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ABSTRACT
Comprehensive measures of quality are a research imperative, yet the development
of software quality models is a wicked problem. Definitive solutions do not exist
and quality is subjective at its most abstract. Definitional measures of quality are
contingent on a domain, and even within a domain, the choice of representative
characteristics to decompose quality is subjective. Thus, the operationalization of
quality models brings evenmore challenges. A promising approach to quality modeling
is the use of hierarchies to represent characteristics, where lower levels of the hierarchy
represent concepts closer to real-world observations. Building upon prior hierarchical
modeling approaches, we developed the Platform for Investigative software Quality
Understanding and Evaluation (PIQUE). PIQUE surmounts several quality modeling
challenges because it allows modelers to instantiate abstract hierarchical models in any
domain by leveraging organizational tools tailored to their specific contexts. Here, we
introduce PIQUE; exemplify its utility with two practical use cases; address challenges
associated with parameterizing a PIQUE model; and describe algorithmic techniques
that tackle normalization, aggregation, and interpolation of measurements.

Subjects Data Science, Software Engineering
Keywords Software quality, Software engineering, Quality assurance, Quality models, Data
science, Data aggregation

INTRODUCTION
Software quality assurance (SQA) models are structured frameworks that assess the
quality of software, typically by calculating an overall total quality index (TQI). The
TQI indicates the degree to which measurements and observations of selected attributes
meet the expectations of predefined criteria. Typically, these criteria combine high-level
characteristics, such as maintainability, portability, scalability, security, efficiency, usability,
reliability, and functionality. Often, these characteristics are delineated in standards such
as the ISO/IEC 25010 (ISO, 2011).

While many factors affect an SQA model, the seminal step is selecting the high-level
characteristics (sometimes specified by a standard) against which software will be measured
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(e.g., ISO/IEC 25010). Standards provide important theoretical definitions and descriptions
of quality characteristics. However, standards do little to inform implementation. The
theory described in the standards must be operationalized. Experimental comparisons of
the SQA models Quamoco by Wagner et al. (2015), QATCH by Siavvas, Chatzidimitriou
& Symeonidis (2017), and SQALE by Letouzey & Coq (2010) indicate a notable disparity
between the quality assessments under these models. Causes for the disparity can range
from the selection of tools, internal SQA mechanisms, and environment configurations.
Thus, different operationalizations result in different findings.

Operationalizing a quality standard requires measuring key external quality
characteristics using tools that can quantitatively collect selected metrics that serve as
proxies for the quality characteristics. For example, Cyclomatic Complexity and Code
Density can be used as metrics to address Mainatainability. Similarly, Failure Rate and
Mean Time Between Failures (MTBF) can be used as proxy metrics for Reliability, and
Number of Vulnerabilities can also be a metric for Security. Any candidate tool should be
evaluated to ensure that the tool does not threaten the construct validity of the theoretical
quality attribute the tool is intended to measure. In other words, can the metrics that a tool
uses serve as proxies for the real world quality attributes they pretend to measure. While
simple in concept, this evaluation is challenging in practice.

Tool selection is crucial and non-trivial. In SQA models, errors reported by tools
informing a model create systematic errors that propagate, creating uncertainty that is
challenging to constrain and quantify (Izurieta et al., 2013). This challenge is prevalent in
SQA modeling because often different tools report different findings in the same software
artifact, even when their intended purpose is the same as reported by Reinhold et al. (2024).
In addition, multiple versions of a single tool often report a wide range of findings in the
same software artifact (Reinhold et al., 2023; Reinhold et al., 2024). Moreover, the number
of findings reported by a tool is contingent on the configuration options of the tool and
the host.

Once tools are selected, their findings must be combined to provide a comprehensive
quality index. Combining results from multiple tools involves aggregating findings that
may or may not measure the same quality characteristic. In addition, findings often must
be aggregated despite reporting results on different scales (e.g., ratio vs. ordinal) or ranges.

Aggregation typically requires defining various bottom-layer measures, such as lines of
code (LoC) and number of classes (NC), and subsequently introducing a parent layer of
normalized measures. Normalized measures are used to make software metrics comparable
across projects by adjusting measurements based on the size of the code. This facilitates
a way to compare various attributes of software quality, such as maintainability, in a
normalized manner, making it easier to draw meaningful comparisons.

Aggregation methods can range from simple calculations of weighted averages to more
intricate data transformations. Data transformations, particularly aggregation, threaten
the internal and conclusion validity of an SQA due to the complexities and potential biases
involved in combining multiple measurements into a single value. Ensuring accurate and
representative edge weights is essential to maintain the validity of the model.
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Internal validity refers to the extent to which a model accurately represents relationships
between variables and conclusion validity refers to the ability to draw accurate conclusions
from the results of themodel. Data transformations, such as normalization and aggregation,
can introduce biases if not handled properly. For example, if the edge weights used in
aggregation are not representative of the actual importance of each measurement, the
resulting aggregated value may not accurately reflect the true quality of the software and
provide a wrong assessment of quality. This can lead to incorrect conclusions about the
software’s quality. Inappropriate edge weights produce systematic errors and uncertainties
(e.g., Izurieta et al., 2013) that propagate within a model. Thus, aggregation is a linchpin in
constructing an SQA model.

Constructing a valid SQAmodel remains awicked (https://en.wikipedia.org/wiki/Wicked_
problem) challenge and measurability is one of the hardest open research problems (The
White House, 2024). The quality index produced by an SQAmodel is a quantitativemeasure
of interrelated qualitative constructs. Calculating a quality index is intrinsically complex
and inherently subjective due to tool instability, changing requirements, and a lack of
definitive measurement formulas for quality attributes. Also, calculating a quality index
relies on selecting weights that assign importance to quality characteristics numerically.

Strategies for assigning numeric weights rely on manual inputs. Inputs are weighted
using strategies that range in complexity from manual assignment to algorithms such
as the analytical hierarchy process (AHP). For instance, Quamoco weights are created
based on human-gathered importance orderings that are processed using the rank-order
centroid method by Barron & Barrett (1996). These weights are then applied uniformly
across all characteristics within the quality model hierarchy. The evaluation moves up the
hierarchy through a weighted summation process. Conversely, the QATCH quality model
utilizes AHP (Saaty, 2008), a method that establishes a numeric ordering of importance via
pairwise comparisons. Quality concepts, such as security, maintainability, or installability,
serve as objects for comparison. An extension of this process is the fuzzy-AHP, allowing
practitioners to input their uncertainty assessments for each pairwise comparison.

Uncertainty is an important factor in weighting strategies because parameterizing edge
weights can introduce errors. Weighting requires some manual inputs, and the complexity
increases with the growing number of characteristics in an SQA model. Thus, the ability of
SQA models to support adaptive edge weighing is necessary for large models.

The complexity of large SQA models and the potential for errors to be introduced
at multiple levels make effective visualization imperative. Because threats to validity can
be introduced at each level, developers need the ability to visualize how their choices
(e.g., tools, edge weights) impact their models at each level and as a whole. However, to
date, visualization tools for SQMs that our team has researched have been focused on the
end-user rather than the developer. Thus, providing SQM developers with visualization
tools to assist in assessing and debugging quality models (e.g., normalization, aggregation,
tool APIs) is a critical research objective.

Software quality modeling is a classic E-type system problem (Lehman, 1980). Despite
the many challenges associated with software quality modeling, SQMs provide in-demand
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information for government (CISA, 2022) and industry alike. Thus, software quality
modeling remains an important objective for researchers and practitioners alike.

Given the challenges presented above, multiple opportunities for improvement exist
in the design and development of quality frameworks. Although not comprehensive, we
attempt to seize those opportunities tomitigate potentially significant threats to the internal
and conclusion validity of models. To help us guide the research and development of a
new quality framework, we asked the following research question (RQ):

Research question
Can we develop an extensible, flexible, and independent framework for operationalizing
software quality across various domains, while enabling modelers to independently select their
tools?

We describe models created with our approach as Hierarchical Software Quality
Assurance (HSQA) models. HSQA models are improvements to existing SQMs. HSQA
models build on years of theory involved with hierarchical SQA. In addition, they
incorporate multiple steps to reduce threats to validity and enhance the calibration and
evaluation of software artifacts.

Objectives and Contributions
Recognizing the limitations of current methodologies and the imperative to advance
existing practices, this work’s principal objective is to create a framework empowering
software quality engineers to generate, validate, and operationalize quality models. The
aim is to enhance the efficiency of efforts, facilitate experimentation, and foster collaborative
opportunities. The contributions of this work encompass:
1. Platform for Investigative software Quality Understanding and Evaluation (PIQUE),

an HSQA framework: Engineered to expedite the creation of experimental quality
models that are easy to operationalize and emphasize improvements in aggregation
techniques, Machine Learning (ML) weight selection, tool selection, and the overall
ease of model generation.

2. Developer visualization tool: A tool tailored for developers, enhancing their ability to
comprehend and engage with the intricacies of quality models.

3. Deployed HSQA models: Exemplars of operationalized HSQA models addressing
diverse quality concerns, serving as practical demonstrations of the framework’s
capabilities.
We address these objectives as follows. In ‘A Brief History of Software QualityModelling’

we provide a longitudinal description of related work beginning with early techniques in
quality assurance modeling followed by hierarchical approaches alongside complementary
tools. In ‘A Generalized Approach’, we explore the PIQUE framework and describe
its internal structure, metadata model, the software components that make the core
framework, the tool selection process, and the generation, execution, and visualization
of PIQUE models. ‘Internal Framework Mechanics’ focuses on the internal mechanisms
that PIQUE uses to calculate a quality score, specifically, normalization, score mapping,
aggregation, and ML weight selection. In ‘Use Cases’ we exemplify the PIQUE framework
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through two use cases. Finally, ‘Threats to Validity and Conclusions and Summary’ describe
the threats to validity and conclusion respectively.

A BRIEF HISTORY OF SOFTWARE QUALITY MODELLING
Research in SQA can be dated back to the 1970s. In 1976 Boehm, Brown & Lipow (1976)
introduced the first quality model highlighting three top-level software qualities: utility,
maintainability, and portability. Following this, in 1977, McCall (1977) proposed a more
compact hierarchical model that only had two levels, and subsequently, in 1978 Boehm et
al. (1978) expanded on their seminal work. Both models presented similar decompositions
of software quality by employing abstract characteristics which were then decomposed
into more concrete sub-characteristics. Although the modern ISO/IEC 25K standard is
divided into five separate divisions, many of its categories (i.e.,Quality In Use and Software
Product Quality) can be directly linked to the principal concepts of earlier models.

In the 1980s we see additional models that expand on early work. Grady & Caswell
(1987) also propose a hierarchical decomposition of categories. This research led some
software companies to adopt variations of these early models. The Functionality, Usability,
Reliability, Performance, and Scalability (i.e., the FURPS) model by Grady (1992) for
example, was used extensively by companies like Hewlett Packard Co. during their
software lifecycle and especially during the final quality assessment of their software
(e.g., HP-UX Operating System releases). Eeles (2005) expanded upon this model by
introducing additional sub-characteristics, labeling it FURPS+, and integrating it into
the IBM Unified Rational Process led by Kruchten (2000). In the FURPS models, each
characteristic of quality required test engineers to identify suitable metrics to satisfy release
criteria. These models are perceived as early operationalized frameworks adopted by
industry.

Early research in software quality models and feedback from their early commercial use
also revealed the need to make tradeoffs and balance the influence of sub-characteristics to
help adjust scores to meet contextual constraints. The breakdown of quality characteristics,
along with acknowledgment of the weighted influence of these categories, led to the
formation of the initial ISO standards and hierarchical evaluation techniques for quality,
which were also impartial to specific products.

Modern hierarchical models
The 1990s mark a transition for software quality models. This decade sees a shift to
vendor-neutral standards. In 1991, the ISO/IEC 9126 (ISO-IEC, 1991) surfaced as the first
theoretical hierarchical model with a limited number of high-level characteristics. This
model, however, lacked important quality aspects and evolved into the ISO/IEC 25010
SQuaRE model (ISO, 2011), which kept the hierarchical approach but expanded upon its
predecessor by adding the security and compatibility characteristics.

Despite improvements, these models only focus on the top half of the hierarchy
(i.e., external quality characteristics), leaving out necessary details tomake them useful.Van
Zeist & Hendriks (1996) and Samoladas et al. (2008) both presented extensions to the
ISO/IEC 9126. Van Zeist & Hendriks (1996) collaborated with six established companies
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to produce the QUINT (Quality in Information Technology) framework. The first version
resulted in a handbook (Punter, van Solingen & Trienekens, 1992) describing a software
quality model and guidelines on how to use it. The second version of QUINT extended the
framework by referencing the Extended ISO 9126 model. Samoladas et al. (2008) quality
model focused on Open Source Systems (OSS) and extended some characteristics based on
the ISO/IEC 9126. Although other quality models had tackled OSS systems, they required
significant effort to set up. In this model, the authors required limited user interaction
once the profile of the quality model assessment was established.

One of the earlier operational hierarchical models focused on object-oriented systems.
The Quality Model for Object Oriented Design (QMOOD) software quality model was
proposed by Bansiya & Davis (2002) and was based on Dromey (1995) which presented
a quality model that used a hierarchy based on structural concepts of a system (class,
function, object) instead of quality concepts such as maintainability, reliability, and
usability. QMOOD is based on six quality characteristics that tie the quality of code to the
quality of the design. Themodel is still used today and is effective in several open-source and
e-commerce studies. However, operational constraints hinder the metrics’ effectiveness
across software updates and releases. The advent of Agile, DevOps, and Continuous
Integration/Continuous Development (CI/CD) characterize new development approaches
marked by frequent software changes. The instability of these environments with integrated
stakeholder feedback, significantly diminishes the efficacy of the QMOOD metric suite.

In 2003, Franch & Carvallo (2003) presented a variety of metrics in an attempt to use
quality models to assess the quality of software package selection. Most methodologies
proposed for choosing software packages compared user requirements with the packages’
capabilities rather than focusing on quality requirements. The authors attributed this to
the lack of package descriptions and their corresponding quality requirements in specific
domains. They proposed a six-step method to operationalize the ISO/IEC 9126 model.

The SIG maintainability model (Heitlager, Kuipers & Visser, 2007) was introduced
as a distinct approach that only presents a maintainability model. This model assesses
sub-characteristics related to maintainability by contrasting them with five source code
properties: volume, complexity per unit, duplication, unit size, and unit testing. This
approach coincides with efforts to focus on parsimonious models of characteristics that can
be operationalized and that are well understood, or that resonate with software developers.
The focus on maintainability coincides with the efforts of the technical debt community
(e.g., Izurieta et al. (2018); Izurieta & Prouty (2019)) where there is now consensus to
address maintainability issues earlier rather than later. ‘‘Technical Debt presents an actual
or contingent liability whose impact is limited to internal system qualities, primarily
maintainability and evolvability’’ (Avgeriou et al., 2016).

Introduced in 2009, the SQUALE model and framework (Mordal-Manet et al., 2009)
is founded on the ISO/IEC 9126 quality model, emphasizing practical applicability in
industrial settings. SQUALE enhances ISO/IEC 9126 by incorporating a more detailed
intermediate layer through a concept known as practices. While it furnishes additional
metrics for in-depth assessment, the framework includes valuable tool support and
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visualization features. However, the model lacks modularization and doesn’t establish a
robust link between low-quality scores and specific low-level code issues.

The SQALE model by Letouzey & Coq (2010), introduced in 2010, adopts a distinct
approach to quality modeling by associating quality with technical debt values determined
by remediation costs. It organizes the model into hierarchical layers, ranking them using
calculated values of testability, reliability, changeability, efficiency, maintainability, and
reusability. Notably, SonarQube (https://www.sonarsource.com), a widely used framework
and continuous integration quality monitoring service, employs SQALE as its foundational
quality model for assessments.

The PIQUE framework presented in this study is preceded and influenced by multiple
publications on quality models, namely, Quamoco by Deissenboeck et al. (2011), Wagner
et al. (2012), Wagner et al. (2015), Izurieta, Griffith & Huvaere (2017), and the Quality
Assessment Tool CHain (QATCH) by Siavvas, Chatzidimitriou & Symeonidis (2017). These
models bridge the gap between the low-level layers representing directlymeasurablemetrics,
and the higher-level layers representing more abstract theoretical quality aspects. The
authors of Quamoco explicitly stated, ‘‘Our aimwas to develop and validate operationalized
quality models for software together with a quality assessment method and tool support
to provide the missing connections between generic descriptions of software quality
characteristics and specific software analysis and measurement approaches.’’

Kitchenham et al. (1997) recognized the need for a meta-model in their early SQUID
approach to describe the complexity of potential instances of models. Quamoco also
includes a meta-model that is generic and extendable, modularized, and integrated with
benchmarking data. Developed in 2017, QATCH is a quality modeling project that, unlike
the Quamoco project, doesn’t adhere to a meta-model description and lacks extensive
validation efforts. However, QATCH stands out by concentrating on an automated
approach to generate quality models that are attuned to and responsive to the subjectivity
of stakeholders. In contrast to the Quamoco model, the number of layers in QATCH is
restricted to three. The authors argue that the benefits of comprehensibility, explainability,
and ease of extension their model brings outweigh the loss of granularity brought by large,
complex models. The QATCH model also introduces the Analytical Hierarchy Process
(AHP) (Saaty, 2008) that uses pairwise comparisons between characteristics to derive a
numeric ordering of importance to high-level aspects of quality. AHP can be used as a
rudimentary way to elicit the model’s higher-level weights. The obvious drawback is that
as the number of characteristics increases, the pairwise comparisons square in size.

A current effort in quality modeling is the contribution made by Bass, Clements &
Kazman (2021) from the Software Engineering Institute (SEI). They attempted to provide
an alternative to the ISO/IEC 25010 standard by significantly reducing the high-level
characteristics and sub-characteristics from approximately 40 to 10. Reservations remain
regarding the content validity of this model.

Measurement and Tools
Numerous tools can inform HSQA models by providing critical data that help assess
many aspects of software quality. These tools can be broadly categorized into several
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types based on their functions and the aspects of quality they address, however, PIQUE
focuses on Static Analysis Tools (SATs) that capture metrics of source code or binaries.
Other categories such as dynamic analysis, code coverage, and continuous integration
tools are not specifically addressed. The comparison and contrast of these tools is
beyond the scope of this paper; however, this section is meant to help communicate the
expanse of available tools, in particular, the tools that the authors have been exposed
to. These tools are available for conducting static analysis of source code, binaries,
Software Bill of Materials (SBOM) components, cloud services, and microservices
packages. Examples include tools for assessing coding styles (e.g., Checkstyle (https:
//checkstyle.sourceforge.io/)) and identifying source code warnings and bugs (e.g., Lint
(https://man.freebsd.org/cgi/man.cgi?query =lint&manpath =FreeBSD+11.2-RELEASE),
PC-Lint (https://pclintplus.com/), FindBugs (https://findbugs.sourceforge.net/), PMD
(https://pmd.github.io/), Roslynator (https://github.com/dotnet/roslynator), Security
Code Scan (https://security-code-scan.github.io/), SonarQube, and Insider (https:
//github.com/insidersec/insider). Further, specialized tools focus on binary analysis, with
the aim to detect potential security threats, weaknesses, and vulnerabilities in a compiled
program. Examples include CVE Binary Tool (https://github.com/intel/cve-bin-tool) (‘‘cve-
bin-tool’’ developed by Intel) and cwe-checker (https://github.com/fkie-cad/cwe_checker)
(developed by the German research organization Fraunhofer FKIE). Tools to help
assess SBOM analysis include Grype (https://github.com/anchore/grype) and Trivy
(https://github.com/aquasecurity/trivy).

A GENERALIZED APPROACH
The PIQUE framework represents a progression from prior quality models, involving
multiple iterations and enhancements across various components of this complex software
suite. Rice (2021) adopted techniques from earlier quality models into the initial versions
of PIQUE. The framework has undergone many refinements from these earlier techniques,
resulting in improvements to the software framework.

We describe the details of PIQUE’s model structure in ‘Model Structure’, the process
of selecting tools that inform the model in ‘Tool selection’, and the iterative process to
generate an operationalized PIQUE model in ‘Model Generation’. The steps to generate a
PIQUE model are as follows:
1. Determine model structure

(a) Select high level quality characteristics of the model
(b) Determine the number of layers needed to represent subcharacteristics of each high

level characteristic
(c) Determine the relative importance of characteristics and subcharacteristics by

assigning weights
2. Select the SATs that will inform the operationalization of PIQUE
3. Model generation

(a) Determine PIQUE model interfaces to implement
(b) Determine behaviors for aggregation, normalization, and utility function scoring
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(c) Determine a benchmarking corpus (if available) to compare against and run PIQUE
in benchmarking mode

(d) Instantiate PIQUE and run it in assessment mode against a target
(e) Iterate and refine the model
Figs. 1 and 2, depict the structure and the operationalization of PIQUE respectively.

The methodology used to develop this generalized approach encapsulates ideas from prior
art and multiple iterations of improvements to the internal mechanisms (see ‘Internal
Framework Mechanics’) of PIQUE informed by multiple deployments of this technology.
Operationalized versions of PIQUE are presented in ‘Use Cases’, illustrating its application
via exemplary use cases.

Model Structure
PIQUE (https://github.com/MSUSEL/msusel-pique) features the breakdown of quality-
related characteristics into a hierarchical tree-based data structure. In Fig. 1 we depict a
generalized view of the structure of PIQUE, and in Fig. 2 we depict the general approach to
generating and operationalizing a quality assurancemodel based on the PIQUE technology.
Because PIQUE is tool agnostic, we can leverage multiple tools and interface them with
PIQUE, thus allowing practitioners a choice in using their preferred tools. PIQUE models
are hierarchical and provide layered and holistic overviews of assets. The technology
leverages existing static analysis methods as inputs and scores the quality and security of
software artifacts. Scores are provided at multiple levels in the hierarchy—with audiences
that range from developers to project managers to C-suite executives. Troubleshooting at
lower levels allows developers to understand scoring techniques and calibrate tool inputs
to the model, whereas the higher levels of the PIQUE model provide summaries (albeit,
with a loss of accuracy) that target management and security operations.

PIQUE is a collection of library functions and runner entry points designed to support
experimental software quality analysis from a programming language and component-
agnostic perspective. To remain agnostic, the PIQUE framework is structured as a library
that provides the abstractions, interfaces, and algorithms necessary for quality assessment
but leaves the task of defining specific analysis operations to dependent projects. To
improve adoption, this framework provides default classes for each quality assessment
component, and thus allows the platform to be used ‘‘out of the box.’’ For experienced
practitioners with quality assessment approaches, the platform allows each component to
be overridden with experimental approaches.

Software components
The PIQUE framework has five software components that work together to achieve quality
benchmarking and assessment: Runner, Analysis, Calibration, Model, and Evaluation. The
PIQUE framework is viewed as a library, and a model developer must implement relevant
classes/interfaces from the library to build a functional PIQUE model.

Runner: The Runner component provides the abstractions necessary to automate three
software components necessary for quality assessment in PIQUE: (1) Deriving a quality
model, (2) benchmarking the quality model based on similar projects, and (3) using that
model to assess the quality of a system.
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Figure 1 High-level depiction of the structure of a PIQUEmodel. In this figure, we use PIQUE to assess
the quality associated with security aspects only. The tree structure is subdivided into high-level business
goals that typically represent abstract concepts. Further down the hierarchy, we depict measurable con-
cepts, and in the lowest level of the tree, we depict the tool layer. Findings from runnable tools propagate
up the tree according to various aggregation, normalization, and utility function techniques that are either
preconfigured or extended by a model developer.

Full-size DOI: 10.7717/peerjcs.2357/fig-1

Analysis: The Analysis component provides the abstractions necessary for specific
PIQUE extensions to instantiate analysis tools connected to the model. For every analysis
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Figure 2 Process for generating an operational PIQUEmodel. From left to right, a model developer be-
gins the process by using a generic model that is customized with QA attributes commensurate with the
target domain (e.g., MS STRIDE), then the importance of the contributions of various attributes at lower
levels is captured through a weighing approach. Finally, tools available in the domain are connected to the
model to achieve full operationalization.

Full-size DOI: 10.7717/peerjcs.2357/fig-2

tool in the PIQUE model, these abstractions in the Analysis component include function
definitions to (1) Programmatically run the analysis tool and (2) Parse the output from the
analysis tool into Finding or Diagnostic nodes.

Calibration: The Calibration component provides the abstractions necessary to allow
modelers to prioritize particular characteristics over others, including the implementation
of domain-pertinent information. The Calibration component consists of twomodules, (1)
Weighter, which provides classes that implement the logic to assign edge weights within the
model, and (2) benchmarker, which provides classes to perform benchmarking, a process
that involves establishing the distribution of every analysis tool result. Default classes are
provided for each module within the Calibration component, yet model accuracy may
improve by extending to the classes of this component.

Model: PIQUE is, at its core, an implementation of the family-tree data structure,
a generalization of the tree data structure in which any node can have more than one
parent. The Model component provides the abstract and concrete classes necessary for the
structure of the model, namely classes for each of the model layers discussed in Table 1.
Additionally, the Model component provides concrete classes with the functionality to
serialize and deserialize the model. Generally, classes from the Model component are not
extended because they are fundamental to the vision of PIQUE.

Evaluation: The Evaluation component provides the necessary functionality for quality
model evaluation and assessment. It provides the algorithms and strategies used for model
evaluation (i.e., the calculation of the TQI); specifically the (1) Normalizer, which provides
classes that normalize findings based on system meta-data, (2) Evaluators, which provide
strategies required to aggregate values between layers, and (3), Utility Functions, which
provide the algorithms to perform interpolation on the distributions found from findings
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Table 1 Definition of terms associated with each level of a PIQUE tree. The table begins with definitions of the highest-level nodes and ends with
nodes directly connected to tools. PIQUE builds on existing literature fromWagner et al. (2012) and adopts prior terminology.

Node Definition Resource

Quality aspects High-level factors that express abstract quality goals that cannot be
measured directly.

Wagner et al., 2012, 101–123

Product factors Nodes that can decompose into directly measurable concepts, generally
attributes of the parts of a product or subfactors of quality aspects that
further concretize a system.

Wagner et al., 2012, 101–123

Measures Concrete definitions of product factor values. A measure holds the
knowledge of its relevant benchmarked utility functions and contains
the evaluation information needed to calculate its value from incoming
diagnostics. A measure provides a ‘score’ of a particular analysis result,
scoring the analysis result from a system under evaluation to every simi-
lar analysis result from a collection of similar systems (also referred to as
the benchmark repository).

Wagner et al., 2012, 101–123

Diagnostic A representation of the parts needed for a measure to evaluate. A di-
agnostic must evaluate directly from the results of its connected tool’s
output.

Rice (2021, 48–50)

Finding Data object representation of a ‘‘hit’’ from its associated analysis tool. A
finding is only instantiated after its associated tool has run an audit on
the system under evaluation.

Rice (2021, 48–50)

on the benchmark repository. Default implementations of each are provided by default,
yet model accuracy may improve by finessing or extending these classes.

PIQUE metamodel
The design of the PIQUE framework metamodel is shown in Fig. 3 and comes from
reviewing the strengths and weaknesses of previous modeling approaches, and is heavily
influenced by the QATCH and Quamoco hierarchical models. The former was designed
with simplicity in mind by keeping the number of layers constrained to three (i.e.,
characteristics, properties, and measures layers), while the latter allowed for arbitrarily
deep hierarchies consisting of characteristics, aspects, factors, and measures, where factors
could also be subdivided into more sub-factors. In PIQUE we balanced these approaches
and subdivided the hierarchy (from top to bottom) with aspects, factors, measures,
diagnostics, and findings, where the terms are defined in Table 1.

These terms provide descriptions of concepts that serve as an initial starting point for
hierarchical model design, yet are flexible enough to allow for interchangeability based
on the scope of the system under analysis. In our observations, we’ve discovered that
practical scenarios, such as specific stakeholder demands and situations necessitating
systems analysis, often determine whether the node embodies a more abstract or concrete
meaning.

Tool selection
Tool selection requires careful consideration of the underlying model. PIQUE features the
breakdown of quality-related characteristics into a hierarchical tree. The characteristics and
sub-characteristics comprising the PIQUE model are selections made by domain experts.
For example, a practitioner wishing to evaluate the quality of source code in a given system
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Figure 3 The PIQUE frameworkmetamodel. The structural model is drawn using the Unified Modeling
Language (UML) where red dashed arrows represent interface realizations and black solid arrows repre-
sent class inheritance.

Full-size DOI: 10.7717/peerjcs.2357/fig-3

will likely select an ISO model (e.g., ISO 25K) as the top-level characteristics, whereas a
practitioner focusing on security may select Microsoft’s STRIDE model as the top-level
characteristics. Further, quality is subjective, and the construction of a hierarchical model
can be tailored to adjust to new notions and interpretations of quality that potentially
combine underlying models, reference documents, or characteristics from diverse sources.
For example, the quality of an SBOM artifact is of high importance to help assess the
security of the supply chain and could combine notions of adherence to SBOM standards
as well as the quality of the software represented and its dependencies.

The top-level characteristics help modelers with the selection of complementary
tools. The tools selected should ideally meet the representation condition (Fenton &
Pfleeger, 1996) of the measured theoretical characteristics (and sub-characteristics). Poor
representation increases the construct validity of these models. As shown in Fig. 2, tools are
connected to the model during PIQUEmodel instantiation. Importantly, we emphasize the
ability of an organization to leverage existing tool investments in their organizations. By
leveraging and combining tools we help with the generation of a holistic review of quality in
context. Our experience selecting tools during the development of various PIQUE models
is shown in Table 2. We also provide information describing the underlying model (i.e.,
characteristics) used to compare operational results against. Measurements obtained from
tools are diverse (i.e., different ranges, scales, etc.) and the processes of aggregation and
normalization are explained in detail in ‘Internal Framework Mechanics’.

Model Generation
Generating a PIQUE model involves several steps including model design, model
implementation, benchmarking, and finally model assessment. The greater process is
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Table 2 Metadata associated with various models was used to build PIQUEmodels. The first column shows the metadata. The underlying model
describes the reference(s) used to select top-level characteristics in a PIQUE model. The High-Level Characteristics are the selected Quality Aspects
in the PIQUE model, and the Tools represent the best available tool selected as a proxy to measure the characteristics.

Software
quality

Software
security

Binaries Programmable
logic
controllers

Cloud SBOM
security

Underlying Model ISO 25010 STRIDE STRIDE CWE-699 Top 20 Secure PLC
Programming Practices
(https://github.com/
VirusTotal/yara)
Valentine Taxonomy
(Valentine, 2013)
PLCOpen Guidelines on
Software Quality Metrics
(https://github.com/
VirusTotal/yara)

ISO 25010
CWE-1000

ISO 25010 secu-
rity section STRIDE
CWE-699

High-Level
Characteristics

Functionality,
Performance,
Compatibility,
Usability,
Reliability,
Security,
Maintainability,
Portability

Spoofing,
Tampering,
Repudiation,
Information
disclosure,
Denial of
service, and
Escalation of
privileges

Spoofing,
Tampering,
Repudiation,
Information disclosure,
Denial of service, and
Escalation of privileges

Reusability,
Testability,
Efficiency,
Maintainability,
Reliability,
Rule-based Issues

Functionality,
Performance,
Compatibility,
Usability,
Reliability,
Security,
Maintainability,
Portability

Confidentiality,
Integrity,
Non-repudiation,
Authenticity,
Accountability,
Availability,
Authorization

Tools Roslynator Security Code
Scan Insider

cwe_checker
CVE-bin-tool
Yara (https://github.
com/VirusTotal/yara)
with rule
repository ‘yara-rules’
(https://github.com/
VirusTotal/yara)

CODESYS (https://
github.com/VirusTotal/
yara)

Grype
Trivy

Grype Trivy

analogous to an iterative lifecycle from a Software Development Life Cycle (SDLC), with
opportunities to cycle on previous steps based on stakeholder feedback. We also enhance
the process with a visualization tool described in the last subsection. Visualization tools are
lacking and are needed by modelers.

Model Design
Model generation begins withmodel design.Model design is analogous to the requirements
stage from the SDLC, and is a soft process (rather than a technical process) that involves
meetings and iteration with project stakeholders. We have found that applying a rigorous
process in this stage results in unresponsive stakeholders and that a level of informality
and camaraderie expedites the process. Artifacts in this stage include meeting minutes,
emails, and drawings or whiteboarding pictures. We usually initiate this procedure by
pinpointing two types of stakeholders: (1) those with a business interest and (2) those with
technical expertise, and then investigate the overarching purpose behind employing the
model. For instance, we inquire with stakeholders whether they seek the model to prioritize
security. This allows us to ensure the final model will apply to end users. We have found
that stakeholders prefer to provide a general design direction by selecting high-level quality
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characteristics (featured in the quality aspects and occasionally the product factors layers
of PIQUE) and leaving specific design details to model developers. Largely, this means
model developers perform research to identify the state-of-the-art measurements pertinent
to the technology associated with the project under analysis, with the caveat that tooling
exists to capture such measurements. This process is iterative, so modelers are keen to open
discussion and re-design if stakeholder views change.

Model implementation
With an initial model design complete, model implementation can begin. Model
implementation is a multi-faceted process that begins with the creation of a model
definition file. The model definition file is a flat JSON file that captures the structure of
the model. Specifically, this file contains attributes for every node in the model, including
the node name, child nodes, utility functions, and placeholders for node values. Node
values are calculated during the benchmarking and assessment phases, described in ‘Model
Benchmarking and Model Assessment’.

Beyond the creation of the model definition JSON file, model implementation generally
involves implementing and extending the PIQUE framework, written in the Java language
version 1.8. The PIQUE framework can be implemented with minimal code additions,
specifically the development of Driver classes that provide the runtime systemwith hooks to
run the model and the development of Tool Wrapper classes that provide the functionality
to (1) programmatically run tooling and (2) parse the results into the model, every separate
PIQUE model we have developed requires certain customizations. For example, several
PIQUE models utilize vulnerability information in the form of CVEs, which have severity
information embedded, thus PIQUE framework extensions are required to incorporate the
severity information into the model. The PIQUE framework has been designed specifically
with these extensions in mind, expediting the model implementation process.

Once the model is deployed, it’s prepared for benchmarking, which requires executing
the code from start to finish.

Model benchmarking
PIQUE models are rooted in comparison. Benchmarking is the process by which the
quantitative basis for comparison is created. This process involves executing the PIQUE
model on a number of projects (referred to as the benchmark repository) that are similar
in context and quality concerns to the ultimate project under analysis. Modelers generate
distributions for each finding reported by the static analysis tools so that interpolations
on the distribution can be performed during the model assessment process. Once the
PIQUE model has been implemented, benchmarking is initiated by executing the model
with a program flag. When executed with the benchmark flag, PIQUE first parses the
model definition to generate a persistent model in memory, and then, executes every
static analysis tool on every project in the benchmark repository. As tools complete their
runs, output from the tool is parsed into a numerical representation that aligns with the
selection of a utility function; for example, if the selected utility function is a simple linear
interpolation, the numerical representation consists of theminimum andmaximum counts
of each finding, the values of which are used to perform linear interpolation in the model
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assessment stage. Different utility functions have different numerical representations. After
every tool has been executed on every project in the benchmark repository, the model is
serialized to a JSON file, which can be used as input into the PIQUE model during the
model assessment. This JSON file is the output artifact from the model benchmarking
process.

A key focus in this process is the challenge of choosing projects that accurately represent
the final project under analysis. The problem can be divided into two subproblems, (1)
identification and (2) retrieval of projects. To address the identification of projects, we
identify qualitative properties from the project under analysis, such as system domain,
and scour code repositories for projects that match qualitative properties. To address the
retrieval of projects, we rely on manual downloading and storing of project files because
of the difficulty of programmatically downloading many project files. We recognize that
this process introduces selection bias and the impacts of this are discussed in the threats to
validity section, as construct and external validity.

Model assessment
After model benchmarking, modelers perform the assessment. The model assessment
process involves running the PIQUE model with a flag that specifies to PIQUE that
it should run the evaluator. The underlying code and processes are the same as with
model benchmarking, with the exception that the finding distributions identified in
the benchmarking process, are interpolated based on the findings reported from the
static analysis tools when targeting the project under analysis. The output values from
interpolation are aggregated to higher-level nodes in the model tree through different
aggregation techniques, specified by the evaluator and the weighter nodes. Evaluator nodes
handle the algorithms that compute the value of the node. The default algorithm calculates
the average of the value of all child nodes weighted by edge values, and the weighter nodes
handle the strategy by which edge weights are assigned. The output artifact from the model
assessment process is a JSON file with values at every node, including a value for the root
node in the tree which captures the TQI.

Visualization
Although many point tools do offer graphical user interfaces, our goal is to improve
visualization in frameworks to capture holistic scores (i.e., a score based on the aggregation
of potentially many tool scores). One visualization tool we found that also aims to address
the needs of managers as well as model developers is exemplified in work by Martinez-
Fernandez et al. (2019). The authors provide a strategic and a raw data dashboard to
visualize information. We have also developed dashboard technology that aims to address
the concerns of C-suite level managers by focusing on the high-level characteristics of a
PIQUE model, as well as developer/modeler technology that allows a practitioner to focus
on the details associated with the nuances of scores calculated at the lowest levels of the
PIQUE models. The PIQUE dashboard is informed with JSON files that are output from
the PIQUE framework.

At the higher layers of the model, the scores represent the outlook of a system that is of
interest to program and project managers. This is shown in Fig. 4A. The lower you move in

Izurieta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2357 16/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2357


Figure 4 (A) Visualization dashboard of high-level characteristics of a PIQUEmodel.Users can access
pie charts and aggregated scores at the Aspect levels (B) Visualization of lower layers of the PIQUE model.
At the lowest level, developers and modelers can review actual scores produced by tools and the weights
associated with the edges connecting hierarchical levels of the tree. This figure is courtesy of the Software
Engineering Laboratory at Washington State University.

Full-size DOI: 10.7717/peerjcs.2357/fig-4

the layers of the model, the closer you get to the sub-characteristics of interest to developers
and modelers. This is shown in Fig. 4B.

INTERNAL FRAMEWORK MECHANICS
Four critical mechanisms can have profound effects on quality scores. All mechanisms
impact the accuracy of the TQI and mitigating the variability of the sources that feed
and inform a PIQUE model. Specifically, we discuss how normalization, score mapping,
aggregation, and the use of ML can improve the accuracy of the TQI.

Normalization
Normalizing values associated with metrics and finding counts allows modelers to compare
and combine scores from disparate sources. In PIQUE, the DefaultNormalizer software
component is provided with the framework and is the default algorithm used; it divides
the value of a node by the LOC in the target project. However, the diversity of the software
artifacts makes normalization a challenge.

When normalizing projects across multiple languages, it is more likely that modelers
will use a metric suite like Halstead’s complexity metrics described by Remoortere (1979).
Modelers assessing binary file quality may first produce a high-level representation of
the program that includes reconstructed control flow elements suitable for human
consumption or machine-based inspection. Metrics from the control flow can then be
used to normalize measures. Finally, if modelers are comparing SBOM files, they may
focus on normalizing based on the number of third-party dependencies associated with
each SBOM.
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Score Mapping
PIQUEuses utility functions tomap values or scores between layers to an appropriate range.
The utility function provides normalization at the most atomic level in a PIQUE model.
PIQUE has been designed so that every node in PIQUE has a unique utility function, one
of which can be the identity function (https://en.wikipedia.org/wiki/Identity_function). In
general, each utility functionmeasures some combination of findings for a specific software
project and outputs a value based on how it compares to other software projects in the
benchmark repository. Our original utility-function algorithms are based on the QATCH
operational framework from Siavvas, Chatzidimitriou & Symeonidis (2017). Currently,
multiple utility functions are available in PIQUE, but the default is a variation of the Linear
Interpolation utility function. This utility function ingests the minimum and maximum
values found within the benchmark repository for each measure and outputs a score based
on interpolating the value for the project under analysis.

In our early research, we extended the work of Siavvas, Chatzidimitriou & Symeonidis
(2017) by offering a NaiveBenchmarker and a Gaussian-function-based Benchmarker,
named BinaryBenchmarker. The NaiveBenchmarker calculates the lowest and highest
Diagnostic value, wherein each Diagnostic value is generally a sum of Findings. This
function generates values that are used as thresholds and later ingested in the utility
function. In contrast, the BinaryBenchmarker calculates the mean plus or minus the
standard deviation of each Measure to produce the threshold values. Subsequent versions
of PIQUE introduce two additional utility functions: the GAMUtilityFunction, and the
GaussianUtilityFunction, however, these functions are deprecated. PIQUE’s design is
flexible, allowing for any Benchmarker to be used for calculating thresholds and providing
the framework to define custom Benchmarking functions based on the nature of the data.

In our current framework, we use a scaling approach. This scaling function compares
each artifact against the benchmarks using density-based scoring. This method is termed
the ProbabilityDensityFunctionUtilityFunction, herein referred to as a PDFUtilityFunction.
This function is depicted in Fig. 5 (Reinhold et al., 2024). The PDFUtilityFunction provides
an objective method for mapping scores across a wide range of distributions. Scores are
calculated as follows. We first create a benchmark repository by assembling a collection of
software artifacts and assessing each with one or more static analysis tools (Steps 1–3 in Fig.
5). Currently, the results from all static analysis tools for all software artifacts are stored in
system memory, however, we are working toward storing these results in an aggregation
file. This aggregation file will be generally preserved as a flat file wherein each row represents
a software artifact in the benchmark repository and each column corresponds to a finding
measured by a static analysis tool. The values in the cells will contain the results from the
static analysis tool(s). We determine the density of scores for each finding in the benchmark
by calculating a probability density function based on the distribution of the values in each
column.

When an end user wishes to evaluate a new software artifact, they run it through the same
SATs that the collection was evaluated with. Each finding is then scored by comparing it
against the score against the density of scores in the benchmark repository. In the example
in Fig. 5, the end user’s software artifact of interest is found to have 40 instances of the
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Figure 5 The density-based scoring procedure used in PIQUE Utility Function. Step 1: software arti-
facts are assembled into a collection. Step 2: all software artifacts in the collection are evaluated using a
cadre of SATs. Step 3: the findings for all software artifacts evaluated by all SATs are aggregated. Step 4:
the distribution of the count of findings is created. Step 5: an end user runs their new artifact of interest
through the same SATs as in Step 3 and the instances of each finding are recorded. Step 6: a probability
density function (PDF) is created from the distribution in Step 4. Step 7: the count of the finding in the
new software artifact of interest receives a score between [0,1] based on its position in the PDF. Figure
and figure legend reproduced from Reinhold et al. (2024) and reproduced here fromMilitary Cyber Affairs
©2024. Image source of step 1: https://www.flaticon.com/free-icons/source-file, and step 2: https://www.
flaticon.com/free-icons/failure.

Full-size DOI: 10.7717/peerjcs.2357/fig-5

finding named ‘‘CVE-Unknown-Other-Diagnostic’’. The density-based scoring indicates
that this artifact has fewer instances of this vulnerability than 66% of the artifacts in the
collection.

The mathematical underpinnings of the PDFUtilityFunction are as follows. Each finding
reported by SATs is treated independently when calculating the quality score. We use the
‘‘trapezoidal rule’’ by Yeh (2002) to approximate the definite integral representing the
probability density function in Step 6 of Fig. 5 (Eq. (1)). The definite integral of a function
represents the area under the curve between two specific points.

A=
∫ b

a
f (x)dx '

b−a
2n
[f (a)+2f (x1)+ ...+2f (xn−1)+ f (b)] (1)

We obtain f (x) using kernel density estimator (KDE), a non-parametric method to
estimate probability density function (PDF) from the counts of findings across all files
in the collection (Steps 4–5 in Fig. 5). The PDF describes the probability of the count of
the finding in the artifact of interest falling within the interval denoted by a and b; a is
zero (as the minimum count of a finding in any artifact is zero) and b is the upper bound
(established by the software artifact in the collection having the highest count of a finding).
By fundamental property, the total area under the curve of a PDF must be one.

Suppose an end user has a software artifact that they are evaluating and the count of a
particular finding in that artifact is represented by d (we call this d because the count of a
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finding is ‘‘diagnostic’’; d = 40 in Fig. 5). We compute the area under the curve from zero
to d ; thus, Ad indicates the proportion of samples in the collection having fewer counts of
a finding than d.

The scaling method employed in PDFUtilityFunction is appealing because it is unbiased,
repeatable, and effective at normalizing results from diverse sources (here, multiple SATs)
to enable aggregation. However, it has some limitations. The external validity and accuracy
of inference derived from this solution is heavily dependent on the benchmark repository—
i.e., the representativeness of the collection of artifacts against which a new artifact is being
compared. In addition, the accuracy of the outputs of the PDFUtilityFunction is constrained
by the accuracy of the SATs.

Aggregation
A third component that can significantly affect quality scores is the variability associated
with external sources to the PIQUE quality model. This variability can come from different
tools and different versions of the same tools. Further, results produced by tools may come
in different scales and different ranges.

The methods described in ‘Normalization and Score Mapping’ alleviate many of these
challenges, however, as scores propagate up the hierarchy in a PIQUE model, a modeler is
given an opportunity to weight scores from child nodes.

As discussed in ‘Modern hierarchical models’, the QATCH framework introduced
the Analytical Hierarchy Process (AHP) by Saaty (2008) that uses pairwise comparisons
between characteristics at the higher levels of a hierarchical model. We have found that
using the AHP algorithm to weigh higher levels of a hierarchical model is a tedious process
that stakeholders struggle to accomplish. Consequently, we are adopting the process of
replacing the manual weighting with semi-automated approaches. Our current research led
us to applyingML to algorithmically assignweights. This approach is showing great promise
for learning the profiles of weight combinations based on documentation originating from
benchmarks of tool findings and relevant standards. In ‘Machine Learning’ we provide an
in-depth discussion of this approach. The result is that aggregated scores more accurately
represent the quality of the target system.

Machine learning
Initial and default approach
Our initial approach to parameterizing the edge weights—and improving the real-world
challenges faced by the AHP algorithm—featured an ordered weighted-average approach.
In this approach, like the AHP, a stakeholder would create two sets of rank-based lists:
one set reflecting the ranked importance of each product factor, and another indicating
the importance of various quality aspects. Each item in each list captures the importance
ranking of each item with respect to the item’s parent node in the model. We applied
numeric values to each item in each list based on the item’s placement in the list normalized
to the size of the list. This approach violates the operations that should be performed on
ordinal scale data, yet our goal was to assess the validity of this approach for real-world
solutions. We found that this method did not improve upon the challenges encountered
by the AHP; specifically, ranking every product factor and quality aspect with respect to
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importance was a challenging and tedious task for stakeholders. At present, this approach
is implemented in all PIQUE models, and edge weightings of equal weights are supplied
by default. However, we have begun experimenting with alternatives that will facilitate
parameterizing the edge weights.

Experimental approach
We are actively experimenting and applying ML methods to programmatically learn the
edge weights between the measure, product factor, and quality aspect nodes in any PIQUE
model. The goal of this ML approach is to assign appropriate weights that enable PIQUE
to produce meaningful scores for each node, thereby enhancing the TQI and improving
decision-making. Other approaches that experiment with improvements to decision
making include Bayesian techniques such as work byManzano et al. (2018).

In our initial approach, the weights are assigned by manually analyzing the definition of
each measure or product factor and creating a binary relationship with each quality aspect.
The result of this approach is an indication of whether a given factor or measure impacts
a quality aspect. Yet, the definition does not inform how much a measure affects a quality
aspect relative to other measures and factors. Hence, the initial approach of assigning
equal weights assumes that each measure/factor is independent, has an equal frequency of
occurrence, and has an equal impact on software quality.

In the ML approach, we supplement the initial model with a benchmark dataset to
establish an informed relationship between measure/factor and quality aspects. We look
at the data distribution of the benchmark dataset and update the weights from the initial
model to fit the distribution. This distribution provides an estimate of how the measures
are implemented in practice. By fitting the initial model to the distribution, the final
scores are relative to the benchmark repository, and better represent the project under
analysis. Hence the scores have more meaning and can be compared to known software
in the benchmark dataset. The ML approach can capture the dependencies between the
measure/factors and identify trends in practical implementations. The modular design of
PIQUE facilitates the generalization of this ML approach to all other PIQUE models, with
ease.

As an example, consider the two software weakness measures CWE-117 and CWE-
1024 in the PIQUE-bin model. Figure 6 shows the overview of the initial and ML
approaches workflow. According to the definition, taken from the database of Mitre
software weaknesses, these weaknesses affect the software security characteristic ‘‘Integrity’’.
The definition only tells us that higher counts of CWE-117 (https://cwe.mitre.org/data/
definitions/117.html) and CWE-1024 (https://cwe.mitre.org/data/definitions/1024.html)
should be correlated with the ‘‘Integrity’’ aspect. Hence, the initial approach is to assign
equal weights for the two measures and linearly increase the score with the number of
findings. This model manifests as a 45-degree line in the orthogonal space of CWE-117 and
CWE-1024. When a new project is under analysis, the findings of the SAT on the project
are projected onto the line to calculate the score by normalizing. In contrast, the ML
approach adjusts the initial model line using regression based on the findings of CWE-117
and CWE-1024 in the benchmark data (https://github.com/MSUSEL/benchmarks). This
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Figure 6 Workflow of Initial approach andMachine Learning approach, for the specific example of
mapping CWE 117 and CWE 1024 to the quality aspect ‘‘Integrity’’.Measures CWE-117 and CWE-1024
are drawn in the axes in an abstract space, and the quality aspect (Integrity) is represented as a function
in that space. The left column shows the available data, the middle column shows the two approaches and
the right column shows the PIQUE tree structure.

Full-size DOI: 10.7717/peerjcs.2357/fig-6

allows the ‘‘Integrity’’ characteristic to change based on the distribution of findings in the
benchmark data, resulting in a more meaningful quality model.

Although we only considered two measures in the example above, the number of
measures affecting a quality aspect is determined by the PIQUE model definition. Thus,
the quality aspect ‘‘line’’ will be in a higher dimensional space consisting of all the measures
contributing to a quality aspect. Further, since quality aspects are independent, separate
models will be learned for each quality aspect (e.g., ‘‘Integrity’’, ‘‘Authenticity’’, and
‘‘Availability’’). Users can use different linear and non-linear regression ML models
depending on the PIQUEmodel and the benchmark dataset. Due to the need for explainable
ML models, classical low-order ML models are preferred over Deep Neural Networks. The
ML models are intentionally trained to be over-fitted to the benchmark data, allowing the
calculated score to be compared to an existing program in the benchmark. Consequently,
the ML approach is sensitive to the benchmark data.

USE CASES
We have used the PIQUE framework to develop several operationalizations, including
models to assess the quality of C# (https://github.com/MSUSEL/msusel-pique-csharp),
specialized security aspects of C# (https://github.com/MSUSEL/msusel-pique-csharp-sec),
C programs (https://github.com/MSUSEL/msusel-pique-vendor), binary programs (https:
//github.com/MSUSEL/msusel-pique-bin), docker images (https://github.com/MSUSEL/
msusel-pique-cloud-dockerfile), and SBOMs (https://github.com/MSUSEL/msusel-
pique-sbom-supplychain-sec). Each model presents unique challenges, such as varying
stakeholder requirements, tooling capabilities specific to the technology, and different
deployment expectations (e.g., in a Continuous Integration/Continuous Deployment
(CI/CD) environment or as a standalone tool). This section illustrates two such models,
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Figure 7 Partial view of the C# source code security model. The right-hand side of the image displays
the names of the various layers, spanning from the ‘‘Diagnostics’’ which represent tool outputs, to the
Total Security Index (TSI) at the top of the tree that provides a holistic QA score. The complete security
model contains 6 quality (security) aspects aligned with selected ISO/IEC 25010 standard (security sub-
characteristics) and MS STRIDE, eight product factors, 25 measure, and 59 diagnostic nodes at its lowest
level.

Full-size DOI: 10.7717/peerjcs.2357/fig-7

depicted in Figs. 7 and 8, which highlight their structural complexity. The layer naming
conventions are based on Wagner et al. (2012). In each illustration, we chose to focus on
PIQUE models addressing only the code security quality aspect. Although our models can
encompass all high-level quality characteristics (e.g., ISO standards) and can be used in
any domain, we intentionally highlighted code security. This decision was made for two
reasons: First, security is an external quality characteristic that has received significant
attention due to the increasing threats in digital technologies. Second, security is a complex
characteristic that can be subdivided into additional layers of complexity with extensive
support from Static Analysis Tools (SATs). The selection of security SATs varies across
organizations. The PIQUE framework is designed to allow organizations to choose their
own SATs tailored to their specific contexts, demonstrating the framework’s independence
and flexibility through these examples.

Analysis of C# source code security
While many analysis tools exist that can be used to identify security vulnerabilities, the use
of a quality model like the PIQUE model is beneficial in aggregating outputs frommultiple
analysis tools thus providing better coverage of security vulnerabilities (as compared to the
use of a single tool). The aggregation of findings from multiple tools provides a broader
security quality context accessible at multiple layers of the model. A partial view of the
model is depicted in Fig. 7.
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Figure 8 Partial view of the SBOM security model. The right-hand side of the image displays the
names of the various layers, spanning from the ‘‘Diagnostics’’ which represent tool outputs, to the Total
Security Index (TSI) at the top of the tree that provides a holistic QA score. The complete SBOM security
model contains 7 quality (security) aspects aligned with selected ISO/IEC 25010 standard (security
sub-characteristics) and MS STRIDE, 42 product factors, 403 measure, and 806 diagnostic nodes at its
lowest level.

Full-size DOI: 10.7717/peerjcs.2357/fig-8

The requirements for the PIQUE security model were gathered by working with
stakeholders directly. Their approval was obtained on design choices such as the static
analysis tools used, the Security Aspects layer of the model, and the linkage between
the Security Aspect layer and Product Factor layers. The model was created using a
top-down approach, where the root note is the Total Security Index (TSI). This node
decomposes into security aspect nodes, which are nodes taken from both the ISO/IEC
25010 standard ISO (2011) (security sub-characteristics) and the Microsoft STRIDE
(https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats)
model.

The security model links findings from tools Security Code Scan and Insider. Although
we also used the Roslynator tool during our exploratory phase, we decided to remove it
because Roslynator diagnostics focused on code quality, while Security Code Scan and
Insider focus on security-related findings. The Roslynator tool was only used during
normalization to count the physical lines of code in the specified project.

We analyzed the performance of the security model by comparing its performance
against 72 benchmark projects (26 open-source and 46 closed-source), with sizes ranging
from 11 to 286,151 lines of code. We found significant evidence of a positive correlation
between the size (lines of code) of a C# open-source project under analysis and its TSI. No
similar conclusions could be drawn for closed-source projects.

We further validated the security model by investigating the effectiveness of the selected
static analysis tools used within the model. We measured the ability of the selected
tools to detect security vulnerabilities from the CWE Top 25 Most Dangerous Software
Weaknesses by comparing all 59Diagnostic nodes in ourmodel to the CWETop 25 list. Our
security model has direct coverage for 52% of the CWE Top 25 Most Dangerous Software
Weaknesses (2021 list). When we add the related responses to this count, coverage increases
to 76% of the Top 25 list. Thus, the static analysis tools selected by the stakeholder were

Izurieta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2357 24/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2357/fig-8
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
http://dx.doi.org/10.7717/peerj-cs.2357


effective when measuring and reporting vulnerabilities from the Top 25 list. An in-depth
analysis of the vulnerabilities revealed that 7 diagnostics within the security model had the
greatest impact on the TSI. A full description of this study can be found inHarrison (2022).

Analysis of software bill of materials security
An increasingly vulnerable software surface is the software supply chain (SSC). SBOMs
enable the analysis of SSC security and is quickly becoming a fundamental cornerstone of
SSC security. Assessing SSC security is achieved through scanning dependencies present in
SBOMs and applying vulnerability mapping techniques to identify vulnerabilities present
in SBOMs. As the SBOM space has evolved numerous SBOM analysis tools have been
developed that assist in this process.

While these tools help identify vulnerabilities in SSCs, the use of a quality model like
the PIQUE model is beneficial for multiple reasons. First as with other PIQUE models,
aggregating outputs from multiple analysis tools provides broader coverage of security
vulnerabilities through a holistic score. Additionally, SBOM presents a unique challenge
when scanning for vulnerabilities. Due to the complex process of SBOM generation, we
found that the process of generating an SBOM does impact the ability of SBOM analysis to
find and report vulnerabilities (O’Donoghue, Reinhold & Izurieta, 2024), so using multiple
SBOM analysis tools does help overcome this issue. Finally, each SBOM analysis tool is
tailored to specific software ecosystems, potentially overlooking vulnerabilities in other
ecosystems. Utilizing multiple SBOM analysis tools proves beneficial in tackling this
challenge. Therefore, the aggregation of findings from multiple tools provides a broader
security quality context that is accessible at multiple layers in the model.

The requirements for the PIQUE SBOM security model were gathered by working with
stakeholders directly. Their approval was obtained on design choices such as the static
analysis tools used, the Security Aspects layer of the model, and the linkage between the
Security Aspect layer and Product Factor layers. The model was created using a top-down
approach, where the root note is the Total Security Index (TSI). This node decomposes into
Security Aspect nodes, which are nodes taken from both the ISO/IEC 25010 standard ISO
(2011) (security sub-characteristics) and the Microsoft STRIDE model. These high-level
Security Aspects are mapped to the category CWEs present in Mitre’s CWE-699 Software
Development view (https://cwe.mitre.org/data/definitions/699.html). As the CWE-699 view
encompasses the software development lifecycle, organizing vulnerabilities in this way
enables software providers to understand what aspects of their SSCs are weak in relation
to software development. The model is large, and we provide a partial view in Fig. 8
that depicts some exemplary nodes at different levels. The visualization tool described in
‘Visualization’ can be used to view the entire model.

The security model links vulnerability findings from tools Trivy and Grype.We validated
the security model by investigating the effectiveness of the selected static analysis tools used
within the model. We leveraged mining software repository techniques to collect a large
corpus of SBOMs (1,151) from common open-source repositories and Docker images
with packages ranging from one to 4,135. Both Trivy and Grype reported a large number
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of vulnerabilities across the SBOM corpus, however, vulnerability reports were rarely
consistent between the tools as reported by O’Donoghue, Reinhold & Izurieta (2024).

We are planning additional validation of the tools by gathering SBOMs containing
‘ground truth’ sets of vulnerabilities and comparing the vulnerability reports from Trivy
and Grype against these established ground truths. Initial feedback from our collaborators
has revealed several interesting findings, with one of the most interesting being the
variations in model scores linked to the selection of SBOM generation tools and formats.
These findings have spurred further discussion into the value that SBOMs provide.

THREATS TO VALIDITY
There are several threats to the validity of the proposed study, which are grounded on
the classification scheme of Campbell & Cook (1979), Campbell & Stanley (2015), and
Wohlin et al. (2012). We focus on (i) internal threats to validity, which refer to undesired
relationships, and the extent to which independent variables cause effects on a dependent
variable, (ii) external threats to validity, which describes the degree to which findings can be
generalized (i.e., statistically and ecologically), and (iii) construct threats to validity, which
refer to how representative the study’s measures, as captured by selected external tools,
represent their intended real-world constructs (i.e., meeting the representation condition
of Fenton & Pfleeger (1996)).

Internal validity can only be mitigated through an interview process with experts in QA
techniques for each respective case study. Although users of PIQUE models are primarily
developers, they seldom have expertise in every characteristic used by the model. Although
our use cases are validated by local developers, causal analysis remains a difficult problem.
The visualization techniques provided with PIQUE do allow developers to investigate
scores and weights in a model with more fidelity, however, complete mitigation of this
threat is not possible.

External threats to validity are mitigated through the extensible PIQUE framework.
PIQUE is designed to be agnostic of specific technologies thus allowing its operationaliza-
tion in any domain, however, the external validity and accuracy of inference derived from
PIQUE is heavily dependent on the representativeness of the collection of artifacts (i.e., the
benchmark) against which a new artifact is compared.

Finally, construct validity is dependent on the selection of tools that are representative
of the theoretical characteristics that they intend to measure. The selection of tools is left
to the domain experts.

CONCLUSIONS AND SUMMARY
We aim to address the following research question:

RQ
Can we develop an extensible, flexible, and independent framework for operationalizing
software quality across various domains, while enabling modelers to independently select their
tools?
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Capturing the notion of quality is a wicked problem (Rittel & Webber, 1973) because of
the inherent variability frommultiple sources such as tools, tool versions, andmeasurement
scales. Further, the subjectivity of a quality score is influenced by themechanisms associated
with the weighting of characteristics against each other, the lack of appropriate domain-
specific benchmarks that can be used to calibrate scores, and the selection of tools that
can act as proxies for theoretical characteristics (e.g., ISO models). However, we posit
that progress needs to be made in this space and PIQUE delivers in its ability to provide
extensibility, flexibility and independence of operationalizations. Specifically, we deliver
the following contributions with the PIQUE framework:
1. We extend the capabilities of prior art by specifying a new meta-model that allows

for the operationalization of agnostic quality models that can be tailored to use any
underlying standards such as ISO, STRIDE, CWE families.

2. We have developed improvements in aggregation techniques, benchmarking and
utility function mapping. We have also improved on manual weighing approaches
between layers of a hierarchical model by employing ML techniques that are trained
on exemplary data.

3. We allow developers to integrate new tools, and leverage existing tools that can connect
to PIQUE models.

4. We provide visualization technology that addresses concerns of high-level management
as well as model developers. Visualization aids for the latter, to aid with debugging at
individual node levels, are lacking.

5. We exemplify the deployment of PIQUE through two deployed use cases.
6. We provide an extensible metamodel of the PIQUE framework. The metamodel is

designed with extensibility in mind.
PIQUE contributes to the academic community because it offers a platform that

can be used to experiment with new techniques to assess the quality of systems. There
are many potential areas for improvement including but not limited to aggregation
techniques, weighing of characteristics, and visualization. The practitioner community also
benefits because many organizations are unlikely to devote resources to developing these
frameworks. They instead use ‘‘out of the box’’ technology that can be deployed quickly.
Practitioners can either deploy out of the box or choose to dedicate additional resources
to calibrate their models.

Finally, it is important to emphasize that future work in SQA is paramount given the
proliferation of software technology. Everything is connected, from personal technologies
to critical infrastructure, which creates a landscape where the ripple effects of a poorly
constructed software component can propagate through the supply chain with unknown
and untraceable consequences. For this reason, we must address software quality as a first
class citizen and evangelize software quality by design. With PIQUE, we aim to continue
to elevate the importance of software quality by incorporating newer techniques and
technologies as they emerge. Significant improvements inmachine learning and accessibility
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to a larger open source corpora of examples are compelling reasons to continue to evolve
the quality assurance landscape.
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