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ABSTRACT
Simultaneous equation model (SEM) is an econometric technique traditionally used
in economics but with many applications in other sciences. This model allows the
bidirectional relationship between variables and a simultaneous relationship between
the equation set. There are many estimators used for solving an SEM. Two-steps least
squares (2SLS), three-steps least squares (3SLS), indirect least squares (ILS), etc. are
some of the most used of them. These estimators let us obtain a value of the coefficient
of an SEM showing the relationship between the variables. There are different works
to study and compare the estimators of an SEM comparing the error in the prediction
of the data, the computational cost, etc. Some of these works study the estimators from
different paradigms such as classical statistics, Bayesian statistics, non-linear regression
models, etc. This work proposes to assume an SEM as a particular case of an artificial
neural networks (ANN), considering the neurons of the ANN as the variables of the
SEM and the weight of the connections of the neurons the coefficients of the SEM.
Thus, backpropagation method using stochastic gradient descent (SGD) is proposed
and studied as a new method to obtain the coefficient of an SEM.

Subjects Algorithms and Analysis of Algorithms, Neural Networks
Keywords Backpropagation method, Stochastic gradient descent, Simultaneous equation models,
Artificial neural networks

INTRODUCTION
Simultaneous equation models (SEM) are used as a statistical technique encompassing a
multitude of equations, which are solved concurrently to examine the intricate relationships
between multiple variables. These models find widespread use in various fields, such as
economics, finance, engineering, and social sciences. For example, an SEM is used in tax
research employing provincial-level data spanning the period of 2001–2014 in Indonesia
to investigate the effects of fiscal decentralization on regional income inequality (Siburian,
2019). Similarly, the study and exploration of an SEM connecting employment and mental
health has been conducted (Steele, French & Bartley, 2013). The peer effects in casino
gambling behavior (Park & Manchanda, 2015), the interaction between individuals’ health
risk perception and betel chewing habits in Taiwan (Chen et al., 2013), the effects of
repetitive iodine thyroid blocking on the development of the fetal brain and thyroid

How to cite this article Pérez-Sánchez B, Perea C, Duran Ballester G, López-Espín JJ. 2024. Estimation of simultaneous equation models
by backpropagation method using stochastic gradient descent. PeerJ Comput. Sci. 10:e2352 http://doi.org/10.7717/peerj-cs.2352

https://peerj.com/computer-science
mailto:m.perezs@umh.es
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2352
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2352


in rats (Cohen et al., 2019), the impact of foreign trade on energy efficiency within
China’s textile industry (Zhao & Lin, 2019), as well as the assessment of biomass energy
consumption, ecological footprint through FDI, and technological innovation in B&R
economies (Yasmeen et al., 2022) are examples of applications of SEMs. The estimation
of an SEM entails identifying the variable values that simultaneously satisfy all equations
within themodel. Full informationmaximum likelihood (FIML) or three-stage least squares
(3SLS), can be used as systemmethods, and compared with more widely used methods like
ordinary least squares (OLS), indirect least squares (ILS), and the two-stage least squares
(2SLS) (Gujarati & Porter, 2004). All these methods are set in classical statistics but other
paradigms can be considered as the Bayesian Statistics. Some estimation techniques that
appear with this new econometric approach of SEM are the Bayesian method of moments
(BMOM) and theminimumexpected loss (MELO) estimator (Zellner, 1997) or themethods
used byChao & Phillips (2002), andKleibergen & Dijk (1998). This attempt tomore realistic
models approach leads to analytical difficulties as Steel’s work documents (Steele, French &
Bartley, 2013), and, as a result, new algorithms have appeared to facilitate the calculation
of the posterior distributions in Bayesian models. One of the most important problems
here is that the Bayesian analysis of SEM introduces an inevitable degree of complexity due
to the prior specification of the distributions as well as to the posterior obtaining of the
distributions.

Artificial neural network (ANN) is a machine learning model inspired by the
human brain’s structure and function (Goodfellow, Bengio & Courville, 2016). ANNs
consist of layers of interconnected nodes that process information and learn to make
predictions or decisions. They are used in a wide range of applications, including
image encryption (Mohanrasu et al., 2023), natural language processing (Khurana
et al., 2023), hydrogen production (Abdelkareem et al., 2022), medical diagnosis and
analysis (Surianarayanan et al., 2023), autonomous vehicles and robotics (Ali et al., 2023),
cybersecurity for intrusion detection and malware detection (Bharadiya, 2023).

The applications of ANN to SEM are diverse, as illustrated by several key studies. Kumar
(1991) presents an approach to formulating and estimating an SEM of the US economy as
a neural network problem. He concludes that this new approach is promising, albeit with
reservations due to the small size of the problem. A study shows the comparison results
when estimating the Klein I model through statistical methods against a neural network
with two hidden layers, in which the feasibility and good results of applying ANN to this
type of problem are highlighted (Brennan & Marsh, 1992). A similar work by Caporaletti
et al. (1994), also solves the Klein economic problem posed as an SEM of two equations
by comparing the results of estimating by classical methods such as 2SLS and 3SLS with
an ANN, obtaining very similar results between the different methods. On the other hand,
Ma et al. (2021) studies the diffusion of scientific articles from the academic world through
social networks using SEM and ANN. An infographic of publications on applications of
ANN to SEM, ANN and SEM is shown in Fig. 1.

To adjust the connection weights of the ANN, the backpropagation method (BM) is
used compensating for each error found during learning. BM obtaines the derivative (the
gradient) of the cost function associated (error function) in each iteraction with respect to
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Figure 1 Timeline of publications on applications of ANN to SEM, SEM and ANN.
Full-size DOI: 10.7717/peerjcs.2352/fig-1

the weights. The weight updates can be obtained using gradient descent or other methods,
such as extreme learning machines, training without backtracking, weightless networks,
etc. (Ollivier, Tallec & Charpiat, 2015).

The main contribution of this paper is to consider an SEM as a particular case of an
ANN and thus, by using the techniques to solve the ANN, i.e., obtaining the weight of the
edges from the neurons, obtaining the coefficients of the parameters in the SEM. Therefore,
the paper proposes a new algorithm to estimate the SEM by considering an SEM as an AN.

The document is structured as follows. ‘Simultaneous Equation Mode’ presents the
model and discusses some methods for estimating linear SEMs. ‘Simultaneous Equation
Model as a Particular Case of Artificial Neural Network’ explains how an SEM is represented
as a particular case of an ANN. ‘Stochastic Gradient Descent’ provides a review of
stochastic gradient descent. The experimental design and findings of the comparative study
are presented in the ‘Experimental Study’. Finally, the ‘Conclusions’ offers concluding
comments.

SIMULTANEOUS EQUATION MODEL
Considering m interdependent or endogenous variables which depend on k independent
or exogenous variables, and supposing that each endogenous variable can be expressed as
a linear combination of some of the rest endogenous variables, and the exogenous ones,
adding a white noise variable that represents stochastic interference. Thus, a linear SEM
(Gujarati & Porter, 2004) is:

Y1= B1,2Y2+B1,3Y3+···+B1,mYm+01,1X1+···+01,kXk+u1
Y2= B2,1Y1+B2,3Y3+···+B2,mYm+02,1X1+···+02,kXk+u2
...

Ym= Bm,1Y1+Bm,2Y2+···+Bm,m−1Ym−1+0m,1X1+···+0m,kXk+um

(1)

where B∈Rm×m and 0 ∈Rm×k are matrices of coefficients, and x , y and u are exogenous,
endogenous and white noise variables, which are vectors of dimension n, being n the sample
size. Some coefficients of Bi,j and 0k,r are zero, and are known a priori. The equation can
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be represented in matrix form as:

YBT +X0T
+U = 0 (2)

where Y = (Y1,...·,Ym), X = (X1,...·,Xk) and U = (U1,...·,Um).
SEM can be representing by the reduce form as

Y =X5+V (3)

where 5=−0T (BT )−1, and V =−U (BT )−1.
Solving the model is equivalent to obtaining an estimation of B and 0 in Eq. (2)

from a representative sample of the data variables X and Y . Based on classic inference,
the estimation methods can be set by limited and full information methods. Limited
information methods estimate each of the equations without using the information
contained in the rest of the model, i.e., only considering both the endogenous and
exogenous variables included in the equation. Ordinary least squares (OLS), indirect
least squares (ILS), and two-stage least squares (2SLS) are examples of these methods
(Gujarati & Porter, 2004).

Full information methods consider joint estimation of the whole model in the structural
form. These methods require the specification of all the equations, and all of them must
be specified to have a solution. In general, they are more asymptotically efficient than the
others since they incorporate all the information of the system. However, the drawback
is that inconsistent estimates may be generated if any equation is incorrectly specified.
Examples of these kinds of methods are FIML or 3SLS (Gujarati & Porter, 2004).

On the other hand, Bayesian inference does not use sampling assumptions. However, it
introduces a high degree of complexity due to the prior specification of the distribution and
the obtaining of the posterior distribution. Some techniques are the BMOM developed by
Zellner (1998), or the methods used by Chao & Phillips (2002), who study the behavior of
posterior distributions under the Jeffreys prior in a simultaneous equations model (Chao
& Phillips, 2002). Geweke developed general methods for Bayesian inference with non-
informative reference prior in the model, based on a Markov chain sampling algorithm,
and procedures for obtaining predictive odds ratios for regression models with different
ranks Geweke (1996) and Kleibergen & Dijk (1998) that solve Bayesian SEM using reduced
rank structures (Kleibergen & Dijk, 1998).

The Markov Chain Monte Carlo development has been key in making the computation
of large models that require integration over hundreds or even thousands of unknown
parameters possible. The Metropolis–Hastings algorithm and the Gibbs sampling (Gelman
et al., 2015) are examples. A recent study was carried out to optimize the parameters
K1 and K2 from BMOM in order to minimize the Akaike Information Criteria (AIC).
Furthermore, this method, called BmomOPT , obtains estimated parameters with minimal
error (Pérez-Sánchez et al., 2021).
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SIMULTANEOUS EQUATION MODEL AS A PARTICULAR
CASE OF ARTIFICIAL NEURAL NETWORK
The goal of this work is to study stochastic gradient descent as a method of obtaining the
coefficient of an SEM assuming that this SEM is a particular case of an ANN, considering
the neurons of the ANN as the variables of the SEM and the weight of the connections of
the neurons the coefficients of the SEM.

For example, considering a model with two endogenous variables, y1 and y2, and four
exogenous variables, x1, x2, x3 and x4, with the next structure as an example:

y1=B1,2y2+01,1x1+01,2x2+01,4x4+u1
y2=B2,1y1+02,1x1+02,2x2+02,3x3+02,4x4+u2

(4)

This SEM 4 can be interpreted as a multi-layer perceptron (MLP) (Kruse et al., 2022), a
type of artificial neural network composed of an input layer, one or more hidden layers,
and an output layer. Figure 2 shows a simple one-layer ANN structure. In this analogy, the
endogenous variables y1 and y2 are like neurons in the output layer, while the exogenous
variables x1, x2, x3, and x4 are like neurons in the input layer. The relationships between
the endogenous and exogenous variables in the SEM, represented by the coefficients, are
similar to the synaptic weights in an MLP.

The relationship between the endogenous variables in the SEM reflects the
interconnected nature of neurons in an MLP, where y1 influences y2 and vice versa.
The error terms u1 and u2 can be considered as noise in signal transmission, similar to the
imperfections and fluctuations encountered in the input and output data of an ANN.

In summary, the structure and interactions in an SEM with endogenous and exogenous
variables are similar to those in an MLP. Both models capture complex relationships
between variables and can be used to analyze patterns and make predictions.

However, ANNs need large amounts of data for training, which can be a problem for
SEM applications with limited data. Additionally, the complexity of ANNs, especially with
hyperparameter tuning and model design, can present challenges not found in traditional
methods.

STOCHASTIC GRADIENT DESCENT
Gradient descent is a classic and widely used technique in the field of machine learning
and artificial neural networks for minimizing cost functions. Its application has extended
beyond the realm of machine learning and has been adapted to solve various optimization
problems in the fields of electronics (Nawaz et al., 2019), telecommunications (He et al.,
2022), fluid dynamics (Chen et al., 2022), etc.

In essence, gradient descent is an iterative algorithm that seeks to find the local (or
global) minimum of a function by making gradual adjustments in the direction opposite to
the gradient of the function at the current point. The gradient represents the direction of the
steepest ascent of the function, so moving in the opposite direction of the gradient results
in reducing the value of the function with each iteration. Over iterations, the algorithm
converges toward a minimum, which translates to an optimal or approximate solution to
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Figure 2 Representation of SEM as an ANN.
Full-size DOI: 10.7717/peerjcs.2352/fig-2

the problem at hand. More details about the gradient descent technique can be found in
Nocedal & Wright (2006).

Moreover, despite being a classic technique in the field of optimization, gradient descent
maintains its relevance and vitality today. Its durability is largely due to the constant
attention it receives from researchers and scientists across various fields. In the era of
artificial intelligence andmachine learning, where optimization is essential, gradient descent
remains a cornerstone. Numerous recent studies have extensively explored its strengths
and weaknesses (Ahn, Zhang & Sra, 2022), adapting it to a wide range of applications
(Zhang, Qiu & Gao, 2023), as well as enriching its theoretical understanding (Jentzen &
Von Wurstemberger, 2020).

Furthermore, over time, it has given rise to several variations and adaptations that are
tailored to different contexts and types of problems. Stochastic gradient descent (SGD),
gradient descent with momentum, adaptive gradient descent, mini-batch gradient descent,
and adaptive learning rate are among the most noteworthy variants (Ruder, 2016).
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The stochastic gradient descent method, instead of computing the gradient over the
entire dataset, calculates the gradient using only a random sample in each iteration. This
makes the algorithm faster and more scalable, which is beneficial when working with
massive datasets. Some parameters of this algorithm are briefly introduced: First, the
initial seed is used to initialize random number generators involved in random sample
selection from the dataset or in model parameter initialization. This is important to ensure
experiment reproducibility, as using the same initial seed will yield the same results in
subsequent runs.

Second, the learning rate is a critical parameter, as it controls the step size at which the
algorithm updates the parameters of the model in each iteration. A higher learning rate
can expedite convergence but may also introduce instability. Conversely, a lower learning
rate can obtain convergence but might require more iterations. Finally, the batch size is
the number of training examples used in each iteration of SGD. A small batch introduces
more variability in updates, which can help escape local minima but may increase noise
in gradient estimates. On the other hand, a large batch can provide more stable gradient
estimates but may require more computational resources.

In this work, the SGDmethod was chosen due to its highly versatile and efficient variant
of the classic gradient descent that is used in a variety of optimization problems, especially
in the field of machine learning and ANN. It can be considered that simultaneous equation
models can, in some way, be regarded as a particular case of ANN. Among the advantages
of SGD, it can be highlighted that it is scalable to handle large problems, efficient in the
use of small batches of data instead of the complete dataset, and it improves convergence
and stability by allowing for the adjustment of the learning rate.

EXPERIMENTAL STUDY
Multiple SEMs have been generated varying the number of endogenous and exogenous
variables and the sample size and have been solved using both statistical inference and
SGD method. In this comparative study, the 2SLS method has been employed given its
widespread utilization in resolving SEM due to its simplicity and its goods outcomes.

The SEMs Eq. (2) have been generated as follows: Matrices B and 0 have been randomly
obtained from a Uniform distribution in [0, 10] and X is a matrix obtained from a
multivariate normal distribution. Matrix Y has been calculated from Eq. (3), where V
follows a normal distribution with parameters µ= 0 and σ = {0.1,1.0}. For each type of
SEM, a datasets of 100 and 1,000 observations has been created, varying across two levels
of variability defined by σ values.

As ametric for assessing the accuracy of predictivemodels, themean squared error (MSE)
has been used. The mathematical expression of MSE for the SEM can be represented as:
1

n×m
∑m

j=1
∑n

i=1(Yij− Ŷij)2, where n denotes the size of the test or validation sample, m
represents the number of endogenous variables of the SEM, and Y and Ŷ symbolize the
endogenous variable and its corresponding predictive value, respectively.

Table 1 presents the average and standard deviation (std) of the MSE obtained from
10 repetitions of the experiment using a dataset of size 1,000. The table has been divided
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Table 1 Average and standard deviation of MSE obtained by 2SLS and SGD.

SEM σ Method Average Std

2SLS 0.225469
0.1

2sls 0.066712 0.000018
SGD

rnd 0.066712 0.000018
2SLS 0.007806

1.0
2sls 0.007819 0.000010

m=2
k=4

SGD
rnd 0.007819 0.000010

2SLS 1.442922
0.1

2sls 0.204201 0.000138
SGD

rnd 0.204709 0.000068
2SLS 0.815662

1.0
2sls 0.233558 0.000070

m=10
k=20

SGD
rnd 0.233765 0.000063

2SLS 3.046122
0.1

2sls 0.277536 0.000302
SGD

rnd 0.246335 0.000190
2SLS 3.143916

1.0
2sls 0.336215 0.000089

m=20
k=40

SGD
rnd 0.336976 0.000122

into three sections, one for each type of SEM defined in terms of m and k, which represent
the number of endogenous and exogenous variables, respectively. Within each section,
the table is further divided into two subsections according to the variability (σ ) and the
method used for solving the SEM (2SLS or SGD). For the SGD case, the row has been
subdivided, one for each initial seed.

The 2SLS method has been used on the entire dataset to estimate the model parameters
and, the MSE has been calculated using random samples of size 300. Only averages are
provided, since the standard deviation was almost zero.

The SGD method has been obtained by using two initial seeds for the gradient descent
process: one is the solution obtained by 2SLS method (‘2sls’), and the other is a generated
randomly (‘rnd’). Seventy percent of the data has been used for training, while the remaining
30 percent has been allocated for validation. Furthermore, two learning rates, 0.01 and
0.00001, have been used in the experiment. However, since insignificant discrepancies were
observed between them, only the results obtained using 0.01 are presented in the table. The
model training involved a batch size of 32, which represented randomly chosen training
examples used in each weight update to compute the gradient. The process consisted of
5000 iterations when the learning rate was set to 0.01, and 10,000 iterations were performed
with a learning rate of 0.00001. Additionally, gradient values were restricted to 0.5 during
each step (gradient clipping by value), although it showed negligible effects on the training
process.

Upon reviewing the Table 1 results, a comparison is made between the minimum
MSE values obtained using the 2SLS and SGD methods across the different models for
a variability of 0.1. In the m= 2 k = 4 model, the 2SLS method produced an MSE of
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0.225469, while SGD produced 0.066712 (seed ‘2sls’ and ‘rnd’). In the m= 10 k = 20
model, 2SLS obtained an MSE of 1.442922, while SGD resulted in 0.204201 (seed ‘2sls’)
and 0.204709 (seed ‘rnd’). Finally, in the m= 20 k = 40 model, 2SLS recorded an MSE of
3.046122, while SGD showed 0.277536 (seed ‘2sls’) and 0.246335 (seed ‘rnd’). These results
suggest a consistent trend across different models with lower MSE values obtained using
the SGD method compared to the 2SLS method. Comparing the results obtained through
the SGD method, the MSE values coincide for both seeds in the case of the small model. In
the intermediate model, the minimum MSE value is found with the ‘2sls’ seed, although
the one obtained with ‘rnd’ closely follows. In the largest model, the minimum is achieved
with the ‘rnd’ seed. This shows that using the ‘2sls’ seed can improve the prediction of
endogenous variables.

For the dataset with higher variability (σ = 1.0), in the m= 2 k = 4 model, an MSE
of 0.007806 is obtained with 2SLS and 0.007819 with SGD (seed ‘2sls’ and ‘rnd’). In the
m= 10 k=20model, 2SLS obtains 0.815662, while SGD results in 0.233558 (seed ’2sls’) and
0.233765 (seed ‘rnd’). Finally, in them= 20 k=40 model, 2SLS obtain a value of 3.143916,
whereas SGD results in 0.336215 (seed ‘2sls’) and 0.336976 (seed ‘rnd’). Comparing the
results within the SGD method, the MSE values obtained using the ‘2sls’ seed are lower
than those obtained using ‘rnd’, but they are very close to each other. Therefore, except for
the m= 2 k = 4 model with a variability of 1.0, the minimum MSE values were obtained
using the SGD method across the remaining studied cases. When comparing the initial
seeds, in all cases, the minimumMSE value has been obtained using ‘2sls’ as the initial seed
in the SGD method.

A dataset of size 100 has also been used in the experiment, with 70 for SGD training and
30 for validation. The 2SLS method utilized the entire dataset for coefficient estimation
and 30 for calculating the MSE. The results are then compared with those obtained from a
dataset of size 1,000 and presented in bar charts (Figs. 3 and 4). Both figures display theMSE
using each method for the two largest SEMs and based on the two σ values. The analysis of
these charts shows that when employing a small dataset of size 100, there are no significant
variations in the MSE results compared to a larger dataset of size 1,000. This observation
suggests that the trained models do not exhibit overfitting, as their performance on the
validation dataset shows no notable decreases. This robust behavior underscores the ability
of the models to efficiently capture meaningful patterns in the data without depending on
the training dataset.

CONCLUSIONS
Simultaneous equationmodels are employed in situationswhere a bidirectional relationship
exists between variables, a common scenario in various research fields.

One of the objectives of this work is to enhance prediction accuracy by applying a novel
technique to derive the parameters of an SEMas a particular case of anANN. Specifically, the
stochastic gradient descent technique is utilized while preserving the original architecture
of the SEM. A comparative analysis was conducted to estimate the coefficients of three
types of SEM, utilizing the 2SLS method and SGD method with variations in parameters
such as training data, learning rate, and the initial seed. The results indicate that the SGD
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Figure 3 Average of MSE for training data 70.
Full-size DOI: 10.7717/peerjcs.2352/fig-3

Figure 4 Average of MSE for training data 700.
Full-size DOI: 10.7717/peerjcs.2352/fig-4

method achieves better results in terms of minimising prediction error when using the 2SLS
solution as the initial seed, with almost no differences found between different learning
rates or the training data sizes. Although computation time has not been studied yet, the
stochastic version of the method is shown to expedite problem resolution.

Aware of the limitations of our work, future research will involve expanding the
dataset and performing additional experiments to generalize the results. Datasets with
different sizes and variability will be considered, as well as analyzing the impact of different
hyperparameter configurations on SGD performance to obtain more accurate estimates.
Additionally, real-world data from health sciences and other fields will be used.
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