
Image credits: 
Jaroslav Červený

A Generalized approach to the operationalization of 
Software Quality Models PeerJcs-2357

Clemente Izurieta, Derek Reimanis , Eric 
O'Donoghue, Kaveen Liyanage, A. Redempta Manzi 
Muneza, Bradley Whitaker, Ann Marie Reinhold

This is an open access graphic 
distributed under the terms of the 

Creative Commons Attribution License.

Capturing the notion of quality is a wicked problem 
(Rittel and Webber (1973)) because of the inherent 
variability from multiple sources such as tools, tool 
versions, and measurement scales. Further, the 
subjectivity of a quality score is influenced by the 
mechanisms associated with the weighting of 
characteristics against each other, the lack of 
appropriate domain-specific benchmarks that can 
be used to calibrate scores, and the selection of 
tools that can act as proxies for theoretical 
characteristics (e.g., ISO models).

Deficiencies in software quality cause billions of dollars in losses and degrade organizational 
reputation. To address these deficiencies, we have developed a framework that implements 
Hierarchical Software Quality Assurance (HSQA)— PIQUE. PIQUE is effective because it provides 
a systematic approach for identifying deficiencies in software quality—including crucial 
characteristics such as cybersecurity. By identifying these deficiencies with PIQUE, developers 
can make necessary adjustments to ensure best practices are fully implemented—such as 
modifiability-by-design and security-by-design. These best practices are critical for securing the 
software supply chain and protecting our digital systems across industry, government, and 
military sectors. These digital systems incorporate numerous, large, and complex software 
projects—projects that cannot afford to fail. By providing a means for the thorough evaluation, 
PIQUE catches defects early to prevent weaknesses in code from becoming crises.

INTRODUCTION

Finally, it is important to emphasize that future work in SQA is paramount given the 
proliferation of software technology. Everything is connected, from personal 
technologies to critical infrastructure, which creates a landscape where the ripple effects 
of a poorly constructed software component can propagate through the supply chain 
with unknown and untraceable consequences. For this reason, we must address 
software quality as a first class citizen and evangelize software quality by design. With 
PIQUE, we aim to continue to elevate the importance of software quality by incorporating 
newer techniques and technologies as they emerge. Significant improvements in 
machine learning and accessibility to a larger open source corpora of examples are 
compelling reasons to continue to evolve the quality assurance landscape.

CONCLUSION

A Generalized approach to 
the operationalization of 
Software Quality Models

Can we develop an extensible, flexible, and independent framework 
for operationalizing software quality across various domains, while 
enabling modelers to independently select their tools?

RESEARCH QUESTION:

Specifically, we deliver the following contributions with the PIQUE framework:

PIQUE contributes to the academic community because it offers a platform that can be used
to experiment with new techniques to assess the quality of systems. PIQUE includes new
aggregation techniques, machine learning capabilities, weighing of characteristics, and
visualization. The practitioner community also benefits because many organizations are
unlikely to devote resources to developing these frameworks. They instead use “out of the
box” technology that can be deployed quickly.

THE PIQUE FRAMEWORK

CONTRIBUTIONS

1. We extend the capabilities of prior art by 
specifying a new meta-model that allows 
for the operationalization of agnostic 
quality models that can be tailored to 
use any underlying standards such as 
ISO, STRIDE, CWE families.

2. We have developed improvements in 
aggregation techniques, benchmarking 
and utility function mapping. We have 
also improved on manual weighing 
approaches between layers of a 
hierarchical model by employing ML 
techniques that are trained on 
exemplary data.

3. We allow developers to integrate new 
tools, and leverage existing tools that 
can connect to PIQUE models.

4. We provide visualization technology that 
addresses concerns of high-level 
management as well as model 
developers. Visualization aids for the 
latter, to aid with debugging at 
individual node levels, are lacking.

5. We exemplify the deployment of PIQUE 
through two deployed use cases.

6. We provide an extensible metamodel of 
the PIQUE framework. The metamodel is 
designed with extensibility in mind.

Process for generating an operational PIQUE model. From left to right, a model developer begins the 
process by using a generic model that is customized with QA attributes commensurate with the target 
domain (e.g., MS STRIDE), then the importance of the contributions of various attributes at lower levels is 
captured through a weighing approach. Finally, tools available in the domain are connected to the model to 
achieve full operationalization.

The PIQUE Framework metamodel. The structural model is drawn using the Unified
Modeling Language (UML) where red dashed arrows represent interface realizations and black solid
arrows represent class inheritance.

Partial view of the SBOM security model. The 
right-hand side of the image displays the 
names of the various layers, spanning from 
the “Diagnostics” which represent tool 
outputs, to the Total Security Index (TSI) at 
the top of the tree that provides a holistic QA 
score. The complete SBOM security model 
contains 7 quality (security) aspects aligned 
with selected ISO/IEC 25010 standard 
(security sub-characteristics) and MS STRIDE, 
42 product factors, 403 measure, and 806 
diagnostic nodes at its lowest level.

(A) Visualization dashboard of high-level 
characteristics of a PIQUE model. Users can 
access pie charts and aggregated scores at 
the Aspect levels 
(B) Visualization of lower layers of the PIQUE 
model. At the lowest level, developers and 
modelers can review actual scores produced 
by tools and the weights associated with the 
edges connecting hierarchical levels of the 
tree. This figure is courtesy of the Software 
Engineering Laboratory at Washington 
State University.


