
et al., 2014; Myllymaki, 2001; Uzun, 2020; Turk, Pastrana & Collier, 2020). While these
tools make data acquisition and processing easier, concerns have been raised about their
legality and ethical implications (Haque ¢» Singh, 2015). In particular, there have been
drawbacks related to stealing various personal data or financial information from websites.
A study was conducted by the Ethical Decision-Making and Internet Research Committee
to use web scraping methods as a guide for use (Markham et al., 2012). As it is clearly
revealed in this study, the extraction of financial or personal information by web scraping
is considered a legal violation and all the country’s courts have stated that it is against it.
Website owners can also specify the parts of the sites that they allow and prohibit to be
visited by bots on their sites with the file at the “website/robots.txt” path. This is also
considered in the same context. Apart from this, web scraping is a very useful and legal
method when there is no personal information violation and it is done by considering the
“robots.txt” file of the site. Conducting a comprehensive and efficient literature review
ensures a solid foundation for the upcoming work, thereby enhancing the quality and
presenting an up-to-date and innovative study (Xiao ¢ Watson, 2019). Literature review is
at the forefront of the stages that should be carried out not only in academic studies but

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 3/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

also in every innovative study. It is also very important to avoid problems such as copyright
and license violations. In this article, we have used web crawling and web scraping
techniques to develop a data extraction application from popular article websites, with due
regard to the legal framework. We developed an application that quickly and automatically
scans the keyword entered through a simple interface, taking into account the search
criteria, in predetermined popular article websites in the WWW environment, and obtains
the abstracts of the publications it finds. In this way, the user will be able to perform the
literature review, which he/she will do before carrying out an academic study, in a much
shorter time and in a much more comprehensive way by using this application. Thus, it
will be possible to quickly access the abstracts and other keywords of the studies related to
the study subject. As a result, by using these technologies, it is aimed to minimize the time
to obtain information for literature review and to maximize efficiency. The developed
application offers the opportunity to perform literature review processes in a shorter time,
more comprehensive and more efficient way. We can summarize the contributions of the
developed application to the literature review processes under four subheadings.

 Time efficiency: By automating the initial screening process, it significantly reduces the
time researchers spend searching and selecting literature. Researchers can search for
studies in multiple academic databases at the same time according to the criteria they
define. As a result, users can quickly obtain summary data of studies found in the
literature according to predefined criteria.

o Comprehensive coverage: It provides wider access to studies by overcoming the
limitations of manual searches that can miss relevant research. Thus, it enables the
researcher to have a more comprehensive command of the literature on the subject
under study.

» Facilitates the review process: Allows researchers to quickly collect and review a larger
set of abstracts, providing more time for in-depth analysis of selected articles.

* Increases accessibility: It makes it easier for researchers to discover and access a wide
range of publications, including those outside the immediate search parameters.

This approach does not replace a thorough reading and analysis of selected articles, but
rather enhances the efficiency and scope of the literature review phase.

To help readers navigate the article, we provide a brief overview of its structure. “Related
Works” reviews existing literature on web scraping and web crawling applications,
focusing on their use in various fields such as health, social media, finance, and marketing,
and highlights the gap our study aims to fill in the context of literature review processes.
“Material and Methods” details the development of our web scraping application,
including the modular structure, the design of the web crawler and scraper, the backend
and frontend development, and the legal and ethical considerations. In “Results and
Discussions”, we explain the usage of the application and exemplify a case in the output
section. Finally, “Conclusion” summarizes the main contributions of our study, discusses
the practical applications and benefits of our web scraping tool, and outlines potential
future enhancements and areas for further research.

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 4/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Objectives

The primary aim of this study is to develop and evaluate a web application that leverages
web scraping and crawling techniques to enhance the efficiency and comprehensiveness of
academic literature searches. By addressing the limitations of existing literature review
methods, this study seeks to provide a more effective and user-friendly tool for researchers.
The specific objectives of this study are as follows:

» To develop a web application that automates the literature search process using web
scraping and crawling techniques.

o To evaluate the efficiency of the proposed application by comparing the time taken to
complete literature searches with traditional methods.

e To assess the comprehensiveness of the literature search results obtained using the
application compared to traditional manual searches.

e To provide a user-friendly interface that allows researchers to easily and quickly access
relevant literature.

» To increase accessibility to a broader range of academic publications by overcoming the
limitations of manual search methods.

e To reduce the time and effort required for conducting comprehensive literature reviews,
enabling researchers to focus more on analysis and synthesis.

RELATED WORKS

The development of web crawling and web scraping applications has significantly
advanced the field of data collection and processing. Various studies have employed these
techniques to facilitate efficient data gathering for different purposes, ranging from
semantic web solutions for health information to news aggregation and recommendation
systems. This section reviews existing applications and highlights the unique features and
advantages of our proposed application in comparison to these studies.

Nowadays, with the developments in technology, the diversity of electronic media and
the use of these media are becoming more and more widespread (Dwivedi et al., 2021). The
widespread use of electronic media causes a rapid increase in the amount of data stored
and in circulation. Search engines offer the opportunity to access a large amount of data
related to the searched topic (Sheela & Jayakumar, 2019). Ease of access to large amounts
of data provides a significant advantage, but also complicates the process of obtaining
meaningful data that will be useful to us (Sivarajah et al., 2017; Patel, 2019b, 2019a). In this
direction, in recent years, many studies have been carried out using many different
methods in order to obtain meaningful data from large amount of data (Patel, 2019a; Jin,
Xing & Wang, 2020; Pandey ¢ Shukla, 2018; Liang, 2020). In an article researched at the
University of Sumatera Utara, which highlighted the seriousness of tropical diseases, they
found that people living in Indonesia rely on search engines to find treatments for tropical
diseases, such as medicines and treatment methods. However, they explained that
traditional search engines return results by taking into account the synonym of the disease
when searching for treatments for diseases. They mentioned that to overcome this

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 5/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

problem, a search engine with semantically correct results should be developed as a
solution. This solution, which they call the semantic web, reveals the relationship of the
data to its synonyms using a form called Resource Description Framework (RDF). Initial
research in Indonesia was unsuccessful because the Ministry of Health websites could not
provide files in RDF format. Later, the study aimed to transform it into a platform that
produces health information in RDF format using web scraping technologies. In this way,
web scraping technologies were used to collect and extract words from popular health
websites, to establish the relationship between ontology and terms, and as a result to
produce information in the form of RDF (Amalia, Afifa ¢» Herriyance, 2018). A platform
called Newsone has been developed at Agni Technology College, India, which collects the
latest news updates from national and international sources and summarises them
concisely. The aim of this application is to provide quick results that save time and effort in
finding the latest news. Web scraping and crawling techniques were used. To describe the
method, application administrators store RSS addresses in the database. The web scraping
bots in the application also dynamically and periodically crawl the relevant RSS sites and
store the relevant content. In the next step, the extracted data is documented by category
and URL, and a model is created. Thanks to this model, users can access the news
according to their interests and relevance, or they can perform category-based searches. In
other words, with this developed application, the reader can easily and quickly access the
content of more than 100 licensed and reliable news sites worldwide (Sundaramoorthy,
Durga & Nagadarshini, 2017). Ertam (2018) from Firat University in Turkey emphasised
the importance of collecting and processing data from websites. In this study, categorical
news headlines and summaries on a Turkish news agency website were collected using web
scraping methods, and the test data was classified using the “one hot encoding” process,
one of the vector classification approaches, with tensorflow-based deep learning methods.
As a result of the classification, an accuracy rate of over 90% was achieved (Ertam, 2018).
In the article written by Junjoewong, Sangnapachai & Sunetnanta (2018) at Mahidol
University, they mentioned that people spend a lot of time on websites to find promotions
and campaigns that are relevant to them. The mobile application they developed,
ProCircle, uses web scraping technology to collect promotions on a single platform. The
mobile application they developed, ProCircle, used web scraping technology to collect
promotional news on a single platform. They also crowdsourced the publicity news they
collected. Thanks to this support, they enabled users to scan promotions en masse
(Junjoewong, Sangnapachai ¢ Sunetnanta, 2018). The article published at the 2020 IEEE
European Symposium examined the defence mechanisms of websites against web scraping
techniques. It was mentioned that some website administrators try to prevent data
collection from their sites as a defence technique, while others make it difficult to collect
data. The defence techniques used in the related article were examined, as well as the
defence-breaking techniques developed against them. This was done in an attempt to
determine the success of defence techniques. According to the results of the study, they
have proven that even if these defence techniques slow down scraping, there is always a
scraping solution in some way (Turk, Pastrana ¢ Collier, 2020). Using web scraping
technologies, a study was conducted in Indonesia on the product promotion and

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 6/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

marketing features of Instagram, one of today’s popular social media platforms. It was
pointed out that when trying to buy the product, it is necessary to have an account
approved by Instagram to be trusted. There are too many accounts with fake followers. It
was stressed that there is a need for a system that makes this determination, as users often
cannot understand which account is fake. In this study, it was ensured that the parameters
taken into account, such as the number of followers on the Instagram account, the number
of likes, the number of comments and the number of recent posts, were sufficient to
identify the account as a real marketer account using web scraping techniques. It was
reported that it was successfully investigated with a rate of 75% (Akrianto, Hartanto ¢
Priadana, 2019). A study in India highlighted the fact that news on the internet can be fake.
They proposed a model to detect fake information and news using deep learning and
natural language processing methods. The data set of news content obtained from news
sites using web scraping methods was trained with deep neural networks and the
correlation of words in the related documents was found using natural language
processing. It was stated that these correlations serve as a starting value for the deep neural
network and help to understand whether the news is fake. It is stated that the classification
is done using recurrent neural network, long short-term memories and graded recurrent
units methods. It is emphasised that a good training set is mandatory, as fake news can be
detected according to the training model, and it is highlighted that the results of this study
met this requirement and gave successful results (Verma, Mittal & Dawn, 2019). A study
on health was conducted at the Karunya Institute of Technology in 2019. According to the
study, it was highlighted that the World Health Organization reported that cancer is the
second leading cause of death in the world. They stressed that people battling cancer often
experience negative emotions such as anger, anxiety and depression, which have a negative
impact on their disease. Karunya University, which carried out the study, has been working
on the design of a chatbot (messaging bot) where these people can easily talk and ask all
their questions and satisty their need to communicate with people who have the same
feelings. This chatbot, which can only be used by people with cancer, is designed to answer
questions about cancer, such as treatment, symptoms and psychological distress. During
the development of the chatbot, many cancer forums, which are a rich source of
information on the subject, were trained using data obtained by web scraping methods. By
using sentiment analysis methods, the aim is to determine the current emotional state of
the user and to make the bot behave like a human and provide emotional relief to the user
(Belfin et al., 2019). According to a Turkish study on global events that people can attend,
more people would likely participate if these events were publicized on social media using
an intelligent suggestion system. A system that can be implemented into numerous social
media platforms and is used to provide recommendations to users has been developed in
this study. Through the use of web scraping technologies, the system is able to acquire the
online activities that a person has attended or plans to attend. The system functions by
taking into account the user’s location and social surroundings, making recommendations
for suitable activities for them (Kayaalp, Ozyer ¢ Ozyer, 2009). One study focused on how
web scraping and natural language processing methods can produce solutions to complex
problems in computer science education. It has been suggested that large amounts of data

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 7/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

from public web pages can be extracted by web scraping techniques and estimating more
data similar to this data. In addition to this process, it has been studied how it can be used
to extract salient information from this large amount of data using natural language
processing methods. While putting these techniques into practice, an application has been
put forward to examine the current trends in the job market for computer science students.
According to a survey, grocery stores’ ability to offer higher-quality, more affordable
products with shorter lead times than their rivals boosts sales in today’s cutthroat market.
Japan’s 54,000 grocery outlets were investigated for this. It has been suggested that the
excessive number of supermarkets and their ongoing expansion could result in longer
product supply and marketing periods. This study determines the best truck route for
wholesalers who carry goods to many grocery stores by utilizing web scraping technologies
and Excel Visual Basic. In order to examine the problem, firstly, the network flow model
was drawn and the geographical data of all grocery stores, their warehouses and gas
stations were taken with web scraping techniques. By integrating these geographical data
with the Google API service, they developed a method to find the most optimum and
fastest result (Malik ¢» Rizvi, 2011). In the smart chef application developed by Chaudhari
et al. (2020) the details of all recipes are extracted using the web scraping technique.
Afterwards, an algorithm is presented that allows it to choose recipes that are suitable for
the determined diet plan or based on ingredients (Chaudhari et al., 2020). In the smart
application developed by Dang et al. (2023) provides a comprehensive examination of
factors that predict the emergence of new outlinks during focused web crawling. The study
employs a systematic approach to identify and analyze various predictors, with the goal of
enhancing the efficiency and accuracy of focused web crawlers in discovering relevant and
valuable new links. By examining the dynamics and characteristics of web navigation and
link formation, the article contributes to the field of web mining and information retrieval,
offering insights and practical strategies for developing more sophisticated and effective
web crawling technologies (Dang et al., 2023). Khalid et al. (2021) present an innovative
approach to improving scientific research methodologies. This study introduces a new
system that combines inverted indexes and structured search techniques with citation
network analysis to improve the relevance and accuracy of search results in academic
databases (Khalid et al., 2021).

While several studies have leveraged web scraping and crawling techniques for various
applications, our proposed work stands out due to its specific focus on academic research,
incorporating advanced features such as citation analysis, keyword relevance filtering, and
legality controls. These unique attributes enhance the efficiency, accuracy, and compliance
of literature search processes, providing significant advantages. Our application thus
represents a significant advancement in the field, offering researchers a powerful tool to
streamline and enhance their literature review processes.

MATERIALS AND METHODS

The application, developed in a modular structure, provides users with an easy-to-use
interface. This interface allows users to search for keywords that will form the basis of their
research, using various filters. A service has been created to ensure that the results of the

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 8/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

searches carried out are quickly presented to the users. The creation of this service was
made possible by the development of web scraping and web crawling bots. Accordingly,
the application was developed in four phases: web crawler development, web scraper
development, backend development and frontend development.

To ensure the successful development and deployment of our web scraping application,
we carefully selected a range of software tools tailored to meet the specific needs of our
project. Each tool was chosen based on its unique capabilities and how well it
complemented the various phases of our application development. Table 1 provides an
overview of the software tools used in the study, detailing their purposes and the rationale
behind their selection. This information is intended to enhance the reproducibility of our
study by providing clear insights into our methodological choices.

Browsing-web crawler

As a first step in obtaining the article data associated with a keyword entered, a crawler bot
was developed to search the WWW environment and return results according to the
desired criteria. The crawler bot was developed using the Google Search JSON API service,
which is offered free of charge with certain restrictions by Google, the most popular search
engine today. This service, offered by Google to users, is a request-based search service on
the WWW using a dedicated and programmable search engine (Google, 2023a). After
subscribing to the service, a user-specific API key is created. This API key is required for
authentication on each request. After registration, a programmable search engine must be
created. Certain configurations can be made in this dedicated search engine. Settings can
be made such as searching only in the specified languages, in the specified regions, on the
specified sites, or excluding these specified sites. This API has been customised for the
application by making various changes. Exact match and pattern matching approaches
were used together according to the criteria entered by the user via the interface. This
dedicated search engine has an ID value that corresponds to the user’s API key. Similarly,
any request sent to the service must include this ID to indicate which search engine is being
used. There are 10 URLs on a page for each request made with the word to be searched for
on this search engine provided by Google, and it returns a maximum of 10 pages of results.
In other words, 100 URLs are returned in total for a searched keyword, 10 pages and 10
URLs. In addition, the API key can be requested 100 times per day. If the limitations are
not enough for the user, there is a fee of $5 per 1,000 requests (https://developers.google.
com/custom-search/v1/overview; Google, 2023b). This fee is also limited to 10k requests. If
needed, Custom Search Site Restricted JSON API offered by Google for a fee can be used
for more than 10k requests (URL, d). Once the personalised search engine was created and
a crawler bot was developed to work in our backend service, which was developed using the
Python language. This crawler bot sends a request to the search engine and returns results
according to the searched keyword, filters and the website to be searched. In order to
perform a keyword-based search for the literature review, the search is limited to
ResearchGate, IEEE, Springer, ACM sites, which are very popular for academic studies in
engineering fields. The robots.txt files of these sites were examined in detail and it was
confirmed that there was no illegal situation. Our web scraping application relies on

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 9/37

https://developers.google.com/custom-search/v1/overview
https://developers.google.com/custom-search/v1/overview
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Software tools used in the study and their selection rationale.

Software tool Purpose Reason for selection
Python Programming language for web scraping and data Versatile, extensive libraries, readability and accessibility for
analysis. developers of varying expertise
BeautifulSoup Parsing HTML and XML documents for data extraction. Powerful capabilities in parsing, essential for extracting data from web
pages.
Requests Handling HTTP requests to interact with web pages and Efficient handling of HTTP requests, well-documented

Google search
JSON API

FAST API
React
Redux

Cloud firestore

retrieve content

Retrieving relevant URLs based on user-defined Reliable, comprehensive search capabilities, easy integration with web
keywords scraping framework

Building backend services Speed, ease of use, automatic generation of interactive API documentation

Developing frontend interfacem Flexibility, efficiency, strong community support

State management in conjunction with React Effective state management, ensures seamless user experience

Database solution for managing and storing data Scalability, flexibility, seamless integration with other tools

publicly available data from specific academic databases. Some relevant studies might be
behind paywalls or restricted access, which could limit the comprehensiveness of our data
collection. In particular, sites such as Scopus, ScienceDirect, and Academia have robot
blocking barriers or require paid access, which prevents us from including them in our
data sources. The crawler bot will work with the search for the desired keyword, and as a
result the associated results will be listed on the article sites using the Google Search JSON
APL

Exact match and pattern matching

To enhance the efficiency and comprehensiveness of the literature search process, we
employed two distinct approaches: Exact Match and Pattern Matching. These methods
were implemented using Python libraries to ensure precision and flexibility in retrieving
relevant academic documents. For the Exact Match approach, we utilized built-in string
operations, which are simple and efficient for exact keyword matching, and the re library
(regular expressions) to provide additional control and ensure precise matches by treating
the keyword as a regular expression pattern. The Pattern Matching approach was primarily
implemented using the re library to compile and search with regular expressions, allowing
for the identification of variations of the keyword, including synonyms and related terms.

Data collection/web scraper

The articles’ abstracts from the url list will be extracted using a web scraper bot that has
been constructed as a second stage. Python has been selected since it offers many libraries
on web scraping technologies and will be integrated into the backend service that will be
constructed.

Legality control
Site owners may not want their sites to be visited by crawling and scraping methods. And
in this context, they have the right to take legal action against those who visit their sites for

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 10/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

this purpose. They indicate this request with the robots file they have on their site. On the
sites there is a file about where and how scraping and crawling bots can navigate on the site
via the “domain/robots.txt” path. For legal crawling and scraping work, it is necessary to
take action on the site by paying attention to this file. An example of the robots.txt file
taken from Researchgate.net is shown in Fig. 1. According to this, web paths written with
the allow command can be visited by any scraper or browser bot, while paths written with
the disallow command should not be visited. As mentioned above, the “robots.txt” file has
been taken into account to ensure that scraping is legal. Before browsing the obtained
pages, an algorithm has been developed to check that there is no problem in scraping the
article on the page related to the “reppy” library using web scraping methods. According to
the robots.txt algorithm, if there is an obstacle, the page is avoided. If there is no obstacle, a
“successful” message is returned. This algorithm is always used before scraping algorithms
(https://pypi.org/project/reppy/; Python Software Foundation, 2023c).

To ensure our web scraping activities are legal and respect the preferences of website
owners, we developed a legality control algorithm. This algorithm checks the robots.txt file
of each target website before starting any scraping operations. The robots.txt file specifies
which parts of the website are allowed or disallowed for crawling by bots.

The legality control algorithm involves several key steps to ensure compliance with the
robots.txt file of each website before initiating any scraping activities. These steps include
importing the necessary library, extracting the base URL, fetching the robots.txt file,
checking the permissions for crawling, and returning the result. Below is a detailed
explanation of each step in the algorithm:

1) Import the Library: We use the reppy.robots library to handle the fetching and parsing
of the robots.txt file. This library simplifies the process of checking permissions.

2) Extract Base URL: The function extractBaseUrl is designed to extract the base URL
from the full URL of the target page. For example, if the full URL is http://domain.com/
article, the base URL extracted will be http://domain.com.

3) Fetching robots.txt:

¢ Once we have the base URL, we construct the URL to the robots.txt file by appending/
robots.txt to the base URL. For example, if the base URL is http://domain.com, the
robots.txt URL will be http://domain.com/robots.txt.

e The Robots.fetch method is used to fetch and parse the robots.txt file. This method
sends a request to the robots.txt URL and retrieves its contents.

o The robots.txt file is a plain text file that specifies the crawling permissions for
different parts of the website. It contains directives such as User-agent, Disallow, and
Allow, which control the behavior of web crawlers.

- User-agent: This directive specifies which web crawlers the rules apply to. For
example, User-agent: * applies to all crawlers.

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 11/37

https://pypi.org/project/reppy/
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

User-agent: *

Allow: /

Disallow: /connector/

Disallow: /plugins.

Disallow: /firststeps.

Disallow: /publicliterature.PubliclLiterature.search.html

Disallow: /lite.publication.PublicationRequestFulltextPromo.requestFulltext.html
Disallow: /amp/authorize

Allow: /signup.SignUp.html

Disallow: /signup.

Figure 1 Robots.txt sample file. Full-size K&l DOT: 10.7717/peerj-cs.2384/fig-1

- Disallow: This directive specifies the parts of the website that are not allowed to be
crawled. For example, Disallow: /private means that the /private directory should not
be accessed by crawlers.

- Allow: This directive specifies the parts of the website that are allowed to be
crawled. It is typically used to override a Disallow rule. For example, Allow: /public
means that the /public directory can be accessed by crawlers even if a broader
Disallow rule is in place.

4) Checking permissions: The robots.allowed method checks whether the specific URL
(e.g., http://domain.com/article) is allowed to be accessed by our bot. This check is
based on the rules specified in the robots.txt file. The method takes two parameters: the
URL to check and the ‘User-Agent’ (which identifies the bot).

5) Returning results: The function returns “allowed” if the URL is permitted for crawling
according to the robots.txt file. It returns “disallowed” if crawling the URL is not
permitted.

This algorithm is always run before any scraping operations to ensure that we adhere to
the legal and ethical guidelines set by the website owners, respecting their preferences as
specified in the robots.txt file.

Scraper bots

If a successful result is returned from the Robots algorithm, this indicates that the page can
be downloaded and scraping can be started. Although a basic algorithm is used to scrape
pages from different academic databases, different tuning needs have emerged for each
site. The different development methodologies of the sites and the different permissions
given by the site administrators to the user during page visits have been a factor in this
issue. Among these algorithms, the “Requests” library is used to download the page and
control the session. The library provides the opportunity to perform operations on the
page by managing cookies and providing authentication where necessary while visiting the
page (https://pypi.org/project/requests/; Python Software Foundation, 2023d). The popular
BeautifulSoup scraping library was used to enable the bot to scrape. This library takes the
downloaded page as a source and transforms it into an HTML tree. In this HTML tree, the
relevant element of the page can be retrieved using methods such as find by element type,
find by class, find by xpath (https://pypi.org/project/beautifulsoup4/; Python Software

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 12/37

https://pypi.org/project/requests/
https://pypi.org/project/beautifulsoup4/
http://dx.doi.org/10.7717/peerj-cs.2384/fig-1
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Foundation, 2023a). For pages with a different technical development methodology and
where the HTML tree cannot be extracted, the article summary was obtained by accessing
the page metadata. For this purpose, the “extraction” library was used to obtain the
downloaded page metadata (https://pypi.org/project/extraction; Python Software
Foundation, 2023b). We can summarise the common structure designed to scrap data
from various academic sites (Springer, ACM, IEEE and ResearchGate) as follows.

1) Page download:

o Use the Requests library to download the web page and manage sessions, cookies,
and authentication.

2) HTML parsing:

 Utilize the BeautifulSoup library to transform the downloaded page into an HTML
tree.

 Extract relevant elements using methods like find by element type, find by class, and
find by xpath.

3) Metadata extraction:

e For pages where the HTML tree cannot be directly extracted, use the extraction
library to access the page metadata and obtain the article summary.

Algorithm for Springer & ACM

It was sufficient to use the common algorithm to scrap the data from ACM and Springer
academic databases. This algorithm extracts the HTML tree of the page with BeautifulSoup
after obtaining the cookies of the page with the “Requests” library and downloading the
page. According to this tree, the HTML element containing the article summary section is
obtained and the article summary is reached (http://link.springer.com, Springer Nature,
2023; http://dl.acm.org/, Association for Computing Machinery, 2023).

Algorithm for IEEE

As the IEEE academic research website was developed using a different methodology to
others, we found that the HTML tree of the site could not be downloaded using the
Requests library. Thinking that this site, which is widely used for literature searches, would
be useful for our application, we looked for different ways to access the article abstracts. By
examining the article pages of the site, we found that the article summary was also included
in the page metadata. And we targeted the metadata for scraping. We used the extraction
library to extract the page metadata and access the article summary (https://ieeexplore.ieee.
org; IEEE xPlore, 2023). The underlying change for the IEEE site is that the HTML tree
cannot be downloaded using the Requests library, so the algorithm accesses the article
abstract from the page metadata using the extraction library.

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 13/37

https://pypi.org/project/extraction
http://link.springer.com
http://dl.acm.org/
https://ieeexplore.ieee.org
https://ieeexplore.ieee.org
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm for researchgate

The common algorithm used on the Springer and ACM sites also works on the
ResearchGate site. However, in tests where the number of pages was more than 100, the
site stopped our scraping bot with a warning that “please login to make page requests this
often”. To overcome this problem, we looked at the network exchange of the page during
login, and constructed this exchange within the algorithm using the Session class in the
Requests library. Accordingly, the algorithm logs in before sending the request, as the site
warns us, and then scrapes the article summary from the HTML tree using the
BeautifulSoup library (https://www.researchgate.net/; Research Gate, 2023). The scrap
process for the Researhgate site is similar to Springer and ACM, but with the addition of a
login step that uses the Session class in the Requests library to handle frequent page
requests.

Backend structure

Once our algorithms had finished searching article sites for the specified keyword and
extracting article summaries from the URLs that were found, we developed backend
features to structure these methods. To store the keywords that were searched, the URLs
that were found, the research done on these URLs, and the data gathered over the course of
the application lifetime, a cloud-based database has been established. A service has been
created that will reply to all requests made via the interface by combining algorithms with
this database. Figure 2 shows the application flow together with the backend architecture of
the program.

Database layer

A database was created to store all transaction logs from the application, the details of the
search, the URLs found as a result of the search, and the article information extracted from
the URLs found. The unstructured and cloud-based Cloud Firestore database provided by
Google was used for our high-volume application. It was preferred because its access is free
and flexible in the cloud environment. The database diagram is shown in Fig. 3.

Service layer

A web service was developed for the application to provide database access to the interface
and to respond to user requests. Our service, which takes on the task of completing the
crawling and scraping processes and quickly sending the results to the user, has been
developed using object-oriented principles in the Python language in order to be
compatible with the crawling and scraping algorithms developed previously. Within the
service, there are APIs that serve different purposes for all requests coming from the
interface. Auth API for authentication requests, Crawler API for starting crawling
operations and writing to the database, Scraping API for scraping on crawled URLs and
writing article details to the database have been developed. In order to respond quickly to
user requests, performance is of paramount importance and all processes are multi-
threaded. To prevent long running processes from affecting the user, the processes are
executed in the background using background tasks and when the process is complete, the
user is notified using mail/in-app notification methods. The open source FAST API library

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 14/37

https://www.researchgate.net/
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Body:
keyword
& filters

Body:
keyword
& filters

O FastAPI

Crawler API

user starts searchs

inserts results

, Cloud
© Firestore

Web App Cloud
Database
crawling inserts
results results
after successful crawling Request O FastAPI < found abstracts
v per page
Scraping Api
Body:
crawlin
id
checks legality &
starts saraping
by bots | esponse
Figure 2 Backend structure of app. Full-size K&l DOT: 10.7717/peerj-cs.2384/fig-2

Mutlu et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2384 000 15/37

http://dx.doi.org/10.7717/peerj-cs.2384/fig-2
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

SearchResults

Stores search

Stores user data, Stores search results that
authentication & details (keyword, fetched by
authorization info filters, user) Crawler API

ScrapingResults

Stores abstract

Stores logs, Stores scraping results that

errors, flows for details (search id, scraped by

all lifecycle user) Scraping API
Figure 3 Database tables. Full-size K&l DOT: 10.7717/peerj-cs.2384/fig-3

was used to develop this web service due to its popularity in recent years, its extensive
documentation and low development effort. This open source framework, which was first
developed in 2018, has replaced Flask, which was used for the same purpose in previous
years, due to its speed and ease of use by the application development boilerplate.It is an
open source, language-independent library that can be considered as the documentation of
a backend service, providing information on how requests should be sent to endpoints
within the service and enabling testing. In today’s applications, instead of writing a usage
document for backend operations, it is preferable to create Swagger documentation that
can both enable testing and describe usage details. Swagger documentation is automatically
generated by the FAST API library that we utilize. The “api_address: port/docs” is used to
serve the generated api endpoints once it has automatically identified the Python schemas
utilized. Figure 4 shows the swagger documentation for a portion of our application. The
open-source Pydantic package is used to define class object structures, configure them, and
produce useful Python schemas—the building blocks of object-oriented programming. It
has been favored because it simplifies and makes Python schema objects more
understandable while being compatible with both Swinger and FAST API. The request and
response objects in our web service are defined using Pydantic. This provides convenience
in terms of code readability as well as swagger documentation.

Application

We have developed a user-friendly interface, as shown in Fig. 5, so that the user can
perform all crawling and scraping operations safely and quickly. As shown in the interface
of the application in Fig. 5, the researcher can filter the date in addition to the keywords he/
she wants to search. In addition, the researcher can filter the words he/she does not want to
include by entering them in the “Excluded Words” field. By adding words to the ‘Exact
Words’ field, it is also possible to filter for words that should be found exactly in the search

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 16/37

http://dx.doi.org/10.7717/peerj-cs.2384/fig-3
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Smart Literature Search @®¢

Crawler Api 2
/api/vl/crawler/search Get Search Details v
® /api/vl/crawler/search Start Searching By Keyword v
/api/vl/crawler/searchResults Get Search Results v
/api/vl/crawler/counts Get Search Counts v
Scraper Api ~
/api/vl/scraper/scrape Get Scraping Details v
POST /api/vl/scraper/scrape Start Scraping By Id A4
/api/vl/scraper/scrapeResults Get Scraping Results A4
Figure 4 API documentation. Full-size K&l DOT: 10.7717/peerj-cs.2384/fig-4

criteria. Studies are collected from relevant academic databases according to the criteria
entered by the user via the interface. These collected studies are ranked according to
various criteria when presented to the user. The following four criteria are taken into
account in the ranking process.

» Keyword relevance: Abstracts are selected based on their match to user-defined
keywords, ensuring that only those with high relevance to the research topic are
retrieved.

We use the Term Frequency-Inverse Document Frequency (TE-IDF) algorithm to
evaluate the importance of keywords in each document. The TF-IDF score helps in
ranking documents based on the relevance of the keywords provided by the user. TF-IDF
algorithm is a widely used method to evaluate the importance of a word in a document
relative to a collection of documents (corpus). This method helps in identifying the most
relevant keywords in a document by considering both the frequency of the term in the
document and its occurrence across the corpus.

Term Frequency (TF): Term frequency measures how frequently a term appears in a
document. The assumption is that the more a term appears in a document, the more
important it is within that document. The term frequency for a term t in a document d is
calculated as:

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 17/37

http://dx.doi.org/10.7717/peerj-cs.2384/fig-4
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

3 Smart Literature Search Home

About

@ Welcome, Muhammed Ali Mutlu CT)

Dashboard

B
7

Total Searches

New Query

Searches
Date Nome
27.08.2021 Al Researches - Past Year
21.11.2021 web scraping researches
26.08.2021 Text mining research

27.08.2021 Al Researches - Past 2 Yesrs

20.09.2021 Flying adhocs

2021 - Marmara Univercity

1

Daily Searches

Query Neme

Enter a queryName

Sites

researchgate.net X

Exoct Words

Select Exact Words

Keyword

artificisl intelligence
web scraping

text mining

arbficial intefligence

FANET

 Limit: o] C

7

Finished Searches

Keyword

0

Failed Searches

Enter a keyword

Date

X | v Past year

Excluded Words

Select Excluded Words

Create a query

Stetus

Finished

Finished

Finished

Finished

Finished

Search in resulis /@I
N

Sites Actions
nk Springer.com, dlLACK.org

researchgate.net. ieeeicplore.iece.0:g

researehgate.net

researchgate.nes, link Springer.com. dLaCht.org

researchgatenet

Rows per page: 5 v 15 0f7 | > >l

f ¥ in

Figure 5 Interface of the application.

Full-size K&l DOT: 10.7717/peerj-cs.2384/fig-5

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384

18/37

http://dx.doi.org/10.7717/peerj-cs.2384/fig-5
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

TF(t,d) = f(t,d)/Na
- f(t,d) is the number of times term t appears in document d.

— Ny is the total number of terms in document d.

Inverse Document Frequency (IDF): Inverse Document Frequency measures the
importance of a term across the entire corpus. The idea is that terms that occur in many
documents are less informative than those that occur in fewer documents. The inverse
document frequency for a term t is calculated as:

N
IDF(t,D) = log deD tod|

- N is the total number of documents in the corpus.

— |deD : ted| is the number of documents in which term t appears.

TF-IDF calculation: The TF-IDF score for a term t in a document d is the product of its
TF and IDF scores:

TF — IDF(t,d, D) = TF(t,d)xIDF(t, D)

This score reflects the importance of the term t in the document d, adjusted for how
commonly it occurs in the corpus D. How the keyword relevance process is performed is
shown in the flowchart in Fig. 5.

* Publication date: In order to ensure that users focus on current publications, the most
recent publications are retrieved according to the specified range.

We parse and sort the publication dates of documents to ensure that the most recent
publications are prioritized. To ensure that the most recent publications are prioritized in
our search results, we employ a process to parse and sort the publication dates of
documents. This involves extracting the publication dates from the metadata of each
document, converting these dates into a standard format, and then sorting the documents
based on these dates.

To ensure that the most recent publications are prioritized in our search results, we
follow a process involving the extraction, parsing, and sorting of publication dates.
Initially, we extract the publication dates from the metadata of each document, which may
come in various formats. These dates are then parsed and converted into a standard
format, such as YYYY-MM-DD, using Python’s datetime library, ensuring consistency
across all documents. Once standardized, the documents are sorted in descending order
based on their parsed publication dates. This sorting process uses the sorted function with
the parsed date as the key, which ensures that the most recent publications appear first in
the search results. This method enhances the relevance and timeliness of the information
provided to the user, making sure that they have access to the latest research developments.
The flowchart of the algorithm used to obtain the publication date information of the
articles is shown in Fig. 6.

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 19/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Start

Stepypetails

‘ Calculate Term Frequency (TF) ‘

Step2Details //

‘ Calculate Inverse Document Frequency (IDF) ‘ ’ Count terms in each document

Step3Details

Compute TF-IDF

/ v

Count total documents

‘ Compute TF for each term ‘

v

End r/ ‘ Multiply TF by IDF for each term ‘

Count documents containing each term ‘

v
Compute IDF for each term ‘

Figure 6 Flowchart of the keyword relevance. Full-size K&l DOT: 10.7717/peerj-cs.2384/fig-6

By parsing and sorting publication dates, we ensure that our search results prioritize the
most recent research, which is crucial for staying up-to-date with the latest developments
in the field. This method enhances the relevance and timeliness of the information
presented to the user, making sure that they have access to the latest research
developments.

« Citation analysis: The application evaluates the number of citations as an indicator of
the impact and relevance of the abstract and presents the studies that make a significant
contribution to the field to the user first.

In our study, citation analysis is used to evaluate the impact and relevance of academic
documents. The number of citations a document has received is a strong indicator of its
influence within the academic community. Documents with higher citation counts are
considered to have made significant contributions to their field, and therefore, they are
prioritized in our search results.

In our application, citation analysis involves retrieving the citation counts for each
document from academic databases such as Google Scholar, Scopus, or Web of Science,
which provide metadata including the number of times each document has been cited.
These citation counts are extracted and stored along with other metadata. The documents
are then ranked in descending order based on their citation counts, using a sorting
algorithm that prioritizes documents with higher citation counts. This ranking ensures

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 20/37

http://dx.doi.org/10.7717/peerj-cs.2384/fig-6
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Start

v
‘ parse_date function l

‘ Check format: %Y-%m-%d ’

N

No Match

‘ Check format: %d-%m-%Y ’

AN

Match No Match

v

Match Check format: %B %d, %Y ’

\ / N\
Match No Match
5

‘ Format matched ’ Raise ValueError ’

v
‘ sort_by_publication_date function ’

v
‘ Parse dates in documentsJ

v
‘ Sort documents by dateJ

End

Figure 7 Flowchart of the publication date. Full-size &l DOI: 10.7717/peerj-cs.2384/fig-7

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 21/37

http://dx.doi.org/10.7717/peerj-cs.2384/fig-7
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

that the most highly cited and influential documents are presented to the user first,
highlighting studies that have made significant contributions to their field and thereby
enhancing the relevance and impact of the search results. The pseudocode of the approach
used for obtaining and ranking the citation numbers is presented in Fig. 7.

* Journal ranking and Impact Factor: Abstracts from highly ranked journals, which are
more likely to be of high quality and relevance, are prioritized.

In our application, journal ranking is used to assess the quality and influence of the
publications within each journal. One of the primary metrics used for this purpose is the
Impact Factor, which measures the average number of citations received by articles
published in a journal during a specific period. Higher impact factors indicate more
influential journals, and articles from these journals are considered more credible and
significant.

Our application employs a multi-criteria ranking algorithm to present academic studies
to users, ensuring that the studies are ranked by their relevance, recency, impact, and
quality. The four criteria used are keyword relevance, publication date, citation analysis,
and journal ranking and Impact Factor. Each criterion is assigned a specific weight to
calculate the overall score for each document, as follows: keyword relevance (50%),
publication date (20%), citation analysis (15%), and Journal Ranking (15%). The final
ranking of documents is determined by combining the scores from all four criteria. Each
criterion is normalized to a common scale and then weighted according to its specified
importance. The overall score for each document is calculated as a weighted sum of the
normalized scores from all criteria. The documents are then sorted based on their overall
scores and presented to the user. How the publications are ranked and presented in the
developed application is shown in the pseudocode in Fig. 8.

The user can quickly communicate with the service via the interface shown in Fig. 9 and
can select search filters, initiate a search to the backend, view the status of the initiated
request and view the data obtained as a result of the search. To develop the interface, we
used the React library developed by Facebook and recently used in web development
projects. We developed our application as a single page application in order to keep up
with today’s trending technology standards. In addition to this library, which has a very
large community and can be developed quickly and easily with good documentation, we
also benefited from the Redux state management library for the application’s data
management logic. Thanks to this library, we were able to ensure secure communication
between the data obtained from the login screen, which is the first screen the user accesses,
and the data on the end screen.

RESULTS AND DISCUSSIONS

Usage of application

The operations that the user can perform with the application are shown sequentially in
the flowchart in Fig. 10. When the application is launched, the user is first asked to log in to
the system. If the user does not have a membership in the system, he/she can register to the
system by email or by linking his/her Google account. After successfully logging in to the

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 22/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

1. START: Begin the process.

2. Input: Retrieve the list of documents with metadata.

w

Step 1: Initialize an empty list to store citation counts.

4. For each document:
® Extract the citation count from the document's metadata.
e Append the citation count to the list.
5. Continue until all counts are retrieved.
6. Step 2:
e Sort the documents by citation counts.
e Use the “sorted’ function with "~ key=getCitationCount® and " reverse=True®
7. Continue until all documents are sorted.

8. Output: Output the sorted list of documents.

9. END: End the process.

Figure 8 Pseudocode of the citation counts. Full-size K&l DOT: 10.7717/peerj-cs.2384/fig-8

system, the user is taken to the main screen where he/she can use the application. The
settings page can be used to update and view personal information. Once the user reaches
Google’s restricted search limit, they will no longer be able to search for that day. The user
can check their remaining search limit from the application’s settings page. The user can
see the searches they have started, stopped or are still scraping on the Dashboard screen.
This page shows the current status of the scraping and information such as when it was
searched and what filters were used. The article summaries obtained as a result of the
completed searches can be accessed from this page and exported if required. He/she can
start a new search by copying the filter and other configurations from a previous search, or
by selecting the filters from the Filter menu from scratch, entering his/her keyword, and
then selecting the academic websites to be searched.

After the web crawler collects a large volume of data from various academic websites,
the information undergoes a multi-step filtering process to ensure that users receive the
most relevant and optimal search results. Initially, the collected URLs are stored in a
database along with the associated metadata. The filtering process begins by checking the
legality of accessing each URL, ensuring compliance with the site’s robots.txt file to avoid
any legal issues.

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 23/37

http://dx.doi.org/10.7717/peerj-cs.2384/fig-8
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

1. Start: Begin the process with a list of documents and their metadata.

2. Step 1: Calculate Keyword Relevance: Compute the TF-IDF scores for each document.

w

weight of 50%.

Step 2: Normalize and Weight Keyword Relevance: Normalize the TF-IDF scores and apply a

4. Step 3: Extract and Parse Publication Dates: Extract and standardize the publication dates from

the metadata.

5. Step 4: Normalize and Weight Publication Dates: Normalize the publication dates and apply a

weight of 20%.

6. Step 5: Retrieve Citation Counts: Retrieve the citation counts from academic databases.

7. Step 6: Normalize and Weight Citation Counts: Normalize the citation counts and apply a

weight of 15%.

8. Step 7: Assign Journal Impact Factors: Retrieve and assign the impact factors for the journals in

which the documents are published.

9. Step 8: Normalize and Weight Journal Impact Factors: Normalize the impact factors and apply

a weight of 15%.

10. Step 9: Calculate Overall Scores: Compute the overall score for each document by combining

the normalized and weighted scores from all criteria.

11. Step 10: Sort Documents by Overall Scores: Sort the documents based on their overall scores in

descending order.

12. Output: Present the sorted list of documents to the user.

13. End: The process concludes with the presentation of the sorted documents.

Figure 9 Pseudocode of the general flow. Full-size K&l DOT: 10.7717/peerj-cs.2384/fig-9

Next, the data is subjected to both Exact Match and Pattern Matching approaches. The
Exact Match approach uses built-in string operations and the re library to identify and
retrieve documents that precisely match the user’s specified keywords. This step ensures
high precision by excluding irrelevant documents that do not contain the exact keywords.
The Pattern Matching approach is then applied using the re library to compile and search
with regular expressions. This allows the system to recognize variations of the keywords,
including synonyms and related terms, thus enhancing recall by capturing a broader set of
relevant documents.

Further filtering involves analyzing the relevance and quality of the retrieved documents
based on several criteria: keyword relevance, where abstracts are evaluated for their
relevance to the user’s specified keywords; publication date, prioritizing the most recent
publications to ensure up-to-date information; citation analysis, ranking articles based on
their citation count to indicate their impact and significance in the field; and journal

Mutlu et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2384 24/37

http://dx.doi.org/10.7717/peerj-cs.2384/fig-9
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Changing user

) Login via ot S h 19ing user.
> ings)—» Settings Page > informations, viewing
Login Page }—v emaildpassword or ot saoe s
J Google Authentication —

—><_ Starta New Search

Success ———> Homepage

Login)
i—» Landing Page
Register Starting a new
User . m— search,
ashboar analyzing existing and| View Results of Previous
Qeshboary Page prsyw:ms s):arlcnes, - S:alchesr o
viewing results of
previous searches
Register Page &————
‘Analyze previous and
> existing searches
Registration via
ild d
h Actons
Scenes
l l Operations
b Success Fail
Figure 10 Sequential flowchart of user operations in the application. Full-size K&l DOI: 10.7717/peerj-cs.2384/fig-10

ranking and Impact Factor, prioritizing documents from highly ranked journals, as these
are typically considered more credible and influential.

The filtered results are then presented to the user through the application’s interface,
allowing them to quickly and efficiently access the most relevant studies. This
comprehensive filtering process ensures that users receive high-quality, precise, and
relevant search results, significantly enhancing the efficiency and effectiveness of their
literature review process.

Logic of application

When it is desired to start a new search in the application used with user interaction, the
processes that take place are shown sequentially in Fig. 11. After logging into the system,
the user selects filters and academic websites and starts a search with the desired keyword.
After the crawling operations are completed in the backend service, the results are written
to the database. In the next step, scraping operations are performed in the backend service
using the crawling ID of the search performed. The results obtained by the scraping service
are written to the database. In the last part, the results obtained with the frontend-backend
connection are presented to the user.

Logic of crawling operations

After the user has selected filters and academic sites from the system, he/she starts his/her
search. Crawling operations start with a request sent to the crawler API on the service side.
The flow of crawling operations is shown in Fig. 12. During the crawling phase, our service
first intercepts the user’s request and acquires the filters and sites to be crawled according

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 25/37

http://dx.doi.org/10.7717/peerj-cs.2384/fig-10
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

CRAWLING

SCRAPING CONNECTION |

Figure 11 Logic of application.

Full-size k&l DOI: 10.7717/peerj-cs.2384/fig-11

Catch User
Request

2 Acquire Filters &
Sites

3 Call Google API

4 Fetch & Parse
Search Results

5 Write Data to
Firestore

6 Send Response

Figure 12 Crawling logic.

Full-size k&l DOT: 10.7717/peerj-cs.2384/fig-12

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384

I 126/37

http://dx.doi.org/10.7717/peerj-cs.2384/fig-11
http://dx.doi.org/10.7717/peerj-cs.2384/fig-12
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

to the request schema received. It then makes a call to our custom search engine built with
Google using these filters. The URL and title of the sites we need are parsed by accessing
the responses provided by the Google Search API, including the large and unnecessary
data. These final results are written to our database in Cloud Firestore in parallel with the
user information. When the process is complete, a successful response containing the
crawling ID is sent to the frontend.

Logic of scraping operations

The flow of the scraping process in the application is shown in Fig. 13. First, after the
successful message is sent to the front-end, the scraping request containing the crawling ID
is intercepted by our scraper API on the service side. The crawling id is obtained from the
request and the user of that crawl is compared with the requesting user. If the crawling id
matches the user, the website URLs associated with that crawl are retrieved from the
database. Legality is checked by browsing each URL and checking the robots.txt. Once the
legal URLs are obtained, scraping bots are run on the web pages at those URLs. Then
abstracts are obtained with appropriate algorithms by visiting each legal article page. These
abstracts are then written to our Cloud Firestore database. When the process is complete, a
successful response containing the scraping ID is sent to the front-end.

Outputs
In the developed “Smart Literature Search” application, a test was conducted with the “web
scraping” keyword on Postman. The search was restricted to the “IEEE” and
“Researchgate” academic databases. The Crawler API searched the relevant URLs from the
specified websites and wrote them to the database within 12 s. The recorded data showed
that a total of 100 results were obtained, including 39 contents related to the relevant
keyword from the “IEEE” academic website and 61 from the “ResearchGate” academic
website. Then, a request was sent for scraping operations using the Scraper API with the
relevant search ID. Scraping processes were started as a background task and completed in
approximately 5 min. The obtained article abstracts were saved in the database. As a result
of the scraping operations, 84 URLs, which are academic articles, were extracted from a
total of 100 URLs, and the abstracts of these extracts were recorded in the database. The
total time taken to complete the crawling and scraping processes for the searched keyword
is approximately 6 min. This elapsed time is done in the background without being felt by
the user with the queue structure used in the application, and when the processes are
completed, it can be followed from the status area for the relevant search on the dashboard
page. It starts with the “Started” status first, if there are other processes, it is taken to the
“Queued” status, otherwise it is taken to the “Finished” status after waiting for it to end.
After this step, the user can see the results. The process performed in each stage, how many
URLs were obtained as a result of this process and how long it took to complete it are
summarised in Table 2. In addition, Fig. 14 shows the time spent for data collection, data
scraping and overall process for this sample search.

With the developed application, the user obtained the abstract information of 84 articles
that meet the criteria he/she determined over two academic databases in 6 min. If he

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 27/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Catch Scraping
Request

Acquire Crawling
Id, Check
Authorization

Get Crawling
Results From
Firestore

Traverse Each URL,
Check Legality

Start Scraping Bots

Collect Legal URLs, 'l
For Each Domain !

Download Each Article
Page, Extract Abstract

Write Data to
Firestore

Send Response

Figure 13 Scraping logic.

Full-size K&l DOT: 10.7717/peerj-cs.2384/fig-13

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384

28/37

http://dx.doi.org/10.7717/peerj-cs.2384/fig-13
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Performance metrics for each stage.

Stage Metric Value
Data collection Total URLs found 100
Data collection IEEE URLs found 39
Data collection Researchgate URLs found 61
Data collection Time taken (seconds) 12
Data scraping Total URLs Scraped 84
Data scraping Time taken (minutes) 5
Overall process Total time (minutes) 6

6 s

5 b

a4t

Time (minutes)
w

2 L
1 b
0 Data Collection Data Scraping Overall Process
Stage
Figure 14 Time taken for each stage. Full-size K&l DOT: 10.7717/peerj-cs.2384/fig-14

wanted to perform this search manually, he would have to open each article separately by
entering the search criteria separately in each database, which would take a very long time.

Advantages of the developed application

Artificial intelligence-based methods are becoming more and more common these days to
help researchers find material more quickly and effectively. There are various benefits
associated with using the web scraping/crawling method for text-based applications as
opposed to an artificial intelligence (AI) based approach. Compared to artificial
intelligence-based applications, the web scraping and web crawling application developed
for this study has a number of advantages. These advantages are primarily attributable to
its capacity to operate with fewer resources, reduce complexity, and pay attention to
legality control. The following is a list of benefits that the developed application has over
artificial intelligence-based methods.

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 29/37

http://dx.doi.org/10.7717/peerj-cs.2384/fig-14
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Web scraping/web crawling and artificial intelligence-based application.

Aspect Web scraping/web crawling Artificial intelligence-based application
Complexity Simpler to implement and understand. May involve complex algorithms and data models.
Data acquisition Highly efficient for direct data collection. Focuses on interpreting or understanding text, which can be less
direct.
Computational resources Requires lower computational resources. Often requires significan generalized and less predictable.
Adaptability to data format Easier to adapt scrapers/crawlers to website Adjusting AI models to new data formats can be more complex.
changes changes.
Transparency Transparent data collection process. The data processing logic can be opaque, making it hard to trace
data sources.
Deployment speed for Quick deployment for targeted data collection Requires data collection, training, and validation phases.
specific tasks tasks.
Suitability Best for applications where the primary goal is data Best for applications requiring data interpretation, analysis, or
collection. generation.

« Simplicity and accessibility: Web scraping and web crawling techniques are generally
simpler to implement and understand than Al-based methods. They do not require
extensive datasets for training or complex algorithms, making them more accessible to
developers with different levels of expertise.

» Efficiency in data collection: Web scraping and crawling are highly efficient for
collecting data directly from web pages. They can quickly collect textual data, such as
abstracts from academic articles or content from websites, without the need to interpret
or understand the text, which is important in applications where the main goal is to
collect data.

o Lower computational resources: Unlike AI applications that can require significant
computing power for processing and analysis (especially for training machine learning
models), web scraping and crawling can be executed with relatively low computational
resources. This makes them more suitable for applications with budget constraints or
where computational efficiency is a priority.

e Direct control over data source and structure: With web scraping and crawling,
developers have direct control over which web pages are targeted and how the data is
extracted. This allows precise customization of the data collection process to suit specific
needs. This provides a significant advantage over AI methods, which can require larger
datasets and sometimes produce unpredictable outputs.

» Easier to adapt to changes in data format: When a website changes its layout or
structure, updating a web scraper or crawler to accommodate these changes can be easier
than retraining an AI model, which may require collecting new training data and
adjusting the model architecture.

o textbf transparency in data collection: The web scraping and crawling process is
transparent, which means it is easier to keep track of what data was extracted from
where. This is especially important in academic research or applications where the data

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 30/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

source needs to be specified or verified. On the other hand, Al-based text analytics may
not always provide clear insights into how data is interpreted or extracted.

* Quick application for specific tasks: For specific tasks, such as collecting all summaries
containing specific keywords from a set of web pages, the web scraping or crawling
approach can be applied quickly and efficiently without the data training stages required
by AI applications.

Web scraping and Web crawling based applications and artificial intelligence based
applications are presented in Table 3 comparatively within the scope of these features.

CONCLUSION

The most crucial and initial step in academic studies, the literature evaluation, also
establishes the direction of future research. The act of conducting a literature review
enables us to locate previous research on topics linked to our planned study and,
consequently, to pinpoint opportunities for potential new research. Using web scraping
techniques, a system called “Smart Literature Search” has been created for this study in
order to expedite and simplify the literature review process. If a researcher is looking for a
specific article or is familiar with the literature in the topic, they may forgo the normal
approach of reviewing general search engine results. Making this strategic decision can
help you save time, reach more articles that are directly relevant to you based on
recommendations or citations, enhance the quality and relevancy of your content, and give
you access to full texts. We have created a user-friendly application that can retrieve
abstracts of publications from popular scholarly research websites, giving us access to a
large number of studies. This program allows the user to log in and do new searches in
addition to viewing previously conducted searches and results. When using normal
methods through browsers or article sites, literature search can take weeks to complete.
The developed program makes it possible to complete this task considerably more quickly.
Furthermore, when conventional procedures are followed, the application built gives the
user access to content that they might otherwise overlook but find useful. This increases
the literature review’s effectiveness and scope. Academicians and graduate students in our
department have tested and begun using our program, which can be searched using a
search engine that may be customized by the user as needed. The established system makes
it possible to access the vast majority of previously published studies in the topic under
investigation, and it streamlines and regularizes the process of conducting a literature
review. Web scraping is a very popular technology to get some information from the web.
In the literature there are few examples of academic research being scraped. They did this
kind of study for analysis on the sites. There is no example for dynamic scraping of
academic research sites by user keywords. But we give a solution, an application to scrape
academic research by user’s own. The user can scrape academic sites at any time with his
own keywords by using our “Smart Literature Search App”. The developed application
allows users to conduct literature searches quickly and easily. While our work provides
valuable insights into the development and implementation of a web scraping tool for
literature reviews, it is important to recognise its limitations. A major limitation

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 31/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

encountered is that we cannot access certain databases due to permissions specified in
robot.txt files, which limits our web scraping capabilities. This limitation may result in a
selection bias as some relevant studies that are behind paywalls or have restricted access
cannot be included. However, with new features to be added to this system in future work,
literature searches will become much more efficient. One of the features that will be added
is the ability for users to automatically search at specific time intervals to keep up to date
with their previous research topics. In this way, users will be able to browse newly
published articles related to their areas of work. In our application, we meet the user
directly with the search results generated by keywords and filters. At this stage, no
operation is performed on our structurally distributed data. The future aim of the work is
to obtain the most accurate and relevant results by using text mining algorithms, in order
to be more useful to the user and to make the data more meaningful. As a study that can be
carried out on structured and meaningful data, we want to present analytical results and
predictions. In this context, we want to present the results obtained in the light of the user’s
previous searches with images and suggest keywords related to the searches made. Thanks
to this suggestion system to be developed, we will try to ensure that the researcher using
our application will be able to establish a link between the fields in which he works and the
trend topics. To improve performance and ease of use, a trend search scenario will be
implemented. If someone started with a keyword that the current user wants to start with,
the application will suggest to explore these results in the database. The last feature to be
added is suggestions. Text mining algorithms will be used to offer suggestions to users
related to their keywords. For example, if a user searches for electric cars via Smart
Literature Search, the app will suggest searching for Tesla, Tesla technology, etc. by looking
at and analysing older searches in the database.

Future trends in web scraping for literature research

The field of web scraping for literature research is continuously evolving, driven by
advancements in technology and the increasing demand for efficient data collection
methods. This section discusses potential future trends and technological advances that
could further enhance the effectiveness and efficiency of web scraping applications.

Future web scraping applications are expected to leverage more advanced Al
techniques, such as machine learning and natural language processing (NLP), to automate
and improve the accuracy of literature searches. AI-powered web scrapers can better
interpret complex web pages and extract relevant data more accurately. Additionally, NLP
can provide a deeper contextual understanding of search queries, resulting in more
relevant and precise search results.

Advancements in UI and UX design will make web scraping tools more accessible and
user-friendly for researchers with varying levels of technical expertise. Interactive
dashboards can provide intuitive data visualization, and personalized search features can
allow users to customize and save their search preferences, improving the overall user
experience.

As web scraping technologies advance, it is crucial to adhere to legal and ethical
guidelines. Future improvements may include compliance automation tools that ensure

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 32/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

web scraping activities comply with legal requirements and website terms of service.
Additionally, implementing ethical scraping practices will help protect privacy and
sensitive information.

The integration of advanced technologies and adherence to ethical practices will play a
significant role in the future of web scraping for literature research. These advancements
have the potential to enhance the efficiency, accuracy, and accessibility of literature
reviews, benefiting researchers across diverse academic disciplines.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by NTT Data Business Solutions Turkey, Istanbul, Turkey. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
NTT Data Business Solutions Turkey, Istanbul, Turkey.

Competing Interests

Muhammed Ali Mutlu, a graduate of our Master’s Program, is employed by NTT DATA
Business Solutions. He is currently working as Head of Data Platforms at NTT DATA
Business Solutions.

Author Contributions

e Muhammed Ali Mutlu conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

 Eyup Emre Ulku conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the article, and approved the final draft.

» Kazim Yildiz analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:
The frontend and backend code is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2384#supplemental-information.

REFERENCES

Akrianto MI, Hartanto AD, Priadana A. 2019. The best parameters to select instagram account
for endorsement using web scraping. In: 2019 4th International Conference on Information

Mutlu et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2384 33/37

http://dx.doi.org/10.7717/peerj-cs.2384#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2384#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2384#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Technology, Information Systems and Electrical Engineering (ICITISEE). Piscataway: IEEE,
40-45.

Amalia A, Afifa RM, Herriyance H. 2018. Resource description framework generation for tropical
disease using web scraping. In: 2018 IEEE International Conference on Communication,
Networks and Satellite (Comnetsat). Piscataway: IEEE, 44-48.

Anastasiadis E, Rajan P, Winchester CL. 2015. Framing a research question: the first and most
vital step in planning research. Journal of Clinical Urology 8(6):409-411
DOI 10.1177/2051415815612049.

Asmussen CB, Moller C. 2019. Smart literature review: a practical topic modelling approach to
exploratory literature review. Journal of Big Data 6(1):1-18 DOI 10.1186/s40537-019-0255-7.

Association for Computing Machinery. 2023. ACM digital library. Available at http://dl.acm.org/
(accessed 12 December 2023 13:00).

Belfin R, Shobana A, Manilal M, Mathew AA, Babu B. 2019. A graph based chatbot for cancer
patients. In: 2019 5th International Conference on Advanced Computing & Communication
Systems (ICACCS). Piscataway: IEEE, 717-721.

Chaudhari S, Aparna R, Tekkur VG, Pavan GL, Karki SR. 2020. Ingredient/recipe algorithm
using web mining and web scraping for smart chef. In: 2020 IEEE International Conference on
Electronics, Computing and Communication Technologies (CONECCT). Piscataway: IEEE, 1-4.

Dang TKN, Bucur D, Atil B, Pitel G, Ruis F, Kadkhodaei H, Litvak N. 2023. Look back, look
around: a systematic analysis of effective predictors for new outlinks in focused web crawling.
Knowledge-Based Systems 260(1):110126 DOI 10.1016/j.knosys.2022.110126.

Dwivedi YK, Ismagilova E, Hughes DL, Carlson J, Filieri R, Jacobson J, Jain V, Karjaluoto H,
Kefi H, Krishen AS, Kumar V, Rahman MM, Raman R, Rauschnabel PA, Rowley J, Salo],
Tran GA, Wang Y. 2021. Setting the future of digital and social media marketing research:
perspectives and research propositions. International Journal of Information Management
59(1):102168 DOI 10.1016/j.jjinfomgt.2020.102168.

Ertam F. 2018. Deep learning based text classification with web scraping methods. In: 2018
International Conference on Artificial Intelligence and Data Processing (IDAP). Piscataway: IEEE,
1-4.

Feng L, Chiam YK, Lo SK. 2017. Text-mining techniques and tools for systematic literature
reviews: a systematic literature review. In: 2017 24th Asia-Pacific Software Engineering
Conference (apsec). Piscataway: IEEE, 41-50.

Ferrara E, De Meo P, Fiumara G, Baumgartner R. 2014. Web data extraction, applications and
techniques: a survey. Knowledge-Based Systems 70(2-3):301-323
DOI 10.1016/j.knosys.2014.07.007.

Google. 2023a. Custom search site restricted JSON API. Programmable Search Engine. Available at
https://developers.google.com/custom-search/v1/site_restricted_api (accessed 12 December 2023).

Google. 2023b. Programmable Search Engine. Google for Developers. Available at https://
developers.google.com/custom-search/v1/overview (accessed 12 December 2023).

Gusenbauer M, Haddaway NR. 2020. Which academic search systems are suitable for systematic
reviews or meta-analyses? Evaluating retrieval qualities of google scholar, pubmed, and 26 other
resources. Research Synthesis Methods 11(2):181-217 DOI 10.1002/jrsm.1378.

Haddaway NR. 2015. The use of web-scraping software in searching for grey literature. Grey
Journal 11(3):186-190.

Haddaway NR, Macura B, Whaley P, Pullin AS. 2018. Roses reporting standards for systematic
evidence syntheses: pro forma, flow-diagram and descriptive summary of the plan and conduct

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 34/37

http://dx.doi.org/10.1177/2051415815612049
http://dx.doi.org/10.1186/s40537-019-0255-7
http://dl.acm.org/
http://dx.doi.org/10.1016/j.knosys.2022.110126
http://dx.doi.org/10.1016/j.ijinfomgt.2020.102168
http://dx.doi.org/10.1016/j.knosys.2014.07.007
https://developers.google.com/custom-search/v1/site_restricted_api
https://developers.google.com/custom-search/v1/overview
https://developers.google.com/custom-search/v1/overview
http://dx.doi.org/10.1002/jrsm.1378
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

of environmental systematic reviews and systematic maps. Environmental Evidence 7(1):1-8
DOI 10.1186/s13750-018-0121-7.

Haque A, Singh S. 2015. Anti-scraping application development. In: 2015 International Conference
on Advances in Computing, Communications and Informatics (ICACCI). Piscataway: IEEE,
869-874.

IEEE xPlore. 2023. Advancing technology for humanity. Available at https://ieeexplore.ieee.org/
(accessed 12 December 2023 13:00 13:00).

Jin L, Xing M, Wang R. 2020. Operation framework of the command information system based on
big data analysis. In: 2020 IEEE 5th International Conference on Cloud Computing and Big Data
Analytics (ICCCBDA). Piscataway: IEEE, 459-462.

Junjoewong L, Sangnapachai S, Sunetnanta T. 2018. Procircle: a promotion platform using
crowdsourcing and web data scraping technique. In: 2018 Seventh ICT International Student
Project Conference (ICT-ISPC). Piscataway: IEEE, 1-5.

Kayaalp M, Ozyer T, Ozyer ST. 2009. A collaborative and content based event recommendation
system integrated with data collection scrapers and services at a social networking site. In: 2009
International Conference on Advances in Social Network Analysis and Mining. Piscataway: IEEE,
113-118.

Khalid S, Wu S, Wahid A, Alam A, Ullah I. 2021. An effective scholarly search by combining
inverted indices and structured search with citation networks analysis. IEEE Access 9:120210-
120226 DOI 10.1109/ACCESS.2021.3107939.

Khalil S, Fakir M. 2017. Rcrawler: an R package for parallel web crawling and scraping. SoftwareX
6(2):98-106 DOI 10.1016/j.s0ftx.2017.04.004.

Liang T. 2020. Design and implementation of big data visual statistical analysis platform. In: 2020
2nd International Conference on Machine Learning, Big Data and Business Intelligence
(MLBDBI). Piscataway: IEEE, 287-291.

Macura B, Suskevi¢s M, Garside R, Hannes K, Rees R, Rodela R. 2019. Systematic reviews of
qualitative evidence for environmental policy and management: an overview of different
methodological options. Environmental Evidence 8(1):1-11 DOI 10.1186/s13750-019-0168-0.

Malik SK, Rizvi SA. 2011. Information extraction using web usage mining, web scrapping and
semantic annotation. In: 2011 International Conference on Computational Intelligence and
Communication Networks. Piscataway: IEEE, 465-469.

Markham A, Buchanan E, Bakardjeiva M, Baker A, Brake D, Ess C, Gajjala R, Gronholm C,
Hunsinger J, Johns MD, Jones S, Lomborg S, McKee H, Porter J, Hongladaram S, Salmons J,
Stern S, Svedmark E, Tkach L, Regan Shade L, White M, Zimmer M. 2012. Ethical decision-
making and internet research: recommendations from the aoir ethics working committee
(version 2.0). Available at https://www.aoir.org/reports/ethics2.pdf.

Marshall IJ, Wallace BC. 2019. Toward systematic review automation: a practical guide to using
machine learning tools in research synthesis. Systematic Reviews 8(1):1-10
DOI 10.1186/s13643-019-1074-9.

Myllymaki J. 2001. Effective web data extraction with standard xml technologies. In: Proceedings of
the 10th International Conference on World Wide Web. 689-696.

Pandey KK, Shukla D. 2018. Challenges of big data to big data mining with their processing
framework. In: 2018 8th International Conference on Communication Systems and Network
Technologies (CSNT). Piscataway: IEEE, 89-94.

Patel J. 2019a. Bridging data silos using big data integration. International Journal of Database
Management Systems 11(3):1-6 DOI 10.5121/ijdms.2019.11301.

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 35/37

http://dx.doi.org/10.1186/s13750-018-0121-7
https://ieeexplore.ieee.org/
http://dx.doi.org/10.1109/ACCESS.2021.3107939
http://dx.doi.org/10.1016/j.softx.2017.04.004
http://dx.doi.org/10.1186/s13750-019-0168-0
https://www.aoir.org/reports/ethics2.pdf
http://dx.doi.org/10.1186/s13643-019-1074-9
http://dx.doi.org/10.5121/ijdms.2019.11301
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Patel J. 2019b. An effective and scalable data modeling for enterprise big data platform. In: 2019
IEEE International Conference on Big Data (Big Data). Piscataway: IEEE, 2691-2697.

Python Software Foundation. 2023a. beautifulsoup4 4.12.3. Available at https://pypi.org/project/
beautifulsoup4/ (accessed 12 December 2023 13:00).

Python Software Foundation. 2023b. Extraction library. Available at https://pypi.org/project/
extraction/ (accessed 12 December 2023 13:00).

Python Software Foundation. 2023c. Algorithm is used before starting scraping algorithms.
Available at https://pypi.org/project/reppy/ (accessed 12 December 2023 13:00).

Python Software Foundation. 2023d. Requests. Available at https://pypi.org/project/requests/
(accessed 12 December 2023 13:00).

Research Gate. 2023. Discover scientific knowledge and stay connected to the world of science.
Available at https://www.researchgate.net/ (accessed 12 December 2023 13:00).

Sheela AS, Jayakumar C. 2019. Comparative study of syntactic search engine and semantic search
engine: a survey. In: 2019 Fifth International Conference on Science Technology Engineering and
Mathematics (ICONSTEM). Vol. 1. Piscataway: IEEE, 1-4.

Sivarajah U, Kamal MM, Irani Z, Weerakkody V. 2017. Critical analysis of big data challenges
and analytical methods. Journal of Business Research 70(1):263-286
DOI IO.10l6/j.jbusres.2016.08.001.

Snyder H. 2019. Literature review as a research methodology: an overview and guidelines. Journal
of Business Research 104(5):333-339 DOI 10.1016/j.jbusres.2019.07.039.

Springer Nature. 2023. Springer Link. Available at http://link.springer.com/ (accessed 12 December
2023 13:00).

Sundaramoorthy K, Durga R, Nagadarshini S. 2017. Newsone—an aggregation system for news
using web scraping method. In: 2017 International Conference on Technical Advancements in
Computers and Communications (ICTACC). Piscataway: IEEE, 136-140.

Turk K, Pastrana S, Collier B. 2020. A tight scrape: methodological approaches to cybercrime
research data collection in adversarial environments. In: 2020 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW). Piscataway: IEEE, 428-437.

Uzun E. 2020. A novel web scraping approach using the additional information obtained from web
pages. IEEE Access 8:61726-61740 DOI 10.1109/ACCESS.2020.2984503.

Van Dinter R, Tekinerdogan B, Catal C. 2021. Automation of systematic literature reviews: a
systematic literature review. Information and Software Technology 136:106589
DOI 10.1016/j.infsof.2021.106589.

Verma A, Mittal V, Dawn S. 2019. Find: fake information and news detections using deep
learning. In: 2019 Twelfth International Conference on Contemporary Computing (IC3).
Piscataway: IEEE, 1-7.

Waffenschmidt S, Knelangen M, Sieben W, Biihn S, Pieper D. 2019. Single screening versus
conventional double screening for study selection in systematic reviews: a methodological
systematic review. BMC Medical Research Methodology 19(1):1-9
DOI 10.1186/512874-019-0782-0.

Winchester CL, Salji M. 2016. Writing a literature review. Journal of Clinical Urology 9(5):308-312
DOI 10.1177/2051415816650133.

Xiao Y, Watson M. 2019. Guidance on conducting a systematic literature review. Journal of
Planning Education and Research 39(1):93-112 DOI 10.1177/0739456X17723971.

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 36/37

https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/extraction/
https://pypi.org/project/extraction/
https://pypi.org/project/reppy/
https://pypi.org/project/requests/
https://www.researchgate.net/
http://dx.doi.org/10.1016/j.jbusres.2016.08.001
http://dx.doi.org/10.1016/j.jbusres.2019.07.039
http://link.springer.com/
http://dx.doi.org/10.1109/ACCESS.2020.2984503
http://dx.doi.org/10.1016/j.infsof.2021.106589
http://dx.doi.org/10.1186/s12874-019-0782-0
http://dx.doi.org/10.1177/2051415816650133
http://dx.doi.org/10.1177/0739456X17723971
http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

PeerJ Computer Science

Zdravevski E, Lameski P, Trajkovik V, Chorbev I, Goleva R, Pombo N, Garcia NM. 2019.
Automation in systematic, scoping and rapid reviews by an nlp toolkit: a case study in enhanced
living environments. In: Ganchev I, Garcia N, Dobre C, Mavromoustakis C, Goleva R, eds.
Enhanced Living Environments: Algorithms, Architectures, Platforms, and Systems. Cham:
Springer, 1-18.

Mutlu et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2384 37/37

http://dx.doi.org/10.7717/peerj-cs.2384
https://peerj.com/computer-science/

	A web scraping app for smart literature search of the keywords
	Introduction
	Related works
	Materials and Methods
	RESULTS AND DISCUSSIONS
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

