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ABSTRACT

Product prices frequently manifest nonlinear and nonstationary time-series attributes,
indicating potential variations in their behavioral patterns over time. Conventional
linear models may fall short in adequately capturing these intricate properties. In
addressing this, the present study leverages the adaptive and non-recursive attributes
of the Variational Mode Decomposition (VMD) methodology. It employs VMD
to dissect the intricate time series into multiple Intrinsic Mode Functions (IMF).
Subsequently, a method rooted in the minimum fuzzy entropy criterion is introduced
for determining the optimal modal number (K) in the VMD decomposition process.
This method effectively mitigates issues related to modal confusion and endpoint
effects, thereby enhancing the decomposition efficacy of VMD. In the subsequent
phase, deep neural networks (DNN) are harnessed to forecast the identified modes,
with the cumulative modal predictions yielding the ultimate e-commerce product
price prognostications. The predictive efficacy of the proposed Variational Mode
Decomposition-deep neural network (VMD-DNN) decomposition model is assessed
on three public datasets, wherein the mean absolute percentage error (MAPE) on the
E-commerce Price Prediction Dataset and Online Retail Dataset is notably low at 0.6578
and 0.5414, respectively. This corresponds to a remarkable error reduction rate of 66.5%
and 70.4%. Moreover, the VMD-DNN decomposition model excels in predicting e-
commerce product prices through DNN, thereby amplifying the VMD decomposition
capability by 4%. The VMD-DNN model attains superior results in terms of directional
symmetry, boasting the highest Directional Symmetry (DS) score of 86.25. Notably, the
forecasted trends across diverse price ranges closely mirror the actual trends.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms, Artificial
Intelligence, Data Mining and Machine Learning, Neural Networks
Keywords VMD, DNN, e-commerce, Price prediction, Minimum fuzzy entropy criterion

INTRODUCTION

In the era of highly evolved e-commerce, a diverse array of online data is available. Even
in the absence of historical interaction data for new goods, descriptive information such as
images is typically present. Conversely, mature commodities often feature substantial user
evaluation text. Both image and text data play pivotal roles in e-commerce, constituting
rich sources of information. However, conventional price prediction methods encounter
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challenges in extracting valuable insights from images and text, thereby failing to offer
adequate support for comprehensive price prediction systems. In the current landscape
of a complex and volatile market economy, precise product price prediction assumes
paramount importance for companies in formulating strategic decisions. Traditional price
forecasting approaches confront multiple challenges stemming from market complexity,
nonlinearity, and nonstationary time series properties (Cortez et al., 2018; Wang et al.,
2020). A fundamental limitation arises from the inherent difficulty of traditional linear
models in capturing the diverse behavioral patterns exhibited by product prices over time.

Commodity price prediction represents a vital and intricate endeavor within the realm
of e-commerce. The dynamic life cycle of commodities introduces price fluctuations
(Agnello et al., 2020). New or nascent commodities may grapple with data sparsity in price
prediction due to the absence of historical interaction data, while mature commodities
often possess extensive historical price data. Traditional price prediction algorithms may
falter in addressing these disparities. Current price forecasting systems typically overlook
the influence of the commodity life cycle, adhering to a singular algorithmic strategy.
However, a singular algorithm may not aptly accommodate the nuances of price prediction
for new and mature commodities, potentially undermining prediction performance (Lago
et al., 2021). Consequently,it is advisable to establish a comprehensive price forecasting
framework that integrates multiple advanced forecasting algorithms. This framework
should discern the commodity’s life cycle stage based on its characteristics and historical
price data, thereby allowing for the targeted adoption of suitable algorithms to enhance
the accuracy of price forecasting.

At the present juncture, the integration of unstructured data into price prediction
primarily involves the extraction of sentiment features, keyword features, or event features
from media texts. This entails simultaneous prediction with futures prices. The crux of
pertinent research lies in the proficient conversion of unstructured data and the adept
identification and assimilation of valid information into e-commerce product prediction
(Pan & Zhou, 2020; Ramkumar et al., 2023; Sun et al., 2022). The following issues merit
exploration: firstly, the presence of potentially redundant information, such as analytical
reports and social comments, introduces noise into the extracted effective price features,
potentially influencing the model’s discernment of price fluctuations; secondly, existing
methodologies extracting event features from text data necessitate extensive manual
annotations on specific corpora, susceptible to subjective judgment, and may inadvertently
disregard other pertinent information in the text; thirdly, the fusion of structured price
data and unstructured textual information features remains a subject of debate. Some
studies directly concatenate trading data, substantial financial indicator data, and a solitary
sentiment feature as inputs to the prediction model, without accounting for disparities in
data features and dimensions.

In the domain of complex time series predictive modeling, the decomposition
integration methodology is hailed as an effective strategy to enhance prediction accuracy.
Its fundamental concept involves utilizing signal decomposition algorithms to break down
a complex time series into a series of relatively simple and smooth subsequences, thereby
reducing the complexity of modeling efforts (Da Silva RG et al., 2020). The Variational
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Mode Decomposition (VMD), a signal processing technique, adeptly decomposes complex
signals into multiple eigenmodes, facilitating a nuanced understanding of implicit modes
in the data. Concurrently, the deep neural network (DNN) processes unstructured data
through its intricate structure, capturing intricate relationships in price changes and
enhancing prediction accuracy by diversifying input data (Giiveng, Cetin ¢ Kogak, 2021).
DNN excels in feature extraction from image and text coding, facilitating the discernment
of nonlinear relationships and adapting more effectively to dynamic changes in e-commerce
product prices. The combination of VMD and DNN emerges as an innovative solution for
e-commerce product price prediction.

The primary goal of this article is to develop a comprehensive and robust framework
for predicting e-commerce product prices by leveraging advanced forecasting algorithms
that integrate both structured and unstructured data. The focus is on enhancing prediction
accuracy by addressing the limitations of traditional price prediction methods, especially
in the context of nonlinear and nonstationary time-series data and the dynamic life cycles
of commodities.

The main tasks include:

1. Advanced decomposition technique using VMD and minimum fuzzy entropy
criterion: The study leverages the adaptive and non-recursive attributes of VMD to
dissect intricate time-series data into multiple IMFs. It introduces a method based on the
minimum fuzzy entropy criterion to determine the optimal number of modes (K) in the
VMD decomposition process, effectively mitigating issues related to modal confusion and
endpoint effects.

2. Integration of deep neural networks for mode forecasting: The study employs DNN
to forecast the identified modes from the VMD decomposition. This integration allows for
accurate prediction of e-commerce product prices by combining the strengths of VMD in
decomposition and DNN in predictive modeling, thereby enhancing the overall efficacy of
the forecasting method.

3. Comprehensive methodology for time-series analysis: By combining VMD with
a minimum fuzzy entropy criterion and DNN, the study presents a comprehensive
and innovative methodology for analyzing and forecasting nonlinear and nonstationary
time-series data. This approach addresses the limitations of conventional linear models,
providing a robust framework for improved time-series analysis.

LITERATURE REVIEW

The neural network algorithm, adept at handling intricate relationships, proves highly
suitable for e-commerce data prediction. Possessing characteristics of substantial
parallelism and pronounced nonlinearity, neural network models with diverse structures
find swift application among scholars in modeling nonlinear systems, showcasing notable
applicability in time series analysis. Pandey et al. (2022) employed ARIMA and a radial basis
function-based neural network to predict exchange rates, validating the enhancement of
prediction capabilities over linear models. Li et al. (2021) achieved a significant reduction
in prediction error by employing a neural network with fewer nodes in the hidden layer and
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a lower termination condition, realizing an approximate 60% improvement. Deebak ¢~ Al-
Turjman (2022) introduced a five-layer DNN model, proving more effective in predicting
the rise and fall of a given product. Recognizing the limitations of DNN in accurately
predicting time series variations, the advent of recurrent neural networks resolves this
issue. Issaoui et al. (2021) demonstrated effective e-commerce market trend prediction
using the long short-term memory (LSTM) method. Given that real-world time series
seldom adhere strictly to linearity or nonlinearity, hybrid prediction methods yield more
satisfactory results. Numerous studies (Bukhari et al., 2020; Niu, Xu & Wang, 2020; Zhang
¢ Chen, 2023) showcase improved prediction accuracy by combining different methods
and models compared to employing a singular model. Studies have demonstrated that DNN
can effectively capture intricate trends and seasonal fluctuations in time series data, offering
significant advantages over traditional methods (7an et al., 2023). Furthermore, DNN are
capable of constructing multi-level prediction models by integrating diverse input features,
such as macroeconomic indicators, market sentiment data, and technical indicators,
thereby enhancing predictive accuracy (Sharma ¢» Mehta, 2024). Moreover, researchers
have explored combining DNNs with other machine learning algorithms to boost price
forecasting performance. For instance, Nanjappa et al. (2024) proposed a method that
integrates LSTM networks with DNN for stock price prediction. Their results indicated
that this hybrid model excels in capturing both short-term and long-term dependencies.
Other studies have investigated DNN models incorporating attention mechanisms to better
balance the importance of input features and improve prediction accuracy (Li et al., 2024,
Hu et al., 2024).

Owing to the non-stationary and non-linear attributes inherent in e-commerce product
prices, the significance of data preprocessing cannot be overstated. Gu (2023) undertook
the prediction of e-commerce product prices, utilizing the Complementary Integrated
Empirical Modal Decomposition model tailored for nonlinear, complex, and irregularly
distributed data. In a similar vein, Osama et al. (2023) engineered a hybrid decomposition-
forecasting model adept at capturing the nonlinearities and volatilities intrinsic to time-
series characteristics. Robustness tests were conducted to ensure data integrity, effectively
addressing modal mixing issues, significantly reducing data reconstruction errors, and
fitting nonlinear data. To enhance prediction accuracy, various reconstruction methods
are employed in the post-decomposition reconstruction process for both linear and
nonlinear data. Typically, linear integration involves a straightforward summation of model
predictions. However, this approach lacks a robust foundation and proves unsuitable for
nonlinear data, such as e-commerce product prices. As a remedy, intelligent models are
now widely employed for the nonlinear reconstruction of sequences.

Empirical Mode Decomposition (EMD), rooted in the concept that signals can adaptively
generate intrinsic mode functions, is extensively employed for recursively decomposing
signals into distinct yet unknown and independent modes (Camipi, 2022). Recognizing
the limitations of EMD concerning noise and sampling sensitivity, scholars have explored
alternative approaches. Dragomiretskiy ¢ Zosso (2013) introduced Variational Modal
Decomposition, which demonstrates enhanced robustness to sampling and noise, offering
an effective solution to signal decomposition challenges and providing a novel avenue
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for further research. Xu ¢» Ren (2019) applied the VMD algorithm to decompose chaotic
time series, resulting in significantly improved prediction performance. Guo et al. (2022)
proposed the integration of the VMD algorithm and a generalized neural network for
predicting chaotic time series, with simulation results highlighting superior accuracy
for the VMD-GRNN model compared to the EMD-GRNN model. Jiang, Han ¢ Wang
(2020) devised a stacked recurrent neural network model based on the VMD algorithm,
demonstrating excellent performance in long-term prediction.

Despite the demonstrated effectiveness of VMD decomposition, its outcomes are
contingent on the selection of the key parameter modal number (K value). An inappropriate
choice, either excessive or insufficient decomposition, can compromise the accuracy of
analysis results (He et al., 2021). Consequently, selecting an appropriate K value before
decomposition emerges as a pivotal factor for the widespread application of VMD.
Addressing the challenge of K value selection, Zhang et al. (2020) employed VMD to
decompose wind speed time series, optimizing the decomposition K value through Sample
Entropy calculations. However, sample entropy, utilizing a binary function for similarity
measurement, may yield inaccurate or undefined results. Fuzzy entropy, reflecting the
complexity of time series, exhibits an increase in entropy value when disturbances in the
time series lead to heightened uncertainty in state values (Wang et al., 2023). Furthermore,
DNN showcase formidable computational capabilities, particularly when handling large
datasets, demonstrating self-learning, self-adaptation, and the ability to approximate
complex nonlinear relationships comprehensively, surpassing other machine learning
algorithms.

METHODOLOGY

In this study, fuzzy entropy is incorporated to optimize VMD for determining the
appropriate modal number K, building upon the foundation of sample entropy. In
contrast to the binary function employed in sample entropy, the utilization of fuzzy
affiliation functions for similarity measurement, along with fuzzy boundary measurements,
enhances the evaluation of signal complexity. This approach results in more continuous
and smoother changes in entropy values. Following the normalization of data through the
VMD method, the decomposed modal components are subjected to prediction via DNN.
The Variational Mode Decomposition-deep neural network (VMD-DNN) fusion model
generates predicted values by aggregating the individual prediction outcomes.

Moving window structure

As shown in Fig. 1, the prediction structure employed in this article adopts a moving
window format, where predictions within each window are independent and do not
mutually influence one another. This logical framework serves a dual purpose: firstly, it
simulates real trading scenarios, mitigating the occurrence of ex post prediction errors.
Secondly, it satisfies the condition of parallelism across different time windows or within
different IMFs within each window, thereby expediting the model training process (Nava,
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Figure 1 Windowed data structure.

Full-size G4l DOI: 10.7717/peerjcs.2353/fig-1

Di Matteo ¢ Aste, 2018). Within the sliding window framework, each window’s data
corresponds to the original time series.

Optimization of VMD based on fuzzy entropy

The variational problem is initially formulated by assuming the decomposition of the
original signal f into k components. It is imperative to ensure that the decomposed
sequence represents modal components with center frequency and finite bandwidth.
Simultaneously, the task involves determining the estimated bandwidth of each modal
sum to be the smallest. Additionally, the summation of all modes is required to be equal
to the original signal, serving as a constraint. Subsequently, the corresponding constraint
variational expression is established.

{ui} {on}

K
min 1578 [60)+i/moymu )] 2L sk S we=f 1
k k=1

where K is the number of modes (positive integers) to be decomposed, and {u;}, {wi} are
the first k modal component and the corresponding center frequency of the decomposed
modes, where §(¢) is the Dirac function, and * is the convolution operator.

To optimize the modal number in VMD decomposition, fuzzy entropy is employed in
this study. The process of calculating fuzzy entropy for optimizing the VMD decomposition
model is as follows:

Reconstruct the phase space of the original sequence to obtain a m vector

x"}(i=1,2,....N—-m+1). )
Then,
[x) = {x(i+)) —x0()}.j=0,1,...m— 1 )
and,
1 m—1
xo(1) = — X Zx(i+j). @
j=0

Wu (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2353 6/22


https://peerj.com
https://doi.org/10.7717/peerjcs.2353/fig-1
http://dx.doi.org/10.7717/peerj-cs.2353

PeerJ Computer Science

Calculate the distance between time series x;" and ij .

an = max | [ = xo(0) = (xG+0) - xa() )

i, r). Calculate the time series x;"

For a given n and r , use the fuzziness function u(d¥n

with ij the similarity of the time series with D{r}(n, r)=u <di“}, n, r).

For the time series x;" , define the following function.

1 N—m 1 N—m
"(n,r)=— _ D 6
¢"(n.1) N—m; N_m_lj—lzj;éi " (©)

Define the fuzzy entropy:
FE(m,n,r,N) =In¢™(n,r) —Ing™ " (n,1). (7)

The calculation of fuzzy entropy is associated with the parameters m, n, and r. The
embedding dimension (m) is typically set to 2, as it is computationally less intensive and
more responsive to sequence changes. The similarity tolerance limit (r) is chosen as 0.2
times the standard deviation of the sequence (std), ensuring that r is not excessively large.
The standard deviation of the sequence (std) is usually taken as the value of n, and n is
commonly set to 1.

Since fuzzy entropy can measure the complexity of time series, based on this,
optimization based on the minimum fuzzy entropy criterion VMD decomposition of
modal K The specific steps of the optimization method are as follows: Firstly, given that
K =34, ---,14VMD model to decompose the original time series x(t)(t = 1,2, ---,N) model
to adaptively decompose the original time series into K different scales of the IMF set
of component sequences {I;(t)}(i=1,2---,K). Then, the IMF components are calculated
and ranked by the fuzzy entropy {Ii(t)}. The IMF components exhibiting the least fuzzy
entropy are designated as trend terms, while the remaining IMF components are denoted
as stochastic disturbance terms. Subsequently, a comparative analysis of the fuzzy entropy
associated with the trend term is conducted across varying decomposition values (K values)
to ascertain the optimal number of decompositions. As the K value decreases, the fuzzy
entropy of the trend term escalates, and conversely, with an increase in the K value, the
fuzzy entropy of the trend term expands. However, with a continued rise in the K value,
the fuzzy entropy demonstrates a tendency to gradually stabilize. Consequently, to prevent
excessive decomposition, the inflection point, where the fuzzy entropy begins to stabilize,

is identified as the modal number for the VMD decomposition.

DNN structure
The network architecture of the DNN is depicted in Fig. 2, encompassing multiple
hidden layers, an input layer, and an output layer (Aldahdooh et al., 2022). The input
layer is denoted as X = [x, Xy, xn]”. The input data comprises a column vector denoted as
n-dimensional. The dataset encompasses seven distinct types of information:

Daily product prices: Detailed price records for each day of the product.
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Output layer

Hidden layer

Input layer

Figure 2 DNN network structure.
Full-size Gal DOI: 10.7717/peerjcs.2353/fig-2

Product dimensions: Numeric representation of product dimensions, including length,
width, and height.

Seasonal sales volume: Quantification of the impact of seasonality on product sales
volume, usually on a monthly or quarterly basis.

Competitor prices: Specific price details for comparable products offered by competitors.

User ratings: User-assigned ratings for a given product.

Promotion discount percentage: The specific percentage of product discount during
promotional activities.

Inflation rate: The inflation rate within the economic environment, expressed as a
percentage.

Once categorized and processed as output values, this data is transmitted from the input
layer to the hidden layer, facilitating the establishment of the initial relationship between
hidden inputs and outputs, as represented by Eq. (8).

R; =f(w;-X+by) (8)

where R; represents the output matrix of the first hidden layer, while W; and b; stand for
the weight parameter and threshold parameter between the input layer and the hidden
layer.

If we designate the variable for the p-th element of the first hidden layer as ry ,, where
p is the index, then wy , represents the weight matrix between the input layer and the
first hidden layer, and by , represents the value corresponding to the first variable in the
vector of values between the input layer and the first hidden layer. Each output value in
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Table 1 DNN structure settings.

Layer nuber Layer name Layer type Output dimension Value
1 dense_1 Dense (None, 128) 896

2 activation_1 Activation (None, 128) 0

3 dropout_1 Dropout (None, 128) 0

4 dense_2 Dense (None, 64) 8,256
5 activation_2 Activation (None, 64) 0

6 dropout_2 Dropout (None, 64) 0

7 dense_3 Dense (None, 3) 195

the activation function is determined accordingly.

n
rl,p=F<Zw1,pi-Xi+b1,p>. (9)
i=1
According to the principle of DNN, the output of the previous hidden layer is the input
of the next hidden layer, so the output of the first hidden layer of the DNN model is the
input of the next hidden layer. m The output of the first hidden layer of the DNN model
Ry of the first hidden layer of the DNN model is given by

Ry =f(Wm -Rm—1+bmn). (10)

Input X after undergoing processing by the input layer, is forwarded to the hidden layer.
Following the completion of processing in the hidden layer, the result is transmitted to the
output layer. This process can be expressed as follows.

y=8Wny1-Ry+bnyr). (11)

To enable the DNN for predicting the price movements of e-commerce products—up,
down, or flat—the network structure is designed as outlined in Table 1.

The architectural design of the DNN takes into consideration the functions and
parameters of different layers. The entire network comprises seven layers, including
the input layer, two hidden layers, a dropout loss layer, and the output layer.

Commencing with the input layer, responsible for receiving raw data, the information
proceeds to the first hidden layer. This layer encompasses 64 neurons, each associated with
a feature from the input layer, with the objective of extracting key features from the input
data. Subsequently, the second hidden layer, more intricate than the first, with 128 neurons,
learns an abstract representation of the data at a deeper level. To prevent overfitting during
training, a dropout loss layer is introduced between the two hidden layers. The dropout
layer mitigates overfitting by randomly deactivating a number of neurons with a specific
probability during training.

Ultimately, the output layer employs a sigmoid function as an activation function to
determine the probability of belonging to the three categories. The sigmoid function maps
output values between 0 and 1, representing the probability of belonging to each category,
facilitating multi-category classification tasks.
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To optimize training, adaptive learning rate methods and learning rate schedules are
employed. Specifically, the Adam optimizer is used for its capability to adjust the learning
rate dynamically based on the estimates of first and second moments of gradients. The
Adam optimizer updates the weights as follows:

m; = ﬁlmtfl + (1 —,31)V2t
vi=PBovii1+(1—B2) (VE)?

. my
my =
L
1—,31
. Vi
V=
L
1—A,32
(047
Wi=W;,_1—

Vi te

where m, and v, are the first and second moment estimates, respectively, 8 and 8, are
decay rates for the moments, « is the learning rate, and € is a small constant to prevent
division by zero.

Additionally, learning rate schedules are implemented to adjust the learning rate during
training. For example, a step decay schedule reduces the learning rate by a factor after a set
number of epochs, allowing the model to converge more effectively over time.

VMD-DNN

The block diagram illustrating the structure of the VMD-DNN price prediction model
constructed in this article is depicted in Fig. 3.

The specific modeling steps are as follows:

Step 1: Optimization of K value. Calculate the fuzzy entropy of the trend term under
various VMD decomposition modes and identify the optimal parameter values for
decomposition based on the minimum fuzzy entropy criterion (K value).

Step 2: Time series decomposition. Following the determination of the optimal K value,
employ the VMD model to adaptively decompose the original time series into a set of K
IMF component sequences {I;(t)}(i=1,2,...,K).

Step 3: DNN input. Utilize the trained DNN model for each eigenmode function as
input and obtain the corresponding prediction results.

Step 4: Integration prediction. Employ the ELM model to train and predict the trend and
random interference terms within the IMF component. This process results in the predicted
values of the IMF component s; = {s1, 7,83, ..., 5k}, then linearly sum the predicted values
of IMF components s; to derive the final prediction results.

The pseudo-code on which the VMD-DNN model runs is shown in Algorithm 1.

EXPERIMENTATION AND ANALYSIS

The proposed VMD-DNN model is designed for application in the e-commerce product
price prediction task. The model is trained using three datasets, and its performance is
compared with existing approaches, namely ELM (Weng et al., 2020), DNN (Giiveng, Cetin
& Kogak, 2021), VMD-ELM (Dabin, Liling ¢ Liwen, 2023), and VMD-SVR (Liu et al.,
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Figure 3 Structure of the VMD-DNN.
Full-size & DOI: 10.7717/peerjcs.2353/fig-3

2021). ELM is recognized for its rapid training and strong generalization capabilities, while
DNN is well-suited for intricate pattern learning in large-scale, high-dimensional datasets.
VMD-ELM and VMD-SVR integrate VMD with ELM and SVR, respectively, leveraging
signal decomposition to extract eigenmodes for enhanced data characterization.

Data sets

The utilized datasets for model training encompass three publicly available sources,
contributing diverse and comprehensive information to enhance the model’s
comprehension of the intricate relationship between products and prices.

Amazon Product Reviews Dataset (DOI 10.5281/zenodo.6657410): Derived from
Amazon product reviews, this dataset includes extensive product information, user reviews,
and ratings. It offers a substantial amount of data, potentially containing details pertinent
to product prices. The inclusion of multiple data layers aids the model in capturing
correlations between user feedback and pricing dynamics.

E-commerce Price Prediction Dataset (DOI 10.5281/zenodo.11237099): Sourced from
Kaggle, a platform for open data science competitions, this dataset is tailored for e-
commerce product price prediction. Encompassing various product categories and related
features, it provides the model with diverse training instances, fostering experience in
predicting prices within different contextual settings.
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Algorithm 1: VMD-DNN main program
Input:

original_time_series: Time series data to be analyzed

min_K: Minimum value of K to be considered

max_K: Maximum value of K to be considered

Output:

final_prediction: Integrated prediction result

1. Function Optimize K(original_time_series, min_K, max_K)
Initialize best_K to None

Initialize min_fuzzy_entropy to infinity

For K from min_K to max_K inclusive

fuzzy entropy = CalculateFuzzyEntropy(original time_series, K)
If fuzzy_entropy <min_fuzzy_entropy then

min_fuzzy entropy = fuzzy_entropy

best K=K

Return best_K

2. Function Perform_VMD_Decomposition(original_time_series, optimal_K)
IMF_components = VMD_Decompose(original_time_series, optimal_K)
Return IMF_components

3. Function Apply_DNN_Model(IMF_components)

Initialize predictions as an empty list

For each IMF_component in IMF_components

predicted_values = DNN_Predict(IMF_component)

Append predicted_values to predictions

Return predictions

4. Function Integrate_Predictions(predictions)
trained_ELM_model = Train_ELM_Model(predictions)
IMF_predictions = ELM_Predict(trained_ELM_model, predictions)
final_prediction = Linear_Combination(IMF_predictions)

Return final_prediction

// Execution

optimal_K = Optimize K(original time_series, min_K, max_K)
IMF_components = Perform_VMD_Decomposition(original_time_series, opti-
mal_K)

predictions = Apply_ DNN_Model(IMF_components)

final prediction = Integrate_Predictions(predictions)

Online Retail Dataset (DOI 10.24432/C5BW33): Encompassing online retail
information, this dataset comprises sales data, user behavior patterns, and price variations
across diverse products. Analysis of this dataset facilitates the model’s understanding of
price fluctuations under various conditions, thereby enhancing its proficiency in accurately
predicting e-commerce product prices.
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Table 2 Model performance under different experimental parameters.

Batch size Learning rate Activation function Accuracy Loss
16 0.001 ReLU 87.5% 0.25
16 0.001 Tanh 86.8% 0.28
16 0.001 Sigmoid 85.0% 0.30
16 0.01 ReLU 89.2% 0.20
16 0.01 Tanh 88.5% 0.23
16 0.01 Sigmoid 86.3% 0.27
32 0.001 ReLU 85.6% 0.30
32 0.001 Tanh 84.9% 0.32
32 0.001 Sigmoid 83.5% 0.35
32 0.01 ReLU 87.8% 0.25
32 0.01 Tanh 86.2% 0.28
32 0.01 Sigmoid 84.8% 0.32
64 0.001 ReLU 82.3% 0.35
64 0.001 Tanh 81.5% 0.38
64 0.001 Sigmoid 80.9% 0.40
64 0.01 ReLU 84.0% 0.30
64 0.01 Tanh 82.7% 0.32
64 0.01 Sigmoid 82.1% 0.37

Experiments details and evaluation indicators

This article uses the CPU of Xeon®) E5-2640 v4, the GPU of 4*Nvidia Tesla V100 and the
ubuntu system to complete the environment setup and model training. The deep learning
framework is Tensorflow. Table 2 presents the experimental results for different batch size,
learning rate, and activation function.

The analysis underscores that ReLU, with a batch size of 16 and a learning rate of
0.01, represents the most effective combination for achieving optimal model performance.
This configuration not only delivers the highest accuracy but also minimizes the loss,
thereby demonstrating superior robustness and stability. Although Tanh offers competitive
performance, it does not reach the same level of effectiveness as ReLU. Sigmoid, while still
useful in certain contexts, shows comparatively lower performance metrics. Consequently,
ReLU is recommended as the preferred activation function for models requiring high
accuracy and low loss, based on the results from this experimental evaluation.

To comprehensively assess the performance of various prediction models, this article
employs root mean square error (RMSE), mean absolute percentage error (MAPE), mean
absolute error (MAE), and direction symmetry (DS) as evaluation criteria (Ardiansyah,
Majid & Zain, 2016). In this study, RMSE, MAPE, MAE, and DS serve as the evaluation
metrics (Ardiansyah, Majid ¢ Zain, 2016), with a lower RMSE, MAPE, and MAE indicative
of higher prediction accuracy. Conversely, a higher value of DS signifies a better alignment
with the actual data trend.
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Figure 4 Model comparison under Amazon product reviews dataset.
Full-size G4l DOI: 10.7717/peerjcs.2353/fig-4

Results and Discussion

The performance comparison of models on the Amazon Product Reviews Dataset (Fig. 4)
reveals that, in terms of RMSE, the VMD-DNN model outperforms others, achieving
the lowest error value (0.2481). This superiority in accuracy positions the VMD-DNN
model as a clear leader among the models. Furthermore, in terms of MAPE and MAE, the
VMD-DNN model demonstrates the best performance, with values of 1.1686 and 0.1546,
respectively, indicating closer proximity to true values compared to other models.

The DNN and VMD-SVR models also exhibit commendable performance, showcasing
effective error reduction compared to the traditional ELM and VMD-ELM models.
Conversely, the ELM model performs relatively poorly across all metrics, potentially due
to its limitations in nonlinear modeling. In summary, the VMD-DNN model excels in
e-commerce product price prediction, offering a robust solution to enhance prediction
accuracy and practical utility.

Furthermore, upon comparing the single prediction model with the decomposition
integration prediction model (Figs. 5 and 6), it is evident that all three error metrics and
directional metrics of the decomposition integration prediction models surpass those of
the single model. This observation underscores the effectiveness of the decomposition
integration strategy.

Notably, the proposed VMD-DNN sub-model achieves an impressive MAPE of
only 0.6578 on the E-commerce Price Prediction Dataset and 0.5414 on the Online
Retail Dataset. The associated error reduction rates of 66.5% and 70.4%, respectively,
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Figure 5 Model comparison under E-commerce price prediction dataset.
Full-size & DOI: 10.7717/peerjcs.2353/fig-5

compared to the single model, emphasize the substantial improvement achieved through
the decomposition integration approach. Relative to other decomposition integration
models, VMD-DNN excels in breaking down complex e-commerce product data into
more manageable sub-sequences, alleviating the prediction burden on the single model.
This enhancement augments its generalization capability, ultimately leading to optimal
prediction performance.

DS provides a more nuanced analysis of model performance across various datasets, as
illustrated in Fig. 7. This metric offers insight into the consistency of model predictions in
capturing directional trends, complementing traditional accuracy measures.

In the Amazon Product Reviews Dataset, the VMD-DNN model achieves a notable
DS score of 86.25, highlighting its excellence in both prediction accuracy and directional
alignment. This high DS score indicates that the VMD-DNN model not only performs
well in terms of accuracy but also effectively captures the underlying trend directions. The
VMD-ELM model also demonstrates significant performance with a DS score of 79.3,
showcasing its ability to maintain good directional symmetry, albeit slightly behind the
VMD-DNN model.

The exceptional performance of the VMD-DNN model is further confirmed in the
E-commerce Price Prediction Dataset and the Online Retail Dataset, where it secures
the highest DS scores of 87.5 and shows consistent performance across datasets. This
consistency underscores the model’s robustness in maintaining both prediction accuracy
and directional alignment. The VMD-ELM model, with DS scores of 79.8 and 79.3 in
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these datasets, maintains its competitive edge by showing reliable directional symmetry,
although it remains slightly inferior to the VMD-DNN model.

In comparison, the DNN and VMD-SVR models exhibit similar DS scores across the
datasets but are notably lower than those of the VMD-DNN and VMD-ELM models. The
lower DS scores for these models suggest that while they exhibit some level of directional
accuracy, there remains substantial room for improvement in capturing directional trends
effectively.

The VMD-DNN model exhibits notable advantages in both directional symmetry and
prediction performance, particularly in the task of e-commerce product price prediction.
This robust performance enhances the model’s explanatory and practical utility. The
VMD-ELM model, with its stability and commendable directional symmetry across
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datasets, emerges as a reliable alternative. The in-depth analyses presented here offer

a comprehensive guide for selecting suitable prediction models, especially in scenarios
where directional symmetry and interpretability are pivotal. Notably, the VMD-DNN and
VMD-ELM models demonstrate strong performance in such scenarios.

To obtain final forecasts, the IMF decomposition results are linearly summed. Price
forecast curves for e-commerce products in different price ranges are illustrated in Fig. 8
(400-600) and Fig. 9 (20-40), with actual observed values depicted in black for reference.

From the figures, it is evident that the predictions from VMD-ELM and VMD-SVR
exhibit instability and the poorest alignment with the actual observations. In contrast,
VMD-DNN demonstrates closer proximity to the actual observations than the single
model. With the exception of occasional bias in the high-frequency subsequence in extreme
cases, the predicted values for the remaining subsequences exhibit high compatibility with
the actual values. Notably, the predicted trends closely mirror the actual trends.

The application of VMD to decompose the original e-commerce product price data,
particularly within different price intervals, proves beneficial. This process effectively
extracts and processes price fluctuation information, significantly enhancing the prediction
performance of the DNN model.

DISCUSSION

The application of the proposed VMD-DNN model in e-commerce product price
prediction holds significant academic and practical implications. Firstly, the utilization of
deep learning models can substantially enhance the accuracy of price prediction due to their
potent nonlinear modeling capabilities. Traditional linear models struggle to capture the
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intricate multi-level relationships underlying product prices. In contrast, deep learning, by
learning patterns from extensive datasets, can better comprehend the influence of market
factors, competitive dynamics, and other complex variables on product prices.

Secondly, the e-commerce marketplace’s rapid changes and volatility underscore
the importance of immediate and accurate price predictions. Deep learning models,
being adaptable, can swiftly adjust predictions in response to seasonal market changes,
promotions, and competitive pressures. This adaptability provides e-commerce platforms
with more real-time decision support. Based on the experimental results, the proposed
model plays a pivotal role in optimizing pricing strategies. A deeper understanding of
product price trends and fluctuations enables e-commerce firms to formulate more
effective pricing strategies, maximizing revenue and increasing sales. This balance between
profit and market share in a competitive environment establishes a sustainable competitive
advantage for businesses.

Furthermore, in terms of inventory management, accurate price forecasting aids in
avoiding excessive or insufficient inventory levels. With the support of deep learning
models, e-commerce platforms can plan inventory more precisely, reducing costs and
increasing turnover, thereby improving overall operational efficiency.

However, the prediction challenges in e-commerce data arise from the influence of
intricate factors like market competition, promotional activities, and user behaviors. These
factors contribute to the nonlinear and nonstationary characteristics of the data, elevating
the complexity of prediction tasks. Poor data quality or missing values can further pose
challenges for VMD-DNN, as the model places high demands on data quality, potentially
impacting its performance. Moreover, the variability in price fluctuations within the
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e-commerce domain, influenced by seasonality, commodity characteristics, and other
factors, may limit the generalization capability of VMD-DNN to specific scenarios. The
model’s performance may excel in certain commodities or time periods but may not be as
effective in other cases.

Additionally, the utilization of complex VMD-DNN models may be excessive for certain
straightforward prediction problems, where simplified models might offer more practical
solutions. Lastly, the performance of VMD-DNN can vary across different types of time
series data and prediction tasks. Validating the model’s generalizability and adaptability
across multiple domains and datasets is crucial to ensure its robustness in diverse contexts.

CONCLUSION

After normalizing the data and applying the Variational Mode Decomposition (VMD)
method, the optimal K value is determined using the minimum fuzzy entropy criterion.
Subsequently, a deep neural network (DNN) is employed to predict the modal components
individually, with the predictions aggregated to produce the forecast values of the
VMD-DNN fusion model. This methodology yields highly satisfactory fitting results
for both the training and test datasets. Comparative analysis with other decomposition-
integrated prediction models demonstrates that VMD-DNN exhibits significantly smaller
prediction errors. This result underscores the model’s effectiveness in decomposing
complex e-commerce product price sequences into simpler sub-sequences, thus reducing
the prediction burden on a single model and enhancing its generalization ability. The
improved generalization ability contributes to the overall enhancement of prediction
performance. The price prediction results not only provide valuable business insights but
also serve as a scientific foundation for e-commerce executives to make informed decisions.
The comprehensive analysis of extensive data allows business leaders to develop strategies
that are more responsive to dynamic market changes. Future research could investigate
the incorporation of dynamic features into time series data. Since e-commerce product
prices are influenced by factors such as seasonality and promotional activities, integrating
time dynamics into the model—through mechanisms such as time lag terms or periodicity
models—could further enhance the model’s ability to accurately capture the nuances of
price series dynamics.
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