
Submitted 28 February 2024
Accepted 10 September 2024
Published 31 October 2024

Corresponding author
Zhigang Yang, yzg@ncst.edu.cn, yzg-
lzy@163.com

Academic editor
Xiangjie Kong

Additional Information and
Declarations can be found on
page 28

DOI 10.7717/peerj-cs.2382

Copyright
2024 Liu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A multi-queue-based ECN marking
strategy for multi-class QoS guarantee
in programmable networks
Yazhi Liu1, Xinyi Yao1, Zhigang Yang2 and Wei Li1

1College of Artificial Intelligence, North China University of Science and Technology, Tangshan, China
2College of Electrical Engineering, North China University of Science and Technology, Tangshan, China

ABSTRACT
Currently, network applications are experiencing explosive growth, and various
types of network applications are showing a trend of varied demands for quality
of network service. However, the existing Explicit Congestion Notification (ECN)
marking methods have not taken into account the diversified Quality of Service (QoS)
requirements of network applications. This article introduces a multi-queue ECN
marking strategy targetingmultiple QoS guarantees. The strategy utilizes virtual queues
and dynamic weighted round-robin scheduling to achieve traffic partitioning in a
programmable data plane. It constructs a multi-queue, multi-class QoS queuing model
based on theQoS requirements of different traffic and network conditions. Themodel is
solved by real-time to obtain the ECNmarking thresholds and round-robin weights for
different queues, in order to achieve dynamic QoS requirements of different network
applications. We implemented this strategy in Mininet and BMv2, and compared it
with DCQCN, P4QCN, and TCN. The experimental results indicate that this policy
demonstrates good performance in terms of queue length, RTT, and throughput, while
also ensuring fairness between traffics. Results of the experiment indicate that the
proposed approach is superior to DCQCN and P4QCN in the field of performance
fluctuation and rapid feedback, and it exhibits notable advantages over TCN, and also
ensures the fairness of traffic.

Subjects Computer Networks and Communications, Emerging Technologies, Optimization
Theory and Computation
Keywords Programmable data plane, Queue scheduling, P4, Queuing theory, QoS

INTRODUCTION
With the rapid of cloud applications and services, the variety of traffic within data centers
has significantly increased (Gao et al., 2021). Consequently, network congestion occurs
frequently, leading to increased packet loss, higher latency, and decreased throughput in
datacenter networks. Ensuring Quality of Service (QoS) for various types of traffic has
become a new challenge for the next generation of networks (Chen et al., 2019). To address
these network challenges, Explicit Congestion Notification (ECN) has been deployed as
an effective tool within networks (Pan et al., 2018). Congestion control protocols based on
ECN achieved favorable results within networks (Kundel et al., 2021). However, if the ECN
threshold is configured improperly, it can have a significant impact on the performance of

How to cite this article Liu Y, Yao X, Yang Z, Li W. 2024. A multi-queue-based ECN marking strategy for multi-class QoS guarantee in
programmable networks. PeerJ Comput. Sci. 10:e2382 http://doi.org/10.7717/peerj-cs.2382

https://peerj.com/computer-science
mailto:yzg@ncst.edu.cn
mailto:yzg-lzy@163.com
mailto:yzg-lzy@163.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2382
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2382

the network. Therefore, efficient configuration of the ECN marking threshold is a crucial
part of the process.

Currently, research on ECNmarking typically encompasses the following two scenarios:

• Assuming there is only one queue at the switch port. In this scenario, the ECN strategy
will mark all packets at the port based on port information (such as the number of
packets or delay at the port), as seen in Data Center Transmission Control Protocol
(DCTCP) (Alizadeh et al., 2010). However, the current trend in the data center industry
is that each port of the switch has multiple queues (Kim & Lee, 2021). Therefore, Multi-
QueueExplicit CongestionNotification (MQ-ECN) (Bai et al., 2016b) has beenproposed
to set ECN thresholds for each individual queue at the port. However, MQ-ECN still
adjusts the ECNmarking threshold for each queue based on the queueweight ratio, which
fails to guarantee QoS requirements for each type of traffic. Furthermore, MQ-ECN is
limited to weighted round-robin scheduling algorithms. Unlike forwarding, scheduling
behavior is primarily determined through hardware configuration (Sivaraman et al.,
2016). This results in poor portability and operability of MQ-ECN.
• The application of ECNmarking is limited to the TCP protocol. Since the ECN
marking mechanism relies on the TCP protocol, most research is typically conducted
in TCP environments. However, as the demand for network performance increases, the
proportion of UDP packets in the network is also gradually rising. Currently, research
on transport mechanisms based on UDP, such as QUIC (Langley et al., 2017), is also
rapidly advancing. In fact, we have observed that both UDP streams and TCP streams
exhibit similar performance issues under certain traffic patterns.

Indeed, while the specific details may vary, most congestion control mechanisms
in modern data center networks combine the use of port congestion control, First-In
First-Out (FIFO) queues at switches, or the congestion feedback information (such as
delay or switch state) from the end-to-end loop to achieve lower congestion.

Based on the backgroundmentioned, this article introduces amulti-queue ECNmarking
strategy based on virtual queue. This article investigates virtual queue partitioning on
programmable data planes to achieve multi-queue ECNmarking, aiming to guarantee QoS
requirements for various traffic types. The ECNmarking is implemented in the data plane,
only marking the last two bits of the TOS field in the IP packet header of ECN feedback
packets, making it applicable to all IP packets. This strategy is implemented based on a
programmable data plane, decoupling it from protocols and devices, making it easy to
deploy. We have implemented this strategy on a software platform, and it has ultimately
achieved the expected results.

The contributions of this article can be summarized as follows:

• We establish a multi-queue QoS objective optimization model based on queue theory,
by considering that traffic has different QoS requirements and queues need different
ECN markings. We take into account the relationship between marking thresholds,
queue weights, and QoS objectives, and utilize optimization theory to solve the model,
in order to obtain the optimal queue marking thresholds, queue weights, and optimal

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 2/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382

arrival rate of packets. With this approach, we can effectively manage congestion and
guarantee that each traffic flow receives the required QoSmetrics according to its specific
needs.
• We propose a dynamically weighted queue scheduling method based on virtual queues.
Thismethod, upon the arrival of traffic at the switch, divides it into distinct virtual queues
based on packet header information. By employing a multi-queue QoS optimization
model, the method dynamically determines queue weights, regulating the dequeue
sequence of packets to achieve equitable scheduling among different traffic streams.
• We simulated the DCQCN (Zhu et al., 2015), P4QCN (Geng, Yan & Zhang, 2019),
and TCN (Bai et al., 2016a) mechanisms (the code has been uploaded to GitHub
(https://github.com/YXY-1998/CC)) on a programmable data plane software platform
composed of Mininet and BMv2, and compared them with our proposed solution. The
experimental results indicate that our solution effectively reduces queue length and
transmission latency within the switches while ensuring throughput and maintaining
stability in throughput variations. It has achieved the desired results as expected.

The remaining part of the article proceeds as follows: Section ‘‘Related Work’’ lists
the current research results on congestion control methods and programmable queue
scheduling. We identify the limitations of existing ECN strategies in Section ‘‘Motivation’’.
Section ‘‘Design’’ is connected with the design of our ECN marking strategy. Section
‘‘Experiment’’ provides detailed information on the experimental setup and results, and in
the end, Section ‘‘Conclusion and Future Work’’ summarizes the work of this article and
points out the next research direction.

RELATED WORK
In this section, we primarily discuss two aspects of related work: congestion control
strategies based on ECN marking and programmable queue scheduling.

Congestion control strategies
The research on congestion control methods based on ECNmarking has been continuously
improved with the development of data center networks. Here, we provide a brief overview
of the evolution of ECN mechanisms from three perspectives.

Traditional ECN strategies
D2TCP (Vamanan, Hasan & Vijaykumar, 2012) and L2DCT (Munir et al., 2013) have
modified the DCTCP congestion control algorithm to meet the time constraints of
network communication. The CEDM (Shan & Ren, 2017), proposed by Shan & Ren
(2017), accurately marks ECN to reduce throughput loss by minimizing queue oscillations.
ECN (Wu et al., 2012) utilizes the standard TCP congestion control algorithm on the
terminal host and employs ECN marking based on the instantaneous queue length. These
solutions employ the same Active Queue Management (AQM) marking as DCTCP.
Consequently, they are disadvantaged by increased queuing delay in the presence of RTT
variations. DCQCN (Zhu et al., 2015) is an improved approach combining DCTCP and

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 3/32

https://peerj.com
https://github.com/YXY-1998/CC
http://dx.doi.org/10.7717/peerj-cs.2382

QCN, which is a rate-based congestion control method enabling Remote Direct Memory
Access(RDMA) in data centers.

Multi-Queue ECN marking strategies
MQ-ECN (Bai et al., 2016b) first identified the limitations of existing ECN/RED
implementations in packet scheduling and proposed a method to automatically adjust
ECN thresholds based on network load. To overcome the limitations of MQ-ECN on
packet schedulers, TCN (Bai et al., 2016a) proposes using instantaneous dwell time to
mark packets. Pan et al. (2018) proposed a more accurate congestion detection mechanism
by adding RTT thresholds at the port level based on the ECN marking strategy.

ECN strategies combined with various methods
ECN# (Zhang, Bai & Chen, 2019) demonstrates significant variations in actual RTT in
production environments (approximately three-fold), making it challenging to find
appropriate static thresholds to balance queue occupancy and throughput. In the context of
artificial intelligence, network technologies are also moving towards intelligent directions,
combining ECNwith various techniques. ECN-CoDel (Alwahab & Laki, 2020) implements
the active queue management algorithm, CoDel (Nichols et al., 2018), using a packet
processor (P4) independent of the programming protocol. When the dwell time of a
packet exceeds the target time, it is no longer forwarded and waits for the first-round
interval (100 ms) to enter the first drop state. All forwarded packets are marked with ECN
to reduce the load on router queues. ECN-CoDel can significantly reduce retransmissions
and achieve an almost zero packet loss rate. P4QCN (Geng, Yan & Zhang, 2019) is an
enhanced Quantized Congestion Notification (QCN) design based on P4, implementing
the QCN protocol in an IP network. However, it still adopts a static ECN marking
strategy. EECN (Shahzad et al., 2020) provides an enhanced ECN mechanism where, upon
congestion occurrence, switches intercept acknowledgement (ACK) data segments from
receivers within the network and set the ECN-Echo bit using P4 programming. This
achieves fast congestion notification without requiring additional control traffic. Jiang
& Zhang (2019) propose an accurate congestion control mechanism that uses In-band
Network Telemetry (INT) to capture network capacity from a global perspective and
calculates the expected bandwidth for each traffic flow, utilizing the Adjusted Advertised
Window (AAW) method to accurately feedback the actual capacity of the network to
source nodes. Using machine learning, the active ECN dynamic marking strategy adaptive
cruise control (ACC) (Yan et al., 2021) is introduced. ACC works in a distributed manner
and dynamically computes marking thresholds using reinforcement learning to adapt
to dynamic traffic patterns. QoSTCP (Chen, Fang & Iqbal, 2020) uses trTCM meters to
determine if the traffic exceeds a certain threshold. When the traffic exceeds a specific rate,
the ECN bit is marked as Rate Limiting Notification (RLN), and the congestion window
growth is proportional to the rate of packets marked as RLN. Laraba et al. (2020) model
ECN as an Extended Finite StateMachine (EFSM) and store states and variables in registers.
If the terminal host does not comply with the specified ECN state machine, packets may
be dropped, or incorrect behaviors are corrected whenever possible. ECLAT (Kim, Im &

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 4/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382

Lee, 2021) introduces a delay budget to adaptively control congestion markings, analyzing
the cwnd (congestion window) growth pattern of TCP to estimate the time it takes for the
sender’s cwnd to reach the target cwnd and perform ECNmarkings based on the calculated
time. PACC (Zhong et al., 2022) accurately calculates the real-time queue length based
on a PI controller and timely returns Congestion Notification Packets(CNPs) to specific
sources. SB-CC (Wei et al., 2020) utilizes the ECN mechanism to estimate the congestion
level of each subflow and controls the congestion window size of each subflow based on
different congestion levels to ensure fairness in subflow network loads.

The reference (Brouwer & de Jager, 2023) leverages programmable switches to provide
high-speed processing capabilities for running AQMalgorithms, analyzing implementation
details of various AQMalgorithmswithin the programmable data plane. This analysis assists
researchers in better understanding and selecting AQMalgorithms. iRED (de Almeida et al.,
2022) exploits the programmability of the data plane by discarding packets at the ingress
pipeline instead of at the egress, improving QoS for adaptive video streams compared
to other AQM strategies based on drop decisions at the egress. BRT (Zhang et al., 2024)
employs traffic-characteristic windows to detect if queues are in a persistent long-queue
state. It adjusts the total buffer allocation for each traffic type based on the number of
persistently long queues, reducing unnecessary buffering for meaningless queuing. Lastly,
it computes buffer thresholds for RDMA/TCP queues separately and uses a simple yet
effective method to prioritize the absorption of small flows. BRT effectively optimizes the
networking performance of RDMA/TCP hybrid flows.

Programmable queue scheduling
By using a programmable scheduler, the scheduling algorithm can be seen as a program
running on a programmable switch chip, eliminating the need for hardware redesign
when modifications to the algorithm are required. Sivaraman et al. (2016) proposed a
programmable scheduler that can utilize a Push-In First-Out (PIFO) priority queue
to schedule packets based on priority or temporal order without requiring changes to
the switch chip. PR-AQM (Li et al., 2023) approximates PIFO behavior using limited
FIFO queues. PR-AQM dynamically adjusts the mapping between packet ordering and
queues based on the latency states of different priority queues, thereby achieving packet
prioritization. Lhamo et al. (2024) points out that existing AQM mechanisms running
on P4 typically do not support QoS. Therefore, it combines the well-known CoDel
mechanism with static priority scheduling to achieve QoS differentiation in the data plane
implementation of AQM. In order to minimize scheduling errors relative to the assumed
PIFO implementation, SP-PIFO (Alcoz, Dietmüller & Vanbever, 2020) dynamically adjusts
the mapping between priorities and SP queues. Building upon SP-PIFO, Vass, Sarkadi
& Rétvári (2022) introduced an optimal offline scheme that outputs the best SP-PIFO
configuration in polynomial time under a given random input model. Yu et al. (2021)
proposed an Admission-In First-Out (AIFO) queue, which utilizes a single FIFO queue
and determines packet admission based on the relative ranking of the packets. This
approach enables packet scheduling and reduces hardware resource consumption.

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 5/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382

In summary, this article designs a multi-queue ECN marking strategy aimed at QoS
assurance. Leveraging the programmability of the data plane, the strategy’s applicability
is enhanced, as it supports all IP protocol packets compared to previous ECN marking
policies. Additionally, inspired by mechanisms from SP-PIFO for dynamically adjusting
packet priorities and mappings between SP queues, the article employs a virtual queue-
to-priority queue mapping to simulate round-robin scheduling, ensuring fairness among
flows. Building upon the M/M/1/N queuing model, this work constructs a multi-traffic
objective optimizationmodel. It dynamically computes queue scheduling weights and ECN
marking thresholds based on QoS objectives and current queue states, considering diverse
traffic demands to achieve equilibrium in competition. The optimal solutions for queue
weights and ECN marking thresholds are derived through model solving techniques.

MOTIVATION
In recent times, research centers and data center operators have proposed various
algorithms based on ECN marking with the aim of optimizing the performance of
data centers, including DCTCP (Alizadeh et al., 2010), DCQCN (Zhu et al., 2015), MQ-
ECN (Bai et al., 2016b), TCN (Bai et al., 2016a), and ECN# (Zhang, Bai & Chen, 2019),
among others. The primary objectives of these algorithms are to achieve high throughput
and reduce tail latency. However, during our investigation and research into congestion
control algorithms, we found certain limitations in the existing ECN algorithms.

• Dependent on protocols, poor universality. Some algorithms, improved based on
DCTCP, notify the sender about congestion in the link by marking the ECE bit of
TCP packets at the receiving end. At the same time, these congestion control strategies
assume that all nodes in the network use ECN-based transport protocols (such as TCP,
RDMA). These protocols use their specific packet headers, and if other headers are
used, these strategies will not function properly. (RDMA can mark the IP header as an
ECN indicator, but end-to-end control still requires the generation of specific format
Congestion Notification Packets (CNPs) as congestion control messages.)
• End-to-end congestion control leads to slow congestion response. The ECN
mechanism relies on congestion feedback received from the receiving end for congestion
control. As can be seen from Fig. 1, when the transmission path of flow F1 gets congested,
it takes at least one RTT time for the senderH1 to react to network congestion. During the
congestion signal return path, the queue built on the bottleneck switch also significantly
increases network latency, further exacerbating congestion.
• Port-based ECN disregards fairness between queues. The initial design of ECN only
considered a single queue, but it is a general trend to have multiple queues per port
of switches in modern data center networks. The variety of traffic types in data center
networks has significantly increased. When the buffer of certain queues in a switch
exceeds the configured threshold, all packets belonging to the same port may potentially
receive ECN markings. In Fig. 1, at Time 0, H1 sends flow F1 of type A to H3. When
congestion occurs at port P2 in node S2, packets at port P2 are marked with ECN. H3
responds with congestion feedback to reduce the sending rate of F1. At Time t, H0 sends

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 6/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382

H0

H1

H2

H3

P1 P2

P3

P4

Time 0: F1→ H3
Time t: F0→ H2

F1

F0 S1 S2 S3

Feedback_Packet

Figure 1 Diagram of end-to-end congestion control.H0 and H1 are the sender, H2 and H3 are the re-
ceiver, P1, P2, P3, and P4 are the switch ports, and the dashed line indicates that the receiver returns the
congestion signal to the sender.

Full-size DOI: 10.7717/peerjcs.2382/fig-1

flow F0 of type B to H2. If congestion at port P2 remains unresolved, flow F0 is also
marked with ECN, thereby reducing the sending rate of H0. This implies that when the
buffer of certain queues in a switch exceeds the considered threshold, the packets that
are on the same port but going to a link that is not congested are marked, compromising
the QoS for non-congested flows and disregarding fairness between queues.

To address the aforementioned issues, this project implements the ECN mechanism
on a programmable data plane, leveraging the features of P4 to remove the constraints of
protocols and devices on ECN markings. Simultaneously, a virtual queue mechanism is
introduced, which divides the data streams into different queues within the switch. The
corresponding queue ECN thresholds are set based on the QoS requirements of the traffic
within each queue to ensure fairness of the traffic. Furthermore, a two-point architecture is
employed to return congestion information at congested points, reducing the propagation
delay of information. For the purpose of fulfilling the QoS requirements of the traffic
within the queues, we found a multi-objective optimization model. Considering the model
and solving requirements, a nonlinear programming problem-solving method is designed
to solve the model. By employing this approach, we can guarantee the QoS requirements
of the traffic while reducing network congestion issues.

DESIGN
Compared to the traditional ECN mechanism that relies on the receiver informing the
sender about congestion, this article aims to leverage the programmable data plane
to directly return congestion information at congestion points (switches), thereby
reducing message propagation time. In this article, the programmable capability of the
data plane is utilized to generate feedback packets at switches. A data structure called
‘‘register’’ is employed to implement virtual queues within the switches. Additionally, data

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 7/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2382/fig-1
http://dx.doi.org/10.7717/peerj-cs.2382

sender receiver

Switch 1
classifier

generator

Reaction Point
(RP)

Congestion Point 1
(CP)

……

…… Congestion Point n
(CP)

Switch n

ECN

Figure 2 Architectural model. The sender is the reaction point (RP), and the intermediate switches are
the congestion point (CP).

Full-size DOI: 10.7717/peerjcs.2382/fig-2

communication between the data plane and control plane is achieved through the Thrift
interface of the programmable switch BMv2.

ECN markup model—system architecture
The overall architecture of this mechanism in Fig. 2 is a dual-point congestion control
architecture, consisting of the reaction point (RP) and the congestion point (CP). In
contrast to the three-point architecture, the CP in the dual-point architecture is located on
the switches and directly sends congestion feedback packets to the RP. Consequently, this
architecture is more efficient than the three-point architecture as it reduces the round-trip
delay of feedback packets.

In Fig. 2, the functions at the CP are divided into three parts: classifier, generator, and
ECN marking. The classifier divides incoming packets into their respective virtual queues.
When the length of a virtual queue exceeds a designated threshold, the generator creates
corresponding feedback packets for that queue. The switch marks the ECN field in the
feedback packets, writes congestion information into the feedback packets, and returns
them to the source host to decrease the transmission rate of congested flows.

The RP point can adjust the packet sending rate of the source host. When congestion
messages arrive, the source host adjusts the sending rate of the data flow based on the
congestion information carried by the feedback packets. Additionally, when no congestion
messages are received, the source host gradually increases the sending rate of the packets,
allowing the rate to quickly recover to the pre-congestion level before the arrival of the
congestion information, thereby increasing the link utilization.

CP algorithm
As indicated by the CP in Fig. 3, this article deploys virtual queues in the data plane,
enabling flexible traffic partitioning and queue scheduling. The control plane serves as
the connection between the data plane and the multi-queue target optimization model,
responsible for pushing the computed data down to the data plane. When packets arrive at
the switch, they are partitioned into different virtual queues. The control plane calculates
the optimal arrival rate and service rate for the current data flow based on the queuing
theory model, taking into account the current queue conditions. It uses this information
to compute the queue weights and the ECN marking thresholds, determining whether

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 8/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2382/fig-2
http://dx.doi.org/10.7717/peerj-cs.2382

Ingress

Congestion Point (CP)

TM

Control Plane

Data Plane

③K, μ*，λ*, ω

Egress

If packet is cloned then
 ipv4.ecn=3;
If ipv4.ecn==3 then
 ipv4.dstAddr=ipv4.srcAddr;

K If len>K
clone

forwarding

Programmable Virtual Queue

①λ, W, N, Γ, etc.

②μ*

Multi queue objective optimization model

Parser

Figure 3 Architecture diagram of CP points. In control plane, the first step is to input parameters such
as arrival rate λ, queueing delayW , total capacity of switches N , and total service rate 0 of ports into the
model. After obtaining the optimal service rate µ∗ for the queue, the service rate µ∗ is re-input into the
model to derive the marking threshold K , optimal arrival rate λ∗, and queue weights ω.

Full-size DOI: 10.7717/peerjcs.2382/fig-3

to generate ECN feedback packets. The marked feedback packets are returned to the
source host, while the unmarked packets continue with subsequent packet scheduling
and forwarding. This mechanism dynamically adjusts the arrival rate, service rate, queue
weights, and ECN marking thresholds based on the current network traffic conditions,
optimizing network performance and guaranteeing the QoS requirements of each traffic
flow.

This marking strategy uses the last two bits of the IP header’s ToS field to mark ECN
as feedback packets, decoupling the ECN mechanism from the TCP protocol and switch
configuration. When the queue length exceeds the ECN marking threshold K , the CP
algorithm generates ECN feedback packets, the ECN bit of a feedback packet is marked
as 11, indicating that the link where the packet resides is congested. Referring to the INT
mechanism, packets contain INT headers to carry valid information. In the programmable
data plane, the source IP is extracted from the packets arriving at the egress queue to
serve as the destination IP for the feedback packets, and then the congestion packets are
forwarded back to the source host.

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 9/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2382/fig-3
http://dx.doi.org/10.7717/peerj-cs.2382

Regarding the threshold, this article considers thresholds based on the QoS requirements
of different flows, taking into account metrics such as throughput, latency, and packet loss,
and treats them as optimization objectives. The research simultaneously considers the
relationship between marking thresholds, queue weights, and QoS objectives, describing
the optimization objectives as a non-linear programming problem and establishing a
multi-QoS optimization model. The model is solved using optimization theory to obtain
optimal marking thresholds and queue weights, thus achieving the QoS requirements of
different flows. Specifically, Algorithm 1 describes the entire process of packets within the
switch.

Algorithm 1 The CP algorithm
Input: packet;
Output: packet, feedback packet;
while Packet_in do
Partition the packets into virtual queue i while collecting packet information such as
arrival rate λi, queuing delayWi, etc.
Pass the collected information to the control plane to obtain the queue ECN marking
threshold Ki, optimal arrival rate λ∗i , and queue weight ωi.
while the number of packets with priority P > ωi do
P−−;

end while
packet.priority = P ;
if Q_length>Ki then
clone the packet;

end if
if the packet is a clone packet then
packet.IP.tos=3;
packet.INT.rate1=λi;
packet.INT.rate2=λ∗i ;

end if
Forward.

end while

Virtual queue and queue scheduling
This article utilizes BMv2 switches for programmable data plane simulation. By default,
BMv2 switches employ Strict Priority (SP) queues, where packets are assigned to different
queues based on their priority, enabling multi-queue emulation. However, SP queues
neglect fairness among queues. In the event of congestion, if there are continuously packets
in the high-priority queue, packets in the low-priority queue will not receive service.
Additionally, due to the developmental stage of BMv2 switches, some functionalities are
incomplete, and obtaining queue parameters for individual subqueues is not possible

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 10/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382

Virtual Queue

V1, weight 3 Q7

Q6

Q5

V2, weight 3

V3, weight 3

Priority Queue

149

3

26

9

5

11

7 8

123456

13

10

11

10

12 7

13 14

14

12

15

15

8 9

123456

10 78

13

11

14

12

……

Figure 4 Mapping from virtual queue to priority queue. The last part is the order of the packets leaving
the switch.

Full-size DOI: 10.7717/peerjcs.2382/fig-4

(Harkous et al., 2021). To address these limitations, this article proposes a virtual queue-
based Weighted Round-Robin (WRR) scheduling mechanism, which is based on priority
queues, to ensure fairness among queues. This approach aims to alleviate the fairness issues
associated with SP queues, while also overcoming the incomplete functionality of BMv2
switches in obtaining subqueue parameters.

In our P4 pipeline, we utilize virtual queues, which are mechanisms used to model the
length of queues. Unlike regular queues, virtual queues do not contain any actual packet
data. Instead, they are numeric values that increment as packets arrive and decrement
based on a predefined model. In our implementation, we utilize the data structure register
available in the P4 language to implement virtual queues and monitor their states. The
register allows us to store and manipulate the values associated with each virtual queue,
providing a way to track and manage their state within the P4 pipeline.

We employ amatching table to divide each incoming packet into different virtual queues
based on their source and destination addresses. Furthermore, we assign weights to these
virtual queues and utilize the register to track the utilization of the priority queues within
each virtual queue. As depicted in Fig. 4, if the utilization of a priority queue within a
specific virtual queue exceeds the weight associated with that virtual queue, we enforce the
usage of a lower priority queue. In the algorithm designed in this article, the queue weights
are controlled by the control plane.

In Fig. 4, the sequence number on the packets represents the order in which they arrive
at the switch. With a queue weight set to 3, when a packet arrives at a virtual queue, the
first-arrived packet in that virtual queue is assigned the highest priority. If, for a particular
virtual queue, the length of its packets in a priority queue reaches 3, the priority of that
packet is downgraded, and it enters a lower-priority queue. This process continues, enabling
packet forwarding according to the WRR scheduling method.

To validate that simulating WRR with virtual queues can mitigate the impact of SP
queues on traffic in BMv2 switches, this experiment ran both the default SP scheduler and
a WRR scheduler based on virtual queues in the switch. High, medium, and low priority
traffic were simultaneously sent to the switch with equal weights for the three types of
traffic. The bandwidth performance of each traffic type under the two scheduling schemes
is shown in Table 1. It can be observed that in SP scheduling, low-priority packets have fewer
scheduling opportunities, resulting in lower bandwidth. In contrast, withWRR scheduling,
this issue is addressed, and all three types of traffic have opportunities to transmit data.

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 11/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2382/fig-4
http://dx.doi.org/10.7717/peerj-cs.2382

Table 1 Bandwidth of three types of traffic (Mbps).

Scheduling High Medium Low

SP 6.222333333 3.565245902 0.1583333
WRR 3.090322581 3.017741935 2.992786885

Therefore, in the programmable data plane, WRR scheduling based on virtual queues can
effectively mitigate the problem of flow starvation compared to the default SP scheduling,
ensuring fairness among traffic flows.

Model establishment
In this chapter, according to reference (Wu, Qiao & Chen, 2018), the data flows in a network
can be broadly classified into the following three categories to meet the QoS requirements
of different types of data streams:

Category A data flows: These are bandwidth-sensitive and delay-sensitive data streams.
This category of data flows has higher requirements for network performance, necessitating
sufficient bandwidth and low transmission latency. Typically, these data flows include
applications such as audio, video, and real-time gaming that have high demands for
real-time transmission. Ensuring priority transmission for these data flows ensures their
immediate and seamless delivery in the network, providing a good user experience and
service quality.

Category B data flows: These are delay-sensitive data streams. This category of data
flows is sensitive to transmission latency, and the network should provide low-latency
transmission for them.

Category C data flows: These are best-effort data flows, which do not have specific
requirements for latency and bandwidth. A common example is file transfer protocol
(FTP) traffic. For these data flows, the main objective of the network is to deliver the data
to the best of its ability.

By classifying data flows into different categories, networks can employ appropriate
strategies and mechanisms to provide corresponding quality of service guarantees for
each category of data flows, meeting the requirements and performance needs of diverse
applications. The symbols and meanings used in this article are shown in Table 2.

We define I = {1,2,...,k} to represent the set of traffic types present in the network,
where traffic i,i∈ I represents a specific type of flow. When traffic arrives at the switch,
the classification module will allocate traffic i to the corresponding queue, and the ECN
marking module will set the appropriate ECN marking threshold in accordance with the
business requirements of traffic i. Let the optimized service rate be used as the threshold
Ki. Assuming that each switch has the same capacity limit and can accommodate a queue
length of N , the arrival rate of traffic i is λi, and the service rate is µi. Let 3 represent the
total arrival rate of packets at the switch, and 0 represent the total service rate of packets
leaving the switch through the same port. All packets, after passing through the classifier,
are stored in different queues, and only one scheduler serves multiple queues. Let ωi

represent the weight of traffic i’s queue in the virtual queue, and
∑k

i=1ωi= 1. The weight
determines how many packets from that queue are served by the scheduler in one unit of

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 12/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382

Table 2 Model symbols and parameters.

Notation Description

λi The arrival rate of traffic type i.
µi The service rate of traffic type i.
Ki The ECN marking threshold for the queue containing

traffic i.
N The number of packets that can be accommodated in each

switch.
ωi The proportion of the queue in which traffic type i resides

in relation to all queues in the
virtual queue.

3 The total arrival rate of packets arriving at the switch.
0 The aggregate service rate of packets departing from the

switch on the same port.
Pm The probability that there arem packets in queue i at time t .

Liq Expected value of the number of packets waiting in the
queue containing traffic i.

Lic Expected value of the number of packets receiving services
in the queue containing traffic i.

W i
q Queueing time of packets in the queue containing traffic i.

W i
c Packet service time of the queue containing traffic i.

C The bandwidth of each individual link.
n The number of links connected to the switch.
Wi The actual queuing time of traffic type i within the switch.
λ∗i The optimal arrival rate of the queue containing traffic i.
µ∗i The optimal service rate of the queue containing traffic i.

time. If the scheduler serves a total of 0 packets in one unit of time, then ωi0 packets are
served in queue i, i.e., µi=ωi0. Therefore, the weighted round-robin scheduling queue
model can be viewed as k parallel M/M/1/N queuing models.

In the multiple parallel queues of M/M/1/N, it is sufficient to consider only one of
them because their only difference lies in the input rate and service rate. In the following
discussion, we will focus on the queue associated with traffic i.

Pm represents the probability that there are m packets in the queue where traffic i
resides at time t . We can use the method of discrete-time Markov chains to establish the
probability distribution of queue length. For the M/M/1/N queuing model, assuming the
steady-state distribution of queue length is Pm, based on the principles of queuing theory,
we can derive the following equations:

P0=
1−ρi

1−ρN+1i

,ρ 6= 1 (1)

Pm=
1−ρ i

1−ρN+1i

ρmi ,1≤m≤N (2)

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 13/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382

where ρi= λi/µi. In the system with a capacity ofN , when the queue length reachesN , any
additional arriving packets beyond the capacity will be discarded. Consequently, for queue
i, its effective arrival rate can be determined using the following equation, as indicated in
Eq Eq. (3), where PN represents the probability of the queue length reaching the upper
limit N .

λe = λi(1−PN). (3)

Through the decomposition of parallel queues, we can determine the relationship
between the arrival rate λi and service rate µi of flow i with the parameters 3 and 0 of the
overall parallel queue system.

k∑
i=1

λi≤3,

k∑
i=1

µi=0. (4)

So, as to the stability of the network, there should be:

λi≤µi,

k∑
i=1

λi≤0. (5)

When ρi= λi/µi 6= 1, the calculated metric results are as follows:
(1) Queue length: The average length Lis of queue i is equal to the sum of the expected

value Liq of the number of packets waiting to queue in the system and the expected value
Lic of the number of packets being served.

Liq=
N−1∑
k=0

kPk+1=
ρi

1−ρi
−

NρN+1i +ρi

1−ρN+1i

Lic = 1−P0=
ρi−ρ

N+1
i

1−ρN+1i

(6)

Lis= Liq+L
i
c =

λi

µi−λi
−

(N +1)λN+1i

µN+1
i −λN+1i

.

(2) Queueing delay: The waiting time W i
s of packets in queue i is equal to the sum of

the queuing timeW i
q and the service timeW i

c .

W i
s =W i

q+W
i
c =

Liq
λe
+

Lic
λe

W i
s =

1
µi−λi

−
NλNi

µi(µN
i −λ

N
i)
. (7)

(3) Packet loss count: When the queue capacity of a switch is reached (N packets), any
new incoming packets will be dropped. Therefore, the packet loss count in the system per
unit of time is determined.

Nloss= λiPN =
λN+1i (µi−λi)

µN+1
i −λN+1i

. (8)

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 14/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382

(4) Queueing delay jitter: We define jitter as the difference between the actual delay
experienced by a packet in the switch and the expected delay. Let Wi denote the actual
queueing time for traffic flow i in the switch. The jitter of the queueing delay, compared to
the expected queueing delay, can be represented by the following equation:

4T = |Wi−W i
s |. (9)

(5) Link remaining bandwidth: Assuming C is the bandwidth of every link and n
represents the number of links connected to the switch, the available remaining bandwidth
of the link per unit of time can be expressed as the difference between the total bandwidth
and the amount of data transmitted to the switch per unit of time (bandwidth occupied by
existing traffic).

Crest = nC−
k∑

i=1

Lis= nC−
k∑

i=1

[
λi

µi−λi
−

(N +1)λN+1i

µN+1
i −λN+1i

]
. (10)

We assume the presence of three types of traffic services in the network: voice, video, and
email. Real-time data, such as voice, imposes high demands on both delay and bandwidth.
Streaming applications also have certain requirements on latency as they employ buffering
mechanisms and can tolerate reduced bandwidth to some extent compared to real-time
applications. File transfer services, such as email, generally have lower bandwidth and
latency requirements.

Taking voice traffic as an example, based on the QoS requirements for voice flows, we
develop an optimization model that jointly adjusts the arrival rate and service rate of flows.
The objective is to minimize delay and residual bandwidth by optimizing the service rate
and target sending rate.

min(Crest)=min(nC)−
k∑

i=1

[
λi

µi−λi
−

(N +1)λN+1i

µN+1
i −λN+1i

]

min(W i
s)=min(

1
µi−λi

−
NλNi

µi(µN
i −λ

N
i)

)

s.t .

C1 :
k∑

i=1

ωi= 1,µi=ωi0,ωi> 0

C2 :
k∑

i=1

Lis=
k∑

i=1

(
λi

µi−λi
−

(N +1)λN+1i

µN+1
i −λN+1i

)≤N (11)

C3 :
k∑

i=1

λi≤3

C4 : 0<λi<µi

C5 :
k∑

i=1

µi=0

C6 :Crest = nC−
k∑

i=1

[
λi

µi−λi
−

(N +1)λN+1i

µN+1
i −λN+1i

]
≥ 0.

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 15/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382

C1 represents the relationship between µi, ωi, and 0. C2 states that the sum of average
queue lengths in all queues should not exceed the storage capacity of the switch. C3 states
that the number of packet arrivals for all traffic flows within a unit of time should not
exceed the number of packet arrivals at the port within the same unit of time. C4 states
that in order to maintain network stability, the arrival rate of traffic should not exceed the
service rate. C5 states that the number of packets processed for all traffic flows within a
unit of time should be equal to the number of packets processed at the port within the
same unit of time. C6 states that the available remaining bandwidth of a link should be
greater than zero.

Video streams are sensitive to both delay and jitter, so their optimization objective is to
minimize latency and jitter.

min(W i
s)=min(

1
µi−λi

−
NλNi

µi(µN
i −λ

N
i)

)

min(4T)=min(|Wi−W i
s |). (12)

File transfers are sensitive to both delay and packet loss, so their optimization objective
is to minimize latency and packet loss rate.

min(W i
s)=min(

1
µi−λi

−
NλNi

µi(µN
i −λ

N
i)

)

min(Nloss)=min(
λN+1i (µi−λi)

µN+1
i −λN+1i

). (13)

The constraints of the above optimization target models are the same.

The optimal arrival rate, service rate, and virtual queue weights
In the aforementioned mathematical model, this study aims to determine the optimal
arrival rate, λ∗i , and optimal service rate, µ∗i , given the optimization objective. To achieve
this, a two-layered solving approach is devised. Firstly, the actual arrival rate, λi, is inputted
into the model to solve for the optimal service rate, µ∗i , thereby completing the first
optimization layer. Subsequently, the optimal service rate, µ∗i , is fed back into the model to
solve for the optimal arrival rate, λ∗i , thereby completing the second layer of optimization.
It is worth noting that both layers of the solving model are multi-objective non-linear
models, necessitating consistency in the solving method for each layer.

First, we can apply the method of linear weighted sum in multi-objective optimization.
Assuming the weight coefficients for the three traffic flows are ω1, ω2, and ω3, respectively,
with ωi=µi/

∑
µi, the above multi-objective optimization problem can be transformed

into a single-objective optimization problem by linearly weighting the objectives. Let f (x)
represent the overall optimization objective for traffic:

f (x)=min(ω1Eq(11)+ω2Eq(12)+ω3Eq(13)). (14)

Therefore, the current focus is to solve a single-objective multi-variable nonlinear
programming problem.

Differential evolution (DE) is a stochastic search algorithm designed specifically
for global optimization problems. It originated from the early development of genetic

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 16/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382

algorithms (GA). Differential evolution employs a unique evolutionary mechanism that
utilizes the individual differences within the existing population to construct mutant
individuals. Compared to other intelligent algorithms such as genetic algorithms, particle
swarm optimization, ant colony optimization, and artificial bee colony algorithms, DE
requires fewer parameters and exhibits strong optimization capability. DE belongs to
the category of evolutionary algorithms and inherits all the advantages of evolutionary
algorithms. The DE algorithm selects a more optimal next generation through processes
such as population initialization, individual fitness evaluation, differential mutation
operation, crossover operation, and selection operation. In summary, the DE algorithm is
suitable for solving large-scale, nonlinear, and combinatorial optimization problems that
are challenging for traditional search methods. It does not rely on gradient information,
nor does it require the objective function to be continuous or differentiable.

In this study, the DE/best/1/L (Opara & Arabas, 2019) algorithm is adopted. The
population is classified and described, and the target-to-best strategy is used to select
the base individuals for differential mutation from the current population. Differential
mutation is applied to the current population to generate mutant individuals. Then, the
current population is combined with the mutant individuals to obtain an experimental
population using the exponential exchange method. A one-to-one survivor selection is
performed between the current population and the experimental population to generate a
new population. The algorithm for determining the optimal packet arrival rate λ∗i , service
rate µ∗i , and virtual queue weight ωi is as follows (Algorithm 2):

RP algorithm
The RP algorithm is deployed on the end hosts in the network, and the rate variation pattern
is shown in Fig. 5. Feedback packets are sent by the CP and carry ECN information and
switch information. Upon receiving the ECN feedback packet, RP reduces the transmission
rate of traffic sent to the network and records this rate as the target rate for fast recovery
before receiving the feedback information. The feedback packet information includes the
optimized destination switch’s optimal arrival rate and the original arrival rate. Since the
sending rate is directly proportional to the arrival rate, we can establish the following
relationship, where λ∗ represents the optimal arrival rate, λ represents the original arrival
rate, v∗ represents the adjusted sending rate, and v represents the original sending rate.

λ∗

λ
=

v∗

v
. (15)

Therefore, the formula for reducing the rate is as follows: Rt is the target rate of fast
recovery stage, Rold is the rate before receiving the feedback packet, and Rc is the current
rate.

Rt =Rold

Rc =
λ∗

λ
Rc (16)

Rd =Rt −Rc .

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 17/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382

Algorithm 2 The optimal arrival rate, service rate, and virtual queue weight algorithm
Input: N ,3,0,C,n,λi,Wi and other model parameters;
Output: λ∗i ,µ

∗

i ,ωi;
Step 1: Initialize;
Step 2: The multi-objective optimization problem is transformed into a single-objective
optimization problem by linear weighted sum method,Let fi(x) represent the optimiza-
tion objective for traffic flow i:
min(µ1

0
f1(µ1)+ µ2

0
f2(µ2)+ µ3

0
f3(µ3))

s.t .
C1 :

∑k
i=1L

i
s≤N

C2 : 0<λi<µi

C3 :
∑k

i=1µi=0

C4 :Crest = nC−
∑k

i=1

[
λi

µi−λi
−

(N+1)λN+1i
µN+1
i −λN+1i

]
≥ 0

Step 3: Find the optimal solution µ∗i by differential evolution algorithm, the virtual
queue weight is µ∗i

µ1+µ2+µ3
0, and the queue marking threshold Ki=

µ∗i
µ1+µ2+µ3

N ;
Step 4: Construct the second layer single objective optimization problem:
min(µ

∗

1
0
f1(λ1)+

µ∗2
0
f2(λ2)+

µ∗3
0
f3(λ3))

s.t .
C1 :

∑k
i=1L

i
s≤N

C2 :
∑k

i=1λi≤3

C3 : 0<λi<µ∗i
C4 :Crest = nC−

∑k
i=1

[
λi

µi−λi
−

(N+1)λN+1i
µN+1
i −λN+1i

]
≥ 0

Step 5: Input model parameters such as N ,3,0,C,n,λi,Wi and the optimal solution
µ∗i
Step 6: Find the optimal solution λ∗i by differential evolution algorithm.

The source host restricts its transmission rate according to the feedback packets received
from theCP.However, when no feedback packet is received, the host enters the fast recovery
phase and gradually increases the transmission rate to recover the previously reduced rate.
The rate increase follows Eq. (17), where Rt remains constant and Rc is updated according
to the equation.

Rc =Rc+
Rd

2
=

Rc+Rt

2
. (17)

The fast recovery phase lasts for NC cycles, and in P4QCN, it is recommended to set
the value of NC as 5 (Geng, Yan & Zhang, 2019). Upon completion of these NC cycles, the
system transitions to the active increase phase to discover any available excess bandwidth.
The sending rate variation for the RP is as follows, where RA represents a constant, which
is set to 5 Mbps in the case of P4QCN.

Rt =Rt +RA

Rc =
Rc+Rt

2
=

Rc+Rt +RA

2
. (18)

The overall process of the RP algorithm is illustrated by Algorithm 3.

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 18/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382

Rate
controller

Reaction Point（RP）

Data packet

ECN feedback
package

timeReceive feedback
packet

Fast
recovery

tR

cR

dR

Active
increase

Figure 5 Plot of the rate change at the RP point.On the left is the rate controller and on the right is the
rate change diagram. Rate changes can be divided into three stages: speed reduction (when feedback pack-
ets are received), fast recovery, and active increase. Rt represents the target rate for fast recovery, Rc is the
current rate, and Rd is the difference between the two.

Full-size DOI: 10.7717/peerjcs.2382/fig-5

EXPERIMENT
The development and testing of experiments in this section were conducted on a server
running Ubuntu 18.04 64-bit. Network simulation utilized a P4 programmable simulation
environment constructed jointly byMininet and BMv2 software switches. The experiments
in this article utilized the P4 version P6_16. We implemented ECN marking, feedback
packet generation, and weighted round-robin packet scheduling mechanism using the P4
language in the BMv2 switch. We conducted comparative experiments with DCQCN (Zhu
et al., 2015), P4QCN (Geng, Yan & Zhang, 2019), and TCN (Bai et al., 2016a) to evaluate
the performance of this strategy. We chose DCQCN, P4QCN, and TCN as the comparative
experiments because they are the primary congestion control mechanisms currently used
in data center networks. Among them, DCQCN is a static ECN marking strategy, P4QCN
is a two-point architecture, and TCN is a dynamic ECN marking mechanism based on
multiple queues and delay. The configuration of relevant parameters of the experiment is
shown in Table 3:

Due to the simulation environment performance limitation, we set each link
bandwidth to 10Mbps in the testbed. We implemented the DCQCN, P4QCN and TCN
mechanisms based on the algorithms on the testbed, with the ECN labeling threshold
KDCQCN = KP4QCN = 11, and for TCN, we used the parameter λ= 0.17 suggested in
the literature (Kim & Lee, 2021; Zhang, Bai & Chen, 2019). We constructed the topology
structure shown in Fig. 6 using Mininet, hosts H1,H2,H3 are the sender, H4,H5 are
the receiver, we use python’s Scapy library at the sender to implement the RP algorithm,
and obtain network performance parameters including bandwidth, RTT and total queue
length within the switch through INTmechanism. We design two packet delivery scenarios
and contrast the performance of each strategy in these two scenarios. In the following

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 19/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2382/fig-5
http://dx.doi.org/10.7717/peerj-cs.2382

Algorithm 3 The RP algorithm
Input: State, RA= 5Mbps, send_rate= 1Mbps, Rt = 0, NC=5, λi,λ∗i ;
Output: send_rate;
State = active increase;
while not receive feedback packet do
if State == active increase then
send_rate= send_rate+Rt+RA

2 ;
end if
if State == fast recovery then
send_rate= send_rate+Rt

2 ;
NC =NC−1;
if NC == 0 then
State = active increase;

end if
end if

end while
while receive feedback packet do
State = rate reduction;
Rt = send_rate;
send_rate= λ∗i

λi
send_rate;

State=fast recovery;
end while

Table 3 Configure settings and related parameters.

Operating system Ubuntu 18.04 64-bit

Language Python 3.8, P4_16
Threshold value KDCQCN =KP4QCN = 11
λ of TCN 0.17
Link bandwidth 10Mbps

tests, the strategy proposed by us is named PMQECN (Programmable Multi-QoS Explicit
Congestion Notification) for the convenience of image reading.

Scenario 1: Performance test
Scenario 1: In this scenario, H1,H2, and H3 simultaneously send Class A, Class B, and
Class C packets toH5. The initial sending rate at the RP point is set to 1Mbps, and the initial
phase follows an actively increasing pattern. As the sending rate increases, congestion occurs
in the link. The receiving end, H5, captures INT packets to obtain network status. We
evaluate the performance from three aspects: queue length inside the switches, round-trip
time (RTT), and bandwidth.

Based on INT packets, we gather information about the queue length inside the switches,
as shown in Fig. 7. In the absence of congestion, the packet count gradually increases over

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 20/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382

H1

H2 H3 H4

H5

S1 S2

Figure 6 Topological structure.
Full-size DOI: 10.7717/peerjcs.2382/fig-6

time. Once the congestion threshold is reached, our algorithm adjusts the threshold
in the real time on the basis of the internal switch conditions and promptly returns
congestion feedback packets to reduce the queue length within the switch. In Fig. 7, it
can be seen that our algorithm makes the internal queue length of the switch significantly
lower than DCQCN, P4QCN and TCN, and the maximum queue length is reduced by
56%, 31% and 17%, respectively. DCQCN and P4QCN, which adopt fixed thresholds,
experience significant fluctuations in queue length. DCQCN, operating under the RP-
CP-NP architecture, has a higher delay for the feedback information to reach the source
host compared to P4QCN. Hence, the reaction time for speed reduction is slightly delayed
in DCQCN. TCN dynamically adjusts the threshold based on packet delay, resulting in
relatively stable overall variations. However, similar to DCQCN, the reaction time at the
sender is slower in TCN.

We obtain the packet’s arrival delay through the timestamp information carried by the
packet and estimate the RTT by doubling this arrival delay. As shown in Fig. 8, DCQCN
exhibits significantly higher delays compared to the other three methods. TCN, which
utilizes packet delay as the ECNmarking threshold, maintains relatively stable performance
in terms of packet RTT. Overall, both P4QCN and our proposed algorithm demonstrate
good performance in terms of RTT. The average delay information obtained through
computation indicates that the strategy proposed in this article reduces the delay by 89.4%,
5.3%, and 47% compared to DCQCN, P4QCN, and TCN, respectively. Notably, both

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 21/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2382/fig-6
http://dx.doi.org/10.7717/peerj-cs.2382

0 1 0 2 0 3 0 4 0 5 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

M A X : 7 3 . 7 1 5
M A X : 8 8 . 3 6

M A X : 1 3 9 . 1 4 5

M A X : 6 1 . 0 1

Le
ngt

h/N
um

T i m e / s

 P M Q E C N
 D C Q C N
 P 4 Q C N
 T C N

Figure 7 Scenario 1: Comparison of the queue length of PMQECN, P4QCN, DCQCN, and TCN on the
switch.

Full-size DOI: 10.7717/peerjcs.2382/fig-7

0 2 0 4 0 6 0 8 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

A V G : 7 7 . 3 3 9 1 8 3 6 3 1 0 6 4

A V G : 8 . 2 0 4 9 4 9 3 8 4 7 8 6 9

RT
T/m

s

T i m e / s

 P M Q E C N
 D C Q C N

(a) P M Q E C N a n d D C Q C N
0 2 0 4 0 6 0 8 0

0

5 0

1 0 0

1 5 0

P 4 Q C N - A V G : 8 . 6 6 1 0 8 7 4 8 5 0 6 9 9
P M Q E C N - A V G : 8 . 2 0 4 9 4 9 3 8 4 7 8 6 9

RT
T/m

s

T i m e / s

 P M Q E C N
 P 4 Q C N

(b) P M Q E C N a n d P 4 Q C N
0 2 0 4 0 6 0 8 0

0

5 0

1 0 0

1 5 0

A V G : 1 5 . 4 7 6 5 7 6 7 2 8 7 6 9
A V G : 8 . 2 0 4 9 4 9 3 8 4 7 8 6 9

RT
T/m

s

T i m e / s

 P M Q E C N
 T C N

(c) P M Q E C N a n d T C N

Figure 8 Scenario 1: Comparison of round trip latency of PMQECN, DCQCN, P4QCN, and TCN in
links.

Full-size DOI: 10.7717/peerjcs.2382/fig-8

this strategy and P4QCN employ a two-point architecture. It is evident that a two-point
architecture, compared to a three-point architecture, effectively reduces network latency.

We measured the throughput received by the H5 port as shown in Fig. 9. The link
information is recorded for every packet received by theH5 port. After a period of reception,
we calculated the average throughput per second over 60 s to depict the variation in port
throughput within that timeframe. Excluding unstable data at the beginning and end, we
selected the middle portion as our sample data (this is because the header and tail data
correspond to the initial and final packets sent. We consider this portion of the data to be

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 22/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2382/fig-7
https://doi.org/10.7717/peerjcs.2382/fig-8
http://dx.doi.org/10.7717/peerj-cs.2382

0 2 0 4 0 6 0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

Ba
ndw

idt
h/p

ps

T i m e / s

 P M Q E C N
 D C Q C N
 P 4 Q C N
 T C N

Figure 9 Scenario 1: Comparison of port throughput of PMQECN, P4QCN, DCQCN, and TCN onH5.
Full-size DOI: 10.7717/peerjcs.2382/fig-9

more random and significantly different from the data obtained during the steady operation
of the transmission system. Therefore, we selected the middle portion of the data for
analysis.). We computed the standard deviations and coefficients of variation (CV) under
steady-state conditions for several algorithms, as depicted in Fig. 10. Relative to DCQCN,
P4QCN, and TCN, our algorithm exhibits a smaller CV, indicating less relative variability
in its numerical values. P4QCN, due to its two-point architecture, achieves faster feedback,
but its fixed threshold approach results in relatively large fluctuations in throughput.
During testing, we observed instances where throughput sharply dropped to minimum
levels before gradually recovering over time. While P4QCN’s CV is smaller compared
to DCQCN and TCN, its large standard deviation suggests a higher mean throughput
for P4QCN. TCN shows a high CV but a small standard deviation, typically indicating a
lower mean throughput with data points more tightly clustered around the mean but with
larger differences between individual data points. Our algorithm incorporates dynamic
threshold feedback atop rapid feedback mechanisms to reduce throughput fluctuations
while ensuring throughput levels. To ensure data representativeness, statistical parameters
such as sample means, confidence intervals, and overall population means are presented in
Table 4. Each algorithm’s overall mean falls within the 95% confidence interval, indicating
high accuracy in our estimation of the population mean based on sample data.

We utilized Wireshark to gather statistics on the overall packet loss rate and the packet
loss rates for individual traffic classes, as depicted in Fig. 11. Class A, Class B, and Class
C represent different types of packets transmitted by H1, H2, and H3, respectively. From

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 23/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2382/fig-9
http://dx.doi.org/10.7717/peerj-cs.2382

C V S t a n d a r d d e v i a t i o n0

5

1 0

1 5

2 0

2 5 P M Q E C N
 D C Q C N
 P 4 Q C N
 T C N

Figure 10 Scenario 1: Standard deviation and CV of throughput for PMQECN, DCQCN, and P4QCN.
Full-size DOI: 10.7717/peerjcs.2382/fig-10

Table 4 Table of statistical parameters.

Algorithm Mean of
the sample

Standard
deviation
of the sample

CV 95% confidence
interval

Mean of
the population

PMQECN 124.314 18.94446 0.15239 (118.33442, 130.29363) 130.0919
DCQCN 115.3662 18.96285 0.16437 (109.38075, 121.35158) 116.2216
P4QCN 149.6058 24.08689 0.161 (142.00299, 157.20852) 143.6532
TCN 81.66243 15.05175 0.18432 (76.91151, 86.41335) 80.63305

Fig. 11, it is evident that the overall packet loss rates for PMQECN and P4QCN are
significantly lower than those for DCQCN and TCN. This observation is attributed to
the two-point architecture reacting faster to congestion, enabling prompt reduction in
packet transmission rates at the sender. PMQECN exhibits a slightly higher packet loss
rate compared to P4QCN, which we attribute to the higher code complexity of PMQECN
relative to P4QCN, based on our analysis. Due to equipment constraints, our experiments
were conducted using a software simulation platform based on P4, which cannot achieve
the high-speed processing capabilities of real programmable switches. Consequently,
each increase in operations on the data plane results in a certain degree of performance
degradation and packet loss. Furthermore, PMQECN is a strategy for traffic QoS, aimed
at ensuring QoS objectives in scenarios where multiple traffic types compete for resources.

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 24/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2382/fig-10
http://dx.doi.org/10.7717/peerj-cs.2382

O v e r a l l C l a s s A C l a s s B C l a s s C0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Lo
ss

Ra
te

 P M Q E C N
 D C Q C N
 P 4 Q C N
 T C N

Figure 11 Scenario 1: Packet loss rates of PMQECN, DCQCN, P4QCN, and TCN. Where, Overall is
the overall packet loss rate, and the groups of Class A, Class B, and Class C represent the packet loss rate of
traffic sent from H1, H2, and H3 to H5, respectively.

Full-size DOI: 10.7717/peerjcs.2382/fig-11

According to the model established in Eq. (13). Class C’s QoS objectives include the lowest
acceptable packet loss rate. Therefore, compared to the minor differences in packet loss
rates across different traffic types for P4QCN, PMQECN ensures the minimum packet loss
rate requirement for Class C.

Compared to DCQCN, P4QCN, and TCN, PMQECN demonstrates significant
improvements in queue length and RTT. In contrast to other algorithms, PMQECN
reduces throughput fluctuations while maintaining throughput performance. From the
packet loss rates, it is evident that PMQECN effectively maintains QoS for traffic according
to specified optimization goals. In conclusion, PMQECN meets the expected performance
requirements based on our evaluation.

Scenario 2: Fairness test
Scenario 2: First, H1 sends Class A packets to H5, followed by H2 sending Class B packets
toH4. The initial sending rate at the RP point is set to 1Mbps, and the initial phase follows
an actively increasing pattern. We measured the port throughput and packet loss rate at
the receiving ends H4 and H5 to observe whether congestion on one link affects another
link passing through the same switch.

In Fig. 12, q1 represents the traffic from H1 to H5, and q2 represents the traffic from
H2 to H4. In the event of congestion occurring in q1, we observe whether the other traffic

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 25/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2382/fig-11
http://dx.doi.org/10.7717/peerj-cs.2382

0 2 0 4 0 6 0
0

2 5

5 0

7 5

1 0 0

1 2 5

1 5 0

1 7 5

(a) P M Q E C N

Ba
ndw

idt
h/k

bps

T i m e / s

 q 1
 q 2

0 1 0 2 0 3 0 4 0 5 0
0

2 5

5 0

7 5

1 0 0

1 2 5

1 5 0

1 7 5

2 0 0

Ba
ndw

idt
h/k

bps

T i m e / s

 q 1
 q 2

(b) D C Q C N

0 1 0 2 0 3 0 4 0
0

2 5

5 0

7 5

1 0 0

1 2 5

1 5 0

1 7 5

2 0 0

Ba
ndw

idt
h/k

bps

T i m e / s

 q 1
 q 2

(c) P 4 Q C N
0 2 0 4 0 6 0

0

2 5

5 0

7 5

1 0 0

1 2 5

Ba
ndw

idt
h/k

bps
T i m e / s

 q 1
 q 2

(d) T C N

Figure 12 Scenario 2: Port throughput performance of q1, q2 on (A) PMQECN, (B) DCQCN, (C)
P4QCN and (D) TCN.

Full-size DOI: 10.7717/peerjcs.2382/fig-12

is affected, specifically if there are occurrences of ECN error marking. From Fig. 12, it is
evident that after congestion occurred in q1, both DCQCN and P4QCN experienced a
sharp decline in throughput for q2. When q1’s throughput reached its lowest point, q2’s
throughput also decreased accordingly. This indicates that H2 received ECN feedback
packets, which reduced its sending rate, thereby being influenced by the q1 link. Although
TCN uses packet delay as the marking threshold, its actual value is adjusted based on packet
delay. When congestion occurs, packets that were previously in the same queue may still
interact with each other. After congestion occurred in q1, our algorithm ensured that q2’s
throughput did not experience a sudden drop; instead, it exhibited a slight decrease over
time but remained within a consistent range. Even when q1’s throughput hit its lowest
point, q2’s throughput maintained its previous level. Our algorithm operates on the basis
of queue marking, applying ECN markings tailored to different flows. This approach
ensures that different flows within the same queue can operate independently without
being erroneously marked due to congestion from other flows, thus preventing drastic
decreases in throughput. Figure 13 illustrates the comparison of packet loss rates between
q1 and q2 after passing through S1 and S2. It shows that DCQCN, P4QCN, and TCN

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 26/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2382/fig-12
http://dx.doi.org/10.7717/peerj-cs.2382

0 . 2 2 3 3 3 0 . 2 1 9 6 8

0 . 1 1 9 5 3

0 . 1 8 9 7 3

0 . 0 8 5 8 5

0 . 2 0 5 0 7

0 . 1 2 8 0 5

0 . 2 3 3 4

P M Q E C N D C Q C N P 4 Q C N T C N0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

Lo
ss

rat
e

 q 1
 q 2

Figure 13 Scenario 2: Packet loss rate comparison between q1 and q2 based on PMQECN, DCQCN,
P4QCN and TCN.

Full-size DOI: 10.7717/peerjcs.2382/fig-13

exhibit packet loss rates for q2 that are similar to or even exceed those of q1. In contrast,
PMQECNmaintains a lower packet loss rate for q2 even when q1 experiences higher packet
loss rates due to congestion, indicating that q2 is less affected by severe congestion in q1
and the fairness between queues is guaranteed.
Based on the aforementioned tests, it is evident that compared to DCQCN, P4QCN, and

TCN, PMQECN shows relatively minor impact of q1 congestion on q2. Even when one
link experiences congestion through the same switch, traffic on the other link continues
to operate normally, with no significant changes in throughput and packet loss rate
resulting from congestion on the other link. Therefore, we are confident that PMQECN
can effectively ensure fairness between queues.

CONCLUSION AND FUTURE WORK
In the article, we propose a multi-queue ECN marking strategy based on virtual queues
and multiple QoS levels. It simulates a programmable weighted round-robin queue
scheduling mechanism by using virtual queues, dividing different flows into virtual queues.
It constructs a target optimization model based on the QoS of different flows and solves the
model to obtain ECNmarking thresholds and queue weights for each flow. The mechanism
uses a two-point architecture to mitigate the issues of end-to-end latency and packet loss,
and employs a dynamic threshold marking strategy to ensure stability. We validated the
performance of our algorithm on the programmable testing platforms Mininet and BMv2,

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 27/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2382/fig-13
http://dx.doi.org/10.7717/peerj-cs.2382

and compared it against other algorithms in a simulated environment. Compared to
DCQCN, P4QCN, and TCN, our algorithm reduced queue lengths within switches by
56%, 31%, and 17%, respectively. Similarly, it reduced RTT by 89.4%, 5.3%, and 47%,
respectively. This strategy can maintain the QoS target of traffic as effectively as possible
under the scenario of resource competition among different flows. Fairness tests indicate
that our strategy effectively ensures fairness between queues. Finally, we believe that this
strategy has achieved the expected outcomes.

Due to the P4 programmable software platform still being in the development stage, some
features are still incomplete. Additionally, the experiment is limited by the performance
of the virtual switches. In future work, we will validate the performance of this strategy in
large-scale networks and optimize its mathematical model to accommodate more complex
scenarios involving a wider variety of flows.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Science and Technology Project of Hebei Education
Department ZD2022102. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Science and Technology Project of Hebei Education Department: ZD2022102.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Yazhi Liu conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.
• Xinyi Yao conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.
• Zhigang Yang analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Wei Li performed the experiments, performed the computation work, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code and data are available in the Supplemental File.
The code is also available at GitHub and Zenodo:
- https://github.com/YXY-1998/OUR-ECN

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 28/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2382#supplemental-information
https://github.com/YXY-1998/OUR-ECN
http://dx.doi.org/10.7717/peerj-cs.2382

- YXY-1998. (2024). YXY-1998/OUR-ECN: New release-Some comments have been
updated. (v.1.0.0). Zenodo. https://doi.org/10.5281/zenodo.13334643.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2382#supplemental-information.

REFERENCES
Alcoz AG, Dietmüller A, Vanbever L. 2020. SP-PIFO: approximating push-in first-out

behaviors using strict-priority queues. In: 17th USENIX symposium on networked
systems design and implementation (NSDI 20). Santa Clara, CA: USENIX Association,
59–76.

AlizadehM, Greenberg A, Maltz DA, Padhye J, Patel P, Prabhakar B, Sengupta S,
SridharanM. 2010. Data center tcp (dctcp). In: Proceedings of the ACM SIGCOMM
2010 conference. 63–74.

De Almeida LC, Matos G, Pasquini R, Papagianni C, Verdi FL. 2022. iRED: improving
the DASH QoS by dropping packets in programmable data planes. In: 2022 18th
international conference on network and service management (CNSM). Piscataway:
IEEE, 136–144.

Alwahab DA, Laki S. 2020. Ecn-marking with codel and its compatibility with different
tcp congestion control algorithms. In: 2020 international conference on advanced
science and engineering (ICOASE). Piscataway: IEEE, 1–6.

BaiW, Chen K, Chen L, Kim C,WuH. 2016a. Enabling ECN over generic packet
scheduling. In: Proceedings of the 12th international on conference on emerging
networking experiments and technologies. 191–204.

BaiW, Chen L, Chen K,WuH. 2016b. Enabling {ECN } in {Multi− Service}{Multi−
Queue} data centers. In: 13th USENIX symposium on networked systems design and
implementation (NSDI 16). 537–549.

Brouwer S, De Jager F. 2023. Implementation of active queue management algorithms
on programmable network switches: a review. In: Brouwer S, De Jager F, eds. 20th
SC@ RUG 2023 proceedings 2022–2023. Rijksuniversiteit Groningen, 48–53.

Chen C, Fang H-C, Iqbal MS. 2020. QoSTCP: provide consistent rate guarantees to TCP
flows in software defined networks. In: ICC 2020-2020 IEEE international conference
on communications (ICC). Piscataway: IEEE, 1–6.

Chen Y-W, Yen L-H,WangW-C, Chuang C-A, Liu Y-S, Tseng C-C. 2019. P4-enabled
bandwidth management. In: 2019 20th Asia-Pacific network operations and manage-
ment symposium (APNOMS). 1–5 DOI 10.23919/APNOMS.2019.8892909.

Gao Y, Li Q, Tang L, Xi Y, Zhang P, PengW, Li B,Wu Y, Liu S, Yan L, Feng F, Zhuang
Y, Liu F, Liu P, Liu X,Wu Z,Wu J, Cao Z, Tian C,Wu J, Zhu J, Wang H, Cai D,
Wu J. 2021.When cloud storage meets RDMA. In: 18th USENIX symposium on
networked systems design and implementation (NSDI 21). USENIX Association,
519–533.

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 29/32

https://peerj.com
https://doi.org/10.5281/zenodo.13334643
http://dx.doi.org/10.7717/peerj-cs.2382#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2382#supplemental-information
http://dx.doi.org/10.23919/APNOMS.2019.8892909
http://dx.doi.org/10.7717/peerj-cs.2382

Geng J, Yan J, Zhang Y. 2019. P4QCN: congestion control using P4-capable device in
data center networks. Electronics 8(3):280 DOI 10.3390/electronics8030280.

Harkous H, Papagianni C, De Schepper K, Jarschel M, Dimolianis M, Pries R.
2021. Virtual queues for P4: a poor man’s programmable traffic manager.
IEEE Transactions on Network and Service Management 18(3):2860–2872
DOI 10.1109/TNSM.2021.3077051.

Jiang J, Zhang Y. 2019. An accurate congestion control mechanism in programmable
network. In: 2019 IEEE 9th annual computing and communication workshop and
conference (ccwc). Piscataway: IEEE, 0673–0677.

KimG, LeeW. 2021. DynaQ: enabling protocol-independent service queue isolation in
cloud data centers. IEEE Transactions on Cloud Computing 11(1):704–715.

Kim J, Im Y, Lee K. 2021. ECLAT: an ECN marking system for latency guarantee
in cellular networks. In: IEEE INFOCOM 2021—IEEE conference on computer
communications. 1–10 DOI 10.1109/INFOCOM42981.2021.9488762.

Kundel R, Krishna NB, Gärtner C, Meuser T, Rizk A. 2021. Poster: reverse-path
congestion notification: accelerating the congestion control feedback loop.
In: 2021 IEEE 29th international conference on network protocols (ICNP). 1–2
DOI 10.1109/ICNP52444.2021.9651961.

Langley A, Riddoch A,Wilk A, Vicente A, Krasic C, Zhang D, Yang F, Kouranov
F, Swett I, Iyengar J, Bailey J, Dorfman J, Roskind J, Kulik J, Westin P, Ten-
neti R, Shade R, Hamilton R, Vasiliev V, ChangW-T, Shi Z. 2017. The QUIC
transport protocol: design and internet-scale deployment. In: Proceedings of the
conference of the ACM special interest group on data communication, SIGCOMM
’17. New York, NY, USA: Association for Computing Machinery, 183–196
DOI 10.1145/3098822.3098842.

Laraba A, François J, Chrisment I, Chowdhury SR, Boutaba R. 2020. Defeating
protocol abuse with P4: application to explicit congestion notification. In: 2020 IFIP
networking conference (Networking). 431–439.

LhamoO,MaM, Doan TV, Scheinert T, Nguyen GT, Reisslein M, Fitzek FH. 2024.
RED-SP-CoDel: random early detection with static priority scheduling and
controlled delay AQM in programmable data planes. Computer Communications
214:149–166 DOI 10.1016/j.comcom.2023.11.026.

Li Z, Hu Y, Tian L, Lv Z. 2023. Packet rank-aware active queue management for
programmable flow scheduling. Computer Networks 225:109632
DOI 10.1016/j.comnet.2023.109632.

Munir A, Qazi IA, Uzmi ZA, Mushtaq A, Ismail SN, Iqbal MS, Khan B. 2013.Minimiz-
ing flow completion times in data centers. In: 2013 Proceedings IEEE INFOCOM.
Piscataway: IEEE, 2157–2165.

Nichols K, Jacobson V, McGregor A, Iyengar J. 2018. Controlled delay active queue
management. Technical report.

Opara KR, Arabas J. 2019. Differential evolution: a survey of theoretical analyses. Swarm
and Evolutionary Computation 44:546–558
DOI 10.1016/j.swevo.2018.06.010.

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 30/32

https://peerj.com
http://dx.doi.org/10.3390/electronics8030280
http://dx.doi.org/10.1109/TNSM.2021.3077051
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488762
http://dx.doi.org/10.1109/ICNP52444.2021.9651961
http://dx.doi.org/10.1145/3098822.3098842
http://dx.doi.org/10.1016/j.comcom.2023.11.026
http://dx.doi.org/10.1016/j.comnet.2023.109632
http://dx.doi.org/10.1016/j.swevo.2018.06.010
http://dx.doi.org/10.7717/peerj-cs.2382

Pan Y, Tian C, Zheng J, Zhang G, Susanto H, Bai B, Chen G. 2018. Support ecn in
multi-queue datacenter networks via per-port marking with selective blindness. In:
2018 IEEE 38th international conference on distributed computing systems (ICDCS).
Piscataway: IEEE, 33–42.

Shahzad S, Jung E-S, Chung J, Kettimuthu R. 2020. Enhanced explicit congestion
notification (EECN) in TCP with P4 programming. In: 2020 international conference
on green and human information technology (ICGHIT). Piscataway: IEEE, 35–40.

Shan D, Ren F. 2017. Improving ECN marking scheme with micro-burst traffic in
data center networks. In: IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. Piscataway: IEEE, 1–9.

Sivaraman A, Subramanian S, AlizadehM, Chole S, Chuang S-T, Agrawal A,
Balakrishnan H, Edsall T, Katti S, McKeown N. 2016. Programmable packet
scheduling at line rate. In: Proceedings of the 2016 ACM SIGCOMM conference,
SIGCOMM ’16. New York, NY, USA: Association for Computing Machinery, 44–57
DOI 10.1145/2934872.2934899.

Vamanan B, Hasan J, Vijaykumar T. 2012. Deadline-aware datacenter tcp (d2tcp). ACM
SIGCOMM Computer Communication Review 42(4):115–126
DOI 10.1145/2377677.2377709.

Vass B, Sarkadi C, Rétvári G. 2022. Programmable packet scheduling with SP-
PIFO: theory, algorithms and evaluation. In: IEEE INFOCOM 2022—IEEE con-
ference on computer communications workshops (INFOCOMWKSHPS). 1–6
DOI 10.1109/INFOCOMWKSHPS54753.2022.9798055.

WeiW, Xue K, Han J, Wei DSL, Hong P. 2020. Shared bottleneck-based congestion
control and packet scheduling for multipath TCP. IEEE/ACM Transactions on
Networking 28(2):653–666 DOI 10.1109/TNET.2020.2970032.

WuH, Ju J, Lu G, Guo C, Xiong Y, Zhang Y. 2012. Tuning ECN for data center net-
works. In: Proceedings of the 8th international conference on emerging networking
experiments and technologies. 25–36.

Wu J, Qiao X, Chen J. 2018. Design and implementation of an adaptive feedback queue
algorithm over OpenFlow networks. China Communications 15:168–179.

Yan S,Wang X, Zheng X, Xia Y, Liu D, DengW. 2021. ACC: automatic ECN tuning for
high-speed datacenter networks. In: Proceedings of the 2021 ACM SIGCOMM 2021
conference. 384–397.

Yu Z, Hu C,Wu J, Sun X, Braverman V, ChowdhuryM, Liu Z, Jin X. 2021. Pro-
grammable packet scheduling with a single queue. In: Proceedings of the 2021 ACM
SIGCOMM 2021 conference, SIGCOMM ’21. New York, NY, USA: Association for
Computing Machinery, 179–193 DOI 10.1145/3452296.3472887.

Zhang J, BaiW, Chen K. 2019. Enabling ECN for datacenter networks with RTT
variations. In: Proceedings of the 15th international conference on emerging networking
experiments and technologies. 233–245.

Zhang S, Li W, Suo L, Liu Y, Li Y, Kato J, Li K. 2024. BRT: buffer management for
RDMA/TCP mix-flows in datacenter networks. IEEE Transactions on Network and
Service Management 21(4):4146–4160.

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 31/32

https://peerj.com
http://dx.doi.org/10.1145/2934872.2934899
http://dx.doi.org/10.1145/2377677.2377709
http://dx.doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798055
http://dx.doi.org/10.1109/TNET.2020.2970032
http://dx.doi.org/10.1145/3452296.3472887
http://dx.doi.org/10.7717/peerj-cs.2382

Zhong X, Zhang J, Zhang Y, Guan Z,Wan Z. 2022. PACC: proactive and accurate
congestion feedback for RDMA congestion control. In: IEEE INFOCOM 2022—IEEE
conference on computer communications. 2228–2237
DOI 10.1109/INFOCOM48880.2022.9796803.

Zhu Y, Eran H, Firestone D, Guo C, LipshteynM, Liron Y, Padhye J, Raindel S,
Yahia MH, ZhangM. 2015. Congestion control for large-scale RDMA deploy-
ments. ACM SIGCOMM Computer Communication Review 45(4):523–536
DOI 10.1145/2829988.2787484.

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2382 32/32

https://peerj.com
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796803
http://dx.doi.org/10.1145/2829988.2787484
http://dx.doi.org/10.7717/peerj-cs.2382

