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ABSTRACT
The harm caused by deepfake face images is increasing. To proactively defend against
this threat, this paper innovatively proposes a destructive active defense algorithm for
deepfake face images (DADFI). This algorithm adds slight perturbations to the original
face images to generate adversarial samples. These perturbations are imperceptible to
the human eye but cause significant distortions in the outputs of mainstream deepfake
models. Firstly, the algorithm generates adversarial samples that maintain high visual
fidelity and authenticity. Secondly, in a black-box scenario, the adversarial samples
are used to attack deepfake models to enhance their offensive capabilities. Finally,
destructive attack experiments were conducted on themainstream face datasets CASIA-
FaceV5 and CelebA. The results demonstrate that the proposed DADFI algorithm not
only improves the generation speed of adversarial samples but also increases the success
rate of active defense. This achievement can effectively reduce the harm caused by
deepfake face images.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Software Engineering
Keywords Deep fake, Face images, Active defense, Adversarial samples

BACKGROUND
Deepfake is a method that uses deep learning technologies such as generative adversarial
networks (Brophy et al., 2023) to create synthetic digital content, including images.
Fake news (Phan, Nguyen & Hwang, 2023) generated by deepfake can mislead public
information judgment and decision-making. Additionally, deepfake-created fake
pornographic content (Sha et al., 2023) can infringe on the rights of the individuals
depicted, while fake evidence (Shukla & Goh, 2024) produced by deepfake can undermine
legal justice. Due to the growing concerns about information authenticity, artificial
intelligence ethics, and social trust raised by deepfake technology, an increasing number of
scholars are focusing on how to balance technological development with the protection of
personal rights.

Given the above challenges and the increasingly complex deepfake problem, researchers
are diligently developing deepfake detectors to address these issues and enhance detection
robustness. The goal is to identify face images created by continuously evolving high-quality
deepfake digital content. Among the current mainstream research on deepfake detection,
the more mature approaches are based on passive detection methods. Examples include
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the method based on physiological signals proposed by D’Amelio et al. (2023), the method
based on traditional image forensics proposed by Zhao et al. (2023), and the method based
on image tampering traces proposed by Wu, Liao & Ou (2023). A common perspective
among these methods is that they utilize characteristic information extracted directly from
the deepfake digital content itself to achieve authenticity identification.

Compared with the above methods, active defense can theoretically detect and mitigate
deepfake problems earlier by embedding hidden information such as adversarial samples
and utilizing strategies like watermark traceability. Additionally, active defense employs
adversarial attack methods to generate offensive adversarial samples, which are visually
indistinguishable to humans but cause significant distortion in the digital content output by
deepfakemodels. For instance, Yuan et al. (2024) proposed a semi-fragile digital watermark
generation method based on deep learning. Semi-fragile watermarks are sensitive to
operations like image compression and rotation, and are particularly responsive to
image modifications, allowing easy authenticity verification of digital content. Sun et
al. (2023b) demonstrated the transferability of digital watermarks between training data
and deepfake models, achieving deepfake traceability by embedding digital watermarks
in the target digital content. Radanliev & Santos (2023) utilized the Jacobian matrix to
identify key pixels in adversarial attacks, exploring adversarial samples with superior attack
performance. Dimlioglu & Choromanska (2024) combined the gradient descent heuristic
algorithm to enhance the generalization of adversarial samples by uniformly weighting the
gradient across regions and models.Ouyang et al. (2023) proposed a cross-model universal
attack watermark generation method, addressing conflicts between watermarks generated
by different models through the design of attack channels and two-level fusion strategies.

INTRODUCTION
Due to the substantial differences among various deepfake models, the aforementioned
attack algorithms achieve optimal results primarily in black-box scenarios. Additionally, the
adversarial examples generated by these algorithms often lack sufficient transferability and
require access to the deepfake model’s output for iterative updates, resulting in relatively
low output efficiency of the adversarial examples.

Given the limitations and challenges of existing deepfake active defense detection
methods, this paper innovatively proposes a destructive active defense algorithm for
deepfake face images (DADFI) to address the low efficiency and poor transferability of
current solutions. The specific steps of this algorithm are as follows:

(1) Generate adversarial samples: By extracting multi-dimensional feature information
from images using a generative adversarial network (GAN), adversarial samples are
generated. The quality of these samples is enhanced through adversarial loss strategies.

(2) Optimize adversarial samples: The adversarial attack algorithm is applied to the
deepfakemodel, conducting black-box attacks in simulated black-box scenarios to optimize
the attack performance of the adversarial samples.

(3) Improve attack capabilities: Training with multiple deepfake models is performed
to enhance the generalization ability of the adversarial samples, improving their resilience
to cross-model attacks.
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The innovation of this algorithm lies in its ability to achieve end-to-end generation of
adversarial samples based on a GAN. Unlike conventional adversarial attack algorithms
that require frequent access to the deepfake model during the generation process, this
algorithm eliminates the need to access the original deepfake model once the model
training is complete. This approach significantly enhances the efficiency and transferability
of the adversarial samples, providing a robust solution to the deepfake threat.

The paper is structured as follows: the Introduction provides an overview of the
deepfake problem and its increasing impact, the motivation for developing efficient and
transferable active defense mechanisms, and introduces the proposed DADFI along with
its key innovations. The Related Works section is divided into three parts: research on
deepfake based on face images, research on adversarial attacks and deepfake, and research
on deepfake based on generative adversarial network, offering a comprehensive review of
existing literature in these areas. The Algorithm Design section details the strategies for
generating and fine-tuning adversarial samples, including the algorithm for generating
adversarial examples and the algorithm for fine-tuning against adversarial examples. The
Experiments section describes the models, datasets, and parameters used, along with the
measurement methods for experimental results. The paper concludes with the Conclusion
section, summarizing the findings.

RELATED WORKS
Research on deepfake based on face images
Currently, research on deepfake based on face images is in a stage of rapid development.
In terms of algorithms, researchers are working hard to improve the authenticity and
indistinguishability of generated face images, including improving the structure of
generative adversarial networks, introducing attention mechanisms, and using multi-scale
and multi-view training data. In terms of detection, researchers are also exploring more
effective image recognition methods, including using deep learning models to extract
image features, and methods that combine artificial intelligence and machine learning. The
mainstream deepfake method based on face images is to tamper with the facial features
of the face. By exchanging faces in the target face image and the original face image,
the purpose of modifying the character’s identity has been developed from traditional
3D reconstruction technology to deepfake technology based on generative adversarial
networks (Li et al., 2023b). By digitally modifying all or part of the features in the target
face image to achieve the purpose of faking specific expressions, traditional graphics
technology has developed into technology based on deep learning (Ali et al., 2024).

Kuang et al. (2021) proposed a novel face replacement method, using a generative
adversarial network to seamlessly replace the face in the original image with a synthetic
face. The synthetic face looks as natural as an ordinary face, but is different from the
original face. The appearance is completely different. Wang et al. (2023) extended face
replacement technology to style transfer. This study proposed a multi-image style transfer
loss function to improve the realism of generated face images.Huang et al. (2023) proposed
a novel implicit identity-driven framework for face swap detection. This strategy designs
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an explicit identity contrast loss and an implicit identity exploration loss, which supervises
the convolutional neural network (CNN) to embed the face image into the implicit identity
space, improving the face replacement effect.Han et al. (2023) proposed amethod based on
multi-classification tasks to distinguishmultiple types of homologous deepfake face images.
This method relies on the new network framework of FCD-Net, facial prominence saliency
algorithm and contour detail feature extraction algorithm. Waseem et al. (2023) explored
existing methods for deepfake images and videos for face and expression replacement,
outlining publicly available datasets for benchmarking. With the development of deepfake
technology, deepfake face images have become more sophisticated and difficult to identify,
which has also created conditions for the abuse of deepfake and the leakage of personal
privacy. Akhtar (2023) reviewed four types of deepfakes, including face manipulation
(identity swapping), face re-creation, attribute manipulation, and whole face synthesis.
For each category, the generation methods of deepfakes or face manipulations and the
detection methods of these manipulations are described in detail.

Research on adversarial attacks and deepfake
Nowadays, research on adversarial attacks against deepfake is constantly developing.
Mainstream research focuses on the interpretability, robustness and development of
detection algorithms of generative models, and has made progress in image and video
processing, network architecture optimization and multi-modal learning. In addition,
researchers are committed to designing more accurate adversarial examples to improve
the robustness of the model. Neekhara et al. (2021) conducted adversarial attacks on
deepfake detectors in a black box environment, studied the degree of transfer of
adversarial perturbations between different models, and proposed techniques to improve
the transferability of adversarial capabilities. The research also generalizes adversarial
perturbations to create more accessible attacks, constituting very feasible attack scenarios
that can be easily shared among attackers. Dong et al. (2023) proposed a practical
adversarial attack that does not require any query on the deepfake face images model.
The method is built on a surrogate model based on face reconstruction, and then transfers
adversarial examples from the surrogate model directly to an inaccessible black-box
deepfake model. Pinhasov et al. (2024) exploited the power of AI to develop a defensible
deepfake detector. This research generates interpretability graphs for a given method,
providing visualization of decision-making factors in AI models, employing pre-trained
feature extractors to process input images and their corresponding AI images, enhancing
understanding of possible adversarial attacks, pinpoint potential vulnerabilities. Qu et
al. (2024) proposed a robust adversarial perturbation strategy that provides persistent
protection for OSN-compressed face images. This study incorporates the trained ComGAN
as a sub-module of the target deepfake model, introducing a novel target-level destruction-
aware constraint during training. Khan et al. (2024) proposed adversarial feature similarity
learning, which integrated three basic deep feature learning paradigms to maximize
the difference between adversarial perturbed examples and unperturbed examples by
optimizing the similarity between samples and weight vectors. The similarity ensures a clear
separation between the two categories. Seow et al. (2023) believes that existing deepfake

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2356 4/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2356


detection methods based on deep learning mainly rely on complex convolutional neural
networks. However, these methods have high computational costs and are vulnerable
to adversarial attacks. This study proposes a shallower and more cost-effective deep
neural networks. Uddin et al. (2023) proposed a robust multi-instance learning method by
introducing additional GAN-based operations, exposing GAN-based AF to manipulated
images, and then using multiple additional generators to generate multiple real-world AFs
from real images. instances, and finally trained collaboratively withmultiple real adversarial
attack instances in an open-set manner.

Research on deepfake based on generative adversarial network
In recent years, deepfake research based on generative adversarial networks is focusing on
improving the authenticity of generated images or videos, improving generation efficiency,
and developing effective detection and defense mechanisms. Abbas & Taeihagh (2024)
explores automated key detection and generation methods, frameworks, algorithms, and
tools for identifying deepfakes (audio, image, and video), and how these methods can
be used in different situations to combat the spread of deepfakes and the generation
of false information. Popular research results include improved GAN architectures,
such as conditional generative adversarial networks (Wang et al., 2024) that introduce
conditional variables, recurrent generative adversarial networks (Li & Wang, 2021) that
allow conversion between different domains, and StyleGAN that can finely control styles
and attributes (Sauer, Schwarz & Geiger, 2022). These advances not only improve the visual
fidelity of generated content, but also increase the model’s ability to control specific styles
or attributes. Guarnera, Giudice & Battiato (2024) proposed a hierarchical multi-level
approach. The first layer classifies real images versus AI-generated images. The second layer
distinguishes the images generated by GAN and DM. The third layer implements specific
GAN and DM architectures for generating synthetic data. Kalpokas & Kalpokiene (2022)
used a generative adversarial network to further shrink the network composed of thousands
of units, so that these simple functions can be combined to perform complex deepfake
functions such as object recognition. Aduwala et al. (2021) explored GAN discriminator-
based solutions as ameans of detecting deepfake videos, usingMesoNet as a baseline to train
GAN and extracting the discriminator as a dedicated module for detecting deepfake. Li et
al. (2023b)mainly researched the methods used to implement deepfake, discussed the main
deepfake manipulation and detection techniques, and used deep convolution-based GAN
models to implement and detect deepfake. Yang et al. (2021) used novel transformation-
aware adversarial perturbed faces to defend against GAN-based deepfake attacks. The attack
exploits differentiable random image transformations during the generation process. This
research also proposes an ensemble-based approach to enhance defense against deepfake
variants. To summarize, an overview of existing mainstream research is shown in the
Table 1.

ALGORITHM DESIGN
As far as the current research status is concerned, the training results of many studies can
only be targeted at specific models, and the adversarial attack strategies do not have strong
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Table 1 Overview of existing mainstream research.

Study Research focus Algorithm Evaluationmetrics

Li et al. (2023a), Li et al. (2023b) Deepfake Generation Deep convolution-based GAN models Visual fidelity, authenticity

Ali et al. (2024) Face Manipulation Deep learning-based face modification Realism, perceptual quality

Kuang et al. (2021) Face Replacement Generative Adversarial Network (GAN) Naturalness, visual quality

Wang et al. (2023) Style Transfer in Face Images Multi-image style transfer loss function Realism, style consistency

Huang et al. (2023) Face Swap Detection Implicit identity-driven framework, CNN Detection accuracy, identity contrast

Han et al. (2023) Homologous Deepfake Detection FCD-Net, facial prominence saliency algorithm Classification accuracy, feature extraction

Waseem et al. (2023) Face and Expression Replacement Existing deepfake methods Benchmarking performance

Akhtar (2023) Types of Deepfakes and Detection Various generation and detection methods Method coverage, detection accuracy

Neekhara et al. (2021) Adversarial Attacks on Deepfake Adversarial perturbations transfer Attack transferability, model robustness

Dong et al. (2023) Practical Adversarial Attack Surrogate model-based attacks Attack effectiveness, model vulnerability

Pinhasov et al. (2024) Defensible Deepfake Detection Interpretability graphs, pre-trained feature extractors Interpretability, decision factors

Qu et al. (2024) Robust Adversarial Perturbations ComGAN, target-level destruction-aware constraint Protection persistence, robustness

Khan et al. (2024) Adversarial Feature Similarity Learning Adversarial feature similarity learning Feature separation, classification accuracy

Seow et al. (2023) Efficient Deepfake Detection Shallower deep neural networks Computational cost, detection accuracy

Uddin et al. (2023) Robust Multi-Instance Learning GAN-based operations, multi-instance learning Robustness, training effectiveness

Abbas & Taeihagh (2024) Key Detection and Generation Methods Automated key detection, frameworks Detection effectiveness, applicability across media

Wang et al. (2024) GAN Architecture Improvement Conditional GAN Image quality, conditional control

Li & Wang (2021) Domain Conversion with GANs Recurrent GAN Domain adaptability, generation quality

Sauer, Schwarz & Geiger (2022) Style and Attribute Control StyleGAN Style control, visual fidelity

Guarnera, Giudice & Battiato (2024) Multi-Level Detection Approach Hierarchical GAN and DM architectures Detection accuracy, image classification

Kalpokas & Kalpokiene (2022) Network Shrinking with GANs Network shrinking GAN Network efficiency, deepfake performance

Aduwala et al. (2021) GAN Discriminator for Detection GAN discriminator-based detection Detection accuracy, discriminator performance

Yang et al. (2021) Defense Against GAN-Based Attacks Transformation-aware adversarial perturbations Defense effectiveness, perturbation robustness
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Figure 1 The effect achieved by DADFI.
Full-size DOI: 10.7717/peerjcs.2356/fig-1

effectiveness and transferability. To address this problem, this paper designs a destructive
active defense algorithm (DADFI) for deep fake face images. This algorithm can design
more effective and more transferable adversarial samples. This type of adversarial samples
can make mainstream deep fake face image models (such as StarGAN, StarGAN-v2 (Cai,
Li & Zhang, 2023) and STGAN-SAC (Hou & Nayak, 2023)) output severely distorted
fake images. The face image adversarial samples generated using the DADFI are almost
indistinguishable from the original images when observed by human vision. However,
when these adversarial samples are input into the deepfake face image models, the output
face images are greatly distorted. The defense is implemented, as shown in Fig. 1, where
the face images come from the public datasets CASIA-FaceV5 (Qi et al., 2023) containing
2,500 face images from 500 Asians and CelebA.
The destructive active defense algorithm (DADFI) designed in this paper first generates

adversarial samples, and then proposes an optimization algorithm for fine-tuning the
adversarial samples to improve the attack, effectiveness, and transferability.

Strategies for adversarial samples generation and fine-tuning
This algorithm innovatively designs an adversarial samples generation module and an
adversarial samples fine-tuning module. In the generation module, a generator Gen is
designed, and in the fine-tuning module, two recognizers Idex and Idey are designed. In
addition, n deepfake models modi are set, which i≤ n. If any face image is set as imagei,
the feature space of the face image is set as feaimagei , and the number of all features is
set as sumfea. Next, the generator Gen extracts the high-dimensional feature Genimagei of
the face image imagei, and superimposes the feature value to the original face image to
obtain the adversarial sample iamgeiadv of the face image, which is composed of a set of
feature vectors, that is, iamgeiadv = imagei+Genimagei . Based on the projected gradient
descent algorithm, a basic adversarial perturbation advi is generated for the deepfake
model modi. This adversarial perturbation is added to the original face image to obtain
the fine-tuned adversarial sample image

′

iadv of the face image. The adversarial sample is
input into the image output by the deepfake model. Produces obvious distortion, that is,
image

′

iadv = image i+adv i.
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In order to obtain adversarial samples that are transferable and universal across models,
this paper innovatively uses the projected gradient descent algorithm to implement
adversarial attacks based on gradients. The distortion area and distortion effect caused
by the basic adversarial perturbation advi on the face image is only the same as the
corresponding deepfakemodels are related, that is to say, this basic adversarial perturbation
is robust to multiple deepfake models. In summary, the high-dimensional feature Genimagei
has learned adversarial attack capabilities similar to the basic adversarial perturbation advi,
and the adversarial samples have characteristics that are common across models.

This algorithm setsmodi(x) as the face editing operation of the selected deepfake model,
sets the deepfake image generated by the adversarial sample imageiadv of the face image
as fakeimagei =modi(imageiadv ), and sets the deepfake image generated by the adversarial
sample image

′

iadv based on fine-tuning of the face image as fake
′

imagei =modi(image
′

iadv ),
input yifake = fakeimagei and yireal = fake

′

imagei into the recognizer Idey , respectively, and
improve the attack capability of the adversarial sample imageiadv through adversarial
training. In addition, two types of adversarial samples are input into n different
deepfake models, and based on the output results, a distorted deepfake face images set
[(fakeimage1,fake

′

image1),(fakeimage2,fake
′

image2),...,(fakeimagen,fake
′

imagen)] is constructed. Joint
training through discriminators can improve the transferability of adversarial examples.
Based on the above strategy, inputting the original face images into the trained generative
model can obtain adversarial samples. Compared with the original images, the adversarial
samples are basically indistinguishable to the human eye. However, these samples can
completely make several different deepfake models output face images with different
degrees of distortion, as shown in Fig. 2.

Algorithm for generating adversarial examples
When generating adversarial examples, traditional adversarial example attack algorithms
need to repeatedly access the deepfake model. In order to solve this problem and improve
the efficiency of adversarial sample generation, this paper innovatively uses a generative
adversarial network to design an adversarial sample generation module and an adversarial
sample identification module. The generation module designs the generator, and the
identification module designs the recognizer. In this network architecture, the input is the
original face image, and the output is the generated adversarial sample.

The generator Gen is used to generate a slight perturbation that can make the adversarial
sample image similar to the original face image, and then obtain the mapping function
from the original face image to the slight perturbation as shown in Eq. (1)

Gen : imagei−→Genimagei . (1)

Among them, Gen represents the generator, imagei represents any face image input to
the generator, and Gemimagei represents the slight adversarial perturbation output by
the generator. The adversarial sample imageiadv can be obtained by superimposing the
perturbation onto the original image, as shown in Eq. (2):

imageiadv = imagei+Genimagei . (2)
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Figure 2 Adversarial example generation and fine-tuning.
Full-size DOI: 10.7717/peerjcs.2356/fig-2

After obtaining the adversarial samples, this algorithm uses the recognizer Idex to
distinguish them in order to reduce the visual gap between the adversarial samples
and the original face images. This algorithm innovatively proposes adversarial training to
reduce the visual impact caused by slight perturbations, making the adversarial samples
almost visually consistent with the original face images. The generator defined by the
algorithm adopts an autoencoding structure. The encoder uses three layers of convolution,
and instance normalization is performed after each layer of convolution. The decoder
uses three upsampling layers, and instance normalization is performed after each layer
of convolution. In addition, four residual blocks are added between the encoder and the
decoder. Each residual block consists of two 3*3 convolutional layers. At the same time,
instance normalization is performed after each convolutional layer. The first of the residual
blocks is the output of the convolutional layer is activated.

The recognizer Idex is used to distinguish whether the generated adversarial samples are
real or fake compared to the original face images, and iterate during adversarial training
so that the generator finally generates a perturbation with minimal visual impact on the
original images. The algorithm sets the adversarial loss of the generator Gen and the
discriminator Idex to be LossIdex , as shown in Eq. (3):

LossIdex = E[logIdex(imagei)]+E[log (1− Idex(imagei+Genimagei))] (3)

where E represents the mathematical expectation value. At the same time, in order to
improve the perception of adversarial samples and minimize the visual impact of slight
adversarial perturbations on the original face images, the algorithm innovatively designs a
hinge loss function Lossg emel to constrain the scale of the perturbation, as shown in Eq. (4)

Lossgemel = Eimageimax(0,
∥∥Genimagei

∥∥
∞
− lim). (4)

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2356 9/25

https://peerj.com
https://doi.org/10.7717/peerjcs.2356/fig-2
http://dx.doi.org/10.7717/peerj-cs.2356


Among them, lim represents the specified infinite norm limit against perturbation. If∥∥Genimagei
∥∥
∞

exceeds lim, this function will constrain the perturbation.

Algorithm for fine-tuning against adversarial examples
The adversarial samples fine-tuning algorithm consists of the deepfake model modi and
the recognizer Idey , where the network structure of the recognizer Idey is consistent with
that of the recognizer Idex . The input of this algorithm consists of two types of adversarial
samples, one is the adversarial samples imageiadv generated by the generator, and the other
is the adversarial sample imageiadv

′

added with the basic adversarial perturbation. Among
them, the addition of basic adversarial perturbation advi can significantly distort the face
image output by the deepfake model, as shown in Eqs. (5) and (6):

advimage0 = imageori+advi. (5)

Among them, advimage0 represents the first slight perturbation to the original face image,
imageori represents the original face image, and advi represents slight perturbation.

advimagei+1 = sliimageori{advimagei+∂(∇imageoriL(modi(advimagei),modi(imageori)))}. (6)

Among them, advimagei+1 represents the next iteration of the i-th slight perturbation advimagei
of the original face image. The slight perturbation obtained by iterative training of the above
algorithm is universal for the deepfake model. That is to say, not only the few face images,
but also all the face images in the training data set can be made to have slight perturbations.
The fake model outputs distorted face images. This algorithm implements adversarial
attacks based on gradients through the projected gradient descent algorithm in advance,
and generates slight perturbations for multiple deepfake models. The perturbed adversarial
samples can be used as label-assisted optimization of adversarial samples imageiadv .

Adversarial examples fine-tuning uses an adversarial loss function to improve the
aggressiveness of adversarial examples. The generation process of slight perturbation is
related to the model gradient. That is to say, after different face images are subjected to
the same slight perturbation, the deepfake models are input, and the output deepfake
images are similar in terms of distortion range and degree of distortion. For this reason,
input the fine-tuned adversarial sample imageiadv

′

into the image obtained by the deepfake
modelmodi, that is, the fake image fakeimagei

′

generated based on the fine-tuned adversarial
sample imageiadv

‘ of the face image is generated; and input the adversarial sample imageiadv
generated by the generator. The image obtained by the deepfake model modi is obtained,
that is, the deepfake image fakeimagei generated by the adversarial sample imageiadv of the
face image is obtained. At this time, the algorithm identifies the authenticity of the image
through the recognizer Idey , and adds adversarial training to make fakeimagei infinitely close
to fakeimagei

′

, and finally the adversarial resistance of the adversarial sample imageiadv is
improved. The adversarial loss LossIdey of the recognizer Idey is shown in Eq. (7)

LossIdey = E[logIdey(modi(image
′

iadv ))]+E[log (1− Idey(modi(image iadv )))]. (7)

Adversarial examples fine-tuning integrates multiple deepfake models to improve the
transferability of adversarial examples. During the training process, this algorithm
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uses adversarial samples to attack multiple deepfake models, which not only improves
transferability, but also improves the cross-model attack capability of adversarial samples.
First, this algorithm generates basic adversarial perturbations advi(i∈ [1,n]) for n deepfake
models. Then, the adversarial samples image iadv and adversarial samples image

′

iadv are
input into multiple different deepfake models respectively, where the adversarial samples
image iadv obtains the deepfake images fakeimagei through the deepfake model, and the
adversarial samples image

′

iadv obtain the deepfake images fake
′

imagei through the deepfake
model, and then collect these images as ass, as shown in Eq. (8):

ass= [(fake
′

image1,fakeimage1),(fake
′

image2,fakeimage2),...,(fake
′

imagen,fakeimagen)]. (8)

This algorithm makes fakeimagei visually closer to fake
′

imagei through adversarial training,
and can further improve the loss function, as shown in Eq. (9):

LossIdey = E[
n∑

i=1

logIdey(modi(image
′

iadv ))]+E[
n∑

i=1

log (1− Idey(modi(image iadv )))]. (9)

After the above improvement process, the objective function Loss of this algorithm is
composed of the adversarial loss LossIdex of the recognizer Idex , the adversarial loss LossIdey
of the recognizer Idey and the hinge loss Lossgemel , as shown in Eq. (10):

Loss= LossIdex +LossIdey +Lossgemel (10)

where µrepresents the weight of the hinge loss. During the training of this algorithm, the
adversarial loss LossIdex constrains the adversarial samples and the original face images
to be highly consistent visually, and the hinge loss Lossgemel constrains the boundaries
of slight disturbances. The purpose of both losses is to ensure the generation of high
quality. , adversarial samples with visual effects close to the original face images. Deepfake
is generally based on a black box scenario. The party whose image is deeply faked does
not know the network structure and parameters of the deepfake model. Therefore, the
best way to proactively defend is to perform black box attacks on several deepfake models
at the same time. This algorithm attacks based on queries, and estimates the gradient
of the model by querying the difference in the output results of the deepfake model to
improve the model’s generalization ability. Adversarial loss LossIdey simulates adversarial
samples to attack multiple deepfake models in a black box scenario, thereby improving the
aggressiveness and transferability of adversarial samples.

Strategies to improve the offensiveness of adversarial examples
In traditional research on increasing the aggressiveness of adversarial samples, most studies
use fine-tuning strategies. The algorithm proposed in this paper innovatively uses two
strategies to increase or maintain the aggressiveness of samples. These two strategies are
using a stronger perturbation strategy and dynamically adjusting the perturbation intensity.

Stronger perturbation strategy
When designing a stronger perturbation strategy, this paper adopts a method of gradually
accumulating small perturbations. First, the basic adversarial perturbation advi is generated
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and superimposed on the original face image, as shown in Eq. (11):

advimage0 = imageori+advi. (11)

Among them, advimage0 represents the first slight perturbation of the original face image,
imageori represents the original face image, and advi represents a slight perturbation. Then,
a stronger perturbation is iteratively trained, as shown in Eq. (12):

advimagei+1 = sliimageoriadvimagei+∂(∇imageoriL(modi(advimagei),modi(imageori))). (12)

Among them, advimagei represents the next iterative perturbation of the original face
image. Through multiple iterations, we are able to generate universal small perturbations
applicable to different deep fake models, so that the face images in all training datasets have
small perturbations, which causes the deep fake model to output distorted face images.
This perturbation strategy generates small perturbations through the projected gradient
descent algorithm to conduct adversarial attacks on multiple deep fake models, improving
the universality and attack effect of the perturbation.

Adjust perturbation intensity
In order to improve the offensiveness, this paper designs a method to dynamically adjust
the perturbation strength. In the process of adversarial sample fine-tuning, this paper
introduces the adversarial loss function LossIdey , which estimates the gradient of the model
by querying the output difference of the deep fake model, so as to conduct adversarial
attacks in black box scenarios, as shown in Eq. (13):

LossIdey = E[logIdey(modi(image
′

iadv))]+E[log (1− Idey(modi(image iadv)))]. (13)

During the training process, the refined adversarial sample image
′

iadv and the generated
adversarial sample image iadv are input, and distorted images are obtained through multiple
different deep fake models. Through adversarial training, fakeimagei is made close to
fake

′

imagei , and the loss function is further optimized, as shown in Eq. (14):

Loss= LossIdex +LossIdey +Lossgemel (14)

where Lossgemel represents the weight of the hinge loss. Through the constraints of the
adversarial loss LossIdex and the hinge loss LossIdey , high-quality adversarial samples are
generated to make them visually close to the original face images. In the black-box attack
scenario, this method of dynamically adjusting the perturbation strength can improve the
aggressiveness and transferability of adversarial samples, thereby enhancing the ability to
attack multiple deep fake models.

Based on the above algorithm design, the ultimate goal of this algorithm is to generate
adversarial samples that are almost visually consistent with the original face images.
At the same time, after the adversarial samples are input to different deepfake models,
highly distorted face images are output. This algorithm also innovatively uses a generative
adversarial network for optimization. The purpose of the confrontation of the generator
Gen is to make the target loss function as small as possible, and the purpose of the
confrontation of the recognizer Idex and Idey are to make the target loss function as large
as possible, and finally reach Nash equilibrium to end the adversarial training.
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EXPERIMENTS
Models, datasets and parameters
The deepfakemodels selected for the experiments of this paper are StarGAN , StarGAN−v2
and STGAN −SAC . All three models can achieve deepfake of face images. Among them,
StarGAN and StarGAN −v2 are used for deepfake of hair and age in face images, while
STGAN −SAC is used for deepfake of accessories in face images.

In addition, the datasets selected for the experiment are the public datasets
CASIA− FaceV 5 and CelebA. Among them, the CASIA− FaceV 5 dataset contains a
large number of high-definition, diverse and real face images, covering different ages,
genders and expressions, providing a comprehensive foundation for face recognition and
analysis tasks. The CelebA dataset is another large-scale face attribute dataset, containing
more than 200,000 celebrity images, each of which is annotated with 40 attribute labels.
The images in this dataset have a wide range of variations in pose, background and lighting
conditions. The algorithm proposed in this paper novelly adds the generative adversarial
network to the experiment. In the experiment, images of size 300∗300 extracted from the
dataset are used as input face images. The weight µrepresenting the hinge loss is set to 0.5.
The training cycle and batch processing are set to 100 and 50, respectively.

Finally, the algorithm innovatively designed a model optimizer for the experiments. The
learning rate of each parameter is dynamically adjusted by calculating the first and second
moment estimates of the gradient, thereby improving training efficiency and accuracy. The
specific steps are:
1. Compute gradient grapara for each parameter para.
2. Calculate the first-order moment estimate mean est1 of the gradient, as shown in

Eq. (15):
est1=α1est1+ (1−α1)grapara. (15)
Among them, α1 is used to control the exponential decay rate of the first-order moment
estimate, which is set to 0.9 in the experiments.

3. Calculate the second-order moment estimation variance σ of the gradient, as shown
in Eq. (16):
σ =α2σ + (1−σ )gra2para. (16)
Among them, alpha2 is used to control the exponential decay rate of the second-order
moment estimation, which is set to 0.99 in the experiments.

4. Perform bias correction on the first-order moment estimate and the second-order
moment estimate, as shown in Eq. (17):

corest1 =
est1

1−αi1
,corσ =

σ

1−αi2
. (17)

Among them, i represents the current iteration number.
5. Update parameters based on first-order moment estimation and second-ordermoment

estimation, as shown in Eq. (18):
para= para−γ

corest1
√
corσ +τ

. (18)

Among them, γ represents the learning rate, and τ is used to stabilize the value. In the
experiments, it is set to 1e−6.
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Based on the above, the model optimizer designed in the experiments have a good
convergence speed.

Measurement methods for experimental results
First, the experiments innovatively designed the pixel distance dpix . When evaluating the
quality of the face images generated by the deepfake model, the quality of the generated
images can be measured by calculating dpix between the original face images and the
deepfake face images, as shown in Eq. (19):

dpix =

√√√√ n∑
i=1

(Iinput [i]− Ioutput [i])2. (19)

Among them, Iinput [i] represents the value of the i− th pixel of the input original face
images, and Ioutput [i] represents the value of the i− th pixel of the output deepfake face
images. It is not difficult to realize that the larger the value of dpix , the greater the visual
difference between the output deepfake face images and the original face images, that is,
the better the attack effect of the adversarial samples.

Then, the value of dpix can more accurately evaluate the quality of the face images
generated by the deepfake model from a global level. However, if the visual difference
between the output deepfake images and the original face images is mainly local, it should
also be evaluated. It is evaluated that the attack effect is good, but the dpix value at this
time may be very small. At this time, the experiments innovatively adds a mask matrix to
calculate the mask distance. The experiments use an attention priority mechanism to focus
attention on the modified parts of the face images, because the mask matrix can specify
which part of the pixels should be used to calculate distance, and which part of the pixels
should be ignored. If the difference in this part of the area exceeds a certain threshold, it is
also considered to be a good attack effect. Calculate the mask distance dMd_pix as shown in
Eq. (20):

dMd_pix =

√√√√ n∑
i=1

M [i](Iinput [i]− Ioutput [i])2. (20)

Among them, M is the mask matrix defined in this experiment. The shape of the matrix
and the original face image are both 300∗300, in which the value of each pixel is 0 or 1.0
means that the pixel at the position should be ignored, and 1 means that the pixel at the
position should be used to calculate the distance.M [i] is the value of the i− th pixel in the
mask matrix.

Finally, in order to further evaluate the effect of attacking the deepfake model, the
experiments will be conducted by calculating the Frechet distance dFrechet using the mean
vector and covariance matrix of the real images and the generated images (Cheng & Huang,
2023), as shown in Eq. (21):

dFrechet =
∥∥µinput −µoutput

∥∥2
2+Tr(

∑
input+

∑
output−2

√∑
input

∑
output ). (21)
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The lower the distance dFrechet value, the closer the distribution of the generated images
and the real images in the feature space are, and the higher the quality of the generated
images are. Among them, µinput and µoutput represent the mean vector of the real images
and the generated images in the feature space respectively,

∑
input and

∑
output

represent the covariance matrix of the real images and the generated images in the
feature space respectively, and

∥∥µinput −µoutput
∥∥2
2 calculates the covariance matrix of the

real images and the generated images in the feature space. The square of the Euclidean
distance of the mean vector is used to measure the difference in mean between the two.
Tr(

∑
input +

∑
output −2

√∑
input

∑
output ) calculates the Frechet distance between

the covariance matrix of the real images and the generated images in the feature space to
measure the difference in covariance between the two. Finally, the distances between these
two parts are added to obtain the Frechet distance value, which is used to evaluate the
quality of the generated images.

Results
Validity verification
Based on the results of the experiments, this paper designed an objectivemethod to evaluate
whether the attack deepfake model was successful. The experiments randomly selected 200
face images from the public datasets CASIA−FaceV 5 and CelebA as the training set, and
randomly selected 2000 face images from other images in the dataset for all experiments.
By calculating the pixel distance dpix , mask distance dMd_pix and Frechet distance dFrechet , we
observe the active defense effect against the deepfake models StarGAN , StarGAN−v2 and
STGAN −SAC , as shown in Fig. 3.

First, this experiment randomly selected 200 face images from the dataset CASIA−
FaceV 5 for testing, and modified these original face images based on the face deepfake
characteristics of the deepfake models StarGAN , StarGAN − v2 and STGAN − SAC .
The results show that the pixel distance dpix of the three models attacked by the DADFI
algorithm proposed in this paper is greater than 0.06. The algorithm believes that when
the dpix of the original face images and the deepfake images are greater than 0.6, people
can easily distinguish the two images visually. In other words, when the dpix of the two
images is greater than 0.6, the active defense effect is good. In addition, the mask distance
dMd_pix of the three models attacked by the DADFI algorithm is greater than 0.85. The closer
the mask distance dMd_pix is to 1, the better the active defense effect. At the same time, the
distorted Frechet distance dFrechet values of all output images are above 30, indicating that
the difference between distorted images and normal deepfake images are large, and also
prove the effectiveness of active defense. The same experiment was also conducted on the
CelebA dataset and achieved similar results.

Then, during the training process of the data set, the DADFI algorithm constrains the
infinite norm limit lim representing the specified adversarial perturbation to less than
0.05, so there is basically no difference between the original face images and its adversarial
samples for normal vision. At the same time, there are large visual differences between the
output results of the deepfake models StarGAN , StarGAN−v2 and STGAN−SAC on the
original face images and its adversarial samples, human vision can easily detect tampered

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2356 15/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2356


Figure 3 Experimental results.
Full-size DOI: 10.7717/peerjcs.2356/fig-3

images. Experimental results show that StarGAN is most vulnerable to adversarial attacks,
and the output results after being attacked have the most obvious distortion. Although
StarGAN−v2 and STGAN−SAC have a certain degree of robustness to attacks, the output
images after the attack are still significantly different from the normal deepfake images,
and the models cannot achieve the purpose of tampering with face images.

Finally, by horizontally comparing and modifying different facial feature attributes of
the same models, it was found that the tampered area of the deepfake model will not have
a major impact on the generated distortion area, that is, the adversarial attack is robust
to deepfake methods. The above experimental results show that the adversarial samples
generated by DADFI have the ability to attack deepfake models across models and can
protect face images from tampering by deepfake models.

Comparative experiments
First, based on the datasets CASIA−FaceV 5 and CelebA, the algorithm selected three
common adversarial attack algorithms for comparison. They areMOMA proposed by Sun
et al. (2023a), ATS−O2A proposed by Li et al. (2023a) and Adv−Bot proposed byDebicha
et al. (2023). Based on the above three algorithms, the experiments innovatively use mask
distance dMd_pix and Frechet distance dFrechet to observe the active defense effects of several
different algorithms against deepfake models StarGAN , StarGAN−v2 and STGAN−SAC .
The experimental results are as follows as shown in Figs. 4, 5 and 6.

Then, the experimental results conducted on three different deepfake models show
that the above three common adversarial attack algorithms have certain active defense
effects. Compared with the comparative algorithms, the DADFI proposed in this paper can
generate adversarial samples that can more effectively attack the two deepfake models of
StarGAN and STGAN–SAC , achieving the goal of cross-model defense against deepfake.
In addition, the maximum value of the mask distance dMd_pix of the DADFI for attacking
these three models is 1.00 for StarGAN , and the minimum value is 0.79 for STGAN–SAC ,
but it is far ahead of the values of other algorithms. Because the closer the mask distance
dMd_pix is to 1, the better the active defense effect is, so the active defense effect of DADFI
is better than the comparison algorithms on these three models. At the same time, the
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Figure 4 StarGAN.
Full-size DOI: 10.7717/peerjcs.2356/fig-4

Figure 5 StarGAN-v2.
Full-size DOI: 10.7717/peerjcs.2356/fig-5

distorted Frechet distance dFrechet value of all output images of the DADFI is above 30, with
the maximum value being 131.50 for StarGAN and the minimum value being 39.62 for
StarGAN −v2, indicating that the difference between the distorted images and the normal
deepfake images are large, and also prove effectiveness of active defense.

Finally, the DADFI proposed in this paper is based on an end-to-end generative
adversarial network. After training, adversarial samples can be obtained without accessing
the deepfake model again. Therefore, this paper compares the efficiency of adversarial
samples generation with different algorithms. The experimental results are as shown as
Fig. 7.

Experimental results show that compared with the comparative algorithms
MOMA,ATS−O2A and Adv–Bot , the experimental results of the DADFI are better
in terms of adversarial samples generation efficiency.
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Figure 6 STGAN-SAC.
Full-size DOI: 10.7717/peerjcs.2356/fig-6

Figure 7 The average generation time of adversarial examples.
Full-size DOI: 10.7717/peerjcs.2356/fig-7

Verification experiments
In order to verify the aggressiveness and migration of the DADFI proposed in this paper,
the paper designed the following two sets of experiments.

Verification experiment 1: Adjust the number of deepfake models in the adversarial
samples fine-tuning algorithm, and adjust the three deepfake models trained for adversarial
samples attack in DADFI to attack a single deepfake model, in order to verify the
effectiveness of the DADFI and the advantages in mobility.

Adjust the number of deepfake models to 1, and when only one of the deepfake models
StarGAN , StarGAN–v2, and STGAN–SAC is retained, the attack and transferability of
the adversarial samples are evaluated through pixel distance dpix . If the pixel distance
dpix produced when attacking the selected deepfake model is high, and the pixel distance
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Figure 8 Pixel distance comparison.
Full-size DOI: 10.7717/peerjcs.2356/fig-8

dpix produced when attacking the remaining deepfake models is significantly lower than
0.05, in other words, in the case of a single-model attack, the pertinence is high, but the
transferability is insufficient. Experimental results prove that the DADFI proposed in this
paper uses three deepfake models for training, and uses pixel distance dpix loss to evaluate
the distortion effect. The values are all higher than 0.05, and the mask distance dMd_pix

scores are high, both close to 1, which is obviously improved transferability of adversarial
examples. The pixel distance comparison of any one of the three deepfakemodels is retained
as shown in Fig. 8.

Experimental results show that the DADFI proposed in this paper adjusts the number of
deepfake models to 1. When only one of the deepfake models StarGAN ,StarGAN–v2 and
STGAN–SAC is retained, the pixel distance values corresponding to this model are higher
than compare models to prove that the transferability of adversarial examples is better.

Verification experiment 2: Remove the adversarial samples fine-tuning algorithm,
and determine whether the adversarial samples generated by the generator can make the
deepfake model output distorted face images to verify whether the fine-tuning algorithm
can improve the aggressiveness of the adversarial samples.

When the adversarial samples fine-tuning algorithm is removed from training and only
the adversarial samples generation algorithm is used for training, the pixel distance dpix
of the generated adversarial samples to the deepfake model StarGAN is only 0.0382, and
the pixel distance dpix of the other two deepfake models is even lower. Moreover, the
mask distance dMd_pix values of the above three models are all small, and the adversarial
samples are almost not aggressive. By comparing with the DADFI proposed in this paper,
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Figure 9 Mask distance comparison.
Full-size DOI: 10.7717/peerjcs.2356/fig-9

DADFI can effectively improve the aggressiveness of adversarial samples and retain the
mask distance comparison of any one of the three deepfake models as shown in Fig. 9.

Experimental results show that when the adversarial samples fine-tuning algorithm
is removed from the DADFI training proposed in this paper and only the adversarial
samples generation algorithm is retained, the mask distance dMd_pix values corresponding
to the model are higher than those of the comparison models, thus proving the attack
performance comparison of adversarial samples good.

The results of the above-mentioned verification experiment one and verification
experiment two show that the DADFI proposed in this paper has strong attack and
migration performances.

CONCLUSION
This paper proposes a destructive active defense algorithm for deepfake face images
(DADFI). Active defense protects face images from being tampered with by deepfake
models. The algorithm consists of two sub-algorithms: the adversarial samples generation
algorithm and the adversarial samples fine-tuning algorithm.When the adversarial samples
generation algorithm generates adversarial samples through generator training, the loss
function is used to make the perturbed adversarial samples maintain visual consistency
with the original face images, reducing the impact of perturbation on image quality. The
adversarial samples fine-tuning algorithm combines existing adversarial attack algorithms
to improve the aggressiveness and transferability of adversarial samples through adversarial
training, allowing multiple deepfake models to output highly distorted face images.
Experimental results show that the DADFI algorithm proposed in this paper can achieve
the ability to interfere with the output of deepfake models across models, and the achieved
face images distortion effect is close to the adversarial samples generated by the current
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mainstream adversarial attack algorithms. More importantly, DADFI greatly improves
the efficiency of adversarial samples generation. However, despite the promising results,
the research does have some limitations in terms of datasets and models. The datasets
used for generating and fine-tuning adversarial samples might not cover the full spectrum
of real-world face variations, potentially limiting the generalizability of the algorithm.
Additionally, the models used in the experiments may not encompass all types of deepfake
generation techniques, which means the DADFI algorithm’s performance could vary when
faced with unseen or more advanced deepfake models.

Based on the algorithm proposed in this paper, in future work, the authors will solve
the following three problems: (1) Study the generation of adversarial samples by local
perturbation to reduce the impact on the quality of the original image. (2) Improve the
visual consistency of adversarial samples and enhance their similarity with the original
image. (3) Optimize the efficiency of adversarial sample generation and improve the
practicality of the algorithm.
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