
Submitted 20 June 2024
Accepted 5 September 2024
Published 17 October 2024

Corresponding author
Kazım Kılıç, kazim.kilic@yobu.edu.tr

Academic editor
Sedat Akleylek

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.2362

Copyright
2024 Kılıç et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

PermQRDroid: Android malware
detection with novel attention layered
mini-ResNet architecture over effective
permission information image
Kazım Kılıç1, İbrahim Alper Doğru1 and Sinan Toklu1,2

1 IoTLab, Department of Computer Engineering, Gazi University, Ankara, Turkey
2 Information Technology Faculty, Mingachevir State University, Mingeçevir, Mingeçevir, Azerbaijan

ABSTRACT
Background. The Android operating system holds the vast majority of the market
share in smart device usage worldwide. The Android operating system, which is of
interest to users, is increasing its usage rate day by day due to its open source nature
and free applications. Applications can be installed on the Android operating system
from official application markets and unofficial third-party environments, which poses
a great risk to users’ privacy and security.
Methods. In this study, an attention-layered mini-ResNet model is proposed, which
can detect QR code-like images created using the 100 most effective defined permission
information of Android applications. In the proposedmethod, permission information
is obtained from four different datasets with different number of applications. QR
code-like images of size 10x10x1 are created by selecting effective permissions using
the chi-square technique. In the proposed classification architecture, residual layers are
used to avoid ignoring the residual features of the images, and attention layers are used
to focus on specific regions after each residual layer. The proposed architecture has a
low number of parameters and memory consumption despite adding the residual layer
and the weighting operations in the attention layer.
Results. Using the proposed method, accuracy values of 96.95%, 98.34%, 98.33% and
100% were achieved, respectively, on four datasets containing applications obtained
from different sources such as Androzoo, Drebin, Genome and Google Play Store. On
the Mix dataset, which is a combination of four datasets, an accuracy value of 96.7%
was produced with the proposedmethod.When 10-fold cross validation was applied to
reduce the suggested bias, accuracy values of 97.50%, 98.62%, 98%, 94% and 97.61%
were obtained, respectively. The success and durability of the proposed method in
different environments have been tested through experiments conducted on different
datasets. The results show that the proposed method exhibits better classification
performance compared to classical machine learning algorithms, deep learning-based
studies using permission information, and similar image-based studies.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Security and Privacy, Neural
Networks
Keywords Malware detection, Mobile security, Convolutional neural network, Attention
mechanism, Permission information

How to cite this article Kılıç K, Doğru İA, Toklu S. 2024. PermQRDroid: Android malware detection with novel attention layered mini-
ResNet architecture over effective permission information image. PeerJ Comput. Sci. 10:e2362 http://doi.org/10.7717/peerj-cs.2362

https://peerj.com/computer-science
mailto:kazim.kilic@yobu.edu.tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2362
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2362


INTRODUCTION
Nowadays, smart devices have become an important part of our lives. The use of smart
devices that can perform many tasks that computers can do is increasing, and they make
our lives easier thanks to their constantly developing features. It is estimated that there
will be 4.88 billion smartphone users worldwide by the end of 2024 (Turner, 2024).
Approximately 70% of these users prefer Android operating system devices (Turner, 2024).
There are approximately 2.5 million applications offered to users in the Google Play Store
in January 2024 (Statista, 2024). The popularity of the Android operating system and its
open source code causes security problems. The fact that it has a 70% user rate all over the
world makes the Android operating system a target of cybercriminals who write malicious
code.

Over time, cyber criminals develop applications coded with different techniques that
can run on the Android operating system and inject these applications into the Google Play
Store and third-party environments (Smmarwar, Gupta & Kumar, 2024). This situation
causes malicious applications to become a security problem in the Android operating
system. A security problem is when a running system becomes vulnerable to unwanted
interventions, data loss, unauthorized access to the system, and other security threats.
The main security problems in the Android operating system can be shown as malware,
hacking, personal information theft, data leakage, phishing, pretexting, man-in-the-middle
attack, denial of service attack, and zero-day attack. Especially malicious software puts users
in a difficult situation regarding the theft of sensitive information and data loss. Google
developed Google Bouncer and Google Play Protection to block malware (Mahindru et
al., 2024). But these applications are insufficient to detect malware. 6,463,413 mobile
malicious applications were detected by Kaspersky in 2022 (Shıshkova, 2022). However,
Android applications downloaded from third-party environments do not undergo any
security tests and can be installed on the operating system when the user gives permission.
This situation leaves users vulnerable.

The Android operating system allows users to allow applications during the installation
and use of applications on their devices. Malicious apps tend to request a lot of permissions.
However, Android users often ignore the permissions requested by applications, and this
poses a risk for users. The permissions requested by applications play an important
role in detecting malware (Seyfari & Meimandi, 2024). Permission requests of Android
applications are defined in the AndroidManifest.xml file. Researchers are interested in
machine learning-based android malware detection using permission information.

There are many studies in the literature that use permission information and produce
successful results (Rafiq et al., 2022; Seyfari & Meimandi, 2024). Feature vectors containing
‘‘0’’ and ‘‘1’’ are formed with the permission information obtained in the AndroidManifest
file. By using all of this information or selecting effective permissions, Android malware
can be detected at a high rate. Deep learning-based approaches, which have been popular
in recent years, are also used on permission information for the detection of Android
malware (Fu et al., 2024). Convolutional neural networks (CNNs) the popular architecture
of deep learning, produce successful results in image analysis (Yadav et al., 2022). For this

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 2/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362


reason, researchers create images using features of Android applications such as byte array
or opcode (Tang et al., 2024). Researchers who apply transfer learning architectures on
these images achieve successful results with the feature extraction and classification power
of CNNs. However, the images used in these methods contain a lot of meaningful and
meaningless information, and the CNN architectures used also contain a large number of
parameters and require high memory consumption.

In this study, a mini-ResNet model with attention layer is presented through QR
code-like images based on selected permission information to detect Android malware.
The aim of the study is to detect Android malware with a fast, low-parameter and high-
accuracy efficient detection model using images of meaningful features. In the proposed
model, defined permission information of the applications is obtained and 100 effective
permission information on the created dataset are selected using the chi-square technique.
QR code-like images of 10× 10 size are created with the selected features. A low-parameter
CNN architecture consisting of 5 blocks with residual layers and attention layers is used for
feature extraction and classification from these images. The performance of the selection of
effective permissions is compared with 20 × 20 permission information images consisting
of all permissions. For the data independence and validity of the proposed method,
experiments are carried out on 4 different datasets and with the Mix dataset, which is a
combination of all of them.

The remaining sections of this research paper are organized as follows: The ‘Literature
Review’ section presents Android malware analysis types, summary of permission-based
and image-based similar studies. The ‘Materials and Methods’ section explains the datasets
used, the extraction of permission information, the image creation process, and details of
the classification architecture. In the ‘Results section, measurement values and graphical
representations of the test sets of the datasets of the proposed method are presented. In the
‘Discussion’ section, comparisons are made with similar studies. The ‘Conclusion’ section
gives information about the results observed in this study and future studies.

Motivation and contributions
The open source nature and popularity of the Android operating systemmake it a target for
cyber attackers. The fact that the Android operating system allows applications downloaded
from third-party environments as well as official application markets to be run leaves users
vulnerable to cyber attackers. In recent years, many studies have been conducted on
Android malware detection. Studies conducted using static analysis are especially popular
because they analyze the application before it is run and because they are fast. Information
obtained from the application file is needed for malware detection using static analysis.
In Android applications, the permission information requested from the user is of critical
importance. These permissions are effective in deciding whether the applications are
malware or benign. Especially malware applications tend to demand more work. For
this reason, researchers have conducted many studies focusing on permission information.
Permission information vectors consist of values of 0 and 1. Not all permission information
may be meaningful for classification. For this reason, permission information is selected

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 3/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362


using feature selection techniques in the studies conducted and classified using classical
machine learning methods.

In recent years, hardware developments have increased the interest in deep learning
architectures. Android malware researchers are interested in classifying the features
obtained from Android applications using architectures such as one-dimensional
convolutional neural network model (1DCNN) and long short term memory (LSTM) in
order to obtainmore successful results. At the same time, they provide image transformation
by digitizing the byte array or textual information of the applications. Successful results
have been obtained by using two-dimensional convolutional neural networks (2DCNN)
and transfer learning approaches. However, there is a lot of meaningless information in
the studies where image transformation is performed. The created image sizes are large
and the CNN architectures used contain a large number of parameters. Lightweight and
low-parameter structures are insufficient in terms of performance. Some studies have used
residual blocks and attention blocks to increase performance, but the methods they present
contain a large number of parameters. In addition, studies on Android malware detection
have been performed on a single dataset. The performance of the proposed models on
different datasets has not been shown.

In this study, permission information that is effective for Android malware detection
is selected and converted into QR code-like images. The aim is to both use the effect of
permission information and reduce the number of parameters with small-sized images
created from permission information. It is aimed to benefit from the feature extraction
and classification power of CNNs by not using meaningless information in the image and
ensuring image transformation of effective permission information. The proposed method
is tested on four data sets obtained from different sources. At the same time, both the bias
of the proposed model is reduced and the effect of the established architecture is measured
with cross validation and ablation studies.

The following research questions have been determined in line with our aims and
objectives:

RQ1 What is the classification performance when the permission information of
Android applications is converted to images? In this context, 20x20 images were created
and classified without subjecting the permission information of the applications to any
feature selection process.

RQ2 Can detection performance be increased by using small-sized images created
by selecting effective permissions and eliminating meaningless information? The most
effective 100 features were selected using the chi-square technique and 10x10 images were
created.

RQ3 What is the performance of the lightweight CNN architecture to be created using
the attention block and residual block against existing methods? The findings obtained
with the created architecture are compared with existing methods.

RQ4 What is the performance of the proposed model on data sets with multiple and
different data numbers, unlike existing studies? The performance of the proposed model
was tested on four different data sets. At the same time, all data sets were combined to

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 4/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362


create a Mix dataset. The consistency of the proposed model was measured using cross
validation for all data sets.

RQ5 Is the performance of the proposed model with images generated from permission
information successful against classical machine learning techniques? Classification was
performed with classical machine learning techniques and compared with the proposed
model.

The main contributions of our study to the literature, which was conducted as a result
of experiments to seek answers to the five research questions above, can be summarized as
follows:

• In this study, four data sets from different sources were used to verify the proposed
method. Similar studies have conducted experiments on only one data set. The stability
and reliability of the proposed model, independent of the number of data, were tested
with data sets with different data numbers used in the study.
• There are image-based studies that use permission information, but as seen in the
literature review, this study is the first to use a QR code-like image with the selection of
effective permissions.
• A new attention layered mini-ResNet architecture with five blocks, including three
residual layers and three attention layers, is proposed for feature extraction and
classification. The proposed architecture does not ignore residual features with residual
layers and achieves high accuracy by focusing on certain parts of the image with attention
layers in each block.
• The proposed architecture has the advantage of being able to work with images of
minimum 10 × 10 size and higher compared to high-resolution studies that use byte
array images in Android malware detection.
• The attention layeredmini-ResNetmodelwith contains a very lownumber of parameters
and takes up less space in memory compared to transfer learning architectures. It has
approximately 11 times fewer parameters and 3.5 times lessmemory size thanMobileNet,
the lightest and fastest transfer learning architecture..
• The proposedmethod producesmore successful results compared to similar permission-
based and image-based studies in the literature.

LITERATURE REVIEW
Since the Android operating system is widely used and open source, Android users are
at risk of malware. Three different approaches are used to determine whether Android
applications are malware or benign: static, dynamic and hybrid.

Static analysis involves examining the malicious code or file without executing it. This
approach allows security researchers and analysts to understand the structure, behavior,
and potential threats posed by malware without the risk of infecting a system. Researchers
using this technique usually analyze zip files with .apk extensions and use classes.dex files
together with the AndroidManifest.xml file. The information contained in the xml file
(permissions, intentions, activities, etc.) is widely used to detect Android malware (Atacak,
2023). In the Classes.dex file, malware detection studies using features such as opcode

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 5/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362


and API calls have achieved successful results (Mahindru et al., 2024). Deep learning and
natural language processing techniques are used on features obtained from xml and
dex files. Kabakus (2022) performed feature extraction with natural language processing
methods and classification with 1DCNN on the permission information and API calls
of Android applications. The researcher has automated the feature extraction, feature
selection and classification processes with the method called DroidMalwareDetector
(Kabakus, 2022). Khan et al. (2022) presented the Op2vec method, which converts the
opcodes of applications into digital vectors using natural language processing techniques
and classifies them based on deep learning. In recent years, the development of large
language models has made transformer architecture popular. Detecting Android malware
from xml and dex file information using Transformer is among the current issues (Saracino
& Simoni, 2023; Rahali & Akhloufi, 2021).

In the dynamic analysis method, the application is executed in a controlled environment
to observe the behavior of the malicious code and understand its capabilities. The dynamic
analysis approach is time-consuming and laborious. However, compared to static analysis,
it has an advantage against code obfuscation techniques and polymorphic software
(Smmarwar, Gupta & Kumar, 2024). In the dynamic analysis approach, researchers
generally focus on system calls and network traffic data (Alomari et al., 2023). Xiao et al.
(2019) proposed an LSTM-based classifier that detects system call sequences of applications
by detecting them as sentences.

Hybrid analysis involves the combined use of information obtained from static analysis
and dynamic analysis. The features obtained from the xml file or dex file through static
analysis and the features extracted as a result of dynamic analysis are combined. It
is powerful as it includes the advantages of static and dynamic approaches in terms
of detection, but it also has the disadvantage of requiring time and expert knowledge
(Aurangzeb & Aleem, 2023).

Studies using permission information
Atacak, Kılıç & Doğru (2022) proposed a new feature reducer and classifier CNN+Adaptive
Neuro-Fuzzy Inference System (ANFIS) hybrid model for the detection of Android
malware. In their proposed method, they used convolution and fully connected layer
instead of feature selectionmethods such as information gain from permission information
and chi-square test. By obtaining new features from the permission information with
convolution layers, they integrated the data as input into the ANFIS architecture with five
neurons placed in the fully connected layer. They tested their CNN+ANFIS architecture
with two different datasets. They achieved 92% accuracy in the first dataset and 94.66%
accuracy in the second dataset.

Mat et al. (2022) tried to detect Android malware using the Bayesian probability
algorithm. They extracted permission information from 10,000 apk files obtained from
Androzoo and Drebin datasets. They applied information gain and chi-square test to select
permission information and presented comparative analysis with different number of
features. The most successful result was found to be 91.1% by selecting 30 features with
the chi-square test.

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 6/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362


Altaher & Barukab (2017) proposed a fuzzy logic based classifier on permission
information. They obtained the permission information of the applications and selected 24
features using the information gain method. In the classification stage, they used the hybrid
fuzzy c-means (FCM)-ANFIS model by combining fuzzy c-means clustering and ANFIS
model. As a result of the study, they achieved 91% accuracy (Altaher & Barukap, 2017).
In a similar study, Abdulla & Altaher (2015) extracted the permission information of 200
applications. They obtained 24 features with the information gain method. They divided
the 1 × 24 feature vector consisting of 0 and 1 values into 3 groups and converted the 8
values in each group into byte format. In the classification stage, they used KNN-based
fuzzy clustering method together with ANFIS. As a result of the study, they reached an
accuracy value of 75% (Abdulla & Altaher, 2015).

Arslan (2022) tried to detect malware by dividing permission-based features into groups
of 11 permissions. The unbalanced dataset was balanced using the SMOTE technique. He
conducted experiments with classical machine learning techniques, DNN, LSTM and GRU
for the classification process. As a result of the experiments, it was observed that the most
successful result was obtained with the ExtraTree algorithm and reached 92.9% accuracy
with this method (Arslan, 2022).

Şahin et al. (2023) proposed a linear regression-based method on permission
information. They tested their methods on different datasets and compared them with
different classifiers. Researcherswho increased the classificationperformancewith ensemble
classifiers achieved an accuracy value of 95.6% with the AMD (Wei et al., 2017) dataset
and 91.87% with the Lopez’s (Urcuqui-López & Cadavid, 2016) dataset. They reached an
accuracy value of 82.94%withM0Droid (Damshenas et al., 2015) and 96.69%with Arslan’s
(Arslan, 2021) dataset (Şahın, Akleylek & Kiliç, 2022). In a similar study, Şahin et al. (2023)
aimed to eliminate unnecessary features by using a linear regression-based feature selection
approach during the feature selection phase. In the experiments, they obtained a 96.1%
F-score with the MLP algorithm (Şahin et al., 2023).

Image based studies
Successful results are achieved for Android malware detection by using deep learning and
machine learning methods with developing GPUs and CPUs. While researchers search for
different features of applications, they also convert the features into different formats such
as images and audio (Yadav et al., 2022; Tarwireyi, Terzoli & Adigun, 2023; Kural, Kiliç &
Aksaç, 2023; Tang et al., 2024). The reason for this is to benefit from the feature extraction
and classification power of deep learning. However, in studies where image transformation
is performed, feature selection is automatically extracted and classification can be made
without the need for expert knowledge.

Yadav et al. (2022) used dex files of applications for Android malware detection. They
converted the byte array of Dex files into a square format image with RGB color channels.
Their study presented a comparative analysis using a stacking ensemble classifier consisting
of SVM and RF algorithms and the analysis of 26 different pre-trained CNN architectures.
Researchers who want to use the advantages of transfer learning in malware detection have
achieved an accuracy value of 95.7% on 5,986 images with the EfficientNet -B4 architecture.

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 7/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362


Yen & Sun (2019) analyzed apk files using natural language processing methods.
Researchers weighted the texts with the Tf-IDF method and converted the numerical
feature vectors they obtained into images. After analyzing a total of 1,440 applications and
creating the image dataset, they classified them using CNN architecture. As a result of their
studies, they reached 92% accuracy.

Xiao & Yang (2020) developed a CNN architecture that learns from dalvik byte code. In
their method, the dalvik byte code stored in dex files is converted into images with RGB
channels. They carried out experiments on a total of 10,540 images with the lightweight
CNN architecture they established. As a result of the experiment, they obtained an accuracy
value of 93%.

Zhu et al. (2023) created feature vectors using permissions, hardware and API calls. They
converted the feature vector they obtained into an image of 18× 18 size. They presented a
new CNN architecture called MSerNetDroid to classify images. They tested their proposed
MSerNetDroid architecture on 3,187 applications collected from Virusshare and Google
Play Store and reached 96.48% accuracy.

Aurangzeb et al. (2024) created the AndroDex dataset containing 24,746 apk files.
This dataset, which includes Dex images, also represents apk files with code obfuscation
techniques applied. In their study, the researchers applied normalization to the images
and then performed dimension reduction with PCA. In their experiments with classical
machine learning algorithms, they achieved a 95% accuracy value with the XGBoost
algorithm.

Tasyurek & Arslan (2023) proposed a method called RT-Droid to detect real-time
Android malware. In their proposed method, permission information is extracted from
the manifest.xml file and converted to a 19 × 19 image in RGB format. 6,760 malignant
samples were obtained from Drebin and Genome projects, and 961 benign samples were
obtained from Arslan’s dataset. They used YOLO V5 architecture to classify images in their
fast detection method. Using the transfer learning technique, they reached an accuracy
value of 94.2% with the YOLO V5 architecture.

Arslan & Tasyurek (2022) proposed the AMD-CNNmethod formalware detection using
graphical representations. In their proposedmethod, they obtained all the information from
the manifest.xml file and converted it into a 2D-code image. In their study consisting of a
total of 1920 images, they used CNN architecture for classification and feature extraction.
They achieved 96.2% accuracy performance with the AMD-CNNmethod, which can make
fast detection. Table S1 provides a summary of image-based Android malware detection
studies.

MATERIAL AND METHOD
In this section, the datasets used in the study, feature selection and conversion of permission
information into a QR code-like image, details of the proposed architecture and the
hyper-parameters used are explained.

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 8/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362#supp-6
http://dx.doi.org/10.7717/peerj-cs.2362


Data collection
In order to evaluate ourmethod for Androidmalware detection, four different datasets were
used in this study. These datasets are named Dataset1, Dataset2, Dataset3 and Dataset4.
Datasets were collected from different environments and their apk quantities are different.
The purpose of this is to demonstrate the effectiveness and data independence of the
presented method. In addition, it is to create a robust model against the disadvantages of
all of these datasets.

Dataset1 was collected from the Androzoo (Allix et al., 2016) environment and contains
20,000 benign and 20,000 malware samples. There are currently 24,499,587 applications
in the Androzoo environment. Malware samples belonging to Dataset1 used in this study
were detected by at least 10 antivirus programs and are available in the Google Play Store.
Benign samples, on the other hand, could not be detected by antivirus programs and were
downloaded based on the condition that they were found in the Google Play Store.

Dataset2 contains 5,498 applications from the Drebin (Arp et al., 2014) dataset and
1,163 applications from the Genome (Zhou & Jiang, 2012) dataset. Benign applications
were collected by Arslan (2021) and there are 961 pieces. The dataset containing a total of
7,622 applications was used in Arslan’s (2021) study called ‘‘AndroAnalyzer’’.

Dataset3 consists of 1,000 benign and 1,000 malware samples. Malware samples were
taken from the Drebin (Arp et al., 2014) dataset. The Drebin dataset, which consists of 179
malware families, contains a total of 5,560 malware. Benign samples were obtained from
the APKPure website. Benign samples are available on the Google Play Store market and
were scanned with VirusTotal (VT Team, 2020).

Dataset4 contains 250 benign and 250 malware samples. Malware samples were taken
from the CICMalDroid 2020 (Mahdavifar et al., 2020) dataset. The CICMalDroid dataset
contains 17,341 applications in five different categories. Benign applications were obtained
from the Google Play Store market and scanned with the VirusTotal application and they
were determined to be benign. Table S2 gives the number of applications and sources of
the datasets.

Proposed method
In this study, a QR code-like image of permission information is created to detect Android
malware. These images are classified with a new CNN architecture that has attention
and residual layers. In the first stage of our method, permission information is extracted
from the AndroidManifesxt.xml file. After this stage, the 100 most effective permission
information is selected with the chi-square test on the created dataset. Single-channel QR
code-like images are created after the selected permissions are converted into a 10 × 10
matrix. These images contain low-dimensional and meaningful information. Our goal
is to detect malware quickly and with high accuracy. In the final stage, a mini-ResNet
model with 3 block layers containing residual layers is created for classification. By adding
attention layers to this model, PermQRDroid architecture is created. Figure 1 shows the
graph of the proposed method.

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 9/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362#supp-7
http://dx.doi.org/10.7717/peerj-cs.2362


Figure 1 Flow diagram of the proposed method. Feature extraction process from applications, feature
selection process, image transformation, attention layered mini-ResNet architecture used for classification.

Full-size DOI: 10.7717/peerjcs.2362/fig-1

Feature extraction and selection process
In detection studies using static analysis, the first step is usually to decompile files with .apk
extension. APK (Android Pocket Kit) are compressed .zip type files that contain libraries,
source codes, permissions, directories and resources of Android applications (Aurangzeb
et al., 2024). In the feature extraction process, firstly, apk extension files were analyzed
using APKTool and AndroidManifest.xml files were obtained. Permission information was
obtained from xml files kept with application names in a single folder. Two approaches
can be followed to obtain permission information and create feature vectors. First, a list
of known permission names can be created in the Android operating system and checked
for each application whether it contains a permission in the permission list. In the second
approach used in this study, the manifest files of existing apk files are accessed and the
permissions requested by each application are kept in a list. For example, if more than one
application requires the same permission, that permission information is written once.
However, when a different permission is seen, it is added to the list. The columns of the
Excel file are created with the created list, and then for each application, the value 1 is
added to the permission field it contains, and 0 is added to the permission fields it does

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 10/26

https://peerj.com
https://doi.org/10.7717/peerjcs.2362/fig-1
http://dx.doi.org/10.7717/peerj-cs.2362


Figure 2 Permission information extraction process and feature vector creation.
Full-size DOI: 10.7717/peerjcs.2362/fig-2

not contain. The process of obtaining permission information from the manifest file and
creating feature vectors is shown in Fig. 2.
Feature selection is the process of eliminating irrelevant features and selecting effective

features that have a high impact on classification. This process has proven effective in
detecting Android malware, especially in studies using permission information (Altaher
& Barukap, 2017; Abdulla & Altaher, 2015; Şahin et al., 2023). It has been determined that
some information in the list of permission information has no effect on classification. For
this reason, chi square technique was used to obtain 100 effective features. Selection of the
effective 100 features both reduces the parameter of the model and increases the detection
speed.

Chi-square Method: This test, which is a statistical method, is used in the analysis of
categorical data. It evaluates the difference between real frequencies and desired frequencies
and checks the accuracy of a hypothesis accordingly (Dhal & Azad, 2022). Chi-square test
is calculated using the following formula.

χ2
=

k∑
i=1

(Oi−Ei)2

Ei
. (1)

In this formula, Oi refers to the observed values, Ei refers to the expected values, and k
refers to the number of categories.

Chi-square test is applied to the dataset consisting of permission information and the
classification effect scores of all features are calculated. According to the score, all features
are ranked from largest to smallest. Starting from the highest, 100 permission information

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 11/26

https://peerj.com
https://doi.org/10.7717/peerjcs.2362/fig-2
http://dx.doi.org/10.7717/peerj-cs.2362


Figure 3 Image creation process.
Full-size DOI: 10.7717/peerjcs.2362/fig-3

is selected and other permission information is removed from the dataset. SkiLearn library
in Python programming language was used for chi-square test.

Image creation process
The permission information extraction approach applied in this studymay differ depending
on the dataset and number of applications. Four different datasets are used for experiments.
The permission information vectors extracted in these datasets consist of feature vectors
in the range of 1 × 325–1 × 398. These values are not suitable for creating a square image.
CNN architectures, on the other hand, can work with square format images. For this
reason, raw permit information is first converted into a feature vector of size 1 × 400 for
each dataset and square matrices of size 20 × 20 are obtained. For conversion to 1 × 400
size, the value 0 is added to the feature vector as many as the number of missing columns,
ensuring that it becomes a perfect square.

The experiments are evaluated on two different image sizes. One of the main aims of
the study is to make detection quickly and with high accuracy through images created by
effective features. For this reason, 100 effective permission information is selected and 10
× 10 square matrices are obtained. A value of 255 is assigned to each 0 in the matrices
to transform the 10 × 10 and 20 × 20 sized matrices of the datasets into images, and
a 0 value is assigned to each 1 value in the matrices to create QR code-like images. The
images created have a single channel of size 10×10×1 and 20×20×1. The diagram of

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 12/26

https://peerj.com
https://doi.org/10.7717/peerjcs.2362/fig-3
http://dx.doi.org/10.7717/peerj-cs.2362


Figure 4 QR code-like images (a) 10×10×1 image, (b) 20×20×1 image.
Full-size DOI: 10.7717/peerjcs.2362/fig-4

square matrix formation from permission information vectors and QR code-like image
transformation is shown in Fig. 3.

QR code-like images created in 10×10×1 and 20×20×1 dimensions are shown in
Fig. 4.

The selection of 100 permission information and creation of single-channel QR code-
like images of 10×10×1 size will ensure that the number of parameters of the network
is low in both the feature extraction and classification stages. In addition, the created
CNN architecture will also positively affect the detection speed and ensure that memory
consumption is less than a 3-channel image.

Model architecture
Deep learning, which essentially emerges by deepening artificial neural networks, enables
complex calculations to bemade on large amounts of data (LeCun, Bengio & Hinton, 2015).
In the task of feature extraction and classification from images, CNN are popular and are
the most widely used deep learning architecture. While CNN architectures can process
images using 2D convolution layers, they can also work on 1D data with 1D layers (Atacak,
Kılıç & Doğru, 2022). Classic CNN architecture consists of convolution, activation, pooling
and fully connected layers (Gu et al., 2018). In the convolution layer, a filter is moved over
the image matrix with the specified size and the specified number of steps. In this shifting
process, the weights on the filter are multiplied by the values in the image matrix and a
new value is obtained from the sum of all multiplications (Li et al., 2021). The convolution
process is calculated with the following formula.

Z (k)i,j = (X ∗W (k))i,j+b(k)=
M−1∑
m=0

N−1∑
n=0

Xi+m,j+n ·W (k)
m,n+b

(k). (2)

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 13/26

https://peerj.com
https://doi.org/10.7717/peerjcs.2362/fig-4
http://dx.doi.org/10.7717/peerj-cs.2362


In this formula, X is the input information, W stands for the weight matrix, b stands for
the bias value, * stands for the convolution operator, M and N stand for the filter size, and
Z stands for the output. An output is created in the activation layer, which takes each value
in the feature map obtained from the convolution layer as input. The output value of the
ReLU activation function is calculated with the formula below.

A(k)i,j =ReLU (Z (k)i,j )=max(0,Z (k)i,j ). (3)

In this formula, A refers to the output of the activation layer and Z refers to the output
of the convolution layer.

In the pooling layer, the size of the featuremaps is reduced. It allows capturing important
features of the current image and allows representing the image in a smaller size. Maximum
pooling is calculated by the formula below.

P(k)i,j =max(m,n)∈poolA
(k)
i+m,j+n. (4)

Here P refers to the output value of the pooling layer. ‘‘max’’ refers to selecting the
maximum value in the pooling region, and ‘‘pool’’ refers to the window dimensions.

Residual block
Residual blocks used in the ResNet architecture introduced by He et al. (2016) were
presented as a solution to the vanishing gradient problem in CNN networks. Residual
blocks prevent residual feature from being ignored by adding the input information to the
output information of the layers (He et al., 2016). Transactions made in residual blocks are
calculated with the following formula.

y = F (x,{Wi})+x. (5)

In this formula, x refers to the input information and Wi refers to the weight values in
the filters. According to the formula, the weights are multiplied by the x input information
and feature maps are created. By adding x input information to these feature maps, y
output is obtained.

Attention block
Attention blocks enable focusing on the prominent features of the image whose features are
extracted in CNN architectures (Vaswani et al., 2017; Niu, Zhong & Yu, 2021). This block
consists of two stages: squeezing and excitation blocks.

Squeeze: In this process, global average pooling is performed and compression is
performed on a channel basis. The formula for the compression process is as follows.

zc =
1

H×W

H∑
i=1

W∑
j=1

Xi,j,c . (6)

In this formula, X refers to the input information and its dimensions are expressed
as HxWxC. HxW is the height and width of the input matrix. C refers to the number of
channels and zc refers to the compressed features for channel c.

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 14/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362


Excitation: Calculates the weight for each channel in the compression phase. For this
process, 1 × 1 weights are used in a convolution layer and a sigmoid activation function is
applied to the obtained values. The formula for the excitation process is as follows.

X = δ(zc) (7)

zc =
1

H×W

H∑
i=1

W∑
j=1

Xi,j,c (8)

s= σ (zc). (9)

Here: δ is the ReLU activation function, σ is the sigmoid activation function and s is the
weight vector of the channels. After the compression and excitation processes, the weights
calculated for each channel are multiplied by the input information. This process is called
scaling. The formula for the scaling process is as follows.

X ′i,j,c = scXi,j,c . (10)

In this formula, X′ refers to the information appearing in the attention block, and sc
refers to the weights calculated for the relevant channel.

Attention layered mini-ResNet model
An attention layer mini-ResNet model that can work with 10× 10 sized images was created
to detect Android malware with permission information-based QR code-like images. In
addition to the classical CNN architectures, the proposed architecture includes residual
blocks and an attention layer after each residual block. The proposed architecture consists
of five blocks. The first block contains the classic convolution layer, ReLu activation layer
and MaxPooling layer, which contains 32 filters of size 3 × 3. In the second block, third
block and fourth blocks, the residual layer and the attention layer are located together,
respectively. Residual layers consist of two convolution layers using 32 filters and a 3 × 3
kernel. Attention layers come immediately after residual blocks. In attention layers, 1 ×
1 sized convolution layers and ReLU are used in the compression process. The activation
function used in the excitation process is sigmoid. At the end of the fourth block, there is
a global pooling layer and 2D data is made available for the fully connected layer. In the
fifth block, there are two fully connected layers and a softmax layer to classify the extracted
features. Dropout layers with a ratio of 0.25 were used to prevent overfitting of the network
between the fully connected layers. Details of the proposed architecture are shown in Fig. 1.

Training procedure
Four different datasets were used to evaluate the proposed classification model. 10 × 10
and 20× 20 images were created for all datasets. Each dataset is divided into 70% training,
15% validation and 15% testing in the experimental phase.

Training of CNN architectures is done in two ways: the first is training from scratch and
for this, weight initial values must be determined, and the second is the transfer learning
approach. Since the proposed CNN architecture is not suitable for transfer learning,

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 15/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362


Xavier Initialization was used to initialize the weights. The loading and random loading
options were also evaluated, but since they made the network learn late and unsuccessful
results were obtained, it was decided to use Xavier loading. In the proposed mini-ResNet
architecture with attention layer, ReLU is used for activation in the convolution layers,
Sigmoid function is used for stimulation in the attention layer, and Softmax function is
used in the classifier layer. The network’s learning rate started at 0.001, and the learning rate
was reduced by 0.2 at the validation loss value, which did not decrease for five epochs. The
minimum learning rate was determined as 0.00001. Adam was used for the optimization
of the network and binary_crossentropy was used for the loss function. In the training
phase, the number of epochs is 20 and the batch size is 64. The hyperparameters used in
the original ResNET architecture were used to create the attention layered mini-ResNet
architecture. The depth of the network (residual and attention layer numbers) was adjusted
according to the image size. An attempt was made to obtain a minimum depth that could
work on 10x10 images and contained low parameter.

RESULTS
This section presents the proposed attention layer mini-ResNet model’s performance on
permission information images. Experiments were carried out on four different datasets.
These datasets are named Dataset 1, Dataset 2, Dataset 3 and Dataset 4 under the heading
‘‘3.1.Datasets’’. The combination of all datasets is called Mix Dataset. The permission
information obtained from the used datasets was converted into QR-like images of 10
× 10 and 20 × 20 sizes. Images with a size of 10 × 10 consist of 100 effective features
selected using the chi-square technique. In order to obtain a 20 × 20 image, a value of 0
was added to the permission information obtained from the datasets as long as the missing
column information. For model performance, all datasets are divided into 70% training,
15% validation and 15% testing. Table 1 presents the validation and test accuracies of
the proposed model on Dataset 1, Dataset 2, Dataset 3 and Dataset 4. The performance
of the model was evaluated using precision, recall, F-score and accuracy metrics. At the
same time, the classification successes obtained from 10× 10 and 20× 20 sized images are
compared in Table 1.

Underlined and bolded values in Table 1 indicate the accuracy values obtained with the
proposed model on the test sets of the datasets. All datasets except Dataset 2 are balanced
and therefore their accuracy values are evaluated in performance measurement. As a result
of the experiments, test accuracy values of 0.9695, 0.9834, 0.9833 and 1.0000 were achieved
for datasets on 10 × 10 images, respectively, with the proposed architecture. On 20 × 20
images, accuracy values of 0.9661, 0.9755, 0.9667 and 0.9733 were obtained, respectively.
According to the results obtained, the classification results of 10× 10 sized images are more
successful than the 20 × 20 sized images. Using 10 × 10 and 20 × 20 images, an accuracy
value of over 96.60% was achieved in all datasets. The most successful classification result
is 100% accuracy on 10 × 10 images in Dataset 4, and the least successful result is 96.61%

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 16/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362


Table 1 Performance of the proposed model on 10× 10 and 20× 20 images.Underlined and bolded
values indicate the accuracy values obtained with the proposed model on the test sets of the datasets.

10× 10 Image 20× 20 Image

Pre Rec F-sc Acc Pre Rec F-sc Acc

Valid 0.9606 0.9603 0.9603 0.9603 0.9652 0.9650 0.9650 0.9650
Dataset 1

Test 0.9697 0.9695 0.9695 0.9695 0.9664 0.9661 0.9661 0.9661
Valid 0.9761 0.9764 0.9759 0.9764 0.9769 0.9773 0.9769 0.9773

Dataset 2
Test 0.9832 0.9834 0.9832 0.9834 0.9752 0.9755 0.9753 0.9755
Valid 0.9839 0.9833 0.9833 0.9833 0.9800 0.9800 0.9800 0.9800

Dataset 3
Test 0.9839 0.9833 0.9833 0.9833 0.9687 0.9667 0.9666 0.9667
Valid 0.9484 0.9467 0.9468 0.9467 0.9104 0.9067 0.9071 0.9067

Dataset 4
Test 1.0000 1.0000 1.0000 1.0000 0.9733 0.9733 0.9733 0.9733
Valid 0.9598 0.9597 0.9597 0.9597 - - - -Mix

dataset Test 0.9680 0.9678 0.9678 0.9678 - - - -

Figure 5 Accuracy graph of the proposed model on datasets.
Full-size DOI: 10.7717/peerjcs.2362/fig-5

on 20 × 20 images in Dataset 1. Figure 5 shows the accuracy values of the proposed
architecture for datasets obtained with 10 × 10 and 20 × 20 images.

This study proposes 10 × 10 QR-like images created from effective permission
information selected using the chi-square technique for Android malware detection.
The loss curves and confusion matrices shown in Figs. S1 and S2 show the performance
of the proposed classification architecture on 10 × 10 sized images. ROC curves showing
the ability of the proposed classification model to distinguish two classes on all datasets are
shown in Fig. S1.

In order to reduce bias and test the reliability of the classification model, 10-fold cross
validation technique was applied on all data sets. Standard deviation (Std) and confidence
intervals (Ci) were calculated according to the accuracy values obtained in each fold for all

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 17/26

https://peerj.com
https://doi.org/10.7717/peerjcs.2362/fig-5
http://dx.doi.org/10.7717/peerj-cs.2362#supp-9
http://dx.doi.org/10.7717/peerj-cs.2362#supp-10
http://dx.doi.org/10.7717/peerj-cs.2362#supp-9
http://dx.doi.org/10.7717/peerj-cs.2362


Table 2 Accuracy values obtained with cross validation technique.

Pre Rec F-sc Acc Std Ci

Dataset 1 0.9765 0.9762 0.9762 0.9750 0.0056 [0.9710, 0.9782]
Dataset 2 0.9873 0.9874 0.9872 0.9862 0.0057 [0.9824, 0.9895]
Dataset 3 0.9837 0.9834 0.9834 0.9800 0.0080 [0.9745, 0.9845]
Dataset 4 0.9426 0.9420 0.9419 0.9400 0.0334 [0.9200, 0.9600]
Mix dataset 0.9776 0.9774 0.9774 0.9761 0.0039 [0.9731, 0.9781]

Table 3 Ablation study.

Basic CNN Mini-ResNet Attention Layered
Mini-ResNET

Dataset 1 0.9550 0.9640 0.9695
Dataset 2 0.8627 0.9737 0.9834
Dataset 3 0.9700 0.9733 0.9833
Dataset 4 0.9600 0.9733 1.0000
Mix dataset 0.9497 0.9647 0.9678

data sets. Table 2 shows the average accuracy values, standard deviation and confidence
intervals obtained using the cross validation technique on the data sets used in the study.

As a result of cross validation, it is seen that the proposed model is more successful
and stable on Dataset 1, Dataset 2 and Mix Dataset, which have a high number of data.
However, the result is less successful on Dataset 3 and Dataset 4, which have a low number
of data compared to other datasets. The results obtained on Dataset 3 and Dataset 4 are
similar to the results in Table 1, where 15% test set is used, and show that the proposed
model is highly successful. The findings obtained as a result of cross validation show that
the standard deviation value of the proposed model is low when the number of data is high,
and the standard deviation value increases when the number of data decreases. However,
the standard deviation values obtained with the proposed model are low, and the accuracy
values found for each fold are close to each other.

Ablation study
In this study, instead of the basic CNN architecture, a lightweight CNN architecture with
residual and attention layers is proposed. In order to demonstrate the effectiveness of the
proposed architecture, an ablation study is applied. Table 3 shows the results obtained
with the basic CNN architecture, the results of the mini-ResNET model formed when the
convolution layers of the basic CNN architecture are replaced with residual layers, and the
results obtained when attention layers are added.

As a result of the ablation study, it was seen that the proposed attention layered
mini-ResNET model was more successful on all datasets. Replacing the layers of the
Basic CNN architecture with residual layers increased the classification performance
significantly. Especially on Dataset 2, which has an unbalanced data distribution, the
difference between the results is large. The performance of the basic CNN architecture is
close to the mini-ResNet architecture on balanced datasets. The mini-ResNET architecture

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 18/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362


Table 4 Performance of classical machine learning algorithms on permission information. The values
written in bold and underlined style show the accuracy values obtained on the test set.

Classifier Dataset 1 Dataset 2 Dataset 3 Dataset 4 Mix dataset

Acc Acc Acc Acc Acc

Naive Bayes 0.66 0.90 0.62 0.64 0.72
Decision Tree 0.96 0.97 0.95 0.92 0.94
KNN 0.95 0.96 0.93 0.91 0.94
SVM 0.93 0.94 0.90 0.88 0.91
LR 0.94 0.97 0.95 0.95 0.91
LDA 0.93 0.97 0.94 0.84 0.91
Random Forest 0.96 0.97 0.96 0.97 0.95
Extra Tree 0.96 0.97 0.95 0.95 0.95
Gradient boosting 0.94 0.97 0.95 0.95 0.92
XGBoost 0.94 0.97 0.95 0.92 0.92
Proposed method 0.97 0.98 0.98 1.00 0.97

with the attention layer producedmore successful results on both balanced and unbalanced
datasets.

DISCUSSION
In this section, the performance of 10× 10 images and 20× 20 images used in the proposed
method, the performance of the proposed method against similar permission-based and
image-based studies, and the performance against classical machine learning techniques
are discussed. In the study, 20 × 20 images in which all permission information was used
and 10 × 10 images created by selecting effective permission information were classified
with the proposed architecture using four different datasets and their performance was
compared. The classification findings obtained with images created from 100 effective
features on all datasets are more successful than 20 × 20 images. In CNN networks, the
number of parameters plays an important role in factors such as the detection speed of
the network, memory consumption and graphics card resource. The proposed attention
layer mini-ResNet model contains a total of 399,618 trainable parameters. Although the
residual layers and attention layers added to the basic CNN structure cause the number of
parameters of the network to increase, the high classification performance achieved makes
this disadvantage negligible. Table S3 gives the parameter numbers and input image sizes
of well-known transfer learning architectures and the proposed architecture.

Permission information obtained from the datasets used in the study was classified with
classical machine learning techniques, and their accuracy performances are presented in
Table 4 in comparison with our proposed permission-based method.

The classification performance of the proposed architecture shows that it is more
successful than classical machine learning classifiers. The XGBoost algorithm achieved
successful results on the datasets with an accuracy rate of 94%, 97%, 95%, 92% and 92%,
respectively. However, the 97%, 98%, 98%, 100% and 97% accuracy rates obtained in the
proposed architecture make our method superior to classical machine learning techniques.

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 19/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362#supp-8
http://dx.doi.org/10.7717/peerj-cs.2362


Table 5 Performance of similar studies.

Author Dataset Number of
samples

Feature extraction
and selection

Classification
method

Accuracy

Arslan & Tasyurek (2022) Drebin, Genome, VirusTotal 1,920 Permission 2D-code image CNN %96.2
Yadav et al. (2022) R2-D2 5,986 Dex file byte image EfficientNet-B4 %95.7
Zhu et al. (2023) Google Play Store, Virusshare 3,187 Permission, Hardware and

API calls image
MSerNetDroid
(CNN)

%96.48

Şahin et al. (2023) – 2,000 Permission-Based Features
(Lineer Regression)

MLP %96.1

Tasyurek & Arslan (2023) Drebin, Genome, Arslan’s Dataset 7,721 Permission RGB image YoloV5 %94.2
Aurangzeb et al. (2024) Drebin, Kronodroid, Androzoo 24,746 Dex file byte image (PCA) XGBoost %95
Proposed method Androzoo

Arslan’s Dataset
Drebin, APKPure
CICMalDroid 2020, Google Play Store
Mix Dataset

40.000
7,622
2,000
500
50,122

Permission QR Image
(Chi-Square)

Attention layered
mini-ResNet

%96.95
%98.34
%98.33
%100
%96.78

This superiority is provided by the proposed attention layeredmini-ResNET architecture as
well as the conversion of permission information into images. The results obtained in Table
5 show that more successful results are obtained on the classification performance when
the image conversion of permission information is performed. There are classical machine
learning and deep learning-based studies using permission information in the literature.
Researchers are also interested in image-based studies in Android malware detection to use
the feature extraction and classification power of CNNs. Table 5 presents a performance
comparison with similar studies using permission information and similar image-based
studies.

In performance evaluation, the dataset used, the number of data and data distribution
have a great impact. For this reason, four different datasets were used in the experiments
to demonstrate the effectiveness of the proposed classification architecture. The number
of applications in the datasets varies between 500–40,000. Only in Dataset 2 the data
distribution is unbalanced. Data distribution in other datasets is also balanced. In order to
show the durability of the classifier against the disadvantages of the datasets, it was used in
the Mix Dataset, which consists of the combination of all datasets.

The accuracy performance obtained in the study is between 96.78% and 100%depending
on the datasets. Compared to studies that use classical permission information and perform
feature selection on permission information, it is seen that our proposed method produces
more successful results (Abdulla & Altaher, 2015; Altaher & Barukap, 2017; Mat et al.,
2022; Şahın, Akleylek & Kiliç, 2022; Arslan, 2022; Şahin et al., 2023). Dataset 1, where the
most unsuccessful results were obtained 96.95% accuracy was achieved with the proposed
method. Dataset 1 contains 40,000 applications, and this number is more than the number
of applications used by similar studies.

In recent years, image-based studies have become popular for Android malware
detection. Tasyurek & Arslan (2023) reached 94.2% accuracy with the YoloV5 architecture
by converting the permission information into QR code-like 3-channel images. In another

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 20/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362


study where they converted images from permission information, they achieved 96.2%
accuracy with the CNN-based architecture they proposed (Tasyurek & Arslan, 2023; Arslan
& Tasyurek, 2022). In a similar study,Zhu et al. (2023) created images consisting of amatrix
of 0 and 1 using API calls and hardware information as well as permission information. It
produced an accuracy value of 96.48% with the CNN-based architecture called MSerNet.
The number of data and datasets used in these studies, which create images using permission
information, are less than our study. At the same time, the results we obtained with our
proposed method with different data numbers and different datasets are more successful
than studies using permission-based images. There are studies that use byte array for image
transformation (Xiao & Yang, 2020; Yadav et al., 2022; Aurangzeb et al., 2024). It has been
observed that the proposed method achieves better results compared to studies using byte
array images created using QR code-like 10x10 images using permission information.

There are similar studies in the literature that use attention layers together with residual
layers (Zhu et al., 2023; Tang et al., 2024). The architecture created by Tang et al. (2024) is
an architecture with high-parameter attention layers that works with 256× 256 images. The
architecture proposed by Zhu et al. (2023) applies the attention mechanism within residual
layers. The information from the attention layer is combined with the information from
the convolution blocks in the residual layer and is subjected to a convolution process again.
The architecture proposed in this study is a minimized 3-block version of the ResNET
network. The number of parameters is low and the network can work with images up to
10× 10. At the same time, in the proposed architecture, the information from each residual
block enters the attention layer and its output is connected to a residual layer again. This
process ensures that features are extracted in each block, that residual features are not
ignored, and that specific regions of the feature map are focused on for the next block.

The QR code-like images used in the proposed method consist of effective permission
information. The images do not contain meaningless information and are single-channel.
On the other hand, the architecture used to classify these images includes both residual
and attention blocks according to basic cnn models. Each residual block is followed by an
attention block, and in the information sent to the next layer, residual information is not
ignored and at the same time, attention is drawn to certain parts of the information map.
These factors allow the proposed method to perform better than other methods.

This study has some limitations against the successful performance it exhibits. Permission
information may differ in future Android versions. Although the presented attention-
layered architecture contains low parameters, it requires a suitable infrastructure (GPU) to
operate. Working with deep learning architectures is more complex and computationally
more costly than applying classical machine learning techniques.

CONCLUSION
In this study, the mini-ResNet model with attention layer is proposed for the detection
of Android malware. The proposed architecture uses QR code-like 10 × 10 images of
effective permission information as input images. To ensure the validity of the proposed
method, four different datasets were used in the experiments. The datasets contain different

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 21/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362


numbers of applications obtained from different sources. Using the chi-square technique
on the permission information of the applications, 100 effective permission information
were selected and 10× 10 sizedQR code-like images were created. A CNNmodel consisting
of five blocks including residual and attention layers was developed for feature extraction
and classification. The findings observed as a result of the study are as follows:

• 10 × 10 images created from 100 selected features are more successful in classification
performance than 20 × 20 images.
• The proposed classification model exhibits high accuracy performance on datasets
containing a low number of applications and on datasets containing a high number
of applications. At the same time, the accuracy values are similar for the balanced and
unbalanced dataset.
• It has been observed that the proposed model is successful on the Mix dataset, which
was created by combining all datasets, and is resistant to the disadvantages of different
datasets.
• When the 10-fold cross validation technique is applied, the results obtained by the
proposed model are consistent and the standard deviation values are low.
• As a result of the ablation study, it was observed that attention layers significantly
increased accuracy performance.
• The performance of the proposed method in Android malware detection is better than
permission information-based studies using classical machine learning.
• The number of parameters of the network is lower than well-known transfer learning
architectures and the memory space is smaller.
• It has been observed that the performance of the proposed method is superior to similar
studies using permission information images.
• According to the results obtained, the accuracy performance of the attention layered
mini-ResNet model in Android malware detection is between 97%–100%.
• Compared to byte array images, images of feature-selected permission information are
more effective in classifying malware.

As a result, our proposed method showed successful performance in detecting Android
malware. Our method, which achieves better results compared to similar studies, has the
ability to make real-time detection with the mobile application or web-based applications
to be developed. In future studies, larger feature vectors can be created by using intentions,
activities and API call features in addition to permission information, and successful results
can be achieved with transformers-based classifiers.

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 22/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2362


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Kazım Kılıç conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, and approved the
final draft.
• İbrahim Alper Doğru analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.
• Sinan Toklu conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Dataset 1 is available at Kaggle: https://www.kaggle.com/datasets/kazimkili/dataset1.
Dataset 2 is available at: DOI: 10.7717/peerj-cs.533/supp-1; DOI: 10.7717/peerj-

cs.533/supp-2.
The code and data are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2362#supplemental-information.

REFERENCES
Abdulla S, Altaher A. 2015. Intelligent approach for android malware detec-

tion. KSII Transactions on Internet and Information Systems 9(8):2964–2983
DOI 10.3837/tiis.2015.08.012.

Allix K, Bissyandé TF, Klein J, Le Traon Y. 2016. Androzoo: collecting millions of
android apps for the research community. In: Proceedings of the 13th international
conference on mining software repositories. 468–471.

Alomari ES, Nuiaa RR, Alyasseri ZAA, MohammedHJ, Sani NS, Esa MI, Musawi BA.
2023.Malware detection using deep learning and correlation-based feature selection.
Symmetry 15(1):123 DOI 10.3390/sym15010123.

Altaher A, Barukab O. 2017. Android malware classification based on ANFIS with fuzzy
c-means clustering using significant application permissions. Turkish Journal of Elec-
trical Engineering & Computer Sciences 25(3):2232–2242 DOI 10.3906/elk-1602-107.

Arp D, SpreitzenbarthM, Hubner M, Gascon H, Rieck K, Siemens CERT. 2014. Drebin:
effective and explainable detection of android malware in your pocket. In: Ndss. Vol.
14. 23–26.

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 23/26

https://peerj.com
https://www.kaggle.com/datasets/kazimkili/dataset1
http://dx.doi.org/10.7717/peerj-cs.533/supp-1
http://dx.doi.org/10.7717/peerj-cs.533/supp-2
http://dx.doi.org/10.7717/peerj-cs.533/supp-2
http://dx.doi.org/10.7717/peerj-cs.2362#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2362#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2362#supplemental-information
http://dx.doi.org/10.3837/tiis.2015.08.012
http://dx.doi.org/10.3390/sym15010123
http://dx.doi.org/10.3906/elk-1602-107
http://dx.doi.org/10.7717/peerj-cs.2362


Arslan RS. 2021. AndroAnalyzer: android malicious software detection based on deep
learning. PeerJ Computer Science 7:e533 DOI 10.7717/peerj-cs.533.

Arslan RS. 2022. FG-Droid: grouping based feature size reduction for Android malware
detection. PeerJ Computer Science 8:e1043 DOI 10.7717/peerj-cs.1043.

Arslan RS, TasyurekM. 2022. AMD-CNN: android malware detection via feature graph
and convolutional neural networks. Concurrency and Computation: Practice and
Experience 34(23):e7180 DOI 10.1002/cpe.7180.

Atacak İ. 2023. An ensemble approach based on fuzzy logic using machine learn-
ing classifiers for Android malware detection. Applied Sciences 13(3):1484
DOI 10.3390/app13031484.

Atacak İ, Kılıç K, Doğru İA. 2022. Android malware detection using hybrid ANFIS
architecture with low computational cost convolutional layers. PeerJ Computer
Science 8:e1092 DOI 10.7717/peerj-cs.1092.

Aurangzeb S, AleemM. 2023. Evaluation and classification of obfuscated Android
malware through deep learning using ensemble voting mechanism. Scientific Reports
13(1):3093 DOI 10.1038/s41598-023-30028-w.

Aurangzeb S, AleemM, KhanMT, Loukas G, Sakellari G. 2024. AndroDex: Android
Dex images of obfuscated malware. Scientific Data 11(1):212
DOI 10.1038/s41597-024-03027-3.

Damshenas M, Dehghantanha A, Choo KKR, Mahmud R. 2015.M0droid: an android
behavioral-based malware detection model. Journal of Information Privacy and
Security 11(3):141–157 DOI 10.1080/15536548.2015.1073510.

Dhal P, Azad C. 2022. A comprehensive survey on feature selection in the various fields
of machine learning. Applied Intelligence 52(4):4543–4581
DOI 10.1007/s10489-021-02550-9.

Fu X, Jiang C, Li C, Li J, Zhu X, Li F. 2024. A hybrid approach for Android malware de-
tection using improved multi-scale convolutional neural networks and residual net-
works. Expert Systems with Applications 249:123675 DOI 10.1016/j.eswa.2024.123675.

Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T,Wang X,Wang G, Cai J,
Chen T. 2018. Recent advances in convolutional neural networks. Pattern Recogni-
tion 77:354–377 DOI 10.1016/j.patcog.2017.10.013.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
Piscataway: IEEE, 770–778.

Kabakus AT. 2022. DroidMalwareDetector: a novel Android malware detection
framework based on convolutional neural network. Expert Systems with Applications
206:117833 DOI 10.1016/j.eswa.2022.117833.

Khan KN, Ullah N, Ali S, KhanMS, NaumanM, Ghani A. 2022. Op2Vec: an Opcode
embedding technique and dataset design for end-to-end detection of android
malware. Security and Communication Networks 2022(1):3710968.

Kural OE, Kiliç E, Aksaç C. 2023. Apk2Audio4AndMal: audio based malware family de-
tection framework. IEEE Access 11:27527–27535 DOI 10.1109/ACCESS.2023.3258377.

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 24/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.533
http://dx.doi.org/10.7717/peerj-cs.1043
http://dx.doi.org/10.1002/cpe.7180
http://dx.doi.org/10.3390/app13031484
http://dx.doi.org/10.7717/peerj-cs.1092
http://dx.doi.org/10.1038/s41598-023-30028-w
http://dx.doi.org/10.1038/s41597-024-03027-3
http://dx.doi.org/10.1080/15536548.2015.1073510
http://dx.doi.org/10.1007/s10489-021-02550-9
http://dx.doi.org/10.1016/j.eswa.2024.123675
http://dx.doi.org/10.1016/j.patcog.2017.10.013
http://dx.doi.org/10.1016/j.eswa.2022.117833
http://dx.doi.org/10.1109/ACCESS.2023.3258377
http://dx.doi.org/10.7717/peerj-cs.2362


LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521(7553):436–444
DOI 10.1038/nature14539.

Li Z, Liu F, YangW, Peng S, Zhou J. 2021. A survey of convolutional neural networks:
analysis, applications, and prospects. IEEE Transactions on Neural Networks and
Learning Systems 33(12):6999–7019.

Mahdavifar S, Kadir AFA, Fatemi R, Alhadidi D, Ghorbani AA. 2020. Dynamic android
malware category classification using semi-supervised deep learning. In: 2020 IEEE
Intl conf on dependable, autonomic and secure computing congress (DASC). Piscataway:
IEEE, 515–522.

Mahindru A, Arora H, Kumar A, Gupta SK, Mahajan S, Kadry S, Kim J. 2024. Per-
mDroid a framework developed using proposed feature selection approach and
machine learning techniques for Android malware detection. Scientific Reports
14(1):10724 DOI 10.1038/s41598-024-60982-y.

Mat SRT, Ab RazakMF, Kahar MNM, Arif JM, Firdaus A. 2022. A Bayesian
probability model for Android malware detection. ICT Express 8(3):424–431
DOI 10.1016/j.icte.2021.09.003.

Niu Z, Zhong G, Yu H. 2021. A review on the attention mechanism of deep learning.
Neurocomputing 452:48–62 DOI 10.1016/j.neucom.2021.03.091.

Rafiq H, AslamN, AleemM, Issac B, Randhawa RH. 2022. AndroMalPack: enhancing
the ML-based malware classification by detection and removal of repacked apps for
Android systems. Scientific Reports 12(1):19534 DOI 10.1038/s41598-022-23766-w.

Rahali A, Akhloufi MA. 2021.Malbert: malware detection using bidirectional encoder
representations from transformers. In: 2021 IEEE international conference on systems,
man, and cybernetics (SMC). Piscataway: IEEE, 3226–3231.

Saracino A, Simoni M. 2023. Graph-based android malware detection and categorization
through BERT transformer. In: Proceedings of the 18th international conference on
availability, reliability and security. 1–7.

Şahin DÖ, Kural OE, Akleylek S, Kılıç E. 2023. A novel permission-based Android
malware detection system using feature selection based on linear regression. Neural
Computing and Applications 35:4903–4918 DOI 10.1007/s00521-021-05875-1.

Şahın DÖ, Akleylek S, Kiliç E. 2022. LinRegDroid: detection of android malware using
multiple linear regression models-based classifiers. IEEE Access 10:14246–14259
DOI 10.1109/ACCESS.2022.3146363.

Seyfari Y, Meimandi A. 2024. A new approach to android malware detection using
fuzzy logic-based simulated annealing and feature selection.Multimedia Tools and
Applications 83(4):10525–10549 DOI 10.1007/s11042-023-16035-z.

Shıshkova T. 2022. IT threat evolution in Q1 2022. Mobile statistics. Available at https:
//securelist.com/it-threat-evolution-in-q1-2022-mobile-statistics/106589/ (accessed on
11 June 2024).

Smmarwar SK, Gupta GP, Kumar S. 2024. Android malware detection and iden-
tification frameworks by leveraging the machine and deep learning tech-
niques: a comprehensive review. Telematics and Informatics Reports 14:100130
DOI 10.1016/j.teler.2024.100130.

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 25/26

https://peerj.com
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/s41598-024-60982-y
http://dx.doi.org/10.1016/j.icte.2021.09.003
http://dx.doi.org/10.1016/j.neucom.2021.03.091
http://dx.doi.org/10.1038/s41598-022-23766-w
http://dx.doi.org/10.1007/s00521-021-05875-1
http://dx.doi.org/10.1109/ACCESS.2022.3146363
http://dx.doi.org/10.1007/s11042-023-16035-z
https://securelist.com/it-threat-evolution-in-q1-2022-mobile-statistics/106589/
https://securelist.com/it-threat-evolution-in-q1-2022-mobile-statistics/106589/
http://dx.doi.org/10.1016/j.teler.2024.100130
http://dx.doi.org/10.7717/peerj-cs.2362


Statista. 2024. Number of available applications in the Google Play Store from March
2017 to June 2024. Available at https://www.statista.com/statistics/266210/number-of-
available-applications-in-the-google-play-store/#statisticContainer (accessed on 11
June 2024).

Tang J, XuW, Peng T, Zhou S, Pi Q, He R, Hu X. 2024. Android malware detection
based on a novel mixed bytecode image combined with attention mechanism. Jour-
nal of Information Security and Applications 82:103721 DOI 10.1016/j.jisa.2024.103721.

Tarwireyi P, Terzoli A, AdigunMO. 2023. Using multi-audio feature fusion for Android
malware detection. Computers & Security 131:103282 DOI 10.1016/j.cose.2023.103282.

TasyurekM, Arslan RS. 2023. RT-Droid: a novel approach for real-time android
application analysis with transfer learning-based CNN models. Journal of Real-Time
Image Processing 20(3):55 DOI 10.1007/s11554-023-01311-w.

Turner A. 2024. Number Of Smartphone Users Worldwide (Billions). Available at
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world (accessed on
11 June 2024).

Urcuqui-López C, Cadavid AN. 2016. Framework for malware analysis in Android.
Sistemas y Telemática 14(37):45–56 DOI 10.18046/syt.v14i37.2241.

Vaswani A, Shaazer N, Parmar N, Uszkoretit J, Jones L, Gomez AN, Kaiser L, Polo-
sukhin I. 2017. Attention is all you need. ArXiv arXiv:1706.03762.

VT Team. 2020. Virus analysis—VirusTotal. (accessed on 02 November 2020).
Wei F, Li Y, Roy S, Ou X, ZhouW. 2017. Deep ground truth analysis of current android

malware. In: International conference on detection of intrusions and malware, and
vulnerability assessment. Cham: Springer, 252–276.

Xiao X, Yang S. 2019. An image-inspired and cnn-based android malware detection
approach. In: 2019 34th IEEE/ACM international conference on automated software
engineering (ASE). Piscataway: IEEE, 1259–1261.

Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK. 2019. Android malware detection
based on system call sequences and LSTM.Multimedia Tools and Applications
78(4):3979–3999 DOI 10.1007/s11042-017-5104-0.

Yadav P, Menon N, Ravi V, Vishvanathan S, Pham TD. 2022. EfficientNet convolu-
tional neural networks-based Android malware detection. Computers & Security
115:102622 DOI 10.1016/j.cose.2022.102622.

Yen YS, Sun HM. 2019. An Android mutation malware detection based on deep
learning using visualization of importance from codes.Microelectronics Reliability
93:109–114 DOI 10.1016/j.microrel.2019.01.007.

Zhou Y, Jiang X. 2012. Dissecting android malware: characterization and evolution. In:
2012 IEEE symposium on security and privacy. Piscataway: IEEE, 95–109.

ZhuHJ, GuW,Wang LM, Xu ZC, Sheng VS. 2023. Android malware detection based
on multi-head squeeze-and-excitation residual network. Expert Systems with
Applications 212:118705 DOI 10.1016/j.eswa.2022.118705.

Kılıç et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2362 26/26

https://peerj.com
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/#statisticContainer
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/#statisticContainer
http://dx.doi.org/10.1016/j.jisa.2024.103721
http://dx.doi.org/10.1016/j.cose.2023.103282
http://dx.doi.org/10.1007/s11554-023-01311-w
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
http://dx.doi.org/10.18046/syt.v14i37.2241
http://arXiv.org/abs/1706.03762
http://dx.doi.org/10.1007/s11042-017-5104-0
http://dx.doi.org/10.1016/j.cose.2022.102622
http://dx.doi.org/10.1016/j.microrel.2019.01.007
http://dx.doi.org/10.1016/j.eswa.2022.118705
http://dx.doi.org/10.7717/peerj-cs.2362

