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ABSTRACT
Large language models (LLMs) have become transformative tools in areas like text
generation, natural language processing, and conversational AI. However, their
widespread use introduces security risks, such as jailbreak attacks, which exploit
LLM’s vulnerabilities to manipulate outputs or extract sensitive information.
Malicious actors can use LLMs to spread misinformation, manipulate public opinion,
and promote harmful ideologies, raising ethical concerns. Balancing safety and
accuracy require carefully weighing potential risks against benefits. Prompt Guarding
(Prompt-G) addresses these challenges by using vector databases and embedding
techniques to assess the credibility of generated text, enabling real-time detection and
filtering of malicious content. We collected and analyzed a dataset of Self Reminder
attacks to identify and mitigate jailbreak attacks, ensuring that the LLM generates
safe and accurate responses. In various attack scenarios, Prompt-G significantly
reduced jailbreak success rates and effectively identified prompts that caused
confusion or distraction in the LLM. Integrating our model with Llama 2 13B chat
reduced the attack success rate (ASR) to 2.08%. The source code is available at:
https://doi.org/10.5281/zenodo.13501821.

Subjects Artificial Intelligence, Emerging Technologies, Natural Language and Speech, Security
and Privacy
Keywords Large language models, Vector databases, Embeddings, LLM, Jailbreak attacks,
Llama 2 13B

INTRODUCTION
In recent times, large language models (LLMs) like Llama (Meta) (Touvron et al., 2023)
have achieved significant popularity permeating diverse fields ranging from virtual
assistants to chatbots and content generation to sentiment analysis. LLMs have
democratized access to advanced natural language processing (NLP) capabilities, that
enable developers and organizations to build applications that leverage the power of
natural language understanding. LLMs employ algorithms, such as transformers, to
analyze and generate text with remarkable fluency and coherence. Figure 1 illustrates the
mechanism of a LLM. Auto-regressive transformers undergo pretraining on a large corpus
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of self-supervised data and are subsequently fine-tuned to align with human preferences
using methods like Reinforcement Learning with Human Feedback (RLHF) (Touvron
et al., 2023; Alsentzer et al., 2019).

According to OWASP (non-profit organization expertise in cybersecurity and aims to
protect web applications from cyber-attacks) currently the topmost threat to LLMs is
“Prompt Injection”. Jailbreaking is the class of attacks that attempt to subvert safety filters
built into the LLMs themselves. With increasing popularity of LLMs, advances in
adversarial prompts, known as jailbreaks, exploit vulnerabilities in architecture and
implementation of LLMs (Hasan, Rugina & Wang, 2024). Specific queries can prompt
LLM chat models to produce unsuitable content, that is exemplified by the well-known
case of instructing chat models with “Do Anything Now (DAN)” (Shen et al., 2023). An
increasing number of prompts with similar effects have been identified. While numerous
jailbreak methods continue to surface, currently there is a notable absence of a structured
and exhaustive fair evaluation framework for these techniques. There has been limited
exploration of the security of LLMs on a broad scale. It is crucial to undertake a thorough
investigation to uncover these vulnerabilities. Das, Amini & Wu (2024) provides a
comprehensive examination of the protection and confidentiality concerns of LLMs, along
with strategies for defense. The phenomenon of hallucinations in LLMs, as highlighted by
Huang et al. (2023), presents a significant obstacle, casting doubt on the credibility of their
outputs. Frequently, LLMs produce information that appears convincing but is either
factually incorrect or nonsensical, as observed by Dai et al. (2023).

Self-reminder jailbreak attacks manipulate prompts to exploit a model’s tendency to
follow instructions literally, leading to unintended or inappropriate output. These attacks
craft seemingly harmless prompts that can be misinterpreted or used maliciously. Prompt-
G specifically addresses this by distinguishing between harmful and benign prompts,
preventing the model from generating inappropriate content and maintaining its integrity.
It ensures the model understands context and intent, safeguarding against subtle
manipulations. Vector databases use advanced indexing algorithms to organize and store
high-dimensional vectors that represent jailbreak prompts. These vectors capture semantic
relationships, enabling efficient and scalable retrieval of similar terms. Techniques like
locality-sensitive hashing (LSH) or tree-based indexing allow for fast and accurate
querying of large text corpora (Shen et al., 2023).

Embeddings are low-dimensional representations of words or phrases learned through
neural network-based models, such as BERT (Xie et al., 2024). These embeddings encode

Figure 1 Mechanism of LLMs. Full-size DOI: 10.7717/peerj-cs.2374/fig-1
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semantic and syntactic information about words by capturing their contextual usage in
each corpus.

Together, vector databases and embeddings provide powerful tools for analyzing and
processing textual data. Their integration enables a wide range of tasks, including
information retrieval. Vector databases facilitate efficient storage and retrieval of
embeddings, this accelerates inference and improves the model’s responsiveness,
particularly in applications requiring real-time text generation. Additionally, embeddings
provide LLMs with rich semantic representations of words and phrases, enabling them to
capture subtle nuances in meaning and context. This improves the model’s capability to
produce logical and context-relevant responses (Jing et al., 2024).

Our approach harnesses the integrated functionalities of vector databases and
embeddings, combined with a repository of identified jailbreak attacks, to mitigate the
generation of inappropriate output.

Goal conflict (Wei, Haghtalab & Steinhardt, 2024) arises when the pursuit of one goal
compromises the achievement of the other. In the case of LLM chat models, this conflict
manifests when producing a safe response may result in sacrificing the accuracy of the
response, or vice versa.

1) Safe response: Ensuring that LLM chat models generate safe and ethical responses is
essential to avoid harmful or offensive content. This is particularly important in user-
facing applications like customer service bots or educational platforms, where
maintaining a positive user experience and upholding ethical standards are key.

2) Accurate response: Producing accurate responses requires generating contextually
relevant, coherent, and informative content. Accuracy is crucial for meaningful
communication, involving a clear understanding of input and context to effectively
address user queries.

Two types of scenarios are outlined:
Scenario 1: Sacrificing safety for accuracy: If the LLM prioritizes accuracy over safety, it

may generate responses that are factually correct but contain inappropriate or harmful
content. This could occur if the model lacks robust mechanisms for filtering out toxic or
offensive language.

Scenario 2: Sacrificing accuracy for safety: Conversely, if the LLM prioritizes safety over
accuracy, it may err on the side of caution and produce generic or evasive responses that
lack depth or relevance. This could happen if the model is overly conservative in its
response generation, avoiding certain topics or phrases to minimize the risk of generating
harmful content.

Balancing these conflicting goals is challenging (Sinaga & Yang, 2020) but essential for
developing responsible and effective LLM chat models. Strategies for mitigating goal
conflict may involve implementing robust filtering mechanisms to ensure safety without
compromising accuracy, or adopting context-aware approaches that prioritize safety while
maintaining relevance and coherence in responses. Ultimately, finding the optimal balance
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between producing safe and accurate responses is crucial for enhancing the usability,
reliability, and ethical integrity of LLM chat models.

Objective
The objective is to identify and prevent jailbreaking attacks that exploit system
vulnerabilities to gain unauthorized access or manipulate functionality, ensuring system
integrity and security. This includes guiding the generation of responses by LLMs to
adhere to ethical principles, societal norms, and legal regulations, promoting responsible
and principled application of artificial intelligence technologies. This approach will reduce
the detrimental effects of data poisoning attacks, which attempt to manipulate training
data to undermine the learning process’s integrity and effectiveness. By safeguarding the
model against such malicious manipulation, this method ensures the accuracy and
reliability of its outputs.

Contributions
The key contributions of our article include the following:

. It proposes a unique model i.e., Prompt-G which is identifying harmful user prompts
and system prompts.

. It examines various types of system prompts that, when paired with harmful questions,
contribute to executing jailbreak attacks.

. It also integrates with LLM to reduce the number of unintended responses.

. Finally, it generates 300 responses by combining four user prompts with 75 system
prompts for further analysis.

Organization
The rest of this article is organized as follows. “RelatedWorks” provides an overview of the
related works. “System Architecture Information” delves into the essential components
required for our work. “Proposed Framework” details the proposed framework
descriptions. “Implementation” details the implementation aspects of our work, including
the specific algorithms employed. We delve into the practical realization of our proposed
approach, outlining the chosen algorithms and explaining their role in achieving the
desired outcomes. “Results and Discussion” presents the results of our work using a
combination of graphical representations and statistical analyses to effectively
communicate our findings. “Challenges and Future Work” explores potential avenues for
future research. Finally, “Conclusion” concludes our work by summarizing the key
findings.

RELATED WORKS
Since the introduction of language models such as ChatGPT and Llama, numerous
vulnerabilities have been identified. These article analyze the landscape of jailbreak attacks,
outlining strategies for both identification and mitigation. Additionally, they delve into the
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inherent vulnerabilities of LLMs and propose techniques to overcome these weaknesses,
ultimately aiming to strengthen the security and reliability in LLMs.

Jain et al. (2023) assessed multiple foundational defense approaches against prominent
adversarial attacks targeting LLMs, exploring their applicability and efficacy across
different scenarios. Their investigation revealed that the limitations of current discrete
optimizers when applied to text, along with the considerable expenses associated with
optimization, render conventional adaptive attacks more difficult to execute on LLMs.

Kim, Yuk & Cho (2024) followed a procedure in which the language model continuously
evaluated and enhanced its responses autonomously, as observed in constitutional AI.
They proposed leveraging the language model’s inherent self-refinement capabilities
directly.

To mitigate jailbreaking assaults, Zhang et al. (2023) advocated for the incorporation of
goal prioritization during both training and inference phases. Integrating goal
prioritization during inference markedly reduces the ASR of jailbreaking attempts.

Zhou et al. (2024) adopted an iterative methodology to refine both defensive and
offensive agents. This iterative refinement process enhanced defenses against newly
formulated jailbreak prompts, ensuring continual improvement. They employed agents
learning to orchestrate an adversarial game.

Jin et al. (2024) adopted a unique yet intuitive approach for generating jailbreaks
inspired by human-like generation. They gathered pre-existing jailbreak instances and
segmented them based on distinct attributes using clustering methods that analyzed both
frequency and semantic patterns at the sentence level.

Xi et al. (2024) proposed masking-differential prompting (MDP), which is an
innovative, lightweight, and adaptable defense strategy designed for Pre-trained language
models (PLMs) operating as few-shot learners. It took advantage of the discrepancy in
sensitivity between poisoned and clean samples. By employing the limited few-shot data, it
examined sample representations across various masking scenarios to identify poisoned
samples that exhibited significant deviations.

Wei, Haghtalab & Steinhardt (2024) proposed potential conceptual failure modes
inherent in LLMs safety training and illustrated how these insights can inform the
development of efficient jailbreak attacks.

By thoroughly scrutinizing defense approaches and attack strategies implemented on
various LLMs. Xu et al.’s (2024) objective was to assess the efficacy of these attack and
defense methodologies. Conventional white-box attacks exhibited lower performance
compared to universal techniques, and the inclusion of specialized tokens in the input
substantially influences the success rate of attacks.

Through extensive experimentation, Chu et al. (2024) consistently observed that
optimization in jailbreak attacks achieved better rates of attack success and demonstrated
resilience across various LLMs. Furthermore, they delved into the balancing attack
effectiveness and efficiency, illustrating the continued viability of jailbreak prompt
transferability, particularly in the context of black-box models.

Robey et al. (2023) employed SmoothLLM for addressing adversarial-prompting-based
jailbreak attempts. The approach primarily centered on generating variations of a specific
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prompt by making slight modifications. Subsequently, the diverse responses generated for
each modified version are aggregated and analyzed.

These referenced studies investigated the vulnerabilities of LLMs and the ways they can
be exploited. These insights have significantly informed and guided our approach to
addressing these issues in our research. Table 1 shows related research on preventing
jailbreak attacks against LLMs.

SYSTEM ARCHITECTURE INFORMATION
Dataset
To analyze various jailbreak techniques, we gathered 75 Self Reminder jailbreak attacks
(https://github.com/yjw1029/Self-Reminder-Data/blob/master/data/jailbreak_prompts.
csv). Each of these system prompts was paired with four questions, enabling a

Table 1 Related research on preventing jailbreak attacks against LLMs.

Author(s) Title Keywords Methods

Jain et al. (2023) Baseline defences for adversarial attacks
against aligned language models

Adversarial attacks, detection,
input preprocessing,
paraphrasing

Analysed LLMs’ defence methods; conventional
attacks hindered by optimizer limitations

Robey et al. (2023) SmoothLLM: defending large language
models against jailbreaking attacks

SmoothLLM, query efficiency,
conservatism

SmoothLLM countered jailbreak attempts by
generating prompt variations through slight
modifications and analyzing aggregated responses.

Zhang et al.
(2023)

Defending large language models against
jailbreaking attacks through goal
prioritization

Goal prioritization, inference
stage, risk mitigation

Implemented goal prioritization in training and
inference phases to reduce jailbreaking Attack
Success Rate (ASR).

Kim, Yuk & Cho
(2024)

Break the breakout: reinventing LM
defense against jailbreak attacks with
self-refinement

Adversarial exploitation, self-
refine, defense baselines

Employed constitutional AI to enable LM to
autonomously evaluate and enhance its responses
continuously

Zhou et al. (2024) Defending jailbreak prompts via in-
context adversarial game

Fine tuning, adversarial
training, empirical studies,
versatile defence

Iterative refinement strengthened defenses against
jailbreak prompts using adversarial game

Jin et al. (2024) GUARD: Role-playing to generate
natural-language jailbreakings to test
guideline adherence of large language
models

Proactive testing, role-playing
system, knowledge graph,
empirical validation

Utilized human-like generation, clustering pre-
existing jailbreak instances based on frequency and
semantic patterns at sentence level.

Xi et al. (2024) Defending pre-trained language models
as few-shot

Backdoor attacks, masking
detection and prevention,
lightweight defense, detection
evasion

MDP defended PLMs by leveraging differences in
masking sensitivity, using limited few-shot data as
benchmarks to identify tainted samples.

Wei, Haghtalab &
Steinhardt
(2024)

JailBroken: how does LLM safety training
fail

Safety goals, red-teaming,
scaling, Ad hoc jailbreaks

Identified inherent conceptual failure modes in
LLMs’ safety training and demonstrated how these
inform the development of efficient jailbreak
attacks.

Xu et al. (2024) LLM jailbreak attack vs. defense
techniques a comprehensive

Jailbreaking, white-box attacks,
special tokens, testing
framework

Evaluated attack and defence strategies on different
LLMS to gauge their effectiveness in various
scenarios.

Chu et al. (2024) Comprehensive assessment of jailbreak
attacks against LLMs

Safeguards, role-playing, attack
success rates

Optimized jailbreak prompts achieved high attack
success rates across various language models,
emphasizing prompt transferability.
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comprehensive evaluation of the effectiveness of each jailbreak prompt and allowing us to
assess their impact across different scenarios and contexts.

For our model filter, we stored 666 jailbreak prompts (https://github.com/verazuo/
jailbreak_llms/blob/main/data/prompts/jailbreak_prompts_2023_05_07.csv) and 390
harmful questions (https://github.com/verazuo/jailbreak_llms/blob/main/data/forbidden_
question/forbidden_question_set.csv) in two separate vector databases, where similarity
searches were conducted. During the preprocessing of the jailbreak prompt dataset, any
mention of the chat model’s name was replaced with “Llama,” attributed to Meta.

Large language models
In this work, we employ Meta’s LLM known as llama-2-13b-chat.ggmlv3.q6_K.bin. This
LLM is distinguished by its quantized nature (Yao et al., 2024), utilizing the innovative new
k-quant method. Employing GGML_TYPE_Q8_K for all tensors, it implements 6-bit
quantization, ensuring compatibility with llama.cpp. Llama 2 represents an advancement
over its predecessor, Llama 1, featuring updated training on a revised amalgamation of
publicly accessible datasets. Llama 2 has parameters spanning 7, 13, and 70 billion, catering
to diverse research needs and computational resources (Touvron et al., 2023).

This LLM model is characterized by several key parameters:

. n_ctx: This parameter denotes the context window size, set at 2,048 tokens, indicating
the maximum number of tokens that can be input to the model.

. n_threads: Representing the number of CPU cores utilized during training, this
parameter is crucial for accelerating the computationally intensive training process of
LLMs. Leveraging multiple CPU cores enhances training efficiency.

. n_batch: Referring to the batch size employed during training, this parameter
determines the number of samples processed in each iteration of the training algorithm.
Larger batch sizes can optimize GPU utilization and expedite training; however, they
also demand more GPU memory.

. n_gpu_layers: This parameter specifies the number of layers (or blocks) within the
model allocated to the GPU during training. In scenarios where the GPU’s VRAM is
limited, not all layers may fit simultaneously. Thus, n_gpu_layers determine the number
of layers retained on the GPU during training, with the remaining layers processed on
the CPU.

The present research was carried out on a Jupyter Notebook. The LLM generated
responses using an NVIDIA T4 GPU with 15 GB of VRAM. The system had 12.7 GB of
RAM and a disk size of 78.2 GB.

Embedding models
The Python library known as sentence-transformers serves as a potent asset for generating
dense vector representations of textual sentences, known as sentence embeddings. Figure 2
demonstrates the operation of an Embedding Model. These embeddings excel in capturing
semantic similarity and contextual nuances, rendering them invaluable for a broad
spectrum of natural language processing endeavors including semantic search, clustering,
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and classification tasks. By leveraging sentence-transformers, users can efficiently map
sentences into high-dimensional vector spaces, facilitating seamless similarity comparisons
and subsequent downstream analyses. Renowned for its user-friendly interface,
adaptability, and efficacy, sentence-transformers has garnered substantial popularity
among both researchers and practitioners in the realm of text-based applications. One
notable model within this library is, all-mpnet-base-v2 model that transforms sentences
into a vector space with 768 dimensions.

The all-mpnet-base-v2, has a context window spanning 384 tokens and is characterized
by a dimensionality of 768 values. Its functionality involves accepting a list of strings as
input and generating a corresponding list of embeddings, where each embedding consists
of 768 floating-point numbers representing the semantic text embedding of the respective
string. String inputs are limited to a maximum length of 384 tokens, roughly equivalent to
280 words. Any strings exceeding this length threshold will undergo truncation before
being processed through the embedding model.

Our model utilizes this embedding model to transform the dataset of known jailbreak
attacks specifically, the system prompts that lead the LLM to generate malicious responses
—into mathematical representations, or vectors. Additionally, the embedding model
converts the dataset of harmful questions into vector form. These vectors effectively
capture and preserve the semantic meaning of words, sentences, and paragraphs.

Figure 2 Working procedure of embedding model. Full-size DOI: 10.7717/peerj-cs.2374/fig-2
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Vector store
Vector stores are specialized databases crafted specifically for the efficient storage and
retrieval of vector embeddings. Embeddings serve as numerical representations of data,
typically unstructured data like text, within high-dimensional vector spaces. Traditional
relational databases are ill-equipped to manage the storage and querying of these vector
representations effectively. Vector stores excel in indexing and swiftly searching for similar
vectors using dedicated similarity algorithms. This capability enables applications to
identify related vectors based on a provided target vector query efficiently.

Chroma DB serves as an open-source vector store tailored for the storage and retrieval
of vector embeddings. Its primary function revolves around preserving embeddings
alongside associated metadata for future utilization by LLMs. Moreover, it extends its
utility to powering semantic search engines for text data. The platform supplies SDKs for
Python emphasizing simplicity, speed, and facilitating analysis. Furthermore, Chroma DB
presents a self-hosted server option for enhanced control and flexibility. Figure 3
demonstrates the working of a Vector Store Chroma DB.

The vector store ChromaDB utilizes the embedding model all-mpnet-base-v2 to store
vector representations of known jailbreak attacks and harmful questions generated by the
embedding model. ChromaDB employs cosine distance to measure the similarity between
these vectors, facilitating the identification of similar jailbreak attacks and determining
whether the responses generated by them are alike.

To assess the similarity between the responses generated from the 75 system prompts
against the response by DAN when used as system prompt, we employed the Chroma

Figure 3 Working model of vector store Chroma DB. Full-size DOI: 10.7717/peerj-cs.2374/fig-3
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retriever, which utilizes cosine distance as a similarity measure. Cosine distance, which is
calculated as 1� cosine similarity, is closely related to cosine similarity.

cosine similarityða; bÞ ¼ a:b
jjajj jjbjj (1)

cosine distance ¼ 1� cosine similarity: (2)

Equations (1) and (2) demonstrate the calculations for cosine similarity and cosine
distance, respectively. In these equations, vectors a and b represent the entities for which
similarity is being measured. A lower cosine distance value (close to 0) indicates a high
similarity between vectors, suggesting that the vectors are aligned in the same or nearly the
same direction. Conversely, a higher cosine distance value (close to 2) indicates a low
similarity, meaning the vectors are pointing in opposite directions and are therefore very
different from each other.

Toxicity analyzer
We employ HuggingFace’s martin-ha/toxic-comment-model (Balestriero, Cosentino &
Shekkizhar, 2023) toxicity analyzer to determine the toxicity score of LLM-generated
responses. This model specializes in classifying responses as either toxic or non-toxic. By
inputting a string into the model, it assesses whether the text is toxic or non-toxic. This
facilitates the analysis of responses and enables the filtration of toxic content. This model
returns a label of either “toxic” or “non-toxic.” If the toxicity score is higher than the non-
toxicity score, the label “toxic” is returned; otherwise, the label “non-toxic” is assigned.

The toxicity analyzer plays a crucial role in assessing whether the generated responses
contain any potentially harmful or offensive content. Its primary function is to identify and
filter out language that could negatively impact the sentiments of various communities.
Our AI model is specifically designed to produce responses that are neutral and unbiased,
ensuring that it does not favor or discriminate against any particular group of people. By
utilizing the toxicity analyzer, we aim to maintain a high standard of inclusivity and respect
in the interactions generated by the model, thereby fostering a safe and welcoming
environment for all users.

Transformers
Transformer architecture, a form of artificial neural network (ANN), gains an
understanding of contextual significance by examining affiliations within continuous data.
These architectures can identify nuanced correlations among distant elements in a
sequence, rendering them adaptable for a range of tasks across sequential data types.

Initially trained on extensive datasets, transformers produce precise prediction, thus
driving their widespread acceptance and enabling the development of even more
sophisticated models. As a result, transformers have started to replace convolutional and
recurrent neural networks (CNNs and RNNs), which held sway as dominant deep learning
models just 5 years ago (Liu et al., 2024). Prior to the emergence of transformers, training
neural networks demanded substantial, labeled datasets, which were both expensive and
time-intensive to obtain. However, transformers circumvent this necessity by
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mathematically identifying patterns between elements, thereby harnessing the wealth of
image and information from the internet.

Transformers comprise of extensive encoder/decoder blocks. Attention queries are
typically conducted simultaneously via multi-headed attention, where matrices of
equations are computed in parallel. Transformers empower LLMs to glean insights from
extensive textual data, enabling continual enhancement of their language comprehension
and generation capabilities. Through the utilization of pre-trained transformer models and
subsequent fine-tuning on conversational dataset, LLMs can adeptly adjust to diverse
domains and communication styles. Transformers equip LLMs with the ability to grasp the
intricate connections between words and phrases within conversational contexts. This feat
is accomplished through mechanisms like attention, which enables the model to
concentrate on pertinent segments of the input text while formulating responses.
Furthermore, transformers facilitate the modeling of extended dependencies, enabling
LLMs to uphold context and coherence throughout prolonged dialogues.

PROPOSED FRAMEWORK
The dataset comprises 666 established jailbreak prompts and 390 identified harmful
questions. These entries, encompassing known jailbreak attacks, are incorporated into the
vector store, Chroma DB. Its core purpose revolves around retaining embeddings along
with pertinent metadata to aid future utilization by extensive language models.
Additionally, Chroma DB serves to drive semantic search engines for textual data. Figure 4
presents our proposed framework of Prompt-G Filter.

Chroma DB stores jailbreak prompts and harmful questions in embeddings that
preserve their meaning effectively. To accomplish this, Chroma DB employs the all-
mpnet-base-V2 model through the sentence Transformers Embedding Function to
convert prompts into embeddings, ensuring the retention of their contextual meaning and
facilitating efficient retrieval and analysis.

When a user inputs a prompt, it consists of three integral parts that together compose
the prompt template. The first part, known as the System prompt, furnishes context to the
LLM, guiding it to respond within the specified context before addressing the user’s
inquiry. The system diverts attention of the LLM, leading to the generation of harmful
responses (Tian et al., 2023). The second component, the User prompt, contains the actual
question posed to the LLM. The LLM formulates its response solely based on the provided
system prompt. Lastly, the third section of the prompt template houses the LLM’s
response. By inputting both the system prompt and the user prompt, the entire prompt
template is generated, from which the response located in the third part is extracted.

IMPLEMENTATION
Analyzing various jailbreak attacks
We compiled a dataset consisting of 75 self-reminder jailbreak attacks, all serving as system
prompts. For each of these 75 prompts, we formulated four distinct questions. These
questions are from the dataset https://github.com/yjw1029/Self-Reminder-Data/blob/
master/data/attack_prompt.json.
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These questions were designed to analyze the LLM’s capability to generate responses
related to fake news, phishing email templates, extraction of malicious information, and
structured query language (SQL) injection scenarios. Consequently, a total of 75*4
responses were generated.

Furthermore, we subjected the same set of four questions to the “Do anything Now
(DAN 15.0)” (Shen et al., 2023), system prompt, renowned as one of the most potent
system prompts to date. Figure 5 displays the scenario where the LLM is prompted to
generate SQL injection, with DAN serving as the system prompt. This prompt has the
ability to induce the LLM to generate responses that may be unsuitable or unintended. We
subsequently evaluated semantic similarity between the four-response produced by each of
the 75 jailbreak attacks and the corresponding responses generated by the DAN jailbreak
attack.

Similarly, we examined the semantic similarity between the 75 system prompts and the
DAN system prompt. Following each cosine similarity assessment, the resulting values
were recorded in a dataset. Subsequently, we constructed graphs where the x-axis
represented the similarity between responses, while the y-axis denoted the similarity
between prompts. Four separate graphs were created, each corresponding to one of the
four different responses. While the y-axis remained consistent across all graphs, the x-axis
varied, representing the similarity between responses for the four distinct questions.

Next, we employed K-means clustering with k = 2 to categorize the responses into two
clusters based on their similarity scores. High similarity indicated that the respective

Figure 4 Overall working strategy of prompt-G framework.
Full-size DOI: 10.7717/peerj-cs.2374/fig-4
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Figure 5 Generating SQL injection using DAN as the system prompt. Full-size DOI: 10.7717/peerj-cs.2374/fig-5
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system prompt was highly effective in eliciting unintended responses from the LLM. This
clustering analysis facilitated the differentiation of responses with high similarity from
those with low similarity, providing valuable insights into the efficacy of different system
prompts in generating unintended responses from the LLM.

From each of the four graphs, we extracted responses demonstrating high similarity and
computed the percentage of high similarity responses. This methodology enabled us to
evaluate the efficacy of the system prompts and assess the extent of vulnerability of the
LLM to jailbreak attacks.

Algorithm for analyzing various jailbreak attacks
This algorithm as shown in Fig. 6 outlines a process for analyzing a dataset of jailbreak
system prompts using a LLM.

We begin by loading the data containing jailbreak system prompts, likely retrieved from
a source like a spreadsheet using a library called pandas. Two lists are created: one to store
the original jailbreak prompts and another to hold four specific attack-related questions we
want to ask about each prompt. An empty list is prepared to accumulate the results. The
algorithm then loops through each jailbreak prompt in the dataset. For each prompt,
another empty list is created to temporarily store the corresponding answers. We looped
through the four attack questions one by one. Inside this loop, the current jailbreak prompt
and the current question are combined to form a complete prompt for the LLM. This
constructed prompt is then sent to the LLM along with other necessary settings. The LLM’s
response, which acts as the assistant’s answer, is extracted from the model. The extracted
answer for the specific attack question is then added to the temporary list holding
responses for the current jailbreak prompt. Once all questions are processed for a
particular jailbreak prompt, the entire list of answers (one for each question) is added to
the results list. The process repeats by iterating through the remaining jailbreak prompts in

Figure 6 Algorithm for analyzing various jailbreak attacks.
Full-size DOI: 10.7717/peerj-cs.2374/fig-6
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the dataset, building and collecting responses until all prompts are analyzed. This
approach essentially uses the LLM to answer a set of standardized questions about each
jailbreak system prompt, helping us to assess and understand the prompts better.

Safe response generation
Prompt-G conducts a query against the Vector store which stores the various types of
known jailbreak prompts and harmful questions, employing cosine similarity as the metric
of choice. The calculation yields a decimal value, with cosine similarity providing the
result. A value closer to zero indicates greater semantic similarity between the two
prompts. Conversely, a value closer to one signifies less similarity between the prompts.
This search is performed for both the system prompt and user prompt.

Case 1: If similarity checks are performed on both the system prompt and user prompt,
and the model identifies a significant similarity between harmful questions stored in the
vector store and the user input prompt, it then assesses similarity between prompts in
the vector store and the system input prompt. In such instances, the model disregards the
input system prompt and adheres to the system prompt provided by us. Additionally, the
temperature of the model is reduced to 0. The temperature parameter of the LLM
influences its output, determining whether the output leans towards randomness and
creativity or predictability. Lowering the temperature prompts the LLM to generate a
response that prioritizes safety and ethical considerations.

Case 2: If a high similarity is identified between harmful questions in the vector store
and the input user prompt, but there is a low similarity between prompts in the vector
store, no modification to the system prompt is deemed necessary, and the temperature of
the LLM remains unchanged. In such scenarios, the LLM independently generates a
response that is safe and ethical. This precaution is crucial because high similarity between
the system prompt and harmful questions can distract the LLM, that lead to generation of
unintended responses.

Therefore, the filtering mechanism ensures that the LLM produces responses that are
safe and ethical by identifying and rejecting any responses that contain unintended,
unsuitable, or malicious information. Should the model generate a response identified as
toxic, as assessed by the martin-ha/toxic-comment-model, the LLM receives instructions
to generate an alternative response that is non-toxic. As a result of this approach, there was
a notable reduction in the occurrence of unintended response Generation by the LLMs.

Whenever the LLM encountered a harmless question, no adjustments were applied to
either the system prompt or the input user prompt. Consequently, these prompts remained
unaltered and were not subjected to filtration by Prompt-G. Figure 7 demonstrates the
collaborative operation of the Vector Store and Embeddings, illustrating how they function
together to generate a response from the LLM.

Algorithm for safe response generation
The algorithm as shown in Fig. 8 begins by loading datasets of jailbreak system prompts
and harmful questions using the pandas library and creating vector databases to store
them. Two functions, “check_question” and “check_prompt”, are defined to assess the

Pingua et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2374 15/27

http://dx.doi.org/10.7717/peerj-cs.2374
https://peerj.com/computer-science/


similarity between input prompts and prompts in the respective databases. If high
similarity is detected, these functions return 1; otherwise, they return 0. Another function,
“query,” constructs a prompt template combining system, user, and assistant prompts,
then uses the LCPP-LLM model to generate a response based on this template and a
specified temperature. If the response is labeled as “toxic,” the LLM is queried again with a

Figure 7 Integration of vector stores and embedding models.
Full-size DOI: 10.7717/peerj-cs.2374/fig-7

Figure 8 Algorithm for safe response generation. Full-size DOI: 10.7717/peerj-cs.2374/fig-8
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modified system prompt and the input question. Finally, depending on the outcomes of the
“check_question” and “check_prompt” functions, the LLM is queried with either modified
or original prompts, adjusting the temperature accordingly.

Figures 9 and 10 depict the instances where the LLM is tasked with generating SQL
injection and fake news, respectively, utilizing ARIA as the system prompt.

RESULTS AND DISCUSSION
Upon scrutinizing the jailbreak prompts and exposing the LLM to four distinct attack
types, we were able to evaluate which forms of jailbreak attacks effectively induced the
generation of inappropriate content.

Four graphs were plotted, each showing the similarity of responses to their
corresponding DAN response plotted against the similarity of prompts to DAN.
Figure 11A depicts for fake news response similarity vs. prompt similarity. Figure 11B
depicts phishing email response similarity vs. prompt similarity. Figure 11C depicts
malicious information response similarity vs. prompt similarity. Figure 11D depicts SQL
injection response similarity vs. prompt similarity. Numerous jailbreak attacks successfully
prompted the LLM to produce fake news. However, for the other three types of attacks, a
discernible pattern emerges from the data: a substantial proportion of jailbreak attacks

Figure 9 Generating SQL injection via ARIA system prompt in LLM. Full-size DOI: 10.7717/peerj-cs.2374/fig-9
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resulted in the generation of unsuitable content, while only a minority failed to do so. It is
imperative to note that the LLM accepted all jailbreak attacks that succeeded in generating
unsuitable content.

To identify clusters associated with the successful generation of unsuitable content and
those that are not, we applied K-means clustering with k = 2. Figure 12 presents the
application of K-means clustering to different types of attack questions administered to the
LLM. Figure 12A depicts K-means clustering for fake news response similarity vs. prompt
similarity. Figure 12B depicts K-means clustering for phishing email response similarity vs.
prompt similarity. Figure 12C depicts K-means clustering for malicious information
response similarity vs. prompt similarity. Figure 12D depicts K-means clustering for SQL
injection response similarity vs. prompt similarity. Our analysis showed that 77.33% of the
initial 75 system prompts were identified as successful jailbreaks in generating fake news.
Furthermore, the similarity in responses for phishing email generation was found to be
81.08%, while the similarity in responses for producing malicious content and SQL
injection stood at 82.43% and 74.32%, respectively. Our study essentially evaluated how
many system prompts produced responses that closely resembled those generated when

Figure 10 Fake news generation using ARIA system prompt in LLM. Full-size DOI: 10.7717/peerj-cs.2374/fig-10
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DAN was used as the system prompt. Table 2 illustrates the similarity in responses of
different question types.

Our model was evaluated using both harmful and harmless questions, and the results
were analyzed using statistical metrics such as precision, recall, accuracy, and F1-score.
Additionally, a confusion matrix was generated. Figure 13 displays the confusion matrix,
from which precision, recall, F1-score, and accuracy were derived. Table 3 presents the
LLM’s efficiency in detecting harmful questions.

Precision indicates the proportion of instances that the model correctly identified as
positive out of all instances it predicted as positive.

Precision ¼ True Positive
True Positiveþ False Positive

: (3)

Recall reflects the model’s ability to correctly identify actual positive instances.

Figure 11 (A) Fake news response similarity vs. prompt similarity. (B) Phishing email response
similarity vs. prompt similarity. (C) Malicious information response similarity vs. prompt
similarity. (D) SQL injection response similarity vs. prompt similarity.

Full-size DOI: 10.7717/peerj-cs.2374/fig-11
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Recall ¼ True Positive
True Positiveþ False Negative

: (4)

Accuracy represents the overall proportion of correct predictions, both positive and
negative, relative to the total number of instances.

Figure 12 (A) K-means clustering for fake news response similarity vs. prompt similarity. (B) K-
means clustering for phishing email response similarity vs. prompt similarity. (C) K-means
clustering for malicious information response similarity vs. prompt similarity. (D) K-means
clustering for SQL injection response similarity vs. prompt similarity.

Full-size DOI: 10.7717/peerj-cs.2374/fig-12

Table 2 Comparision of response similarity across different question types and system prompts.

Types of attacks Total number of system
prompts

Number of similar
responses

Responses similar
(%)

Fake news 75 58 77.33

Phishing email 75 60 81.08

Malicious
content

75 61 82.43

SQL injection 75 55 74.32
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Accuracy ¼ True Positiveþ True Negative
True Positiveþ True Negativeþ False Positiveþ False Negative

(5)

The F1-score, which is the harmonic mean of precision and recall, is particularly
valuable in cases of class imbalance, as it balances the trade-off between precision and
recall.

F1� Score ¼ 2� Precision� Recall
Precisionþ Recall

: (6)

During the testing phase, we exposed the LLM to a total of 190 harmful questions (Shen
et al., 2023). The model’s filtering mechanism effectively identified 188 of these harmful
questions, prompting modifications to the prompt template before presenting them to the
LLM. Figure 14 illustrates the scenario where, upon detecting a harmful question, the

Figure 13 Confusion matrix of harmful and harmless questions.
Full-size DOI: 10.7717/peerj-cs.2374/fig-13

Table 3 Efficacy of LLM in detecting harmful questions.

Types of question Precision Recall F1-Score Support

Harmless questions 0.96 0.94 0.95 50

Harmful questions 0.98 0.99 0.99 190
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original system prompt is not adhered to. Instead, a distinct system prompt is utilized.
Consequently, the LLM generated responses that adhered to safety protocols, ensuring the
absence of harmful or inappropriate content.

Additionally, we subjected the LLM to 50 harmless questions. Prompt-G successfully
identified 47 of these questions as harmless. As a result, no alterations were made to the
LLM, despite high similarity scores observed in the system prompt as shown in an example
in Fig. 15.

The data presented in the table indicates that Prompt-G demonstrated robustness by
accurately identifying 98.95% of harmful questions, thereby facilitating the exclusion of
these questions from the LLM’s input. However, there was a 6% detection rate of harmful
questions within a dataset primarily composed of harmless questions. This discrepancy

Figure 14 Override of the original system prompt when harmful system and user prompts are combined.
Full-size DOI: 10.7717/peerj-cs.2374/fig-14
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may arise from potential semantic confusion, leading the model to misclassify certain
harmless questions as harmful.

When the model identified a harmful user prompt in conjunction with a malicious
system prompt, the temperature of the chat model was lowered to 0, eliminating the LLM’s
creative freedom. This adjustment caused the chat model to produce a response that
politely declined to provide any malicious information or reply.

Prompt-G model is evaluated against other baseline methods, including Vanilla
supervised fine-tuning (SFT), Aligned SFT, Goal Prioritization (Zhang et al., 2023), and
Self Reminder (Wu et al., 2023). The attack success rate (ASR) for our model was
determined to be 2.08%. Since our model is primarily designed to detect harmful questions
and prompts, with a misidentification rate of 2.08% for the questions, correctly identifying
these allows us to prevent the generation of malicious responses. Table 4 show comparison
between various baseline models and our model.

Figure 15 The prompts remain unchanged when the questions are harmless. Full-size DOI: 10.7717/peerj-cs.2374/fig-15

Table 4 Comparision between various baseline models.

Methods ASR (%)

Vanilla SFT (Zhang et al., 2023) 71.00

Aligned SFT (Zhang et al., 2023) 20.30

Goal prioritization (Zhang et al., 2023) 6.60

Self-reminder (Wu et al., 2023) 4.97

Prompt-G 2.08
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In this article, the model was integrated with the quantized version of the Llama 2 13B
chat model. This filter can be utilized with any LLM chat model to prevent the generation
of malicious responses.

CHALLENGES AND FUTURE WORK
Despite achieving its primary objectives, the system holds promise for further exploration
and improvement. Several avenues for future research could extend its capabilities and
broaden its impact. These avenues could include:

. Evaluate the generalizability of the framework: While the system is effective against
Self Reminder attacks, it is crucial to assess how well it performs in identifying and
mitigating a wider variety of attacks. This could involve testing the framework against
other types of jailbreak techniques, such as Role Play and Prompt Injection attacks.
Understanding its performance across different attack scenarios would help gauge the
framework’s adaptability and robustness in real-world applications.

. Investigate framework performance across diverse LLMs: The current evaluation is
focused on a specific model, but understanding the framework’s efficacy across a broader
range of LLM architectures is important. This would involve applying the framework to
models like GPT, PaLM, or Bloom, and assessing its ability to adapt to their unique
characteristics, such as varying levels of parameterization, different training data, and
architecture-specific behaviors. A successful evaluation across diverse LLMs would
demonstrate the framework’s versatility and potential for wide adoption.

. Enhance the model filter by increasing the heterogeneity of known attacks and
harmful questions: The model filter’s effectiveness depends heavily on the variety of
known jailbreak attacks and harmful questions within its database. Expanding the
diversity of these datasets would allow the model to detect a broader range of malicious
prompts. By incorporating a wider spectrum of attack types and harmful queries, the
system can be made more resilient, leading to improved detection accuracy and reduced
false positives. As a result, the overall robustness of the model would be significantly
enhanced.

By addressing these areas, the framework could become more versatile, resilient, and
effective, ultimately contributing to the creation of safer and more reliable AI systems.

CONCLUSION
After a thorough examination of the jailbreak prompts, it was observed that a small subset
of these prompts led the LLM to naturally refrain from producing harmful responses,
thereby reducing the necessity for intervention by the Prompt-G filter in such cases.
Nonetheless, a substantial majority of the jailbreak prompts still successfully induced
unintended and potentially dangerous outputs, emphasizing the critical importance of
deploying the Prompt-G filter to counteract such vulnerabilities. When these prompts
were integrated with malicious user inputs and subsequently processed through the
Prompt-G filter, the LLM consistently generated responses that adhered to safety and
ethical guidelines. While the Prompt-G filter was notably effective in detecting prompts
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that introduced confusion or distraction into the LLM, it also exhibited a minor tendency
to incorrectly flag benign prompts as harmful, albeit with a relatively low error rate. This
trade-off highlights the balance between robust protection and maintaining response
accuracy.

As the technological landscape continues to evolve, this system positions itself as a
promising platform for further exploration and refinement. The evolving nature of
jailbreak attacks necessitates continuous adaptation of LLMs. While our work
demonstrates a promising approach, it’s crucial to acknowledge the growing sophistication
of these attacks. To maintain efficacy, LLMsmust undergo regular updates and incorporate
advancements in detection and mitigation strategies.
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