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ABSTRACT
The emergence of 6G networks promises ultra-high data rates and unprecedented
connectivity. However, the effective utilization of the millimeter-wave (mmWave) as
a critical enabler of foreseen potential in 6G, poses significant challenges due to
its unique propagation characteristics and security concerns. Deep learning
(DL)/machine learning (ML) based approaches emerged as potential solutions;
however, DL/ML contains centralization and data privacy issues. Therefore,
federated learning (FL), an innovative decentralized DL/ML paradigm, offers a
promising avenue to tackle these challenges by enabling collaborative model training
across distributed devices while preserving data privacy. After a comprehensive
exploration of FL enabled 6G networks, this review identifies the specific applications
of mmWave communications in the context of FL enabled 6G networks. Thereby,
this article discusses particular challenges faced in the adaption of FL enabled
mmWave communication in 6G; including bandwidth consumption, power
consumption and synchronization requirements. In view of the identified challenges,
this study proposed a way forward called Federated Energy-Aware Dynamic
Synchronization with Bandwidth-Optimization (FEADSBO). Moreover, this review
highlights pertinent open research issues by synthesizing current advancements and
research efforts. Through this review, we provide a roadmap to harness the synergies
between FL and mmWave, offering insights to reshape the landscape of 6G networks.

Subjects Artificial Intelligence, Computer Networks and Communications, Neural Networks
Keywords mmWave, Federated learning, Beamforming, 6G, MIMO

INTRODUCTION
The current fifth generation (5G) cellular networks are the pillar radio service provider that
enables revolutionary applications and activities. It greatly expands mobile services and
provides superior network performance, not only in the telecommunication sector but also
in many other arenas such as the industrial (Wollschlaeger, Sauter & Jasperneite, 2017),
healthcare (Catarinucci et al., 2015), educational (Dake & Ofosu, 2019), defense (Lee, Baek
& Choi, 2021), and automobile sectors (Papadimitratos et al., 2009), etc. It has also been
observed that current spectrum resources and high power dissipation of diverse
technological products would not be able to satisfy the upcoming user data provision and
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energy management (Siddiqui et al., 2022). These constraints demand modification in
conventional schemes, innovative designs, new protocols, and robustness in cellular data
packet transmission techniques. The performance difference between the previous fourth-
generation (4G), current 5G, and upcoming 6G is demonstrated in Table 1 (Chataut &
Akl, 2020). In the ever-evolving landscape of wireless communication, the advent of 6G
networks holds the promise of revolutionizing data rates and connectivity to an
unparalleled degree. The transition from 5G to 6G communication must be carried
through several technological shifts and backward compatibilities. At the heart of this
transformation lies the millimeter-wave (mmWave), a precious resource with the potential
to unlock the full capabilities of 6G networks.

However, the effective harnessing of the mmWave spectrum comes with its own
challenges, rooted in its distinctive propagation characteristics and intricate privacy
considerations. Innovative approaches are imperative to address these challenges and
ensure the seamless integration of mmWave technology into the fabric of 6G networks.
Federated learning (FL), emerging as a decentralized and collaborative machine learning
paradigm, offers a potential avenue to overcome the hurdles associated with mmWave
spectrum utilization. By enabling the collective training of machine learning models across
a distributed array of devices, FL ensures data privacy preservation while achieving
remarkable levels of collaboration. Researchers are pursuing exploration of the potential
applications of FL techniques to establish efficient mmWave spectrum usage within the
context of 6G networks, especially through exploiting the MIMO technology. The
technical intricacies of deploying FL in the context of mmWave spectrum usage are
multifaceted and demand careful consideration. One of the foremost challenges arises
from the inherent communication bandwidth limitations within the mmWave spectrum.
Addressing this limitation requires innovative solutions to facilitate effective model
updates while minimizing the overhead imposed by data transmission. Moreover, the
energy efficiency of devices engaged in FL-based spectrummanagement becomes crucial in
resource-constrained mmWave communication systems. Synchronization emerges as a

Table 1 Key performance difference between 4G, 5G, and 6G.

Performance metric 4G 5G 6G

Energy efficiency (energy/bit) ~90% more 90% or less 95% or less

Latency (ms) 20–30 Less than 1 Up to 0.1

Maximum spectrum efficiency (bps/Hz) 15 30 100

Connectivity (smart devices/km2) 10–100 K More or less 1 million Approx. 5–10 million

Available spectrum (GHz) Sub-6 Up to 300 Up to 3,000

Mobility (m/hr) 200–250 300–400 600

AI/ML Not used Partial Fully

Maximum throughput (Gbps) 0.5–0.6 ~10 Up to 1,000 or more

Environment MIMO M-MIMO Intelligent surfaces

Satellite integration No No Fully
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pivotal issue when dealing with the distributed nature of FL in a mmWave-enabled
environment. The propagation characteristics of the mmWave spectrum introduce unique
delays and synchronization challenges that necessitate tailored synchronization
mechanisms to ensure coherent model aggregation.

In addition to the technical intricacies, privacy and security considerations take center
stage in utilizing mmWave spectrum (Kazmi et al., 2023a). The very nature of distributed
machine learning (ML) in FL aligns with the imperative to uphold data privacy. However,
the privacy challenges intrinsic to mmWave-based communications introduce novel
vulnerabilities that demand specialized attention. These challenges include eavesdropping,
signal interception, and potential attacks on communication nodes. Herein lies the
potential of FL to act as a robust countermeasure by ensuring that sensitive data remains
localized while allowing for collective intelligence to be harnessed. The optimization of FL
algorithms tailored to the unique demands of mmWave spectrum allocation stands as an
important area of investigation. Enhancing the collaborative nature of FL across diverse
devices within a mmWave network ecosystem can unlock new dimensions of efficiency
and efficacy. Robust security frameworks that integrate FL techniques have the potential to
fortify mmWave communications against emerging threats. Similarly, future ultra-dense
wireless networks are expected to provide extremely high data rates with minimal radio
frequency (RF) transmission losses to services like ultra-high-definition (UHD)
applications, immersive media, and ultra-fast mobile vehicular communication. Still, they
are heavily susceptible to geographical and environmental challenges. This would result in
a high symbol error rate (SER), poor signal-to-interference-plus noise ratio (SINR) level,
and ultimately substandard overall quality-of-experience (QoE), which are entirely
unacceptable (Kazmi et al., 2023b; Hindia et al., 2019). Therefore, this review article offers
insight into FL technology and its prospects for mmWave in 6G networks by discussing
different aspects and their relevant areas (Jha & Singh, 2013). This article identifies
potential areas in the subject domain by amalgamating current advancements and ongoing
research endeavors. Further, this article comprehensively covers challenges associated with
FL enabled mmWave spectrum utilization. Through carefully examining technical
intricacies, privacy concerns, and challenges, this review strives to lay the future research
directions in the subject domain for a transformative era in wireless networking.

Rationale and targeted audience
The study is essential for several reasons. Firstly, as 6G networks promise ultra-high data
rates and connectivity, effectively utilizing the millimeter-wave spectrum is crucial for
realizing their full potential. However, the unique propagation characteristics and security
concerns of mmWave pose significant challenges. Traditional DL/ML approaches have
limitations such as centralization and data privacy issues. Therefore, exploring FL as a
decentralized paradigm becomes imperative, offering a solution to collaborate on model
training while preserving data privacy. This study aims to address these challenges, identify
specific applications, propose solutions, and highlight open research issues to pave the way
for integrating FL and mmWave in 6G networks.
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The targeted audience for this study includes researchers, engineers, and practitioners in
the fields of telecommunications, wireless networking, machine learning, and artificial
intelligence. Specifically, professionals involved in the development and deployment of 6G
networks. Moreover, this study is particularly relevant for the research community
interested in leveraging advanced techniques like FL to enhance network performance and
security. Additionally, policymakers and stakeholders in the telecommunications industry
seeking insights into the future directions of network technology and its implications on
data privacy and security would benefit from the findings and recommendations presented
in this review.

Related literature and their limitations
Recently, there has been a remarkable surge of research publications/reviews/surveys on
the FL enabled 6G communication networks, spanning all the layers in the emerging

Table 2 A comparative analysis of related previous surveys and scope of this article. Annotations: “√” indicates that concepts are covered
comprehensively, “0” indicates that scope is partially covered, “X” indicates that scope is not covered.

Ref. Year FL
6G

mm
Wave

FL
mmWave

6G Contributions Limitations

Li et al.
(2020)

2020 0 X X 0 . Review on FL application in mobile device and
industrial domain

. Do not include mmWave
applications

Lim et al.
(2020)

2020 0 X X 0 . Analyzes FL integration with mobile edge
computing

. Lacks the discussion on mmWave
based wireless communication.

Wahab et al.
(2021)

2021 √ X X X . Exploration of evolving FL in communication and
networking

. Lacks discussion on mmWave
specific FL application and concepts
in 6G networks

Boulogeorgos
et al. (2021)

2021 √ 0 X 0 . Explores the applications of AI in THz wireless . Does not fully cover mmWave and
FL enabled 6G networks

Pham et al.
(2022)

2022 √ 0 X √ . Analyzes utilization of MEC to for integration of
FL in context of 6G networks

. Does not relate the discussion with
mmWave unitization in 6G networks

Al-Quraan
et al. (2023)

2023 √ 0 0 √ . Explore cutting-edge FL applications within
wireless technologies

. Partially discuss areas related to
mmWave spectrum

Duan et al.
(2023)

2023 √ 0 X 0 . Provides an in-depth examination of technologies
that integrate FL and edge computing

. Does not discuss concepts for
mmWave communication in FL
enabled 6G networks

Driss et al.
(2023)

2023 √ 0 0 √ . Explores the integration of FL across the entire
protocol stack in the 6G technology

. Only brief discussion on mmWave
utilization in FL enabled 6G network

Xiao et al.
(2024)

2024 0 0 0 0 . Analyzes various scenarios in FL over the air
including, MIMO and RIS

. Only partially discussed with respect
to RIS integration with FL

Lee et al.
(2024)

2024 0 0 0 0 . Analyzes FL concepts in 5G and Beyond network
including network management, network core,
network access

. mmWave communication is
discussed only partially in LTE
communication domain.
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network architecture. Table 2 summarizes the discussion on previous research works that
are related.

The authors in Li et al. (2020) provide a detailed review of FL applications in mobile
device and industrial domains but do not include mmWave applications. Similarly, the
study Lim et al. (2020) is a comprehensive survey on FL integration with mobile edge
computing but lacks a discussion on mmWave based wireless communication with FL.
The study Wahab et al. (2021) offers a comprehensive understanding of federated
learning’s intricacies, followed by exploring its evolving role and prospects in
communication and networking. However, the study lacks a discussion on mmWave-
specific FL applications and mmWave based concepts carried through in 6G networks. The
study Boulogeorgos et al. (2021) explores the applications of THz wireless systems within
the context of the Beyond fifth generation (B5G) era, delving into the emerging AI
technologies that facilitate their implementation. However, the study does not cover the
B5G network specifically, mmWave and FL enabled 6G networks. The authors in Pham
et al. (2022) discuss the utilization of Mobile Edge Computing (MEC)-enhanced in Aerial
Access Networks (AAN), commonly referred to as aerial computing, to explore the
integration of FL in the context of 6G networks. However, the study does not discuss
mmWave unitization in 6G networks. Similarly, the authors in Al-Quraan et al. (2023)
seek to comprehensively explore cutting-edge FL applications within wireless technologies.
Further, it aims to provide a comprehensive overview of the advancements and their
significance. However, the areas related to mmWave spectrum and related concepts are
only partially discussed. The study Duan et al. (2023) is one of the latest related work. It
provides an in-depth examination of the latest technological advancements integrating FL
and edge computing. Further, it covers a holistic perspective encompassing the intersection
of FL and edge computing within the framework of 6G communication. However, the
study does not discuss related issues related to mmWave communication in FL-enabled
6G networks. Likewise, the study Driss et al. (2023) explores the enhanced benefits of
integrating FL across the entire protocol stack in the 6G technology.

Additionally, it highlights pivotal FL applications and delves into key concepts to offer
valuable perspectives for future research and development endeavors. It contains only a
brief discussion on mmWave utilization in FL enabled 6G network. The authors in Xiao
et al. (2024) provide detailed analyses of various scenarios in FL over the air including,
Multi-Input-Multi-Output (MIMO) and Reconfigurable Intelligent Surface (RIS).
However, mmWave communication is only partially discussed with respect to RIS
integration with FL. The study Lee et al. (2024) is a comprehensive survey on FL concepts
in 5G and beyond network including network management, network core, network access
etc. However, mmWave communication is discussed only partially in LTE communication
domain. Notably, none of the previous reviews or surveys specifically cover the concepts
involved in integrated scenarios of mmWave and FL enabled 6G communication.

Research methodology
This methodology ensures a systematic approach to reviewing and analyzing literature on
federated learning for millimeter-wave spectrum management in 6G networks, thereby
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providing comprehensive insights into its applications, challenges, and future research
directions. The following steps have been adapted for an exhaustive literature review:

. Online search: A systematic approach was adopted to conduct a review of the
literature. Renowned academic databases, including SCOPUS, Web of Science (WoS),
IEEE Xplore, ScienceDirect, MDPI, and Google Scholar, were searched using carefully
chosen keywords such as “Federated Learning,” “Millimeter-Wave Spectrum,” “6G
Networks,” “FL Applications,” “Challenges in FL,” and “Open Research Issues in FL.”
The search time spanned from 2019 to 2024, ensuring the inclusion of recent
advancements in the field.

. Article selection: In selecting relevant publications, thoroughly scrutinize titles,
abstracts, and keywords to ascertain their alignment with FL in the context of
millimeter-wave spectrum and 6G networks. Subsequently, exclusion criteria were
applied meticulously to eliminate non-novel, duplicate, or irrelevant publications,
thus refining the selection to encompass only the most pertinent contributions.

. Analysis: The study employed bibliometric analysis tools such as VOSviewer to
comprehensively analyze articles’ distribution based on titles and keywords, as shown
in Fig. 1. By examining the distribution of relevant articles from various publishers,

Figure 1 VOSviewer based land scape of technologies covered in review.
Full-size DOI: 10.7717/peerj-cs.2360/fig-1
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the trends and patterns in the literature pertaining to FL for millimeter-wave spectrum
in 6G networks were identified. Moreover, from the VOSviewer based landscape of
technological terms, the keywords can be classified as;

○ Core technologies: Millimeter wave, 5G network, 5G/6G, enabling technology,
wireless federated learning, federated dropout learning,

○ Network and spectrum: Dynamic blockage recognition, coverage probability,
allocation, beam management, channel estimation, beam squirt, overlap subarray,

○ Privacy and security: authentication techniques, security applications,

○ Applications and use cases: smart education, art, design,

○ Emerging trends: 6G Massive MIMO, Blockchain, AI/ML.

. Synthesis: The literature review and analysis in this study reveal several findings
regarding the applications, challenges, and open research issues associated with FL in
leveraging millimeter-wave spectrum for 6G networks. Additionally, the study
identifies challenges, including bandwidth consumption, power consumption, and
synchronization requirements, while also providing a way forward for further
investigation into areas like dynamic synchronization and bandwidth optimization for
FL-enabled millimeter-wave communication in 6G networks. The overall research
methodology opted in this research is depicted in Fig. 2.

Organization and contributions
It is pertinent to highlight that almost all existing reviews and surveys have partially
covered the topic. Moreover, the existing research lacks insight into the latest challenges
and open research issues.

. FL enabled 6G networks (“FL Enabled 6G Networks”): This section initially discusses
the basic concepts of FL; thereby, to establish FL potential, this section critically the FL
application for 6G domains; including, enhanced Mobile Broad-Band (eMBB), Un-
Conventional Data Communications (UCDC), Secure Ultra-Reliable Low-Latency
Communications (SURLLC), Three-Dimensional Communications (3DCom) and
Big Communications (BigCom).

. Millimeter-Wave Applications in FL Enabled 6G (“mmWave Applications in Fl
Enabled 6G”): This section describes mmWave utilization for 6G networks including
innovative concepts such as mmWave spectrum for integrated 6G, mmWave Chip for
hybrid Massive MIMO (M-MIMO), sub-6GHz and mmWave dual-band antennas,
joint venture of BF, mmWave and M-MIMO, wireless backhaul with mmWave and
BF design and process.

. Challenges (“Open Research Issues”): This section highlights the primary challenges
and limitations in embracing mmWave with FL; including bandwidth consumption,
energy consumption and synchronization requirements.
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. Proposed way forward (“Conclusion”): This section provides a way forward based of FL
integration in mmWave communication architecture. The proposed approach is
named Federated Energy-Aware Dynamic Synchronization with Bandwidth-
Optimization (FEADSBO).

. Future research directions (“Way Forward”): Thereby, this review identifies the
specific future research areas in FL enabled mmWave; including, FL for high-
frequency mmWave communication, FL for energy efficiency in massive antenna
systems, secure integration of mmWave in FL enabled 6G and mobility in mmWave
with FL enabled 6G.

. Conclusion (“Open Research Issues”): The article concludes in this section with a brief
on the aim of this review and the corresponding contribution to fill the research gap.

FL ENABLED 6G NETWORKS
In 6G communication, DL and ML offer distinct advantages and disadvantages, making
them suitable for network management and optimization aspects (Noman et al., 2023).
ML, with its ability to process structured data and its relatively lower computational
requirements, is well-suited for tasks like predictive maintenance, resource allocation, and
anomaly detection in 6G networks. It is also more interpretable, allowing network
engineers to easily understand and tweak models for specific tasks (Tayyab et al., 2023).
However, the performance of ML can be limited in handling the vast and unstructured
data expected in 6G systems, where more complex and nuanced patterns need to be
identified (Jawad, Maaloul & Chaari, 2023). In contrast, DL excels in processing large-
scale, high-dimensional, and unstructured data, such as images, video, and massive sensor

Figure 2 Research methodology. Full-size DOI: 10.7717/peerj-cs.2360/fig-2
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data streams (Boahen et al., 2022). Therefore, DL is considered as a potential technology
for applications like intelligent traffic management, automated network slicing, and real-
time service customization in 6G. DL models, such as neural networks, can automatically
learn features from data, leading to higher accuracy in complex scenarios (Ozpoyraz et al.,
2022).

However, DL comes at the cost of higher computational complexity, requiring more
powerful hardware and potentially leading to higher latency, which may be a challenge for
real-time 6G applications. In comparison to traditional ML and DL methods, which often
require centralized data aggregation for training, while; FL offers a more scalable and
privacy-preserving solution for 6G (Zhang, Rahman & Qamar, 2023). Therefore, FL is
increasingly being proposed for 6G networks due to its unique approach to distributed
machine learning, where data remains decentralized. This is particularly advantageous in
6G, which is expected to handle massive amounts of data from diverse and geographically
distributed devices. The key advantage of FL in 6G networks is its ability to enhance
privacy and security since the data never leaves the local devices, reducing the risk of data
breaches and complying with stringent data protection regulations. Additionally, FL can
reduce latency and bandwidth consumption by minimizing the need for data transfer to
centralized servers (Kazmi et al., 2024). The foundational concept in FL is the distributed
learning on localized datasets to develop local ML models and further aggregation of local
models to formulate a Global model. Therefore, the overall data sent to the centralized
server is substantially reduced; thus, the main attraction in FL is reduced network pressure
associated with traditional AI implementations. Moreover, FL ensures end-point data
protection by allowing sharing of only locally trained models (Pandya et al., 2023). A brief
elaboration of FL can be visualized by assuming N number computing devices Cn 3
n ¼ 1; : : : : ; N with specific Dn data volumes. The local model contains w weights which
are trained through inputs of data elements xi 3 i is the number of selected features. Thus,
the fundamental FL averaging concept can be denoted as Eq. (1):

wF ¼
XN

n¼1
an: w

n
D (1)

where, an is the weighted average as given in Eq. (2).

an 3
XN

n¼1
an

h i
¼ 1: (2)

The aggregation process aims to keep the training loss minimum—spectrum’s diverse
range, progressing from radio waves to gamma rays. Initially, radio waves were the
foundation, enabling long-range communication. As technology advanced, microwaves
were employed for shorter distances, providing higher data rates—the utilization of
infrared waves allowed for short-range communication, such as in remote controls.
Recently, advancements in wireless communication have explored higher frequencies,
including millimeter waves and even gamma rays, to meet the growing demand for
data-intensive applications and achieve faster transmission rates. In view of
unconventional and distributed FL architecture, this technology has become a core focus of
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almost all AI-embraced scientific fields. Due to its distributed and heterogeneous nature,
wireless mobile networks are a highly researched area for embracing FL technology
(Xu et al., 2023).

In line with wireless communication, mobile wireless networks (MWN) have been
standardized into generations from 1G to 6G. Likewise, this evolution has been marked by
advancements in IEEE standards corresponding to radio frequency (RF) utilization. In the
1G era, standardized by IEEE 802.11, analog cellular networks operated at low frequencies,
mainly in the 800 MHz range. The transition to 2G saw the introduction of digital
communication, following GSM standards (e.g., IEEE 802.16) and utilizing frequencies
around 900 MHz. 3G networks, guided by standards like IEEE 802.20, embraced higher
frequencies in the 2 GHz range for enhanced data rates and multimedia applications. 4G,
governed by IEEE 802.16m and LTE standards, utilized a range of frequencies, including
the 2.5 GHz band, enabling faster data transmission and improved network efficiency. The
impending 5G era, defined by standards like IEEE 802.11ac, exploits higher frequencies,
such as millimeter waves around 28 GHz, for ultra-fast data speeds and low latency.
Anticipated 6G networks, still in conceptual stages, are expected to explore even higher
frequencies, possibly into the terahertz range, to cater to emerging technologies and
applications demanding unprecedented data rates and connectivity. Many research
communities and standardization bodies are focusing on the forthcoming 6G mobile
generation (David & Berndt, 2018; Alsharif et al., 2020; Yang et al., 2019). It asserted that a
spectrum above mmWave frequency bands, precisely from 100 GHz up to 10 terahertz
(THz) (i.e., THz spectrum), is optimum to facilitate the next decade user’s particulars and
machine-type communication activities (Kleine-Ostmann & Nagatsuma, 2011). The large
array of active antennas configured with THz spectrum and untangle signal processing
techniques would benefit many upcoming unconventional applications (Huang & Wang,
2011). Remote presence, a holographic, and digital replica are prime examples. However,
the notion is still in the early stage, and exploration in different areas, for example,
scalability aspects, security, circuit architecture and complications, analysis of channel path
loss expressions besides the administration of mobility management protocols are required
(Kemp et al., 2003; Ren et al., 2019). 6G communication is the future of MWN, which is
evolving with specific domains; including, enhanced Mobile Broad-Band (eMBB), Un-
Conventional Data Communications (UCDC), Secure Ultra-Reliable Low-Latency
Communications (SURLLC), Three-Dimensional Communications (3DCom) and Big
Communications (BigCom) (Kazmi et al., 2023a).

FL IN eMBB
eMBB, featuring advanced smartphones, dynamic gaming, and high-res multimedia,
exhibits asymmetry in data rate needs, ranging from Mbps to 1+ Gbps. In the context of
eMBB applications, FL supports efficient model training while minimizing the need to
transmit large amounts of sensitive data over the network. FL enhances the adaptability of
models to the dynamic nature of eMBB by allowing continuous learning from data
generated across the network (Guo et al., 2022). The authors in Hong, Park & Choi (2023)
introduce a novel over-the-air aggregation framework for FL in broadband wireless
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networks. Unlike conventional FL setups, this framework accommodates local datasets on
edge devices and base stations, thereby enhancing the efficiency and collaboration in
model training across the network.

The integration of FL in eMBB aligns with the goals of achieving robust and secure
communication in 6G networks while accommodating modern applications’ diverse data
rate requirements. Similarly, the study Balakrishnan et al. (2020) introduces resource
management schemes that consider the importance of computing communication and
data and optimizing training metrics. The proposed algorithms demonstrate a significant
4x–10x reduction in convergence time without compromising test performance, achieving
a balance between model effectiveness and overall training efficiency on benchmark
datasets.

FL in SURLLC
In 6G networks, FL plays a pivotal role in SURLLC, which encompasses applications in
smart tools, industries, and healthcare. FL facilitates collaborative model training across
distributed devices, ensuring data privacy and security in SURLLC applications. The
authors in Khowaja et al. (2021) proposed a Distributed Federated Learning (DBFL)
framework that addresses challenges associated with long-range communication by
mitigating the need for devices to increase transmission power, thereby alleviating energy
efficiency concerns. This framework is designed to overcome connectivity issues for distant
devices and seamlessly integrates with a mobile edge computing architecture. DBFL
facilitates distributed communication among devices by utilizing clustering protocols,
offering an efficient solution for collaborative learning while minimizing energy
consumption. This decentralized approach allows SURLLC devices to collectively improve
model accuracy without transmitting sensitive data to a centralized server, mitigating
latency concerns. In smart tools and industries, FL enables real-time decision-making with
low-latency communication, enhancing the reliability of critical processes. The study Lu
et al. (2020) introduces the concept of Digital Twin Wireless Networks (DTWN),
integrating digital twins into wireless networks to shift real-time data processing to the
edge plane. This approach involves implementing a blockchain-empowered federated
learning framework within DTWN, fostering collaborative computing to enhance system
reliability, security, and data privacy. This innovative combination improves the overall
functionality of the wireless network. In healthcare, FL supports secure collaborative
learning on patient data distributed across devices, ensuring both reliability and privacy in
the delivery of critical medical services within the 6G framework.

FL in 3DCom
In the 3DCom of 6G communication, FL can potentially play a pivotal role in addressing
challenges associated with airborne, multi-dimensional and high-rise platforms such as
drones and underwater communication. FL enables decentralized machine learning
models to be trained on these platforms, allowing them to adapt and learn from local data
without transmitting sensitive information to a centralized server. This is particularly
crucial for 3DCom due to its spatiotemporal characteristics, ensuring that machine
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learning models can adapt dynamically to the changing environmental conditions of
airborne and underwater scenarios. The study Qu et al. (2007) introduces an innovative
concept known as AGIFL (Air-Ground Integrated FL), which seamlessly combines air-
ground integrated networks with FL. Within the AGIFL framework, the adaptable and on-
demand 3D deployment of aerial nodes, such as unmanned aerial vehicles (UAVs), enables
all nodes to collectively train a proficient learning model through FL (Sandamini et al.,
2023). Similarly, in order to overcome UWA tough conditions, the authors in Zhao et al.
(2021) introduce C-DNN, a deep neural network-based receiver designed for underwater
acoustic chirp communication. They also present an innovative approach by combining
federated meta-learning with acoustic radio technology to enhance the performance and
generalization of the DL model. The study provides tractable expressions for the
convergence rate of FL in a wireless network by considering scheduling ratio, local epoch,
and data volume on individual nodes. The potential outcome is improved, efficient, and
reliable data transfer for underwater communication systems. However, challenges in this
approach includes, potential complexities in coordinating and managing the federated
meta-learning process, and limitations in addressing real-world variations in underwater
environments. FL enhances privacy and security by keeping sensitive data local, mitigating
potential risks associated with data transmission over these specialized 6G communication
channels. Leveraging FL in 3DCom of 6G networks facilitates efficient and adaptive
machine learning applications on diverse smart platforms.

FL in UCDU
FL in the context of UCDC within 6G networks, offers an innovative approach to
decentralized machine learning. UCDC, being an open-ended edge technology, benefits
from the ability to train models across a distributed network of unconventional devices,
such as smart human bond applications. This enables the dynamic and diverse nature of
UCDC to be harnessed for collaborative learning without centralizing sensitive data. The
authors in Sozinov, Vlassov & Girdzijauskas (2018) assess the effectiveness of FL in training
a classifier for Human Activity Recognition (HAR), contrasting its performance with
centralized learning. The findings indicate that while FL yields slightly lower accuracy than
centralized models for human activity recognition, the difference is deemed acceptable.
Likewise, the study Ouyang et al. (2021) introduces ClusterFL, a FL system designed for
HAR applications. It utilizes a unique clustered multi-task federated learning framework to
enhance model accuracy by efficiently capturing inherent clustering relationships among
data from various nodes, minimizing communication overhead. The open-ended nature of
UCDC aligns well with FL adaptability, facilitating secure and efficient attribute selection
for authentication and confidentiality in this evolving technological landscape.

FL in BigCom
FL in the context of BigCom in 6G contributes to a comprehensive global communication
paradigm by decentralizing machine learning processes. This approach enables devices to
collaboratively train models without transmitting raw data to a centralized server, ensuring
privacy and security. The authors in Chen, Xiao & Pang (2022) advocate for implementing
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FL in Low Earth Orbit (LEO)-based satellite communication networks to enhance support
for highly interconnected devices with intelligent adaptive learning and mitigate costly
traffic. Moreover, the study comprehensively reviews the current state-of-the-art LEO-
based satellite communication and explores relevant ML techniques (Siddiqui et al., 2022).
In 6G BigCom, FL accommodates the diverse aspects of communication technologies,
allowing for dynamic and efficient learning across various devices and applications.

Similarly, integrating the Space-air-ground Integrated Network (SAGIN) with satellite,
aerial, and terrestrial networks is enhanced through the innovative use of FL, a distributed
learning method. This approach intelligently addresses resource scheduling challenges in
SAGIN while ensuring security and safeguarding user privacy (Tang et al., 2022). The
distributed nature of FL aligns with the need for robust communication in the face of
evolving challenges, such as those presented by eMBB and other components of 6G. By
fostering collaboration and learning across a globally distributed network, FL becomes an
integral part of the holistic approach to communication in the BigCom paradigm of 6G.

MMWAVE APPLICATIONS IN FL ENABLED 6G
The involvement of wireless information transfer among several IoT products in different
verticals, for instance, transportation, supply chain, robotic activities, etc., are expected to
augment the data rates exponentially and need solutions that can tackle the extensive
throughput stipulation and future extreme BW applications (Akdeniz et al., 2014; Ibrahim
& Hassan, 2019). However, the existing 5G network design is promising for ultra-fast
data rates and very low latency by exploiting the mmWave spectrum (Ford et al., 2017).
mmWave refers to a specific range of radio frequencies between 30 and 300 gigahertz
(GHz). These waves have much shorter wavelengths than those used in traditional wireless
communication, which allows large amounts of data at much higher speeds. Moreover,
mmWaves can be analogized as a highway with many lanes; because there are more lanes,
more cars (or data) can travel simultaneously, leading to faster traffic flow (or data
transmission). However, mmWaves have limitations in that it cannot travel as far or easily
pass through obstacles like walls or trees, making them more suitable for dense urban
environments (Akyildiz, Han & Nie, 2018). The key concepts related to mmWave include;
M-MIMO, Backhaul, Dual-band Antennas, beamforming, etc. M-MIMO involves the use
of a large number of antennas at the base station to serve multiple users simultaneously.
Similarly, Backhaul refers to the communication link between the central network and the
individual base stations. In the context of mmWave, high-capacity backhaul is essential to
handle the massive data traffic generated by 5G and 6G networks. Likewise, Dual-band
antennas are designed to operate on two different frequency bands, typically combining
mmWave with a lower frequency band. This allows for both the high-speed benefits of
mmWave and the broader coverage of lower frequencies. Beamforming is a technique
where signals are directed precisely towards a specific user, rather than broadcasting in all
directions. In mmWave, this focused transmission helps overcome signal blockages and
improves data speeds (Senger & Malik, 2022).

In the 6G networks, mmWave technology is expected to be crucial in enabling ultra-fast,
low-latency communications. This is particularly important for applications like
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augmented reality, autonomous vehicles, and massive machine-type communications (like
the Internet of Things), where speed and responsiveness are critical. However, mmWaves
have a limited range, and implementing this technology on a large scale will require
significant infrastructure changes, including installing many more small cells to ensure
consistent coverage (Xue et al., 2024). Similarly, mmWave technology can be key in
providing backward compatibility between 5G and 6G networks. While 6G aims to
enhance the capabilities of mmWave by using higher frequency bands, mmWave can still
operate within the frequency spectrum used by 5G, particularly in the lower end of the
mmWave range (24–40 GHz). This overlap allows for seamless communication between
5G and 6G devices, enabling 6G networks to support legacy 5G devices and services.
Additionally, the flexible architecture of mmWave technology allows it to adapt to various
modulation and coding schemes used in 5G, ensuring that 6G networks can accommodate
and optimize 5G transmissions without requiring a complete overhaul of the existing
infrastructure (Rajatheva et al., 2004). In FL enabled 6G networks, mmWave technology is
crucial in supporting the high-speed, low-latency communication required for distributed
machine learning processes. mmWave operates in the 30–300 GHz frequency range,
providing large bandwidths that enable ultra-fast data transfer, essential for transmitting
the vast amounts of data involved in FL across devices. This high capacity and speed are
vital for efficiently aggregating and processing data from multiple edge devices in real-
time, allowing for more responsive and accurate AI models (Rao et al., 2023). In 6G,
mmWave will also support applications like augmented reality (AR), virtual reality (VR),
and smart cities, where FL can enable more personalized and privacy-preserving services.
Additionally, FL in mmWave-enabled 6G networks can optimize network performance for
heterogeneous networks by enabling real-time learning and adaptation to rapidly changing
environments, such as those encountered in smart cities or autonomous vehicles (Ji, Jia &
Chen, 2019). In subsequent sub-sections, we discuss the concept of mmWave in 6G
communication in the context of FL.

FL in mmWave spectrum for integrated 6G networks
The rapid-paced development of new technologies and smart modes of communication, as
discussed in the 6G communication domains, is poised to overwhelm and strain the
capabilities of the existing 5G network infrastructure, resulting in congestion and
inadequate performance (Hong et al., 2021). The upcoming 6G will be a network of
intelligent mobile communication, where almost everything will communicate with each
other or the environment (Giordani & Zorzi, 2020). In this context, mmWave, and sub-
mmWave technologies have the full potential to raise the bar and set new standards of
intelligent communication. However, unconventional applications and heterogeneous
architectures require highly dependable and distributed approaches to fully harness
mmWave potential for 6G communication (Qamar et al., 2018).

AI, a revolutionizing concept, is a highly researched technology for integrating various
technologies in 6G intelligent communication. FL is a privacy-protected and distributed
approach that can provide an intelligent integration of mmWave with 6G communication.
The authors in Catak et al. (2022) suggest an adversarial attack mitigation scheme ML
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models for mmWave beam prediction in 6G. The method involves gradient sign
techniques; however, this method requires further enhancement to avoid the trivial
vulnerability of centralized DL/ML models. FL is a potential candidate to rescue the
situation in combination with security mechanisms such as differential privacy (DP). It is a
challenge to model the space-time non-stationarity properties of UAV based mmWave
communication in 6G, including average fading time, envelope crossing rate, doppler
power density and space-time frequency correlation (Bai et al., 2021). The authors in Qi,
Liu & Yang (2020) utilize FL for dynamic adaptability to mobility patterns for improved
hand-in mmWave communication. Moreover, the scheme is compatible with the client,
who has limited storage capacity.

Similarly, the study Salehi et al. (2022) proposes a FL approach to expedite sector
selection in the mmWave band for vehicular mobility by leveraging machine learning
techniques that integrate data from LiDAR, GPS, and camera sensors. This includes a
multimodal FL framework for collaborative model training among vehicles. Validation on
a real-world dataset shows a significant 52.75% reduction in sector selection time
compared to the 802.11ad standard, while maintaining 89.32% throughput with globally
optimal solutions. However, this approach depends on the quality and availability of non-
RF sensor data. Additionally, the effectiveness of the proposed solution is constrained by
security issues inherent in sharing model weights among vehicles.

In mmWave systems, hybrid precoding architecture is considered suitable for mm-wave
systems to achieve high beamforming gain with reduced hardware complexity, but channel
estimation becomes challenging due to the split between analog and digital domains. The
authors in Zhao et al. (2022) proposed a FL-based channel state information (CSI)
estimation and feedback (FCEF) scheme, where users train local models and exchange
parameters with the base station, reducing transmission overhead compared to centralized
learning. However, with rapidly changing channels or highly dynamic user distributions,
the effectiveness of the local model updates could be compromised, leading to degraded
performance in CSI estimation and feedback. Similarly, the study in Al-Abiad, Hassan &
Hossain (2023) introduces a resource-efficient FL framework tailored for millimeter-wave
aerial-terrestrial integrated networks. It leverages decentralized model dissemination
through UAV-to-UAV and device-to-device communication, enabling increased
participation of user devices without relying on a central server. However, reliance on
UAVs and complex scheduling algorithms can pose implementation challenges,
particularly in real-world scenarios with dynamic network conditions and hardware
constraints. The above analysis is summarized in Table 3.

FL in mmWave chip for hybrid M-MIMO
The mmWave chip integrates both digital and analog components to efficiently process
signals in M-MIMO systems, which are essential for next-generation wireless
communication networks. By leveraging mmWave frequencies and hybrid beamforming
techniques, this chip can support high data rates and enhance the capacity and coverage of
wireless networks. A modification in the antenna design is also required to prosperously
conduct the mmWave RF signals, especially sub-mmWave signals, in a closely packed
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hybrid M-MIMO system. ML algorithms can be employed for intelligent signal processing,
adapting dynamically to varying channel conditions and optimizing beamforming
parameters for improved system performance. Similarly, DL models can aid in complex
signal processing tasks, such as channel estimation and interference mitigation, enabling
the chip to achieve higher efficiency and reliability in M-MIMO systems. However, the
centralized architecture of DL/ML can pose challenges related to processing and power
consumption at the chip level. Therefore, FL is a potential distributed computing solution
for resource constraints in the mmWave chips. The authors in Elbir & Coleri (2020)
presented a FL based hybrid beamforming in mmWave. Here, the model training is
performed at base stations (BS), where input data is the channel data used for analog
beamforming. This technique aims to counter bandwidth consumption during data
collection in traditional centralized learning ML/DL approaches.

The study Onizawa et al. (2019) suggests a training chip by utilizing a mainstream 65-
nanometer CMOS technology for ML. The chip employs invertible logic and stochastic
computing to achieve training without backpropagation. It enables direct extraction of
weight values from input/output training data with low precision, making it well-suited for
inference tasks. CMOS is developed for edge inference through a pre-trained model.
However, the study established the effective utilization of CMOS-based processing in
memory (PIM) Computing for model training and learning in FL applications (Qamar
et al., 2023). The authors in Vu et al. (2020) introduce an innovative approach for cell-free
massive multiple-input multiple-output (CFmMIMO) networks, specifically designed to
facilitate any FL framework. The proposed scheme ensures the occurrence of individual
iterations, rather than all, within an extensive coherence time to ensure the stable
operation of the FL process.

Table 3 FL approaches in mmWave spectrum for integrated 6G networks.

Ref. Approaches Advantages Limitations

Catak et al. (2022) Gradient sign technique . mmWave beam prediction in 6G
. Adversarial attack mitigation scheme
ML models

. Does consider trivial vulnerabilities of ML

. Lack of transferability in gradient sign
technique

Qi, Liu & Yang
(2020)

Dynamic adaptability to
mobility patterns with FL

. Improved hand-over

. Low storage utilization

. Improved QoS

. Scalability

. Security considerations related FL such as DoS
attacks

Salehi et al. (2022) Sector selection in mmWave
band

. Significant reduction in sector
selection time

. Least effect on throughput

. Dependent on non-RF sensor data

. Security issues inherent in sharing model
parameters

Zhao et al. (2022) CSI estimation and feedback . Reduced transmission overhead
compared to centralized learning

. Rapidly changing channels or highly dynamic
user distributions can degrad performance

Al-Abiad, Hassan
& Hossain (2023)

Millimeter-wave aerial-
terrestrial integrated
networks

. Increased participation of user devices
without relying on a central server

. Implementation challenges due to dynamic
network conditions and hardware constraints.
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Similarly, the authors in Farooq et al. (2023) proposed half-duplex (HD) and full-duplex
(FD) communication schemes to handle simultaneous FL and non-FL user groups sharing
the same resource, enabling privacy preservation and communication efficiency in MIMO
system. Meanwhile, self-interference or small FL model updates can affect the performance
of full-duplex communication. Moreover, the generality and scalability of this approach
require the evaluation of real-world heterogeneous scenarios.

Similarly, the study Zhong, Yang & Yuan (2022) discusses Over-the-Air Federated
Multi-Task Learning (OA-FMTL) over the MIMO multiple access channel, leveraging
analog superposition of electromagnetic waves for computation. It introduces a novel
model aggregation technique to align local gradients from different devices, mitigating the
straggler problem arising from channel heterogeneity. However, dealing with a large
number of devices can potentially impact the effectiveness of the proposed approach. The
above discussion is summarized in Table 4.

Sub-6 GHZ and mmWave dual-band antennas
The NR 5G mobile communication is compatible with earlier technologies, and
simultaneous operation of both sub-6 GHz and mmWave spectrums on the same antenna
nodes is desirable. Indeed, new shared aperture antennas that support the operation of
both frequency bands are a serious challenge and have recently emerged as a hot topic
(Hasan, Bashir & Chu, 2019). The major design issue is the dimension requirements, as the
gap between both frequency bands is very large. Research in the sub-6 GHz spectrum for
dual-band antennas typically focuses on the frequency bands, including low bandwidth
(Sub-1 GHz for LTE) and mid bandwidth (1–6 GHz for WiFi). While dual-band antennas

Table 4 FL approaches in mmWave chip for hybrid M-MIMO.

Ref. Approaches Advantages Limitations

Elbir & Coleri
(2020)

Hybrid beamforming at base stations
with channel data

. Reduced bandwidth consumptions

. Scalable as compared to ML/DL

. Vulnerable to adversarial attack

. Accuracy issues due to Non-IID data

Onizawa et al.
(2019)

65-nm CMOS technology for ML/FL . Establishes the effective utilization of
CMOS-based PIM in FL applications

. Vulnerable to inference attacks

. Security implementation such as DP can
increase complexity

Vu et al. (2020) CFmMIMO . Individual iterations within a
coherence time

. Joint optimization of FL and transmit
power

. Sensitive to network dynamics

. Complexity in model generalization

Farooq et al.
(2023)

HD and FD communication schemes . Enables privacy preservation and
communication efficiency

. Self-interference or small FL model
updates can affect the performance of FD

Zhong, Yang &
Yuan (2022)

Over-the-air federated multi-task
learning

. Leverages analog superposition for
computation

. Dealing with a large number of devices can
potentially impacting the effectiveness
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are typically associated with sub-6 GHz frequencies, mmWave frequencies (24 GHz and
above) are used for high-capacity and ultra-fast communication (Alieldin et al., 2018; Sang
et al., 2023).

Utilizing sub-6 GHz channels for predicting millimeter wave (mmWave) beams and
blockages holds promise for enhancing mobility and reliability in scalable mmWave
systems. By employing a sufficiently large neural network, achieving high success
probabilities in predicting mmWave beams and blockages is feasible, approaching near
certainty (Alrabeiah & Alkhateeb, 2020). Here, the decentralized nature of FL can facilitate
the aggregation of insights frommultiple devices, leading to improved success probabilities
in predicting mmWave beams and blockages, with the potential to achieve high accuracy
and lower bandwidth consumption. The authors in Al-Quraan et al. (2023) introduce
Radar-aided Dynamic Blockage Recognition (RaDaR), which combines radar data and FL
to train a dual-output neural network model. This model can predict both blockage status
and time concurrently for proactive handover or beam switching. This approach mitigates
latency in 5G new radio procedures, ensuring a high-quality of experience for users.

Similarly, the authors Chafaa et al. (2021) introduced an FL framework for a wireless
network with multiple communication links (access points and users). This approach
involves individual access points training their local deep neural networks using local data,
sharing only model parameters to achieve a collectively improved global model for
predicting downlink mmWave beamforming vectors based on uplink sub-6GHz channels,
thereby; enhancing data rate predictions.

However, due to the heterogeneous and varying nature of wireless network, the data is
considered highly Non-Independently Distributed (Non-IID), which can severely affect
FL’s performance. The research Bai et al. (2021) proposes two personalized FL approaches
to address non-IID effects. The first involves fine-tuning FL models on individual private
datasets of clients, while the second employs Adaptive Expert Models for FL to directly
predict the optimal mmWave beamforming vector from non-IID sub-6 GHz channel
vectors generated by Deep-MIMO.

The study Hu et al. (2023) proposes combining multi-band- reconfigurable holographic
surfaces (RHSs) and FL to offer precise and environment-adaptive user positioning
services. It employs an FL framework for collaborative training of a position estimator,
leveraging transfer learning to address the absence of position labels among users, and
introduces a scheduling algorithm for base stations to select users for training, considering
both FL convergence and efficiency. However, implementing such a system across diverse
network environments can be challenging. Similarly, the study Chafaa et al. (2022)
presents a self-supervised DL method for predicting beamforming vectors in mmWave
communication, utilizing sub-6 GHz channels and DeepMIMO dataset. The extension to
multiple links using FL efficiently predicts mmWave beams with limited local data.
However, potential limitations may arise from network synchronization challenges and the
need for extensive computational resources for training and coordination. Here, the
potential challenge is the synchronization of multiple access points in FL setups. The above
analysis is summarized in Table 5.
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Joint venture of BF, mmWAVE, and M-MIMO
Since the conventional sub-6 GHz spectrum is fully occupied, the researcher’s community
is performing extensive investigations on successfully utilizing higher frequency spectrum
in the mmWave and mmWave operable frequency spots. Herein, both high-frequency
radio wave signals are regarded as commendatory technologies for forthcoming mobile
communication (Song, Yang & Sun, 2017). However, it is undesirable for the cellular data
transmission environment due to its limited coverage support in a given geographical area
(Goudarzi et al., 2020). Therefore, some advanced multi-beam or beam-steerable antenna
schemes have been lately adopted to conduct upper spectrum transmissions with M-
MIMO antenna in B5G cellular networks. The remote channel state information (CSI)
inference involves DL structures in a communication system, to accurately assess channel
conditions. DL/ML approach enables a more sophisticated and adaptable method for
inferring CSI in remote communication scenarios where conventional models may fall
short. The study in Jiang et al. (2019) aims to assess the effectiveness of a DL-based
approaches in the context of mmWave multicellular networks. The study focuses on
optimizing beamforming configurations through two neural networks trained to minimize
mean square error (MSE). The first network considers requested spectral efficiency (SE)
per active sector as input, while the second network addresses the corresponding energy
efficiency (EE), enabling adaptive beamforming to account for channel and power
variations. Nonetheless, the proposed approach achieve satisfactory performance in
enhanced data rates at the cost of increased radiating nodes and blocking probability.

Similarly, utilizing FL has emerged as a promising approach to enhance the
performance of learning-based mmWave BF systems for efficient link configuration. In the
study Elbir, Coleri & Mishra (2021), two distinct frameworks, namely model-based and

Table 5 FL approaches in sub-6 GHZ and mmWave dual-band antennas.

Ref. Approaches Advantages Limitations

Al-Quraan
et al. (2023)

Dynamic blockage recognition . Predict both blockage status and time
concurrently

. Provide proactive handover and beam-
switching

. Limited generalization in a
dynamic environment

. Scalability

Chafaa et al.
(2021)

Predict the downlink mmWave
beamforming vectors from the uplink

. Exploit the available knowledge at sub-6
GHz

. Outperform centralized learning

. Dependency on Sub-6 GHz

. Sensitivity to local data quality

Cheng (2022) Fine-tuning and Adaptive Expert Models . Predicts optimal mmWave beamforming
vector

. The approach is specific to MIMO-
based systems

Hu et al.
(2023)

Combine utilization of multi-band- RHSs
and FL

. Offers precise and environment-adaptive
user positioning services

. High complexity in diverse
network environments

Chafaa et al.
(2022)

Self-supervised DL . Accurately predicts beamforming vectors
in mmWave communication

. Synchronization issue in multiple
access points in FL setups
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model-free, are introduced for the design of beamformers in multi-user Spatial Path Index
Modulation (SPIM) for joint mmWave-MIMO systems. The study employs FL coupled
with dropout learning techniques. This approach involves training a learning model on the
local datasets of individual users. These users estimate beamformers by inputting their
channel data into the model, thereby; facilitating collaborative learning across the network.

Despite the potential benefits of FL, FL systems are susceptible to backdoor attacks
during training in FL-based beam selection for mmWave systems. A backdoor attacker
aims to inaccurate the out of ML model a predefined set of inputs. This manipulation is
designed to undermine the model’s performance on targeted sub-tasks while appearing
normal for other inputs. The authors in Zhang et al. (2022) presented a backdoor attack
strategy where the model activates upon encountering specific obstacles in designated
locations. When the model processes input featuring these obstacles, the backdoor is
triggered, causing the model to produce the predefined output beam specified by the
attacker.

Similarly, the study Huang et al. (2022) proposed an approach that integrates joint
device scheduling and receive beamforming to minimize the FL convergence gap over
shared wireless MIMO networks, maximizing the number of weighted devices under
latency and power constraints. However, the complexity of jointly optimizing device
scheduling and receive beamforming requires significant computational resources.

Likewise, the study Asaad et al. (2024) investigates Over-the-Air FL (OTA-FL) in
massive MIMO systems with limited RF-chains, addressing the challenge of joint antenna
selection and beamforming for model aggregation. This scheme is based on a two-tier
approach utilizing penalty dual decomposition and treating antenna selection as a sparse
recovery problem using the Lasso algorithm. Here, scalability can become complex with

Table 6 FL approaches in joint venture of BF, mmWave, and M-MIMO.

Ref. Approaches Advantages Limitations

Jiang et al.
(2019)

NN based adaptive beamforming to
account for channel and power
variations

. Achieves satisfactory performance in
enhanced data rates

. Increased blocking probability can
reduce the accuracy of NN model

Elbir, Coleri &
Mishra
(2021)

Multi-user Spatial Path Index
Modulation and FL with dropout
technique

. Users estimate beamformers by inputting
their channel data

. Facilitating collaborative beamforming

. Limited consideration of RF chain

. Performance issues due to Non-IID
data

Zhang et al.
(2022)

Trigger attack with obstacle in certain
locations

. Explores backdoor attacks, defenses

. Propose a new backdoor attack defense

. Complexity of real-world scenarios

. Generalization issues

Huang et al.
(2022)

Joint device scheduling and receive
beamforming

. Minimizes the FL convergence gap for
devices under latency and power
constraints

. Receive beamforming requires
significant computational resources

Asaad et al.
(2024)

OTA-FL . Joint antenna selection and beamforming
for model aggregation

. High complexity with the increase in
the number of antennas and RF-
chains
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the increase in the number of antennas and RF-chains. The above discussion is
summarized in Table 6.

Wireless backhaul with mmWAVE
Currently, conventional backhaul wireless links are largely based on microwave frequency
bands (often owned by operators) and fiber/copper cables (often leased) with varying
proportions per operator and country area (Allen, Chevalier & Bora, 2014). Many other
types of research and simulation tests have also been developed to evaluate small-cell
wireless backhaul communication, including software-defined networking (SDN) based
techniques (Niephaus et al., 2015; Zhang et al., 2015). In contrast, some recent research
works using AI and ML on the agility of dynamic configuration of backhaul streams have
also been discussed. Many mmWave-based SDNwireless backhaul access systems focus on
optimizing different parameters, which are exhaustively discussed in the literature (Santos
et al., 2019; Santos, 2020; Camps-Mur et al., 2019).

With the emergence of heterogeneously connected devices and advanced applications
like IoT, V2V communications, and wearables, industry experts foresee complex
management requirements in backhaul communication. FL resolves these privacy and
bottleneck issues by training a global model and also plays a crucial role in optimizing
wireless backhaul communication networks (Chehri et al., 2023). The authors in Yang,
Hong & Park (2021) introduce an adaptive power allocation method, where each client
dynamically allocates its transmit power based on the magnitude of the FL based gradient
information, optimizing communication efficiency. The articleWang et al. (2021) explores
the optimization of energy and time consumption in mobile-edge computing-enabled
balloon networks, where high-altitude balloons serve as flying wireless base stations. The
proposed solution employs a support vector machine (SVM)-based FL algorithm to
proactively determine user associations, allowing high-altitude balloons to dynamically
adjust resource allocation for computational tasks without transmitting historical
associations or tasks.

The study Feng & Mao (2019) proposes a solution to the challenge of backhaul resource
allocation in mmWave systems using deep reinforcement learning (DRL). By leveraging
DRL, the system learns the blockage patterns and dynamics, enabling efficient allocation of
backhaul resources to users with highly varying data rates. DRL models in real-world
mmWave face potential difficulty in generalizing learned policies across different network
scenarios; here, personalized FL approaches can be used to overcome the challenges related
to generalization.

The studyMahmood et al. (2024) proposes (0.1 to 10 THz) Terahertz-based networks to
improve FL convergence time and reduce training loss, particularly in 1 km links, by
exploiting efficient data transmission conditions in comparison. This approach involves
implementing FL with THz-based wireless backhaul and a virtual private network (VPN)
infrastructure, catering to end-users for enhanced privacy and network efficiency.
However, signal attenuation and hardware complexities can hinder the adoption of FL
deployment in real-world scenarios. Similarly, the authors in Khan et al. (2023) propose a
latency-aware vision-aided FL approach for predicting beam blockage in 6G wireless
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networks. It utilizes multi-sensor data and advanced deep learning techniques by
employing distributed learning on edge nodes for data processing and model training. This
framework aims to mitigate communication costs, bandwidth inefficiency, and latency
issues associated with centralized training; however, this approach can increase the
complexity of coordination and synchronization across numerous edge nodes. The above
analysis is summarized in Table 7.

BF design and process
In multi-stream multi-user mmWave transmission, the BS with large-scale antenna
elements simultaneously serves many users with the directed beam patterns (Sun, Qi & Li,
2019; Kazmi et al., 2022). A hybrid precoding mechanism is commonly adopted for
mmWave M-MIMO communication, wherein analog precoding/BF generates directional
beams under constant amplitude, limited phase shifter resolution constraints, and digital
precoding multiplexed independent user data streams. Many M-MIMO hybrid precoding
solutions have been proposed for mmWave wireless communication (Alkhateeb et al.,
2014; Xiao et al., 2016; Xiao, Xia & Xia, 2017). One of the challenging aspects of BF is
Beam squinting. This is a phenomenon associated with non-uniformities in the array
elements, causing the beam to deviate from its intended direction. In 6G communication
systems, beam training is crucial for optimizing the directional transmission and reception
of signals between base stations and user devices. This involves dynamically adjusting the
beamforming parameters, such as beam direction and width, to adapt to changing
environmental conditions and mitigate beam squinting effects through adaptive
algorithms and sophisticated signal processing (Chen, Chen & Jiang, 2021). Designing BF
for large-scale antenna arrays, particularly with constraints such as limited radio frequency
chains and the use of phase-shifter-based analog BF architecture, poses a significant
challenge in millimeter-wave communication systems. Therefore, the complexity further
intensifies in the presence of imperfect CSI. The study Niephaus et al. (2015) introduces a

Table 7 FL approaches in wireless backhaul with mmWave.

Ref. Approaches Advantages Limitations

Yang, Hong &
Park (2021)

Binary gradient updating
strategy in FL

. Optimizing communication efficiency

. Adaptive power allocation using CNN

. Sensitivity to channel conditions

. Computational overhead

Wang et al.
(2021)

High-altitude balloons with
SVM based FL

. Minimizes energy and compute time

. Dynamically adjusts resource allocation

. Does not consider non-IID data

. Lack of security consideration

Feng & Mao
(2019)

Backhaul resource
allocation using DL

. Learns the blockage patterns and
dynamics for varying data rates

. Difficulty in generalizing learned policies across
different network scenarios

Mahmood et al.
(2024)

Terahertz-based networks . Efficient data transmission conditions . Hardware complexities can hinder the adoption
in real-world scenarios

Khan et al.
(2023)

Latency-aware vision-aided
FL

. Mitigates, bandwidth inefficiency, and
latency issues

. Increased complexity during coordination and
synchronization
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novel approach using DL for BF design to address this. The proposed method involves the
development of an NN that can be trained to optimize the beamformer, considering
hardware limitations and dealing with the challenges posed by imperfect CSI, ultimately
maximizing the spectral efficiency. The effectiveness of FL aggregation is directly linked to
the increased participation of devices. The article Zhang et al. (2015) presents a design
based on BF vectors and the selection of devices for FL using over-the-air computation
(AirComp). The results show that the approach maximizes the count of selected devices
while adhering to a predefined target aggregation MSE.

Similarly, the authors in Xiao et al. (2007) introduce a fully decentralized FL framework
featuring an inexact stochastic parallel random walk alternating direction method of
multipliers (ISPW-ADMM). The findings indicate that this framework exhibits significant
resilience against the effects of time-varying dynamic networks and stochastic data
collection while maintaining rapid convergence. Leveraging the advantages of stochastic
gradients and biased first-order moment estimation, the proposed framework is a dynamic
approach for decentralized FL tasks across time-varying graphs.

Similarly, the authors in Elbir & Coleri (2021) introduce a FL framework for channel
estimation in both conventional and RIS-assisted massive MIMO systems. They utilize a
CNN trained on local datasets of users, avoiding the need to transmit them to the BS. Their
approach demonstrates significantly reduced overhead compared to conventional
learning, approximately 16 times lower, while maintaining performance close to CL.
However, coordination in the FL process across numerous distributed users can impact the
overall efficiency and scalability of the system.

Likewise, the study Jeon et al. (2020) introduces a compressive sensing approach for FL
in MIMO communication systems. It addresses the challenge of accurately reconstructing
local gradient vectors sent from wireless devices by establishing a transmission strategy for
constructing sparse transmitted signals and proposing a compressive sensing algorithm for

Table 8 FL approaches in mmWave BF design and process.

Ref. Approaches Advantages Limitations

Lin & Zhu (2019) DL for BF design . Optimize the beamformer by considering
hardware limitations and imperfect CSI

. Privacy issues due to conventional
design

Kim, Swindlehurst
& Park (2023)

BF vectors and the selection of
devices

. Maximizes the count of selected devices

. Remain consistent with predefined MSE

. Imperfect channel state
information

. Scalability

Xiao et al. (2007) ISPW-ADMM . Resilience in time-varying dynamic networks
. Rapid convergence

. Computational complexity

. Issues for inexact stochastic

Elbir & Coleri
(2021)

Channel estimation in RIS assisted
massive MIMO systems

. Significantly reduced overhead compared to
conventional learning,

. Coordination in the FL process can
impact the overall efficiency

Jeon et al. (2020) Compressive sensing . Accurate reconstruction of local gradient
vectors

. Assumptions of sparsity and
LMMSE can cause inaccuracies
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the central server to iteratively find the linear minimum-mean-square-error (LMMSE)
estimate of the transmitted signal. This approach relies on sparsity assumptions and linear
minimum-mean-square-error estimation, which can be challenging in heterogeneous 6G
networks. The above discussion is summarized in Table 8.

CHALLENGES
In this section, this review highlights explicitly the challenges for the integration of
mmWave technology in FL enabled 6G communication as follows:

Bandwidth consumption by FL
The integration of mmWave technology into FL-enabled 6G communication is linked with
substantial bandwidth consumption due to the continuous exchange of training details
among edge devices. The inherent high data rates of mmWave communication cause
bandwidth limitations, specifically during the phases of FL processes and updating (Al-
Quraan et al., 2023). Therefore, the utilization of mmWave frequencies is dependent on
the efficient data transfer to accommodate model updates exchanged among federated
nodes. This increased demand poses a severe challenge to the seamless integration of
mmWave into FL enabled 6G communication. Similarly, to address this, innovative
solutions must be devised to optimize data transfer protocols (Hafi et al., 2023).
Techniques such as advanced compression algorithms, adaptive modulation schemes, and
prioritized data transmission strategies can potentially effectively manage the critical data
volumes exchanged during FL operations over mmWave frequencies (Li et al., 2023).
Additionally, integrating intelligent bandwidth management mechanisms and
incorporating dynamic allocation and spectrum-sharing strategies are essential to mitigate
potential congestion issues arising from the augmented bandwidth demand. Therefore,
bandwidth limitation is a multifaceted challenge that requires advanced compression
techniques with dynamic bandwidth management to achieve efficient and congestion-free
FL processes in the context of mmWave-enabled 6G communication.

Energy consumption by FL
Integrating mmWave technology into 6G communication, particularly in the context of
FL, presents a significant challenge due to heightened energy consumption during training
and data processing at the edge nodes. The resource-intensive nature of FL processing is
compounded by the energy-demanding characteristics inherent in mmWave transmission,
involving; DL based training at local devices and further, iterative model updates across
distributed nodes (Nguyen et al., 2021). In mmWave communication, the shorter
wavelengths and higher frequencies lead to increased path loss and susceptibility to
atmospheric absorption, necessitating higher transmit power to maintain communication
reliability. This inherent limitation of mmWave contributes to substantial energy
requirements in the overall system (Lim et al., 2020). To address this challenge, the
development of energy-efficient algorithms and protocols are required alongside standard
FL processing over mmWave frequencies. One approach involves optimizing the model
update process to minimize redundant transmissions, employing techniques such as
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sparsity-aware algorithms to reduce the amount of data exchanged (Dinh et al., 2020).
Additionally, incorporating adaptive power control mechanisms can help optimize the
transmit power levels, dynamically adjusting them based on channel conditions to balance
reliability and energy efficiency. Furthermore, the design of compression algorithms
tailored for mmWave FL can significantly alleviate energy consumption. Thus, addressing
the challenge of increased energy consumption in 6G communication with mmWave-
enabled FL demands a holistic approach, from optimizing model updates to implementing
adaptive power control to ensure sustainable and optimized energy usage in this complex
and dynamic communication paradigm (Liu & Simeone, 2020).

Sychnozation requirements in FL
The joint integration of mmWave technology and FL in 6G communication introduces the
challenge of maintaining synchronization in communication and FL processing
(Rodríguez-Fernández, 2021). Due to the significant susceptibility of mmWave signals to
propagation conditions, special attention must be given to maintaining synchronization
among federated nodes. This synchronization is paramount for the seamless and coherent
aggregation of models distributed across various nodes in the FL processing. Similarly,
ensuring a reliable synchronization in Heterogeneous FL enabled 6G networks is critical
for achieving coherent collaboration among distributed nodes (Qi et al., 2023). Similarly,
including satellite links in the BigCom domain of 6G networks introduces additional
latency considerations, necessitating sophisticated synchronization protocols to account
for varying transmission delays (Giordani & Zorzi, 2020). Therefore, the solution in this
domain must exhibit high resilience and adaptability to ensure precise and timely
coordination among distributed nodes throughout the FL process. Achieving
synchronization is challenging in scenarios where propagation delays and signal
distortions have high recurrent probabilities (Chukhno et al., 2023). The intricacies of
mmWave communication, characterized by short wavelengths and susceptibility to
blockages, further complicate the synchronization challenge. Consequently, the successful
resolution of synchronization challenges assumes pivotal importance in unlocking the full
potential of mmWave in FL enabled 6G communication.

Security and privacy in FL
The integration of federated learning (FL) with millimeter-Wave (mmWave) technology
in cellular networks, spanning 4G, 5G, and emerging 6G systems, presents significant
security and privacy challenges (Liu et al., 2020). FL, which enables decentralized model
training across devices without sharing raw data, is attractive for maintaining user privacy.
The study in Yang et al. (2022) presents an estimation algorithm to prevent privacy leakage
in Cybertwin-Driven 6G system. This infers local data distribution from clients without
accessing their raw data. This approach addresses two scenarios in FL: one where the server
receives individual trained models from each device, and another where it receives an
aggregated model, with device selection strategies formulated to optimize training
performance in both cases. However, the decentralized nature of FL introduces
vulnerabilities, such as adversarial attacks where malicious participants can corrupt the
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global model or infer sensitive information through model updates. The study in Bárcena
et al. (2023) introduces a novel FL-as-a-Service framework designed for B5G/6G networks,
particularly in a vehicular networking scenario by leveraging FL with eXplainable AI (XAI)
models. This framework enhances both the accuracy of QoE predictions in local learning
and the trustworthiness. Similarly, FL with mmWave technology, with its high-frequency
bands, enhances network performance but also poses unique security risks, including
increased susceptibility to eavesdropping due to the narrow beam and short-range
characteristics of mmWave signals (Catak, Catak & Moldsvor, 2021). Additionally, the
reliance on dense infrastructure for mmWave deployment raises concerns about physical
security and the potential for infrastructure attacks. As cellular networks evolve from 4G to
6G, ensuring robust security and privacy in the integration of FL with mmWave requires
advanced cryptographic techniques, secure aggregation methods, and enhanced physical
layer security to mitigate these risks effectively.

WAY FORWARD
Given the challenges and insights in this review, we suggest a way forward: Federated
Energy-Aware Dynamic Synchronization with Bandwidth-Optimization (FEADSBO),
that combines aspects of bandwidth optimization, energy efficiency, and synchronization
in FL. Frequency synchronization ensures that the carrier frequencies of transmitters and
receivers are aligned to enable successful signal reception. Precise frequency
synchronization is essential in mmWave communication, where small frequency offsets
can lead to significant performance degradation. Techniques such as carrier aggregation
and frequency tracking algorithms achieve frequency synchronization in mmWave
systems. The core functionality in FEADSBO is the dynamic adjustment of
synchronization frequencies and bandwidth consumption based on energy and resource
availability of participating devices in FL.

Similarly, FEADSBO optimizes bandwidth consumption by prioritizing the transmission
of compressed updates, while adaptive synchronization thresholds dynamically adjust
synchronization frequency based on network conditions and convergence speed. This
comprehensive approach minimizes unnecessary communication overhead, conserves
energy, and ensures timely updates, making FEADSBOa practical solution for FL in
resource-constrained environments such as IoT, edge computing, and mobile devices. The
proposed approach consists of the following components.

Dynamic synchronization
In FEADSBO, participating devices dynamically regulate their synchronization frequency
based on energy availability and computational resources, ensuring that energy-
constrained devices synchronize less frequently to conserve power. Devices dynamically
adjust the frequency of synchronization based on their energy availability and
computational resources. Devices with sufficient energy and computational resources
participate in more frequent synchronization rounds. The system can optimize bandwidth
usage and conserve energy more effectively by allowing participating devices to adjust their
synchronization frequency according to their energy constraints and computational
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capabilities. This dynamic adjustment mechanism helps strike a balance between
synchronization requirements and resource constraints, making mmWave-enabled FL
more sustainable and efficient.

Energy-aware bandwidth optimization
FEADSBO utilizes quantization and pruning-based model compression techniques to
optimize bandwidth consumption during model updates. Prioritizes transmission of
compressed model updates and aggregates them at the server side, reducing the overall
data transmitted over the network. Compressed model updates reduce bandwidth
consumption, allowing for efficient utilization of network resources. Quantization involves
reducing the precision of numerical values in the model, typically from floating-point to
fixed-point representation. This reduces the memory and computational requirements
during model inference, making it more suitable for resource-constrained devices in
federated settings. Likewise, pruning involves removing unnecessary parameters or
connections from the model, effectively reducing its complexity and size. Pruning
techniques can be applied globally or locally across layers, identifying and eliminating
redundant information while preserving accuracy. Together, quantization and pruning-
based compression techniques enable FL to achieve better scalability, faster inference
times, and reduced communication overhead.

Adaptive synchronization thresholds
FEADSBO dynamically sets synchronization thresholds based on network conditions and
model convergence speed. Network conditions encompass several properties that can
influence the synchronization thresholds in a dynamic system. These properties include
network latency, bandwidth availability, packet loss rate, and network topology. Latency
refers to the time delay between data transmission and reception and can vary based on the
distance between devices, network congestion, and routing efficiency. Bandwidth
availability determines the amount of data that can be transferred within a given
timeframe, affecting the speed and efficiency of synchronization processes. Packet loss rate
measures the percentage of data packets lost during transmission, impacting data integrity
and reliability. Network topology defines the structure and connectivity of devices in the
network, influencing communication paths and potential bottlenecks. By considering
these properties, dynamic systems can adaptively adjust synchronization thresholds to
optimize data exchange, minimize latency, mitigate packet loss, and enhance overall
performance based on prevailing network conditions and model convergence speed in FL
environments. Devices with faster convergence or stable network conditions can trigger
synchronization less frequently, while devices experiencing slower convergence or
fluctuating network conditions synchronize more frequently to ensure timely updates.
Dynamic adjustment of synchronization frequency ensures timely updates while adapting
to varying network conditions and device capabilities.

By integrating these above-discussed three aspects into the FEADSBO, FL systems can
achieve improved efficiency in terms of bandwidth consumption, energy consumption,
and synchronization requirements for mmWave spectrum utilization in 6G environment.
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For the FEADSBO, several deep learning-based features can be extracted from different
system components. The potential features that can be extracted from each component,
include: Received Signal Strength (RSS) Channel State Information (CSI) Carrier
Frequency Offset (CFO) Amplitude & Phase Offset Signal-to-Noise Ratio (SNR) Antenna
Array Configuration ADC and DAC Performance Metrics Energy Consumption Metrics.
The proposed FEADSBO utilizes decentralized FL (DFL) and centralized FL (CFL) to
achieve fast convergence by exploiting node-to-node communication. The feature
extraction is performed at each node and the local model is trained on these features. This
established a local level of intelligent synchronization. The local model are shared from
node to node for DFL and simultaneously local model are shared with a centralized server
for the global model in generation. The architecture of the proposed way-forward is
depicted in Fig. 3.

OPEN RESEARCH ISSUES
FL enabled 6G era is still an emerging area, and there is much to explore regarding the
security analysis of this joint technological ecosystem. The following are pertinent open
research issues on the way to achieving secure FL enabled 6G.

FL for high-frequency mmWave communication
The extremely high-frequency radio waves are utterly useful in IAB propagation links and
thus can contribute to the backhaul packet data transmission in either standalone (SA) or

Figure 3 Organization of this article. Full-size DOI: 10.7717/peerj-cs.2360/fig-3

Qamar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2360 28/40

http://dx.doi.org/10.7717/peerj-cs.2360/fig-3
http://dx.doi.org/10.7717/peerj-cs.2360
https://peerj.com/computer-science/


no-standalone (NSA) modes. Nonetheless, with the simultaneous operation of the mm
Wave and mmWave spectrums and the M-MIMO operation, the beam width has an
inverse relationship with the number of directions to be scanned at the network setup time
(Qamar et al., 2019). Narrower directional beams with analog BF and sequential scans can
verily cost initial access delay. Also, a very small size wavelength can easily create hardware
composition problems and thus demand advancement in the hardware equipment to make
it ultra-reliable with massive antenna nodes for both access and backhaul links (You et al.,
2020). The mmWave communication is a promising technology for future B5G/6G mobile
communication services. The massive leap in wireless devices, 3D applications, immersive
multimedia activities, and various Internet-based services will insist on the different
antenna configurations and access to spectrum above 300 GHz. The collaborative work of
mmWave with ultra M-MIMO antenna elements would enable the management of
network resources, different controlling functional parameters, and network operations
affluently (Borges et al., 2021). Yet, the close packet ultra M-MIMO deployment would
complicate signal processing and estimation; therefore, an FL-based assessment with
minimum complexity and computing time is needed to support 6G applications.

FL for energy efficiency in massive antenna system
Severe path loss is an inevitable impediment to mmWave communication. WithM-MIMO
deployment, we can satisfactorily manage the problem at the high cost of EE and hardware
complications. To surmount the poor energy management, a new array design has been
developed wherein the mutual coupling between closely placed antennas is exploited to
form super directive pairs (Borges et al., 2021). Thereby, the effectiveness of the proposed
scheme is shown in three ways, minimize the number of antennas at the BS, increase EE,
and ensure an achievable throughput rate. Principally, signaling cycles are adopted to
construct the carrier leaner under low user mobility or traffic load in a cell(s). The NR 5G
enables a longer sleep duration of up to 160 ms. Therefore, optimizing different parameters
through FL integration mmWave concepts such as system information block 1,
identification of cells, signaling pertinent to CSI, selection or reselection of signaling and
process, and paging, are open research issues (López-Pérez et al., 2021).

Secure integration of mmWave in FL enabled 6G networks
While mmWave communication offers the potential for high data rates and low latency, its
susceptibility to atmospheric absorption and limited range raises concerns about the
reliability and security of communication links (Zhu et al., 2017). In the context of FL-
enabled 6G networks, where decentralized learning models are collaboratively trained
across distributed devices, ensuring the confidentiality and integrity of model updates
becomes critical (Catak et al., 2022). Optimum utilization of mmWave communication
within FL-enabled 6G networks addresses the challenges related to secure key exchange,
robust authentication mechanisms, and privacy-preserving protocols while safeguarding
against potential security threats and vulnerabilities (Kazmi et al., 2023a). Research efforts
are needed to develop efficient cryptographic solutions and communication protocols that
accommodate the unique characteristics of mmWave channels, providing a foundation for
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the reliable and secure integration of mmWave technology in future 6G networks
employing FL.

Mobility in mmWave with FL enabled 6G networks
6G communication leverages mmWave bands for enhanced data rates and capacity.
However, the challenges associated with mobility management have become more
pronounced due to the unique propagation characteristics of mmWave signals (Qamar
et al., 2017). Addressing seamless handovers, efficient beamforming, and context-aware
mobility policies in mmWave environments is essential. Furthermore, incorporating FL
techniques introduces complexities in distributed learning across heterogeneous devices
while ensuring privacy and security (Fernandes et al., 2021). Balancing these aspects to
design a robust and adaptive mobility management framework that optimally exploits
mmWave frequencies while leveraging FL for intelligent decision-making, remains an
intriguing challenge for researchers in the pursuit of realizing the full potential of 6G
networks (Shome, Waqar & Khan, 2022). Thus, integrating mobility management in
mmWave frequencies, coupled with FL mechanisms in 6G, represents a critical open
research issue.

CONCLUSION
The integration of FL into 6G networks, particularly in the context of mmWave
communications, holds immense potential for realizing the promises of ultra-high data
rates and unprecedented connectivity. The unique propagation characteristics and security
challenges associated with mmWave increase the complexity of effectively utilizing this
spectrum. Therefore, in the integrated paradigm of mmWave and 6G network, FL emerges
as a promising solution by enabling collaborative model training while ensuring data
privacy. This comprehensive review has delved into the concepts of mmWave
communications within the context of FL-enabled 6G networks, identifying challenges
such as bandwidth consumption, power consumption, and synchronization requirements.
By critically analyzing identified challenges, this study also suggests a FL based way
forward for integrated scenarios of mmWave and FL. Thereby, this review has highlighted
potential open research issues. The insights presented in this study pave the way for a
transformative synergy between the mmWave spectrum and FL enabled 6G networks.
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