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ABSTRACT

Recognition methods have made significant strides across various domains, such as
image classification, automatic segmentation, and autonomous driving. Efficient
identification of leaf diseases through visual recognition is critical for mitigating
economic losses. However, recognizing leaf diseases is challenging due to complex
backgrounds and environmental factors. These challenges often result in confusion
between lesions and backgrounds, limiting information extraction from small lesion
targets. To tackle these challenges, this article proposes a visual leaf disease
identification method based on an enhanced attention mechanism. By integrating
multi-head attention mechanisms, this method accurately identifies small targets of
tomato lesions and demonstrates robustness in complex conditions, such as varying
illumination. Additionally, the method incorporates Focaler-SIoU to enhance
learning capabilities for challenging classification samples. Experimental results
showcase that the proposed algorithm enhances average detection accuracy by 10.3%
compared to the baseline model, while maintaining a balanced identification speed.
This method facilitates rapid and precise identification of tomato diseases, offering a
valuable tool for disease prevention and economic loss reduction.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision
Keywords Visual recognition, Leaf disease identification, Attention mechanism

INTRODUCTION

Visual recognition plays a pivotal role in various domains (Tian et al., 2023; Yao et al,
2021) such as smart production, autonomous driving, and intelligent perception. In the
context of smart production, automatic leaf disease recognition can significantly mitigate
agricultural economic losses (Martinez, 2007; Ananthi & Varthini, 2012). Many crop
diseases originate from the leaves and subsequently affect the entire plant, leading to a
decline in crop yield and quality (Yag ¢» Altan, 2022; Karasu & Altan, 2022). Therefore,
timely and accurate identification of leaf disease types is crucial for early detection and
diagnosis of tomato diseases (Zhang, Shang ¢» Wang, 2015). Despite notable advancements
in automatic recognition, existing methods encounter challenges due to the complexity of
leaf textures, similarity in disease leaf appearances, and environmental factors (Kaur,
Pandey & Goel, 2018; Al-Hiary et al., 2011; Zhou et al., 2021). Traditional machine
learning-based algorithms struggle to extract features from small disease areas and lack
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Figure 1 Tomato leaf disease display. Image source credit: PlantDoc dataset.
Full-size K&l DOT: 10.7717/peerj-cs.2365/fig-1

adaptability (Al Bashish, Braik ¢ Bani-Ahmad, 2011; Vaishnnave et al., 2019; Rumpf et al.,
20105 Shruthi, Nagaveni ¢» Raghavendra, 2019), while deep learning approaches lack
specialized methods for extracting features from tomato disease leaves (Shrivastava ¢
Pradhan, 2021; Arivazhagan et al., 2013; Patil & Kumar, 2017).

Symptoms of diseases manifesting on crop leaves (Kaur, Pandey ¢ Goel, 2018; Al-Hiary
et al., 2011; Zhou et al., 2021) can be accurately identified using vision-based methods for
crop disease recognition, which involve extracting disease-specific features from images of
crop leaves. However, the diverse spectrum of tomato diseases poses a significant challenge
in distinguishing diseased leaves based solely on texture, shape, and color. The presence of
complex backgrounds and the small size of disease spots further exacerbate this challenge,
complicating the differentiation of diseased areas from healthy foliage. Moreover,
variations in environmental conditions, such as lighting, introduce additional complexities
to the recognition of tomato diseases, as depicted in Fig. 1. These multifaceted challenges
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underscore the critical focus of ongoing research efforts among experts and scholars in the
field of tomato disease recognition.

Traditional algorithms for crop disease analysis (Al Bashish, Braik ¢ Bani-Ahmad,
2011; Shruthi, Nagaveni ¢ Raghavendra, 2019; Vaishnnave et al., 2019) typically rely on
analyzing color, texture, shape, and other features in images of crop disease leaves to
classify disease types and localize affected areas. However, these methods often face
challenges in accurately extracting features from small disease-affected regions and may
fail to capture the dynamic changes in tomato crop diseases influenced by variables such as
growth stage, geographic region, and environmental conditions. Furthermore, traditional
approaches do not embrace the end-to-end feature learning paradigm, necessitating
iterative processes of feature screening, selection, and evaluation. This lack of integration
can lead to time-consuming workflows and limits the applicability of these methods across
diverse agricultural settings.

An alternative approach to tomato leaf disease recognition utilizes deep learning, which
emulates the neural network architecture and cognitive processes of the human brain,
enabling autonomous perception and extraction of intrinsic characteristics related to
tomato leaf diseases. However, many current deep learning-based methods for crop disease
recognition rely on general-purpose frameworks that lack specialized techniques for
effectively extracting visual features from tomato disease leaves. As a result, when
confronted with complex backgrounds and varying lighting conditions, these models
encounter challenges in accurately distinguishing between lesions and the background,
thereby compromising the extraction of features from small, targeted lesions.

To address these challenges, this article introduces an enhanced attention-based
algorithm for tomato disease identification. Firstly, the algorithm achieves a balance
between speed and precision by leveraging YOLOV4 (tiny) as the base model (Bochkovskiy,
Wang ¢ Liao, 2020), enabling automatic learning and extraction of image features related
to tomato diseases across diverse samples. This adaptability facilitates effective handling of
dynamic changes in disease characteristics. Secondly, the enhanced attention module
integrates multi-head attention mechanisms to enhance feature learning and
characterization capabilities of the deep learning model, focusing on scale-awareness,
spatial awareness, and task awareness. This enhancement significantly improves the
extraction of critical features from small targets within tomato lesions. Furthermore, the
algorithm incorporates Focaler-SIoU (Zhang ¢» Zhang, 2024) to address a large number of
challenging samples during training. This adaptation allows the recognition algorithm to
prioritize attention on difficult samples, thereby further enhancing the accuracy of tomato
leaf disease identification. The main contributions of this article can be summarized as
follows:

1) Development of a recognition algorithm that effectively balances speed and precision
for tomato disease identification.

2) Proposal of a tomato disease identification algorithm integrating an enhanced attention
module to autonomously learn and extract crucial features from tomato lesions. This
approach mitigates challenges related to feature extraction from tomato lesions,
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effectively suppressing irrelevant information such as background noise and
illumination variations.

3) Extensive experiments conducted on real-world datasets demonstrate the efficacy of the
proposed algorithm. The experimental results showcase superior disease recognition
precision compared to general detection models, while maintaining a well-balanced
recognition speed.

Related work

Methods of crop disease identification

In recent years, crop disease identification methods have undergone significant evolution,
largely due to advancements in object recognition detection algorithms and the integration
of deep learning techniques. These methods have found successful applications across
various domains, including medical image recognition (Huang et al., 2021), pedestrian gait
recognition (Dou et al., 2022), and crop disease recognition (Verma et al., 2021). Deep
learning, functioning as an end-to-end target recognition and detection algorithm, mimics
the network structure and operational mechanisms of the human brain, enabling
independent perception and learning of intrinsic features of the target. Several classical
algorithms, such as Single Shot MultiBox Detector (SSD) (Liu et al., 2016), Region-based
Convolutional Neural Network (R-CNN) (Girshick et al., 2014), Spatial Pyramid Pooling
Network (SPP-Net) (He et al., 2015), Region-based Fully Convolutional Network (R-FCN)
(Dai et al., 2016), and You Only Look Once (YOLO) (Redmon et al., 2016), have been
developed based on deep learning.

Among these algorithms, YOLO stands out for its transformation of the detection
problem into a regression problem and its ability to achieve real-time target detection
using a convolutional neural network. Consequently, an increasing number of researchers
are integrating deep learning with crop disease recognition (Xinming ¢ Hong, 2023; Xue
et al., 2023; Morbekar, Parihar ¢ Jadhav, 2020).

For instance, Mohanty, Hughes ¢ Salathé (2016) trained a deep convolutional neural
network model using a plant leaf disease dataset, achieving recognition of 26 crop diseases.
Notably, the model also recognized disease images not present in the training set. Too ef al.
(2019) explored the application of a fine-tuned deep learning model for plant disease
classification using the PlantVillage dataset, with experimental results demonstrating that
the DenseNet network model achieved the best recognition performance.

Turkoglu, Hanbay ¢ Sengur (2022) proposed a model for detecting apple pests and
diseases based on a multi-model LSTM convolutional neural network. This hybrid model
combined the LSTM network with a pre-trained CNN model, with experimental results
showing higher accuracy compared to other models. Nachtigall, Araujo ¢ Nachtigall
(2016) introduced a classification method for apple tree diseases based on convolutional
neural networks. By leveraging CNN, relevant features of apple tree diseases were learned
from the data, with experimental results indicating that the trained convolutional neural
network outperformed human experts in identifying apple tree diseases.
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In 2021, Shill & Rahman (2021) developed an accurate plant disease detection system
using YOLOV3 (Redmon ¢ Farhadi, 2018) and YOLOvV4 (Bochkovskiy, Wang & Liao,
2020), respectively, achieving the detection of diseases related to 17 plant leaves.
Experimental results demonstrated the system’s high accuracy and applicability. Ganesan
& Chinnappan (2022) proposed a rice disease recognition algorithm based on a mixed
deep learning model, in which a YOLO classifier replaced the fully connected layer of the
ResNet model. Experimental results showed that the recognition algorithm achieved high
accuracy. The TC-MRSN model (Wang et al., 2024) excels in diagnosing maize leaf
diseases under complex conditions by employing a dual-branch system to effectively
capture texture and color features with high precision. The SENet approach (Wen et al.,
2024) integrates a multi-scale residual network with Squeeze-and-Excitation mechanisms
for precise recognition of mulberry leaf diseases. A method for recognizing pepper leaf
diseases (Fu, Guo ¢» Huang, 2024) introduces a lightweight CNN model based on the
GGM-VGG16 architecture. Trained on images against a human palm background, it
operates as a mobile application for efficient and accurate diagnosis in field conditions. The
CofteeNet model (Nawaz et al., 2024), employing a novel deep learning strategy, addresses
the challenge of accurately diagnosing coffee plant leaf diseases. It incorporates spatial-
channel attention mechanisms within a ResNet-50-based architecture and utilizes the
CenterNet framework for streamlined one-step detection. Furthermore, the GhostNet
Triplet YOLOVSs algorithm (Li ef al., 2024) enhances maize leaf disease detection,
providing a more efficient and accurate solution for real-time agricultural diagnostics.
Additionally, an approach (Deari ¢ Ulukaya, 2024) combines Inception v3 for
classification with YOLOV5x for precise symptom localization, enhancing early detection
and preserving yield.

Although the above methods have made significant progress in terms of recognition
accuracy, the reality of plant disease detection requires high detection efficiency under
varying light and background conditions. We will enhance the ability to detect plant
diseases in these challenging environments.

Identification method of tomato disease
Durmus, Giines & Kirci (2017) utilized deep learning for tomato leaf disease detection
using the PlantVillage dataset, conducting tests on the AlexNet and SqueezeNet deep
learning network models. Experimental results highlighted SqueezeNet’s lightweight
nature, enabling real-time identification of nine tomato diseases. Brahimi, Boukhalfa ¢
Moussaoui (2017) proposed a tomato disease recognition algorithm based on CNN,
leveraging CNN’s automatic feature extraction to visualize disease regions in tomato
leaves, achieving high accuracy as indicated by experimental results. Rangarajan,
Purushothaman & Ramesh (2018) introduced a tomato disease classification algorithm
based on pre-trained deep learning network models, specifically AlexNet and VGG16-net,
analyzing the effects of image quantity, small batch size weight, and bias learning rate on
tomato disease recognition performance.

While these algorithms applied deep convolutional neural networks to tomato leaf
disease recognition using the PlantVillage dataset, it is crucial to note that these datasets
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lack characteristics such as complex backgrounds, variable illumination, and close contrast
between disease spots and the background, as illustrated in Fig. 1. Therefore, when
applying these deep learning network models to datasets similar to the one shown in Fig. 1
for identifying tomato leaf diseases, detection accuracy is often compromised. However,
detection speed can be higher, making it more feasible to achieve the desired recognition
effect.

Fuentes et al. (2017) proposed a recognition method for tomato diseases and insect pests
based on deep learning, exhibiting robustness in complex environmental conditions and
enabling effective recognition of nine tomato diseases, thereby facilitating early prevention
of tomato diseases and insect pests. Mohandas, Anjali ¢ Varma (2021) introduced a real-
time plant leaf disease recognition algorithm based on YOLOV4 (tiny), capable of
recognizing various crop diseases, including those affecting tomatoes, mangoes,
strawberries, beans, and potatoes. Experimental results demonstrated that the proposed
algorithm can achieve early-stage recognition of plant diseases. Lin et al. (2017) proposed a
tomato and apple leaf disease recognition algorithm based on YOLOV4, utilizing EPC to
optimize the algorithm’s learning rate, ultimately achieving recognition of eight tomato
diseases and insect pests. Additionally, due to its ability to focus on specific regions akin to
human vision, attention mechanisms have gradually found applications across various
domains, yielding fruitful outcomes (Liu et al., 2022). Nevertheless, there is scarce research
leveraging attention mechanisms in conjunction with YOLO for leaf disease classification.

METHODOLOGY

In the context of tomato disease recognition, we treated tomato leaf disease recognition as
a small target recognition problem, with a specific focus on tomato disease lesions. To
tackle this, we proposed a recognition algorithm that combines multi-head attention
mechanisms and focuses more on hard samples, enabling more precise tomato disease
recognition. The overall pipeline of our approach is illustrated in Fig. 2.

To meet the requirements of both speed and precision in disease identification, we
selected YOLOV4 (tiny) as the base model. However, due to the presence of complex
backgrounds and small lesion areas, we incorporated an enhanced attention module
DyHead (Dai et al., 2021) for tomato disease features. By integrating multi-head attention
mechanisms such as scale-aware, spatial-aware, and task-aware within the DyHead, we
further enhanced the capability of capturing features related to tomato lesions, resulting in
a significant improvement in the representation ability of the model.

Furthermore, due to the diverse types of tomato leaf diseases and variations in shape,
color, and texture caused by individual differences, there are numerous hard samples
encountered during the recognition process. To address this, we introduced a Focaler-
SIoU method into our algorithm, which focuses more on recognizing hard samples of
tomato leaf diseases.

In the following sections, we provide a detailed description of our proposed model
architecture.
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Figure 2 The pipeline of the proposed method. Image source credit: PlantDoc dataset.
Full-size K&l DOT: 10.7717/peerj-cs.2365/fig-2

Enhanced module for detection head based on multi-head attention
mechanisms

In the context of tomato crop diseases, various factors contribute to the dynamic changes
in disease characteristics, such as growth stage, planting region, and climate conditions.
Consequently, the manifestation of the same tomato leaf disease in images can vary
significantly. Additionally, the background of tomato disease leaves is often complex, and
the small target characteristics of disease spots may not be obvious. This makes it
challenging to distinguish disease spots from the background, and the recognition process
can be influenced by environmental conditions, such as varying lighting.

Given these challenges, it becomes crucial to focus on effective feature extraction in the
lesion area, considering factors like complex backgrounds and small lesion areas. Inspired
by the attention mechanism (Hu, Shen ¢ Sun, 2018; Woo et al., 2018; Wang et al., 2020),
which leverages the self-learning ability to determine the importance of features from a
vast amount of information, we introduced an enhanced module, DyHead (as shown in
Fig. 2), that combines multi-head attention mechanisms. This module enhances the feature
learning and representation ability of the detection head. It focuses more on the effective
features of the small targets of tomato spots while suppressing irrelevant information, such
as background noise and illumination changes. This approach aims to solve the challenge
of extracting key features from small targets in tomato leaf disease recognition.

The DyHead module can be represented as follows:

W(F) = acloslon (F) - F] - F] - F, ey

where o(+) represents the attention function, and F represents the feature. oy (+), os(+), and
ac(+) respectively represent the scale-aware attention, spatial-aware attention, and task-
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aware attention. By combining multi-head attention mechanisms, the representation
ability of the detection head is further enhanced.

Scale-aware attention o (F). Due to variations in growth stages and planting regions,
which lead to differences in tomato leaf sizes, the scale-aware attention assists the model in
adaptively perceiving targets of different sizes by fusing features from different scales:

=alf %;F -F, where J(X)zm;lX(O,min(l}%)), (2)

where f(-) represents the 1D convolution operation with a convolution kernel size of

OCL(F) -F

1 x 1. o(X) is a hard sigmoid function.

Spatial-aware attention o(F). Due to the complexity of backgrounds on tomato
disease leaves, recognizing tomato disease leaf targets from such complex backgrounds can
be challenging. The spatial-aware attention can effectively perceive the relationship
between tomato leaves at different spatial positions:

L K
== wik - F( i+ Apiic) - Amy, (3)

I=1 k=1

M»—

where K represents the number of sparse sampling positions, px + Apy represents
positions that can be moved through self-learned spatial offset Apy, and Apy is learned via
deformable convolution to focus on a specific region of interest. Amy represents the
importance of self-learned positions pi. By introducing the spatial-aware attention
module, the features become sparser, thus more effectively focusing on tomato leaf targets
at different spatial positions.

Task-aware attention o¢(F). Due to variations in factors such as tomato leaf
morphology and lighting conditions, it is imperative for the model to possess strong
robustness. The task-aware attention can dynamically switch features from different
channels, thereby effectively enhancing the robustness of detection:

ac(F) - F = max[o'(F) - Fe + B (F),o*(F) - Fe + B*(F)], 4)

where max(-) represents a function for activating thresholds in different channels, and F,
denotes the features of the c-th channel. Specifically, as shown in Fig. 2, the process begins
by utilizing average pooling to reduce dimensions, followed by two linear layers and
normalization to obtain the final features.

Note that the enhanced module DyHead can be stacked multiple times, enabling the
model to have stronger representation ability, effectively improving identification
performance. The impact of varying numbers of DyHead modules on model performance
is discussed in “Experiment”.

Hard target identification of tomato disease spot by fusion focaler-SloU
To address the challenges posed by irregularly shaped and difficult-to-classify tomato
disease samples, this article introduces Focaler-SIoU, which effectively improves the
accuracy of bounding box regression and emphasizes the recognition of hard samples.
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YOLOV4 uses the CloU (Zheng et al., 2020) for bounding box regression by default,
which takes into account the similarity between the ground truth boxes and predicted

boxes.
begt
CloU = IoU — % — B, (5)
ﬁ—+ _2 rtnﬂ— rtnK 2 (6)
(1 —=1IoU) +v’ VT M e T AR

where w, h8', w, and h represent the width and height of the ground truth bounding box

and the predicted bounding box, respectively. However, the CIoU does not consider the

impact of the angles between bounding boxes. Thus, we introduce SIoU (Gevorgyan, 2022):
(A+9Q)

SIoU = IoU — DR (7)

This further considers the angular compatibility between ground truth boxes and
predicted boxes, thereby effectively enhancing the accuracy of bounding box regression.

1 i . T
A=1-2-sin <arcsm(z) 4), (8)

2

h
2= = sinl). & = max(t, by) — min(b. bo).d = /(05— be)’ + (0 — b))

c

where A is the angle cost. b‘fﬁ R bfyt ,and b, by are the coordinate values of the centers of the
ground truth box and the predicted box, respectively. ¢" and d denote the height
displacement and Euclidean distance between the centers of the ground truth bounding
box and the predicted bounding box. By minimizing z, the angle ¢ between the ground
truth box and the predicted box can be minimized.

¢ 2 2

t=xy

where A is the distance cost, and ¢” denotes the width displacement between the centers of
the ground truth bounding box and the predicted bounding box. By incorporating the
angle cost into the distance cost, when ¢ increases, the contribution of the distance cost
also increases.

. | Ih— h|
0= ety o = W g R, 11
20 e e M a7 -

where (2 is the shape cost. For different datasets, the value of 0 varies. The variation of 0
affects the rate of exponential decay, influencing the extent to which (2 penalizes
differences between the ground truth box and the predicted box.

The obtained SIoU loss can be expressed as:

A+Q
LSIOUII—IOU+( —; ) (12)
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Due to the diversity of tomato leaf diseases and the differences in shape, color, and
texture between individuals, there is a significant proportion of hard samples encountered
during the recognition process. We introduced Focaler-IoU, which focuses more on the
bounding box regression of hard samples. Specifically, we reconstruct the IoU loss through
linear interval mapping, aiming to perform more accurate bounding box regression.

0, if IoU <k
IoU — k .

FocalerloU = Tk if k < IoU < g, where [k, g] € [0,1]. (13)
1, if IoU > ¢

By varying the factors g and k, we can increase the emphasis on the regression of hard
samples. We set k = 0 and g = 0.95 in this article. The final Focaler-SIoU loss can be
expressed as:

LFocaler—SIoU = LSIOU + IoU — FocalerloU. (14)

By incorporating the Focaler-SIoU loss, the proposed model focuses more on hard
samples and improves the detection capability for small targets associated with tomato
disease spots. This further enhances the model’s learning ability for hard samples.

Base model

YOLOV4 (tiny) is selected as the baseline model due to its optimized balance between
speed and accuracy, making it ideal for real-time applications. The model utilizes a
CSPDarknet53-Tiny backbone network to extract global features from 416,416 pixel
tomato disease images efficiently. These features are crucial for both disease classification
and detection tasks.

The network outputs two sets of feature layers at resolutions of 1,313 and 2,626, which
are utilized for classification and detection purposes. It performs classification to identify
the type of tomato disease present in the image and simultaneously conducts object
detection to pinpoint the location and size of each detected disease instance.

Overall, YOLOV4 (tiny) excels in efficiently processing tomato disease images,
providing detailed outputs that include disease classification, precise localization, and
confidence scores for each detected instance. This capability is essential for applications
requiring swift and accurate assessment of plant health in agricultural settings.

EXPERIMENT

Experiment setting and evaluation metric

Before training each network model, all images are resized uniformly to 416 x 416 pixels.
The batch size is set to 16, with a learning rate of 0.001 and weight decay of 0.94. Training
employs the Adam optimizer across 200 epochs, with model checkpoints saved after each
epoch. Python serves as the primary programming language for both training and
inference, leveraging hardware comprising an NVIDIA GeForce GTX 1080 Ti GPU and
Intel Core i7 CPU.
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In this article, mean average precision (MAP), average detection speed, average
precision (AP), and F1 score are chosen as evaluation metrics to assess the identification
performance of various models for tomato diseases. The specific calculation methods are as

follows:
1
MAPZEZAPi, (15)
1
AP = / P(R)dR, (16)
0
Fl— 2 pr.ec.lslon . recall7 (17)
precision + recall
Precisi P (18)
recision = ———
TP + FP’
TP
Recall = ——— 19
T TP RN (19)

where C is the number of tomato disease categories and AP; is the AP value of each tomato
disease category. AP and F1 consider the evaluation values of precision and recall. True
Positive (TP) indicates that the category information of tomato leaf disease is detected and
classified successfully. True Negative (TN) indicates that the category information of the
tomato leaf disease image is detected but classified incorrectly. False Negative (FN)
indicates that the category information of tomato leaf disease is not detected and classified
incorrectly. False Positive (FP) indicates that the category information of tomato leaf
disease is not detected but classified correctly.

Data preparation

In this study, tomato leaf images were sourced from the publicly available dataset “Leaf
Type Detection” (Make, 2023). This dataset comprises images of various tomato leaf
diseases and healthy tomato leaves, including tomato mold (86 photos), tomato leaf fine
plaque (101 photos), tomato leaf spot (137 photos), tomato leaf flavivirus (68 photos),
tomato early blight (77 photos), tomato mosaic virus (44 photos), tomato late blight (99
photos), and healthy tomato leaves (56 photos), totaling 668 images.

However, deep learning models require substantial data for effective training, and the
original dataset had a limited number of samples, posing challenges for successful model
training. Therefore, prior to model training, each image underwent random data
augmentation to generate a total of 6,012 tomato leaf image samples. Data augmentation is
crucial in plant leaf pathology detection models as it introduces variations in lighting
conditions and rotational angles, simulating diverse photographic environments and
conditions. This approach not only increases the diversity of the training data but also
enhances the model’s adaptability to different lighting and viewpoint conditions.
Moreover, it strengthens the model’s ability to generalize, reducing dependency on specific
image features and thereby improving accuracy and robustness in practical leaf pathology
identification applications.

Figure 3 illustrates examples of data augmentation applied to leaf pathology images,
specifically showcasing variations in light intensity. Figure 3A displays a subset of tomato
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(a) Part of the data set before data enhancement (b) Part of the data set after data enhancement

Figure 3 Comparison of tomato leaf disease images before and after data enhancement. Image source credit: PlantDoc dataset.
Full-size K&l DOT: 10.7717/peerj-cs.2365/fig-3

leaf disease images from the original dataset before augmentation, while Fig. 3B shows the
same subset after augmentation. The dataset was split into training and test sets in a 9:1
ratio.

Performance comparison

Table 2 shows the performance comparison of the enhanced module DyHead with
different stacked numbers and various embedding dimensions. “nums” denotes the
stacked number and “dims” denotes the embedding dimension. “speed” indicates the
average time to detect an image.

Ablation study

The influence of the enhanced module DyHead on recognition performance
In subsequent experiments in this article, the base model YOLOv4 (tiny) without the
enhanced module DyHead serves as the baseline. The purpose is to compare the
performance of the base model with the performance of the models that incorporate
different numbers of DyHead modules. DyHead modules with different numbers and
embedding dimensions are introduced into the base model to analyze their impact on
effective feature extraction and recognition performance of tomato diseases.

As shown in Table 2, we observe that the accuracy of detection increases continuously as
the number of stacked DyHead modules and embedding dimensions rise. However, this
enhancement comes with an increase in parameters and consequently, detection time.
Considering both detection accuracy and speed, we ultimately opt to stack 2 DyHead
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Table 1 Performance comparison of the enhanced module DyHead with different stacked numbers
and various embedding dimensions. “nums” denotes the stacked number and “dims” denotes the
embedding dimension. “speed” indicates the average time to detect an image.

Model Nums Dims mAP (%) Speed (s)
YOLOV4 (baseline) 0 - 83.31 0.0073
YOLOv4 1 64 90.77 0.0098
YOLOv4 2 64 92.00 0.0115
YOLOv4 3 64 92.85 0.0137
YOLOv4 4 64 93.13 0.0160
YOLOv4 1 128 91.69 0.0083
YOLOv4 2 128 93.17 0.0110

Table 2 Add performance comparison of different types of IoU. “Focaler-IoU” indicates whether
Focaler-IoU is used.

Models Type Focaler IoU mAP(%) Speed (s)
YOLOv4 with DyHead CloU X 93.17 0.0110
YOLOv4 with DyHead CloU v 93.15 0.0110
YOLOv4 with DyHead SloU X 93.27 0.0108
YOLOv4 with DyHead SloU v 93.64 0.0110

modules in the base model and set the embedding dimension to 128. The model achieves a
detection accuracy of 93.17%, with a slight reduction in speed.

Hence, by introducing an appropriate number of DyHead modules, which combine
multi-head attention mechanisms, it becomes possible to effectively extract relevant spatial
and scale features, thereby enhancing the model’s feature learning and representation
capabilities. This proves crucial in achieving optimal model performance. For all
subsequent experiments within this article, we employ 2 DyHead modules with embedding
dimensions set to 128.

The effect of Focaler-SloU loss on recognition performance
The incorporation of Focaler-SIoU into the proposed algorithm represents a notable
enhancement in recognition accuracy. As demonstrated in Table 1, the integration of
Focaler-SIoU elevates the average detection accuracy of the method to 93.64%. This
improvement, amounting to an increase of nearly 0.5% compared to the variant without
Focaler-SIoU, is achieved without compromising the algorithm’s average detection speed.
Focaler-SIoU allows the algorithm to effectively train on scenes featuring a higher
prevalence of challenging instances of tomato diseases. These “hard samples” typically
involve diseases that are more nuanced or less frequently encountered, posing greater
difficulty for traditional detection models. By prioritizing these challenging cases through
the Focaler-SIoU mechanism, the algorithm can allocate more resources and attention
during training, thereby refining its recognition capabilities specifically for these scenarios.
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Table 3 Model performance comparison. The bolded values in the mAP and Speed columns represent
the best-performing results in the experiment.

Models mAP (%) Speed (s)
YOLOV4 (baseline) 83.31 0.0073
FasterRCNN (Ren et al., 2015) 88.26 0.0373
SSD (Liu et al., 2016) 88.78 0.0138
YOLOV3 (Redmon ¢ Farhadi, 2018) 90.09 0.0152
YOLOv7 (Tiny) (Wang, Bochkovskiy ¢ Liao, 2023) 91.29 0.0114
YOLOV5 92.44 0.0135
Ours 93.64 0.0110

Table 4 Comparison of AP indexes of each type of tomato samples in different models.

Models AP/% (IoU = 0.5)
Leaf Bacterial Septoria leaf Tomato yellow leaf curl Early Tomato mosaic Late Healthy
mold spot spot virus blight virus blight
YOLOv4 85.57 83.80 94.89 47.31 86.23 84.21 97.53 86.91
(baseline)
Ours 95.26 96.91 99.41 65.23 98.01 96.89 99.87 97.55

Table 5 Comparison of F1 indexes of each type of tomato samples in different models.

Models F1 (IoU = 0.5)
Leaf Bacterial Septoria leaf Tomato yellow leaf curl Early Tomato mosaic Late Healthy
mold spot spot virus blight virus blight
YOLOv4 0.78 0.78 0.89 0.45 0.79 0.80 0.93 0.79
(baseline)
Ours 0.91 0.91 0.96 0.63 0.93 0.94 0.99 0.94

The observed increase in accuracy underscores the efficacy of Focaler-SIoU in bolstering
the algorithm’s performance in tomato disease recognition tasks. Focaler-SIoU not only
improves overall detection rates but also enhances the algorithm’s robustness in handling
diverse and challenging conditions commonly encountered in agricultural field settings.

Compared with the base model
As shown in Table 3, the experimental results demonstrate that our proposed algorithm
effectively improves the recognition accuracy of tomato diseases while maintaining a
balanced recognition speed. Our model achieves 93.64% accuracy, which is a 10.3%
improvement compared to the YOLOV4 (tiny)/baseline model. It even surpasses YOLOv7
(tiny) at 91.29% and YOLOV5 at 92.44%, with faster detection speed.

More specifically, we compared our proposed model with the YOLOV4 (tiny)/baseline
model in terms of AP and F1 score for each type of tomato disease, as shown in Tables 4
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YOLOV4 (tiny)
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The Proposed Method

Figure 4 Recognition effects of different network models on tomato leaf images under illumination
changes. Image source credit: PlantDoc dataset. Full-size K&l DOT: 10.7717/peerj-cs.2365/fig-4

and 5. Notably, for tomato leaf flavivirus, the proposed algorithm exhibits the highest
increase in AP value, with an improvement of about 17.9% compared to the YOLOv4
(tiny)/baseline model. Additionally, for tomato leaf flavivirus and healthy tomato leaves,
the proposed method achieves improvements of 18% and 15% in F1 value, respectively,
compared to the YOLOV4 (tiny)/baseline model.

These results validate that our proposed method effectively completes feature extraction
for each type of tomato disease, accurately identifies hard tomato samples, and improves
the overall recognition effect of the algorithm for each type of tomato disease. The
experimental findings confirm the effectiveness of the proposed method in enhancing the
recognition accuracy of tomato diseases.

The influence of illumination variation on recognition and detection
performance

In practical scenarios, detecting tomato leaf diseases is often challenged by complex
backgrounds and varying lighting conditions. To evaluate the robustness of our proposed
method for recognizing and detecting tomato diseases under different lighting
environments, we selected three types of tomato diseases—tomato leaf mold, tomato leaf
spot, and tomato leaf early blight—as our test subjects. We established three experimental
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setups, as illustrated in Fig. 4 (A1-B1), Fig. 4 (A2-B2), and Fig. 4 (A3-B3), to conduct
tomato disease recognition experiments under low light, normal light, and bright light
conditions.

Specifically, the comparison between Fig. A1 and Fig. B1 indicates that YOLOV4 (tiny)
failed to recognize tomato diseases under low light conditions, whereas our proposed
method accurately detected the lesions. In normal light and complex background
conditions, as shown in Fig. A2 and Fig. B2, our method identified two lesions, while
YOLOV4 (tiny) detected only one. In the comparison between Fig. A3 and Fig. B3, it is
evident that YOLOV4 (tiny) missed detecting one leaf lesion under strong light conditions.
In summary, these experiments demonstrate that our proposed method exhibits robust
performance in detecting tomato diseases across different lighting conditions.

CONCLUSIONS

In this article, we proposed a real-time tomato disease recognition algorithm using multi-
head attention enhancement to address challenges in both recognition accuracy and speed
for tomato leaf diseases. Our algorithm is based on YOLOV4 (tiny) and integrates a multi-
head attention mechanism to accurately extract key features from complex backgrounds
within tomato disease regions. Additionally, to further enhance the model’s ability to
classify different lesions at a fine-grained level, we incorporate the Focaler-SIoU method to
handle classification samples with varying levels of difficulty. We conducted extensive
experiments to demonstrate that the proposed method not only significantly improves
detection accuracy under complex backgrounds and varying lighting conditions but also
maintains a high detection speed, thus facilitating the application of the detection model in
real-world scenarios.

In future work, we aim to enhance the algorithm’s adaptability to diverse agricultural
scenarios, target variations, and noise disturbances. This will involve diversifying the
dataset, expanding the algorithm’s capabilities to recognize different types of crop diseases,
pests, and abnormalities, and developing techniques to handle noise disturbances
commonly found in agricultural environments. By focusing on these aspects, we strive to
create a more robust and versatile crop disease recognition algorithm that contributes to

improved crop management and disease prevention in various agricultural settings.
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