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ABSTRACT

In recent years, notable advancements have been achieved in the realm of identifying IP-
based Internet of Things (IoT) devices and events. Nevertheless, the majority of methods
rely on extracting fingerprints or features from plain text IP-based packets, which limits
their ability to accommodate heterogeneous IoT devices such as ZigBee and Z-Wave,
and fails to address the challenge of limited traffic samples. To tackle these issues, we
propose a novel approach based on IoT communication characteristics and featuring
module extensibility. This method is presented to effectively identify IoT devices and
events from non-IP heterogeneous IoT network traffic. To shield the differences caused
by the heterogeneous IoT protocol, a heterogeneous sample extraction platform with
an extensible structure is created to extract raw sequence samples from ZigBee and Z-
Wave traffic, with potential for expansion to other protocols. To address the challenges
arising from the scarcity of samples, a sample identification framework based on IoT
communication characteristics is devised to create synthetic samples from the raw
sequence samples, enabling concurrent processing of the raw and synthetic samples
using an identification model featuring two separate sequence networks. Comparative
assessments of our method against baseline sequence models and the latest techniques
demonstrate the advantages of our approach in identifying non-IP heterogeneous
IoT traffic. The experimental results indicate that our method achieves an average
accuracy improvement of 29.7% compared to baseline models using only raw samples.
Furthermore, our method shows improvements of 22.1%, 21.5%, and 21.8% in macro
precision, macro recall, and macro F1-score, respectively, over the latest method.

Subjects Computer Networks and Communications, Security and Privacy, Internet of Things
Keywords IoT, Non-IP, Heterogeneous, Traffic identification

INTRODUCTION

With the advancement of IoT technology, an increasing number of commercial IoT
products are deployed in various scenarios, such as homes and office spaces. Due to
the diverse nature of IoT products, the lack of a unified security mechanism, and their
close association with human activities, [oT devices gradually become prime targets for
attackers (Hassija et al., 2019). To enhance the security of existing IoT networks, numerous
researchers explore methods for identifying IoT devices and events from IoT network
traffic (Sdnchez et al., 2021).
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Figure 1 The application scenario of a device identification method.
Full-size & DOI: 10.7717/peerjcs.2363/fig-1

As illustrated in Fig. 1, assuming that a heterogeneous IoT network is connected to the
Internet through a gateway, an identification method can sniff traffic from the gateway or
the wireless network and model the traffic. Subsequently, the model can be employed to
identify device types or operational events from the traffic. In the realm of network security,
device identification technology can be employed to discover potential IoT devices in the
environment, preventing low-security devices from serving as gateways for attackers to
intrude the intranet (Miettinen et al., 2017; Kostas, Just ¢ Lones, 2022; Kostas, Just ¢~ Lones,
2023; Marchal et al., 2019). Regarding privacy leakage, these methods can be applied to
detect state change events of IoT devices, potentially infringing upon users’ private lives
(Copos et al., 2016; Shafqat et al., 2022; Acar et al., 2020; Apthorpe et al., 2019). For instance,
it is possible to determine whether a user is at home based on the lights and even infer
the user’s personality based on their device usage habits (Copos et al., 2016). Therefore, the
identification of IoT devices and events remains a significant research focus (Jmila et al.,
2022; Chowdhury & Abas, 2022).

Recently, significant progress has been made in the identification of IP-based IoT
devices and events. For example, Miettinen et al. (2017) propose an identification system,
IOT SENTINEL, based on device fingerprint matching and edit distance. Kostas, Just &
Lones (2022) devise a machine learning (ML)-based method, loTDevID, which introduces
a set of traffic feature extraction methods and corresponding packet aggregation algorithms
to collaborate with ML models for packet identification, improving the performance of
the detection model. Qu et al. (2023) propose an input-agnostic hierarchical deep learning
framework, leveraging deep learning techniques to learn device fingerprint features directly
from encrypted packets. However, the methods in Miettinen et al. (2017) and Kostas, Just
¢ Lones (2022) both require extracting fingerprints or features from plaintext IP-based
packets, rendering them unable to support heterogeneous IoT devices like ZigBee and
Z-Wave, and incapable of directly processing encrypted packets. Although the method
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in Qu et al. (2023) demonstrates the capability to handle heterogeneous network traffic,
the deep learning methods utilized in this approach encounter significant challenges of
overfitting in scenarios with limited samples, since low-power IoT devices typically generate
minimal communication packets to prolong battery life.

In order to handle the aforementioned limitations, we propose a novel approach
featuring module extensibility and based on IoT communication characteristics. It primarily
consists of the heterogeneous sample extraction platform and the sample identification
framework. The advantages lie in: Firstly, this platform can shield the differences caused
by the heterogeneous IoT protocol stack. It can parse heterogeneous IoT packets like
ZigBee, Z-Wave, etc., and generate serialized numerical samples that can be processed by
the framework. Additionally, it can be expanded to support new protocols. Second, the
sample identification framework is optimized based on the communication characteristics
of [oT traffic, making it more suitable for scenarios with very few samples in heterogeneous
IoT datasets. Third, this method does not rely on the plaintext content of packets, allowing
direct processing of encrypted traffic from various heterogeneous IoT protocols.

Specifically, firstly the heterogeneous sample extraction platform reads the traffic content
and transforms each packet into a 4-tuple consisting of relative time, sender direction,
payload length, and message type, which are present in any heterogeneous IoT traffic.
Since all 4-tuples of packets are transformed into corresponding integers by our proposed
algorithm, all traffic samples are processed to create a raw sample dataset composed of
integer sequences. Then, our designed packet synthesis algorithm is utilized to re-encode
the repeated identical subsequences in the raw samples to generate new synthetic samples.
This algorithm effectively reduces the impact of the Stop-and-Wait protocol of IoT devices
on identification. Afterwards, the raw samples and the synthetic samples will be input into
the model simultaneously. These samples are individually processed through dedicated
embedding layers for encoding and then passed into sequence models (such as BiLSTM,
BiGRU) for computation to produce the respective vector representations. Subsequently,
the two vectors are concatenated and fed into a multilayer perceptron (MLP) network for
multi-classification.

In order to evaluate the effectiveness of our method, we conduct two sets of experiments.
In the first set, we use three independent datasets (ZigBee from CICIOT2022 (Dadkhah
et al., 2022), Z-Wave from CICIOT2022 (Dadkhah et al., 2022), and ZigBee from ZLeak
(Shafqat et al., 2022)) and implement sample identification models using five sequence
networks including BiGRU, BiLSTM, BiLSTM-ATT, BiRNN, and CONV-1D. We evaluate
the performance of these models by classifying raw samples, synthetic samples, and a
combination of raw and synthetic samples. The results from these experiments demonstrate
that our method significantly enhances the detection performance of existing baseline
sequence models. Additionally, it validates the effectiveness of the heterogeneous sample
extraction platform. In the second set, we conduct a comparative evaluation between our
method, IoTDevID (Kostas, Just ¢ Lones, 2022), and trace-classifier (trace-clf) (Qu et al.,
2023; Jiang, 2024) on the ZigBee dataset from CICIOT2022. Our method exhibits superior
performance in identifying heterogeneous IoT traffic samples compared to these similar
methods.
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In summary, the contributions of this article are as follows:

e We develop a platform for extracting samples from heterogeneous IoT network
traffic. It can extract raw sequence samples from ZigBee traffic transmitted in ZigBee
Encapsulation Protocol (ZEP) tunnels, ZigBee traffic carried in IEEE 802.15.4 frames,
or Z-Wave traffic in ZLF format files. Furthermore, it allows for expansion to new
heterogeneous IoT protocols.

e We propose a sample identification framework based on the communication
characteristics of IoT traffic. The framework involves generating synthetic samples
from the raw sequence samples using a packet synthesis algorithm and then processing
the raw and synthetic samples simultaneously with the identification model using two
independent sequence networks, effectively improving the detection performance of the
model.

e Our experiments are conducted on three independent heterogeneous IoT traffic datasets
to validate that our method enhances the detection performance of existing sequence
models on heterogeneous IoT traffic samples. Subsequently, a comparative evaluation
of our method with the latest methods is conducted to validate the advantages of our
method over similar methods in heterogeneous IoT traffic sample identification.

RELATED WORKS

In this section, we investigate the latest advances in device identification technology and
analyze the unique challenges faced in performing device identification in heterogeneous
IoT network traffic.

At present, there are a large number of IoT devices in the market using WiFi standards
and TCP/IP for communication. Many studies focus on the identification of these TCP/IP
devices. Kotak ¢ Elovici (2021) study how to use small images built from the IoT device
network traffic payloads to represent the communication behavior of IoT devices, and train
a MLP classifier to identify different IoT devices. Zahid et al. (2022) propose a framework-
based hierarchical deep neural network to distinguish IoT devices from non-IoT devices
using a feature set of TCP/IP headers and traffic. Aksoy ¢ Gunes (2019) propose a method
that combines sensor measurements and statistical feature sets from TCP/IP headers to
extract features for identifying IoT devices. Pinheiro et al. (2019) select the statistical mean,
standard deviation, and number of bytes transmitted within a one-second window of IP
packets as sample features, and utilize ML methods such as random forest for classification.
Ortiz, Crawford ¢ Le (2019) utilize stacked autoencoders to automatically learn features
from device traffic, learn the classes of traffic observed, and classify IoT device traffic
accordingly. In addition to directly utilizing TCP/IP protocol fields, some studies also
extract features from upper-layer protocols that rely on TCP/IP. Perdisci et al. (2020)
study how to treat the resolved domain names as words and consider the set of domain
names queried by devices as a document. Then, natural language processing algorithms
are utilized to identify IoT devices from DNS traffic. Le et al. (2019) develop a ML-based
identification method that builds a fingerprint database using device DNS traffic, and then
identifies devices through the TF-IDF algorithm. Chowdhury et al. (2020) utilize TCP/IP
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packet header features to create device fingerprints and propose a set of three metrics
to separate certain features from packets that actively contribute to device identification.
These features are then input into ML algorithms for classification. Other studies (Salman
et al., 2022; Wang et al., 2022; Charyyev & Gunes, 2020b; Thom et al., 2022; Luo et al., 2022;
Charyyev & Gunes, 2020a) also commonly involve selecting features from the TCP/IP
headers and using ML algorithms to classify device types. Although these methods achieve
quite ideal results, they also exhibit apparent limitations in terms of non-IP scenarios.

Due to the low-power and mesh networking requirements of IoT devices, there are a
large number of IoT devices in the market based on heterogeneous network protocols such
as ZigBee and Z-Wave. For ZigBee devices, their application data is generally encapsulated
in the ZigBee network layer format and directly transmitted in the air using the IEEE
802.15.4 protocol or transmitted after encapsulation through the ZEP via UDP. For
Z-Wave devices, messages use a proprietary protocol stack not publicly disclosed by
Sigma Designs, requiring dedicated capture and analysis software. In addition, there are
also commercial products such as the nRF24 series chips from Nordic Semiconductor
(Gheorghiu et al., 2023). Therefore, the identification methods for Wi-Fi-based IoT devices
are often difficult to apply to heterogeneous IoT networks for device identification.

In the method of identifying non-IP heterogeneous IoT devices based on packet parsing,
Shafqat et al. (2022) study how to conduct packet unpacking analysis on ZigBee packets
captured from the wireless environment and parse packets field by field to analyze the
operational status of devices. Gvozdenovic et al. (2024) propose a method for enumerating
IoT devices in the network, which includes a series of passive, active, multichannel, and
multiprotocol scanning algorithms to discover IoT devices. Nkuba et al. (2023) parse
Z-Wave packets to determine whether devices are susceptible to wireless injection attacks.
These methods can support non-IP heterogeneous IoT devices such as ZigBee and Z-Wave
with high accuracy and low overhead. However, the method of packet parsing is often tightly
coupled with device protocols. Considering the diversity of heterogeneous IoT network
protocols, as well as protocol version differences and implementation disparities among
different manufacturers, maintaining a packet analysis tool that supports all protocols,
versions, and products from different manufacturers is challenging. Moreover, protocol
analysis must be conducted with communication secret keys, which can be difficult to
achieve in certain scenarios, such as instances involving privacy leaks.

In the method of identifying non-IP heterogeneous IoT devices based on machine
learning, the IoTDevID (Kostas, Just ¢ Lones, 2022) considers NonIP devices. It parses 111
features from the packets and designs a unique method to select the most critical features.
It then utilizes a packet aggregation algorithm in combination with ML models for
device identification. IoTDevID is capable of identifying ZigBee packets transmitted after
encapsulation through the ZEP via the UDP (Kostas, Just & Lones, 2022). Furthermore,
an input-agnostic hierarchical deep learning frame is designed (Qu et al., 2023). Its
advantage lies in the ability to adjust the shape of input samples based on the actual
shape collected from the network, thus allowing adaptation to different sample features
in heterogeneous IoT networks for device identification. Cheng et al. (2022) propose a
device fingerprint identification scheme based on deep learning for IoT devices with
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Z-Wave protocol, and propose the concept of confidence interval to solve the problem of
overlapping identification of similar devices. However, due to the low-power characteristics
of heterogeneous IoT devices, these devices often generate only a small number of
communication samples, posing a challenge for the above-mentioned ML-based methods
due to insufficient training sample quantities.

In conclusion, the challenges faced in the issue of device identification in heterogeneous
IoT networks are as follows: (1) Due to the significant differences between protocols in
heterogeneous IoT networks, identification methods often struggle to be applied to various
heterogeneous [oT devices. (2) These ML-based methods encounter significant challenges
of overfitting in scenarios with limited samples of low-power heterogeneous IoT devices.

To address the challenge posed by the differences in heterogeneous IoT protocol stacks,
our method involves the design of a heterogeneous sample extraction platform to create a
uniform sample structure for different protocols. This platform is used to generate samples
from heterogeneous IoT traffic and transforms each packet into a 4-tuple consisting of
relative time, sender direction, payload length, and message type, all of which are present
in any heterogeneous IoT traffic. Additionally, to tackle the issue of limited samples, we
devise a sample identification framework based on ToT communication characteristics to
reduce the impact of retransmitted packets on the samples, thereby enhancing the detection
performance of heterogeneous IoT traffic samples.

PROPOSED METHOD

In this work, our goal is to propose a method for identifying specific IoT devices and
their corresponding operational events from encrypted traffic in non-IP heterogeneous
IoT networks, sniffed either from the gateway or wireless network. Our method primarily
consists of the heterogeneous sample extraction platform and the sample identification
framework. To mitigate the impact of heterogeneous IoT protocols, we develop the
platform with an extensible structure to extract raw sequence samples from ZigBee and
Z-Wave traffic, and has the potential for expansion to other protocols. Additionally, to
address the challenges arising from the scarcity of samples, we propose the framework
based on IoT communication characteristics. This framework creates synthetic samples
from the raw sequence samples, enabling concurrent processing of the raw and synthetic
samples using an identification model featuring two separate sequence networks.

Heterogeneous sample extraction platform

The heterogeneous sample extraction platform is developed to extract samples from IoT
network traffic. As illustrated in Fig. 2, initially, the captured network traffic sample files
(e.g., pcapng, zIf format files) are stored in their respective directories, with each directory
containing samples from the same type of device or operational event. After traversing
through the directory files, the platform processes all traffic sample files into serialized
numerical samples, with the directory names serving as labels. During the processing of a
sample file, the platform will invoke the corresponding heterogeneous IoT traffic processing
module for unpacking, where the module reads the file content and transforms each packet
into a 4-tuple consisting of relative time, sender direction, payload length, and message
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Figure 2 The workflow of the heterogeneous sample extraction platform.
Full-size & DOI: 10.7717/peerjcs.2363/fig-2

type. Eventually, each file is transformed into an ordered sequence composed of 4-tuples.
Considering the need to capture a fixed duration of traffic as test samples during the model
working in a deployment environment, we introduce the hyperparameter st that limits
each sample segment to contain at most st seconds of packets. Thus, the 4-tuple sequence
is divided into independent sub-sequences with st-second intervals. After processing all
network traffic sample files, all sample sequences are saved to a dataset file for subsequent
model processing.

Normally, the traffic sample files used in this workflow need to be collected manually.
For example, to capture the devices’ power-on traffic, all devices are unplugged and the
network is rebooted. Then, each device is powered on individually. After a fixed waiting
period, the network traffic is captured in isolation. This process is repeated multiple times.
Similarly, to collect traffic for specific operational events, interactions with each device
are performed, and the corresponding traffic is captured. In this work, we use raw traffic
sample files from public datasets. These files are labeled with the device and operation that
generated the traffic. Additionally, how different traffic samples are labeled depends on
the actual objectives. For example, if the model is used to identify devices from traffic, the
power-on, power-off, and other operational events of the same device share the same label,
which represents a single device. If the model is used to identify operational events, then
different labels are assigned to various operational events, with each label representing a
type of operation.

The key to masking the differences in heterogeneous IoT protocol stacks lies in using
different traffic processing modules to handle corresponding types of traffic sample files.
These modules need to implement an interface that reads the input file and returns a 4-tuple
sequence of the corresponding packets’ information. The elements in the tuple contain
information present in any heterogeneous IoT traffic. In IV, we implement three processing
modules for handling different heterogeneous IoT traffic from three independent datasets,
demonstrating the platform’s usability.
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Sample Identification framework
Communication characteristics of IoT traffic

Stop-and-Wait protocol: In low-speed wireless IoT networks, due to the widespread use of
the 2.4 GHz public frequency band and the low wireless transmission power, it is common
for transmitted packets to be easily lost. Therefore, non-IP heterogeneous IoT devices often
utilize a Stop-and-Wait protocol to guarantee packet delivery to the receiver. In normal
cases, sender A sets a retransmission timer after sending a packet. Upon receiving the
packet, receiver B sends an acknowledgment packet to inform sender A of its reception.
Then A cancels its retransmission timer, as shown in Fig. 3A. In a common retransmission
process, if the packet sent by A is lost, B will not send an acknowledgment packet. After the
retransmission timer expires, A will retransmit the packet, as shown in Fig. 3B. However,
this process may become more intricate due to the loss of acknowledgment packets. As
shown in Figs. 3C and 3D, a higher number of retransmissions is required to ensure packet
delivery.

The Stop-and-Wait protocol of non-IP heterogeneous [oT devices results in variations
among similar network traffic samples. Similarly, it also causes duplicate packets to be
retransmitted within the same sample.

Sleep strategy: Battery-powered IoT devices typically strive to remain in a sleep state to
minimize battery consumption. IoT devices are usually in a sleep state, driven to work by
preset timers and external interrupts. Timers are used to periodically wake up the CPU
to check sensor status, or to periodically send heartbeat messages to report its own status.
External interrupts often originate from sensor peripherals, which actively wake up the
CPU to promptly handle unexpected new events. As a result, messages sent by IoT devices
are not continuous, but often have periodic time intervals. For instance, a device may enter
sleep mode after completing message transmission within 1-2 s, and then be woken up
again after a longer interval to resume frequent message exchange.
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Synthesis algorithm

The synthesis algorithm uses the 4-tuple sequence S outputted by the heterogeneous
sample extraction platform as the input to generate an integer sequence I along with their
corresponding time intervals T.i € I represents the information extracted from a packet
in S, while interval € T indicates the time interval between two adjacent packets in S. The
process of generating integer sequences is described in Procedure 1. In this procedure, pkt
is used to iterate through each 4-tuple element of S, which represents the information of
each IoT network packet. The sign of the integer i depends on the sending direction of
the packet represented by pkt, and the magnitude of i is equal to the length of the packet.
Since there are significant differences in meaning between broadcast packets, link control
packets, and regular data packets, this procedure appends a larger offset value to such
special packets to differentiate them from regular packets. Finally, the generated integer i
is appended to the end of sequence I, and its time interval with the preceding element is
appended to the end of sequence T.

Procedure 1: Generate Integer Sequences

input :a 4-tuple sequence S
output: an integer sequence I along with their corresponding time intervals T

1 I <@

2 T <0

31«05

4 foreach element pkt = (d,1,p,t) of the S do

// d,l,p,t represent the sender direction, length, type, and
timestamp of the pkr.

ifd =SEND then i<« 1x1;

else i< —1x1;

if p = BROADCAST then i< i+10*;

if p = LINKCONTROL then i< i+10°;

I < TU{i}

10 T« TU{t—t};

11 ty < t;

o e N & wn

The synthesis algorithm uses the integer sequence I as the raw sample to generate a
synthetic sample Y. The process of generating synthetic samples is described in Procedure 2.
During initialization, the algorithm establishes an empty dictionary Dict to save index:
subsequence pairs, which is global for all raw samples. First, based on the characteristics of
IoT sleep strategy, the packets with a time interval greater than N seconds are split into
subsequences divided by the time of N seconds. As analyzed in the Sleep Strategy, a device
may enter sleep mode within 1-2 s after completing message transmission, and then be
woken up again after a longer period. In this algorithm, N represents the threshold for the
time interval from when the device starts entering wake mode until it transitions into sleep
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Figure 4 The workflow of the synthesis algorithm for generating synthetic samples from raw samples.
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mode, which can be used to divide the related packets into the same subsequence according
to the wake period. Afterwards, the algorithm removes duplicate elements within the
subsequence and adds the subsequence to Dict if it is not already present. Subsequently, the
algorithm replaces all subsequences in the raw sample I with their corresponding indices
from the dictionary Dict to generate the final synthetic sample Y. The workflow of the
algorithm is depicted in Fig. 4.

Identification model

The reason for deduplicating within the subsequence is that the IoT device Stop-and-Wait
protocol may result in duplicate elements within the subsequence. As a result, even logically
identical operations may exhibit different traffic due to fluctuations in network quality.
Thus, deduplicating within the subsequence alleviates the impact of retransmitted packets
on the samples.
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Procedure 2: Generate Synthetic Samples

input :a raw sample I along with their corresponding time intervals T
output: a synthetic sample Y

1 Dict < {};

// Dict is a dictionary
2 Y <0
3 S«
4 fori<0to|I|—1do
5 1< I;

// T; represents the time difference between packets.

6 if T; < N then
7 S« SU{i};
8 else
9 S <« SU{i};
10 S < Deduplicate(S);
11 if (S) ¢ Dict then
12 t DictAddEntry(Dict,(S));
13 index < DictFindIndex(Dict,(S));
14 Y <« Y Uindex;
15 S <@

The synthesis algorithm is inspired by the idea of convolutional neural networks.
Convolutional networks extract fundamental features through convolutional layers and
use pooling layers to enable the model to observe samples from a broader perspective.
However, due to the limited number of samples in non-IP heterogeneous IoT networks,
it is challenging for the convolutional network to directly learn their communication
characteristics. Therefore, our method directly uses subsequences divided by time interval
to extract the fundamental features of the samples, which often appear multiple times in
different samples. Then, by encoding the subsequences into indexes, the model observes
the overall picture of the samples from a wider range, thereby improving the model’s
identification ability.

Asillustrated in Fig. 5, in the structure of the identification model, the raw samples output
by the heterogeneous sample extraction platform and the synthetic samples generated by the
synthesis algorithm are simultaneously input into the model. These samples are individually
processed through dedicated embedding layers for encoding and then passed into sequence
models (such as BiLSTM, BiGRU) for computation to produce their respective vector
representations. Subsequently, the two vectors are concatenated and fed into a MLP
network for multi-classification. Given that the number of labels is usually greater than
2 in this context, the SoftMax function is employed to generate probability distributions,
thereby enhancing the model’s classification performance. All the trainable parameters in
the model are jointly trained for the multi-classification task.
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Figure 5 The structure of the identification model.
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EXPERIMENTAL RESULTS

In this section, we conduct comparative experiments on three independent datasets in the
first set of experiments, confirming that our method can indeed effectively enhance the

detection performance of existing sequence models for heterogeneous IoT traffic samples.
In the second set of experiments, we conduct a comparative evaluation of our method with
the latest methods IoTDevID (Kostas, Just ¢~ Lones, 2022) and trace-clf (Qu et al., 2023) to
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validate the advantages of our method in heterogeneous IoT traffic sample identification
compared to similar algorithms.

Datasets
We select three independent non-IP heterogeneous IoT traffic datasets for experimentation,

and their descriptions are as follows:

e CICI0oT2022-ZigBee (Dadkhah et al., 2022) dataset (http:/205.174.165.8010TDataset/
CIC_IOT_Dataset2022/Dataset/) contains traffic samples generated by various ZigBee
devices such as smart plugs, smart light bulbs, efc., performing 14 different operations
(e.g., turning on lights, plug switches), with a total of 265 pcapng files. These files contain
ZigBee packets transmitted through the ZEP protocol collected from the gateway. We
develop a module in the heterogeneous sample extraction platform to read the ZigBee
packets in order to generate sequence samples. Finally, the types of operations are used
as sample labels, and the number of each label in the sample dataset is shown in Table 1.

e CICIoT2022-ZWave (Dadkhah et al., 2022) dataset (http:/205.174.165.8010TDataset/
CIC_IOT_Dataset2022/Dataset/, https:/github.commarmeenshafqatl/ZLeaks/ree/
master/capture%?20files) contains traffic samples generated by multiple Z-Wave devices
during 13 different operations, totaling 145 zIf files. We first develop a Python script
to call the Zniffer tool (this tool is included in Simplicity Studio, which is available at
https:/fwww.silabs.com/developersisimplicity-studio) to batch convert all zIf files to csv
files, and then develop a corresponding module to read Z-Wave packets from the csv
files to generate sequence samples. The number of its labels is shown in Table 2.

e ZLeak-ZigBee (Shafqat et al., 2022) dataset (https:/github.com/mnarmeenshafqat1/
ZLeaks) contains traffic samples from seven different functional ZigBee devices, totaling
133 pcapng files. These samples are collected using sniffing tools directly from the wireless
network, where ZigBee packets are transmitted through the IEEE802.15.4 protocol. We
develop a module to extract ZigBee packets from the dataset to generate samples. The
distribution of labels is provided in Table 3.

Comparison with baselines

In order to validate that our method enhances the detection performance of existing
sequence networks on heterogeneous IoT traffic samples, we design three groups for
control experiments.

These networks include BiRNN, BiLSTM, BiLSTM-ATT, BiGRU, and CONV-1D.
BiRNN (Schuster ¢» Paliwal, 1997) learns features from both forward and backward
sequences. BILSTM (Hochreiter ¢ Schmidhuber, 1997) incorporates memory cells
to process sequences effectively. BILSTM-ATT (Lin et al., 2017) enhances sequence
representations using self-attention. BiGRU (Chung et al., 2014) leverages gate mechanisms
to manage information flow and capture long-term dependencies. CONV-1D (Zhang, Zhao
& LeCun, 2015) extracts local features for sequential data processing.

In the first group, we construct detection models using these five common sequence
networks and feed them only with raw samples for classification. In the second group,
we train the five models exclusively on the synthetic samples generated by the synthesis
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Table 1 The sample number of CICI0T2022-ZigBee dataset.

Label Manuf. Device type Events Count
0 AeoTec Button Press 5
1 AeoTec Motion Sensor Motion&NoMotion 10
2 AeoTec Multipurpose Sensor Move 5
3 AeoTec Multipurpose Sensor Open&Close 10
4 AeoTec Water Leak Dry&Wet 10
5 Philips Hue White Increase&Decrease 20
6 Philips Hue White On&Off 20
7 Sengled Smart Plug LAN on & LAN off 20
8 Sengled Smart Plug PHY on & PHY off 20
9 SmartThings Button Press 5
10 SmartThings Smart Bulb Increase&Decrease 50
11 SmartThings Smart Bulb On&Off 50
12 Sonoff Smart Plug LAN on & LAN off 20
13 Sonoff Smart Plug PHY on & PHY off 20
Table 2 The sample number of CICIoT2022-ZWave dataset.

Label Manuf. Device type Events Count
0 AeoTec Door Window Sensor Open&Close 10
1 AeoTec Doorbell LAN Chime

2 AeoTec Doorbell PHY Chime

3 AeoTec Indoor Siren LAN Chime

4 AeoTec Nano Mote Quad PHY Button

5 AeoTec Smart Switch LAN on & LAN off 10
6 AeoTec Smart Switch PHY on & PHY off 10
7 AeoTec TemHumSensor PHY Button 5
8 AeoTec TriSensor Motion & NoMotion 10
9 Fibaro Door Window Sensor Open&Close 20
10 Fibaro Motion Sensor Motion & NoMotion 20
11 Fibaro Wall Plug LAN on & LAN off 20
12 Fibaro Wall Plug PHY on & PHY off 20
Table 3 The sample number of ZLeak-ZigBee dataset.

Label Device type Count

0 Audio:Ecolink Sound Sensor 2

1 bulb:BulbSengled Color,White Bulb etc. 62

2 Door:Visonic Door sensor etc. 13

3 Flood:Ecolink Water Sensor 3

4 Lock:Schlage Lock,Yale Door lock etc. 10

5 Motion:SMT Motion sensor efc. 11

6 plug:Centralite,Sonoff,SmartThings Outlet etc. 54
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algorithm. In the third group, we implement the sample identification framework proposed
by our method, utilizing the same five sequence models as intermediate layers to build
models and feed them with both raw samples and synthetic samples simultaneously.

The model structure used in the third group of experiments is shown in Fig. 5. Inputs
Embedding Layerl and Inputs Embedding Layer2 have identical structures, each with
an output dimension of 32. For models constructed with BiRNN, BiLSTM, and BiGRU
networks, their Sequence Network Layerl consists of the corresponding networks, uses
the tanh activation function, and has an output dimension of 64. For models constructed
with BILSTM-ATT, Sequence Network Layerl consists of a BILSTM layer with an output
dimension of 64, a self-attention layer, and a flatten layer. For models constructed with
the CONV-1D network, the structure consists of two ConvlD layers with 32 filters of
size 3, a MaxPooling layer with a pool size of 5, two additional Conv1D layers with 32
filters of size 3, and a GlobalMaxPool layer as output. Sequence Network Layer2 has
the same structure as Sequence Network Layerl. The outputs from both networks are
concatenated and input into the MLP, which consists of an input layer, a hidden layer with
64 neurons, and an output layer with a number of neurons matching the number of labels.
The activation functions used are ReLU for the hidden layers and SoftMax for the output
layer. Additionally, for the first and second groups of experiments, Inputs Embedding
Layer2 and Sequence Network Layer2 are not used.

For each dataset, five-fold cross-validation is performed to evaluate the models, with
each model trained using 10 random seeds, and the average of the metrics is used as the
result. The experiment uses accuracy as the metric to measure the model performance.

The experimental results are shown in Table 4. It can be seen from the results of
the three comparative experiments, irrespective of the sequence model used, our method
outperforms baseline sequence models trained with either raw samples or synthetic samples
alone, achieving an average accuracy improvement of 29.7% compared to baseline models
using only raw samples. Additionally, using synthetic samples is more effective than using
raw samples directly. Comparative analysis of five types of sequence networks indicates
that BILSTM performed well on all three datasets.

Comparison with the state-of-the-arts

To validate the advantages of our method over similar approaches in identifying
heterogeneous IoT traffic samples, we conduct a comparative evaluation with the latest
methods, IoTDevID (Kostas, Just ¢ Lones, 2022) and trace-clf (Qu et al., 2023).

Trace-clf is an input-agnostic hierarchical deep learning framework for traffic
fingerprinting that can hierarchically abstract comprehensive heterogeneous traffic features
into homogeneous vectors seamlessly digestible by existing neural networks for further
classification. The evaluation demonstrates that the method, with just one paradigm,
not only supports heterogeneous traffic input but also achieves better or comparable
performance compared to state-of-the-art methods (Qu ef al., 2023). In this evaluation,
we conduct experiments using the trace-clf method. To better handle ZigBee traffic, we
optimized the method’s pre-processing tool: (1) The optimized tool can directly read
the ZigBee packet in the payload of ZEP, skipping the irrelevant UDP header; (2) Since
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Table 4 Performance comparison (accuracy in percentage): our method using raw and synthetic sam-

ples simultaneously versus baseline models using only raw or synthetic samples.

Dataset Sequence model  Baseline model  Baseline model Our method and
using only using only improvement over
raw samples synthetic samples  baseline models

with raw samples

CICIoT2022-ZigBee BiLSTM-ATT 50.2% 77.7% 83.8% (+33.6%)

CICI0oT2022-ZigBee CONV-1D 44.5% 75.9% 84.2% (+39.7%)

CICIoT2022-ZigBee BiGRU 49.8% 77.4% 84.2% (+34.4%)

CICIoT2022-ZigBee BiLSTM 50.9% 76.6% 86.4% (+35.5%)

CICIoT2022-ZigBee BiRNN 54.0% 74.7% 84.2% (+30.2%)

CICIoT2022-ZWave  BiLSTM-ATT 84.8% 88.3% 89.7% (+4.9%)

CICIoT2022-ZWave CONV-1D 85.5% 82.1% 87.6% (+2.1%)

CICIoT2022-ZWave BiGRU 86.9% 88.3% 89.7% (+2.8%)

CICloT2022-ZWave BiLSTM 84.8% 86.2% 91.0% (+6.2%)

CICIoT2022-ZWave BiRNN 85.5% 84.1% 88.3% (+2.8%)

ZLeak-ZigBee BiLSTM-ATT 32.5% 81.8% 83.8% (+51.3%)

ZLeak-ZigBee CONV-1D 33.8% 72.1% 77.3% (+43.5%)

ZLeak-ZigBee BiGRU 29.9% 83.8% 85.7% (+55.8%)

ZLeak-ZigBee BiLSTM 29.2% 82.5% 86.4% (+57.2%)

ZLeak-ZigBee BiRNN 32.5% 77.3% 78.6% (+46.1%)

Average - 55.7% 80.6% 85.4% (+29.7%)

the trace-clf method can directly read multidimensional inputs, the 4-tuple of packet
information can be directly inputted into the model without coding into integers. (3)
Following the trace-clf method’s approach in processing the IoT SENTINEL dataset, we
input the first two bytes of the packet payload into the sample.

IoTDevID is an ML-based method designed for the identification of IoT devices,
utilizing generalizable packet-level features for device classification. The key contribution
of this method is the use of a multi-stage feature selection process to determine a set
of generalizable packet-level features. Additionally, the aggregation algorithm employed
in this method leverages both the outcomes of the ML algorithm and the IP or MAC
addresses of devices as input, thereby enhancing the effectiveness of device identification.
Since (Kostas, Just & Lones, 2023) has evaluated the performance of ToTDevID on the
CICIoT2022 dataset, we directly use the classification results of ZigBee devices in the
confusion matrix provided by it to calculate the indicators in this evaluation.

Since IoTDevID can only handle ZigBee traffic transmitted via the ZEP protocol
over UDP, this evaluation is limited to the CICIoT2022-ZigBee dataset, which contains
nine ZigBee device types used as labels. On the evaluation metrics, since IloTDevID directly
classifies a sample composed of 13 packets, while trace-clf and our method classify a sample
composed of packets within fixed time intervals, in order to standardize the measurement
unit of samples, the experiment uniformly uses the number of packets contained in the
samples rather than the number of samples for performance evaluation. However, due
to variations in preprocessing rules of traffic sample files among different methods, the
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Table5 Performance comparison (in percentage): our method versus Trace-clf and IoTDevID. The
metrics are macro precision, macro recall, and macro F1-score.

Metric IoTDevID Trace-clf Our method and
improvement over
Trace-clf

Macro precision 45.6% 59.1% 81.2% (+22.1%)

Macro recall 41.0% 60.5% 82.0% (+21.5%)

Macro Fl-score 38.9% 59.4% 81.2% (+21.8%)

number of packets contained in samples of different models is not completely equal, but
the proportion of the same type of samples to the total samples is close, so the evaluation
metrics of different models can still be roughly compared. Considering the significant
differences in sample numbers between different devices when measured by the number
of packets, we use the macro precision, macro recall, and macro Fl-score as evaluation
metrics.

In this evaluation, we use our method combined with the BiLSTM network to construct
the model. The results of the comparative experiment are shown in Table 5. Our method
achieves the best results in macro precision, macro recall, and macro Fl-score, with
improvements of 22.1%, 21.5%, and 21.8%, respectively compared to the trace-clf method.
In contrast, [oTDevID performs comparatively lower.

Discussion
The first set of experiments indicates that our method achieves an average accuracy
improvement of 29.7% compared to baseline models using only raw samples. This is
because our method is better adapted to the communication characteristics of IoT traffic.
First, the Stop-and-Wait protocol used by the IoT devices causes duplicate packets to be
retransmitted within the same sample, resulting in variations among similar network traffic
samples. Meanwhile, due to the sleep strategy, [oT devices typically strive to remain in a
sleep state to minimize battery consumption, which limits the number of traffic samples.
This makes it challenging for the model to fit these specific sequence patterns of the
Stop-and-Wait protocol from a limited number of communication samples. To address
this issue, our method designs the synthesis algorithm to re-encode the repeated identical
subsequences in the raw samples to generate new synthetic samples, thus mitigating the
impact of the Stop-and-Wait protocol. The results from the experiments also reveal that
the baseline model with synthetic samples achieves an average accuracy improvement
of 24.9% compared to baseline models with raw samples. However, some devices have
inherent duplicates in normal communication. The de-duplication process of the synthesis
algorithm will also result in the loss of some information from the raw samples. Therefore,
our method also simultaneously reads the raw samples as input, achieving the best results
and an average accuracy improvement of 4.8% compared to baseline models with synthetic
samples.

In the second set of experiments, we conduct a comparative evaluation of our method
with the latest methods IoTDevID and trace-clf. Regarding the IoTDevID method, in the
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case of heterogeneous IoT packet payload encryption, it mainly relies on the information
in IP and UDP headers for classification. Since the sample packets are all encapsulated with
ZEP and transmitted via UDP, this results in a high similarity in packet headers among
different devices. This causes IoTDevID to struggle with similar encrypted traffic, resulting
in relatively lower performance in the experiments. The weakness of the trace-clf method
may lie in the large number of learnable parameters in its model. With a limited number
of heterogeneous IoT samples, this method struggles to directly learn the communication
characteristics of IoT traffic from the samples and encounters overfitting issues. However,
trace-clf is able to extract more information from the sequence patterns of the packets,
resulting in better performance compared to IoTDevID, with increases of 13.5%, 19.5%,
and 20.5% in macro precision, macro recall, and macro Fl-score, respectively. Since our
method adapts to the communication characteristics of IoT traffic through the synthesis
algorithm and mitigates the issue of overfitting with a smaller network structure, it achieves
better performance compared to trace-clf. The experiments reveal that our method achieves
improvements of 22.1%, 21.5%, and 21.8% in macro precision, macro recall, and macro
F1-score, respectively, over the trace-clf method.

LIMITATIONS

Firstly, by analyzing the experimental results, we observe significant confusion in the
classification of IoT devices produced by the same company. This might be due to the fact
that products from the same company could share the same code framework, leading to
highly similar traffic samples. However, without access to plaintext, classifying traffic from
IoT products developed with the same code framework is a challenging task. There is still
room for improvement in our approach regarding this issue.

Secondly, in real-world attack and defense scenarios, there may be cases where IoT
device keys become accessible. For example, manufacturers might leak fixed keys in the
device firmware. However, when keys are available to decrypt plaintext payloads, our
method lacks the appropriate framework to utilize this plaintext information.

Moreover, as discussed in the introduction, this method might also be used to probe
users’ personal privacy, potentially leading to additional security implications. Experiments
indicate that current traffic encryption strategies do not fully address this issue, as packet
sequence patterns may still reveal the device’s behavior. Therefore, padding the end
of packets with null characters to standardize their length and incorporating random
heartbeat packets into the traffic may be effective methods for obfuscating packet sequence
patterns. However, further experimental validation is needed.

CONCLUSION

In this article, we propose a method for identifying IoT devices and events from non-IP
heterogeneous IoT network traffic, which can be applied to scenarios such as network

security and privacy leakage. In particular, we design a heterogeneous sample extraction
platform that can shield the differences caused by the heterogeneous IoT protocol stack
and support further expansion to other heterogeneous IoT protocols. Furthermore, we
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propose a synthesis algorithm and the corresponding identification model based on the
communication characteristics of IoT traffic. Our experiments are conducted on three
independent heterogeneous IoT traffic datasets to validate that our method enhances
the detection performance of the baselines on heterogeneous IoT traffic samples. The
experimental results indicate that our method achieves an average accuracy improvement
of 29.7% compared to baseline models using only raw samples. Additionally, we conduct
a comparative evaluation of our method with the latest methods. Our method shows
improvements of 22.1%, 21.5%, and 21.8% in macro precision, macro recall, and macro
F1-score, respectively, over the trace-clf method.

A key contribution of this work is the proposal of a sample identification framework,
which includes the synthesis algorithm and the identification model. According to
the experimental discussion, the synthesis algorithm can re-encode repeated identical
subsequences in the raw samples to generate new synthetic samples, thereby mitigating the
effects of retransmitted duplicate packets. Furthermore, the identification model employs
two independent sequence networks that simultaneously handle both raw and synthetic
samples, resulting in optimal performance in the experiments.

In future work, we plan to employ multimodal technology to enable the model to
simultaneously analyze both the sequence patterns of traffic and the textual content of
packets, thereby improving the performance of the method and expanding its applicability.
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