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ABSTRACT

Integrating deep learning methods for multi-element regression analysis poses a
challenge in constructing safety evaluations for building construction. To address this
challenge, this paper evaluates the integration of construction safety by quantitatively
analyzing practitioners’ information and on-site construction conditions. The analytic
hierarchy process (AHP) method quantifies construction safety capabilities, consider-
ing four key aspects: operators’ primary conditions, organizational personnel’s working
conditions, on-site management conditions, and analysis of unsafe behaviors. A
comprehensive set of 19 secondary causal factors is constructed. Furthermore, a hybrid
model based on bidirectional recurrent neural network (BiRNN) and bidirectional
long short-term memory (BiLSTM) is developed for construction safety evaluation,
enhancing the model’s generalization ability by introducing the Dropout mechanism.
Experimental results demonstrate that the fusion of BIRNN and BiLSTM methods
outperforms traditional methods in construction safety evaluation, yielding mean
squared error (MSE) and root mean squared error (RMSE) values of 0.48 and 0.69
and mean absolute error (MAE) and mean absolute percentage error (MAPE) values
of 0.54 and 3.36%, respectively. The case study affirms that BIRNN-BiLSTM can
accurately identify potential safety risks, providing reliable decision support for project
management.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Social Computing
Keywords BiRNN, BiLSTM, Dropout, Building construction, AHP

INTRODUCTION

The construction industry is one of the most perilous sectors globally, inflicting substantial
casualties and property losses across countries. With the ongoing refinement of building
construction production technology and the amplification of the scale and intricacy of
infrastructure projects, the imperative for safety performance and the management of
safety aspects in engineering construction has progressively evolved into a paramount
challenge for the entire industry (Akinlolu et al., 2022; Zhou et al., 2023). The construction
of buildings is a multifaceted and high-risk systematic endeavor, distinguished by its
extensive construction scale, numerous participants, intricate technical processes, and
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fluctuating operational environments. Diverse unforeseeable safety risk factors permeate
the processes of various building constructions, posing a considerable likelihood of
precipitating safety incidents.

Construction engineering manifests as a temporally dynamic system characterized
by intricate phenomena and chaos (Asadzadeh et al., 2020). From the vantage point of
safety system engineering, the safety state of a project emerges as a complex adaptive
system, engaging continuously with the external environment and perpetually adjusting
its internal structure and behavior. Historically, myriad experts and scholars undertook
risk identification, assessment, and response for subway construction using accumulated
historical data and experiences from building construction. Nevertheless, owing to the
intricate geological and hydrological environment, diverse objects, technical complexities
in construction, and organizational and coordination challenges in construction, the safety
risks adopt complex, concealed, and dynamic characteristics. Even the most seasoned safety
experts find it challenging to analyze and preemptively discern all safety conditions at the
intricate and mutable project site. Cognitive bias and individual subjectivity inevitably
impede their judgments (Su et al., 2021). As the historical data accrues continuously, the
dataset becomes enriched, posing substantial difficulties in comprehensive analysis due
to the typical spatial and temporal characteristics, highly nonlinear features, and intricate
coupling effects (Mostofi ¢» Togan, 2023; Ajayi et al., 2020).

Building upon the research outcomes of experts in the field, a contingency exists
to explore safety risk management technology founded on data mining, data analysis,
and data-driven safety risk management technology. This entails utilizing information
technology to sift through more significant volumes of data, encompassing historical data
across diverse accident types, for the automated identification of safety risks. Building
upon the results of data analysis, industry personnel are assisted in conducting assessments
of safety risks and fortifying the safety capabilities in enterprise operations. This endeavor
propels enterprise safety management, fostering the realization of the company’s benign
development.

Traditionally, an enterprise’s construction safety proficiency is typically ascertained
through considerations such as personnel structure, performance metrics, customer
evaluations, historical assessments, and other pertinent factors (Singh ¢» Misra, 2021).
While this approach can assess the overall safety level of enterprise construction to a
considerable extent, the data support needs more scientific precision and meticulousness,
with a less precise and intuitive degree of quantification. The analysis content, too, appears
relatively coarse, necessitating further refinement and enhancement. Project quality is
influenced by myriad factors, predominantly encompassing people, materials, equipment,
methods, and environmental conditions. Among these factors, human elements are the
foremost and most pivotal. Personnel are the principal agents in executing behaviors
throughout the construction project, exerting the most substantial impact on project
management, organization, guidance, operations, and other skills integral to project
quality (Singh ¢ Misra, 2021). For instance, inadequate use of safety belts and other
safety equipment by workers engaged in elevated work introduces an elevated risk of falls.
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Moreover, proper safety training may lead workers to properly deploy tools and equipment,
resulting in incorrect usage and subsequent safety incidents.

Construction safety risks’ intricate and uncertain nature defies accurate representation
through specific mathematical or algorithmic models. With the ascension and evolution
of extensive data analysis methods centering on artificial neural network algorithms, the
feasibility of risk prediction based on quantitative data from historical risk assessments
has emerged in recent years. However, prevailing efforts primarily revolve around neural
networks such as back propagation (BP) and radial base function (RBF), which need
help to align with the characteristics of quantitative data from historical risk assessments.
Shortcomings like local convergence and an inability to effectively support long-time
series data persist (Shen, Nagai ¢ Gao, 2020; Zhou et al., 2023; Alkaissy et al., 2020). In
a bidirectional recurrent neural network (BiRNN), the forward pass processes the data
from the beginning to the end of the sequence, capturing temporal dependencies that
inform the model about past events. Simultaneously, the backward pass processes the
data from the end to the beginning of the sequence, incorporating information about
future events. This dual-pass mechanism enables BIRNNs to build a more comprehensive
context, making them particularly adept at handling complex, long-term dependencies
in time series data. Consequently, this paper endeavors to investigate the impact of
an enterprise’s personnel reserve, personnel composition, personnel input (carrying),
fundamental security, and other factors on the safety and stability of the construction
site through modeling and computational analysis. An objective comparison between the
modeling and computational analysis results and the enterprise’s safety performance reveals
a fundamental trend consistency. This approach aims to evaluate the safety landscape within
the regional construction force comprehensively. Following the quantitative analysis of
employee information and on-site construction conditions, construction safety assessment
and integration are undertaken across multiple abstract dimensions.

In this study, we apply BiRNN and bidirectional long short-term memory (BiLSTM)
algorithms to model and analyze the impact of factors such as personnel reserve,
composition, input, and basic security on construction site safety and stability. By
integrating and training these models with detailed quantitative data, we aim to evaluate
the safety landscape within the regional construction workforce comprehensively. The
results from our modeling and computational analysis will be compared with actual safety
performance metrics to validate the effectiveness and accuracy of the proposed approach.

As construction safety risk assessment is critical for ensuring project sustainability,
this paper also addresses the challenge of systematically collecting and integrating a
comprehensive range of accident risk factors from real construction sites. Through rigorous
model training and optimization, this research seeks to provide a detailed, quantitative
assessment of construction site safety, offering valuable insights into risk management and
mitigation strategies.

RELATED WORKS

Safety risk assessment hinges on identifying safety risks and, contingent upon the potential
severity of accidents, calculating and determining the risk level of the identified factors.
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Qualitative methodologies commonly employed encompass the Fault Tree Analysis (Bakeli
¢ Hafidi, 2020), the Comprehensive Fuzzy Evaluation Method (Guo ¢& Wu, 2023), and the
Construction Safety Checklist (Park et al., 2021). Quantitative approaches include artificial
neural network (ANN) (Shen, Nagai ¢ Gao, 2020), support vector machine (SVM) (Liu
et al., 2020), Bayesian network (BN) (Fang et al., 2023), and Decision Tree (Zhu et al.,
2021). Liang & Liu (2022) introduced a risk-based safety impact evaluation method

for underground engineering, utilizing example analysis and survey methodologies,
encompassing safety information surveys, classification of safety impact factors during
design and construction, and quantitative estimation of magnitude and frequency. Lin et
al. (2021) amalgamated weight dynamic adjustment, fuzzy comprehensive judgment, and
logical layer risk evaluation methods, proposing a systematic approach applicable to the
construction safety risk evaluation of large-scale foundation pits situated in proximity to
existing buildings. Wang et al. (2023) devised a comprehensive decision support method
for uncertain safety risk analysis in tunnel construction, employing Bayesian network
and fuzzy set theory. This extended the analysis process to encompass the entire life cycle
of construction risk events, spanning continuous control before the accident, during
construction, and post-accident. Cao, Li ¢~ Hou (2022) utilized simulation to scrutinize a
subway system’s typical scale-free network characteristics, showcasing high robustness in
the face of random faults and low fault tolerance against malicious attacks. Luo et al. (2022)
integrated the analytic hierarchy process (AHP) and entropy weights to determine weights.
They established a multilevel topological evaluation model for the safety risk of subway
construction, emphasizing the topological method.

The AHP offers a structured and objective approach to decision-making that is
particularly valuable in safety evaluations. By organizing complex decisions into a
hierarchical structure, AHP facilitates the systematic assessment of multiple criteria and
alternatives. This structured approach helps mitigate the subjectivity inherent in expert
judgments by quantifying subjective opinions through pairwise comparisons and deriving
consistent weightings. Consequently, AHP improves the objectivity and reproducibility of
safety evaluations. Moreover, AHP enhances risk prioritization by evaluating the relative
importance of various safety factors within a unified framework, ensuring critical risks are
identified and addressed effectively.

Traditional automated risk identification relies on patterns, constraints, and machine
learning techniques to extract safety risk factors and their causal relationships. This
approach heavily depends on domain knowledge and demands significant human
resources and time for feature engineering, resulting in notable limitations (Qayyum
et al., 2020). Complex network-based security risk management analyses often concentrate
on independent risk factors or a singular risk event type, with limited exploration of
intricate interactions between security risk factors and diverse risk event types. Moreover,
addressing the challenge of eliminating cognitive bias and individual subjectivity in risk
analysis based on expert experiences proves difficult.

Traditional construction safety evaluation methods face constraints imposed by
statistical models and regularity methods, impeding the full exploitation of complex
time-series data features. In recent years, the emergence of deep learning technology has
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ushered in new solutions for construction safety evaluation. Zhao et al. (2023) explored
the application of convolutional neural networks (CNN) for construction safety event
prediction but identified limitations in capturing temporal relationships. Numerous studies
have leveraged recurrent neural networks (RNN) or RNN variants like long short-term
memory (LSTM). Guo et al. (2022) utilized Bi-LSTM to predict safety levels in subway
construction, achieving an average absolute error of 13% on the test dataset.

In recent advancements, the application of deep learning in construction safety has
seen substantial progress, addressing some of the limitations of earlier approaches.
Xiang et al. (2024) explored the use of Transformer models for safety risk prediction,
demonstrating improved performance in handling long-term dependencies and complex
interactions between risk factors. Their study showed that the Transformer’s self-
attention mechanism outperformed traditional RNN-based models regarding accuracy
and interpretability. Additionally, Thakur, Kansal ¢ Rishiwal (2024) proposed a hybrid
deep learning framework combining CNN and LSTM networks for real-time safety hazard
detection. Their approach leverages CNNs for spatial feature extraction and LSTMs for
temporal sequence modeling, significantly enhancing real-time safety monitoring and
hazard prediction accuracy.

Lietal (2021) introduced a short-term load forecasting method with LSTM-RNN
considering the energy storage effect, demonstrating MAPE of 3.0 and RMSE of 0.72. Zheng
et al. (2022) proposed a multiscale RNN-based method with high precision, showcasing
potential as a robust solution for output load prediction. Zhu ¢ Wang (2021) employed
feature selection and an LSTM model to analyze road construction safety conditions,
revealing improved prediction results with LSTM. Pham et al. (2021) introduced a
construction safety evaluation model based on RNN, outperforming traditional safety
event identification and risk assessment methods. Deng ef al. (2020) incorporated BiLSTM
to address long-term dependencies, yielding strong performance in time-series data.
Compared to traditional models, comparative experiments showcased higher accuracy
and robustness in construction safety event prediction with BiLSTM. Yang, Zhang ¢ Ai
(2024) conducted an in-depth comparative study on BiRNN and BiLSTM, highlighting
BiRNN'’s suitability for dynamic time-series data and BiLSTM’s proficiency in handling
long time-series dependencies. Thus, choosing appropriate models according to specific
construction scenarios enhances the evaluation system’s performance.

The hybrid BIRNN-BiLSTM model is well-suited for handling sequential and time-
series safety data due to its advanced capabilities in capturing temporal dependencies and
contextual information. The BiRNN and BiLSTM models excel in processing sequential
data, making them ideal for analyzing historical and real-time safety data. The BIRNN
component allows the model to consider information from both past and future contexts,
while the BiLSTM component manages long-term dependencies and mitigates issues such
as vanishing gradients. This combination enhances prediction accuracy and adaptability
to evolving safety threats. The model’s ability to continuously learn from sequential data
ensures that it remains responsive to changes in the safety environment, making it a
valuable tool for improving safety evaluations.
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In contrast to these recent studies, our work introduces a novel approach by integrating
advanced deep learning techniques with a multi-modal data fusion strategy. While previous
studies have primarily focused on single data types or specific deep learning architectures,
our approach combines diverse data sources, such as real-time sensor data, historical
safety records, and contextual information, through a unified deep learning framework.
This integration enhances the ability to capture complex interactions and dependencies
across multiple dimensions of construction safety data, leading to more accurate and
actionable risk predictions. Moreover, our study addresses the challenge of cognitive bias
and subjectivity in risk assessment by incorporating automated feature extraction and
data-driven decision-making processes, reducing reliance on domain expertise and manual
intervention. This advancement represents a significant improvement over existing models,
providing a more objective and scalable solution for construction safety evaluation.

METHODOLOGY

Construction of evaluation indicators
Enforcing a real-name system for workers and establishing authenticated access prevents
unauthorized individuals from entering the site. This enhances internal safety management,
ensuring project quality and safe production and providing valuable information support
for industry policy development. Implementing a real-name system for pre-job training
and assessment aids the owner in worker selection. Utilizing the AHP, 19 secondary causal
factors are constructed based on the primary condition of operating personnel, the working
conditions of organizational and management personnel, on-site management conditions,
and the analysis of unsafe behaviors, as depicted in Table 1.

In this study, exclusive attention is directed towards target layer A and criterion layer
B. The focus is solely on unraveling the relationship between the target layer (A) and the
criterion layer (B), specifically solving for the criterion layer B in relation to the target
layer A. Determining weights assigned to the criterion layer concerning the target layer is
undertaken. The elements of the B-layer are delineated using a rating scale ranging from
1 to 4 and its reciprocal. Subsequently, a judgment matrix is formulated to portray the
relative importance of each element.

B={bjli,j=1~n}. (1)

Assuming B be the single-ordered weights of the layers are wy,k =1~ n, and satisfy
wg > 0and ) ;_, wp =1, according to the judgment matrix, Eqs. (2) and (3) should be
satisfied.

bij=wi/wj,i,j=1~n (2)
n

Z(bikwk)_”wi =0. (3)
k=1

In the resolution process, obtaining eigenvectors that precisely adhere to theoretical
requirements poses challenges. Leveraging the principles of hierarchical analysis reveals that
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Table 1 Construction safety evaluation indicators.

Hierarchy of Contributing factor
causes

Age b1l
Educational attainment b12
Acquisition of qualifications b13
Operator al Years of service b14
Electrical work b15
Quality assurance assignment b16
Construction excavation operations b17
Real name registration and attendance b21
Site management Pre-construction safety technical communication b22
a2 Construction crew site location b23
Construction personnel working hours b24
Education and training b31

L Safety supervision and inspection, acceptance b32
Organizational

managers a3 Risk monitoring b33

Emergency relief b34
Accident reporting, investigation and handling b35
Perception and decision errors b41

Unsafe behavior a4 Skill error b42

Operational violation b43

matrix consistency signifies the quality of eigenvectors (Pant et al., 2022). Consequently,
the task of determining eigenvectors can be transformed into the endeavor of resolving the
optimal consistency value.
n n
min Cl= Z Z (birwy) —nw;| /n
i=1 k=1
s.t. we>0,k=1~n (4)

iwk =1.
k=1

According to the definition of consistency ratio, when CR = % < 0.1, the judgment
matrix is considered to have satisfactory consistency.

BiRNN

The complete sequence of features undergoes encoding using a BIRNN network, which
records the context vector for each output vector. The current state is forecasted by
the forward RNN, capturing the before-mentioned relationships, while an inverse RNN
predicts the character based on the context. Ultimately, the prediction results from both
RNNSs are linearly combined to generate the output of the final bidirectional RNN.

The forward network of the BiRNN iterates from time step ¢t = 1 to T and the backward
network iterates from time step t = T to 1. This involves simultaneous computation of the
forward hidden sequence /iy and the backward hidden sequence h;. The two sequences are
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summed to update the output sequence y, following the specifications in Eqs. (5), (6) and
(7) (Hernandez-Matamoros, Fujita ¢ Perez-Meana, 2020).

hy = Wi Xt + Wi g (e —1) + big (5)
hy = Wi, x¢ + Wi, hpe—1) + by, (6)

where Wiy and W,y represent the weight matrices that transform the input x; into the
hidden state space for the forward and backward networks, respectively. Wy, and W), are
weight matrices that connect the hidden states from the previous time step to the current
hidden state. The bias vectors by, and by, are added to the hidden states to allow the model
to learn an offset for better fitting the data.

At each time step t, the forward and backward hidden states hg, and hy; are combined
to produce the output sequence y; as follows.

Ve = th hft + thhbt + b)/' (7)

Why and W), are weight matrices that project the forward and backward hidden states
into the output space, and b, isthe bias vector applied to the output. The final output y; is
thus a weighted combination of the forward and backward hidden states, adjusted by the
bias.

BiLSTM

Various design structures exist for the state memory function of sequences. LSTM,
employed in this study, represents one such design for RNN units. LSTM captures
connections between sequence contexts, learns probabilistic relationships between
contexts, and finds extensive applications in natural language processing (Su ¢ Kuo,
2019). Tts unique ability to regulate information flow is achieved by introducing a gate
structure, automatically determining whether information should be retained or discarded.
This design also addresses the challenges of gradient explosion and gradient vanishing
encountered during the training of RNN networks.

BiLSTM, an extension of LSTM, enhances the model’s capacity to consider historical and
future information when processing sequence data. While standard LSTM processes input
sequence information from left to right, BI-LSTM concurrently processes left-to-right and
right-to-left information (Wu et al., 2023). The computational procedure of BiLSTM is
outlined in Egs. (8) and (9):

};t = LSTM(xt, ht—l) =0 (W . [ht_l,xt] + b) (8)
E:LSTM(xt,m>:J(W-[m,xt]-i—b) 9)

- <«
where h; is the time step ¢ of the hidden state, &, is the output of forward LSTM, and h;,
is the output of the inverse LSTM. The two merged outputs in the sequence process are
shown in Fig. 1:
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Figure 1 The BiLSTM network framework.
Full-size Gal DOI: 10.7717/peerjcs.2351/fig-1

Model construction

This study employs a sophisticated model architecture integrating BILSTM and BiRNN
layers to enhance prediction accuracy. The process begins with data preparation, where all
input features and labels are normalized based on the training dataset. This normalization
is crucial for reducing the influence of individual sample data and ensuring consistent
scaling across the model, which ultimately contributes to more reliable predictions.

Following data normalization, the processed data is input into the RNN layer. The RNN
layer’s output undergoes regularization through a Dropout layer to address the overfitting
issue. This layer randomly drops units during training, which helps prevent the model
from becoming overly dependent on specific nodes and improves generalization. The
regularized output is then forwarded to the LSTM layer, which similarly applies Dropout
to its output to maintain regularization throughout the network.

Subsequently, the output from the Dropout layer is passed to the BiLSTM layer.
The BiLSTM layer processes the data in both forward and backward directions, more
comprehensively capturing temporal dependencies. The data then progresses to the
BiRNN layer, further enhancing the model’s ability to learn from sequential information
by processing data in both directions.

The final stage consolidates the predictions through a fully nonlinear superposition,
integrating the outputs from the BiLSTM and BiRNN layers. This consolidated output is
then processed through a fully connected Dense layer, which generates the final prediction
results. After training, the model’s parameters are saved, and test data is normalized
and input into the model. The predictions obtained from the model are subsequently
inverse-normalized to produce the final outcomes.

This multi-layered approach thoroughly integrates recurrent layers, enhancing
the model’s predictive performance. Carefully structuring these layers and applying
regularization techniques collectively improve the model’s ability to generalize and deliver
accurate predictions.
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Figure 2 Model structure.
Full-size Gal DOI: 10.7717/peerjcs.2351/fig-2

The process of constructing the model is depicted in Fig. 2.

EXPERIMENTATION AND ANALYSIS

Data sources

This study gathers real-name list information for over 1,000 construction and organization
management personnel from over 40 enterprises (https:/zenodo.org/records/7930450,
doi: 10.5281/zenodo0.7930450). To enhance the effectiveness of the real-name system,
construction enterprises are encouraged to adopt information-based management
approaches. This comprehensive approach aims to improve efficiency across all facets of the
real-name system, encompassing contract signing, work attendance, payroll management,
safety protocols, and skills training.

Experimental setup
The algorithm simulation is conducted within the computer hardware and software
environment, as detailed in Table 2.

The algorithm operation parameters are set as shown in Table 3.
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Algorithm Framework
1. Load Data: Load the input data and corresponding labels.
2. Data Normalization: Normalize both input data and labels to ensure uniform scale.
3. Model Construction.
e Construct a sequential model.
e Add a SimpleRNN layer with 32 units and an input shape derived from the data.
e Apply dropout with a rate of 0.35 to mitigate overfitting.
e Add an LSTM layer with 64 units.
e Apply dropout again to the LSTM layer.
e Add a Bidirectional LSTM layer with 128 units.
o Include a Dense layer with 1 unit for the final output.
4. Model Training.
e Compile the model using the Adam optimizer with a learning rate of 0.01.
e Train the model for 200 epochs with a batch size of 25.
5. Load Test Data: Load the test dataset.

6. Data Normalization for Test Set: Normalize the test data using the same normalization pa-
rameters as the training set.

7. Model Prediction: Use the trained model to predict the test set.
8. Inverse Normalization: Reverse the normalization process to obtain the final predictions.
9. Results: Display the final predictions.

Table 2 Parameters of simulation environment.

Project Parameter
Operating system Windows 10

Cpu Intel core i7-11700
Random access memory (RAM) kf432c16bbk2/16-sp
Display card (computer) GTX 1050
Programming environment Python 3.5
Table 3 Model parameter settings.

Parameter name Parameter

value

Dropout probability 0.35
Initial learning rate 0.01
Termination rate 0.1
Iterations 200

Batch size 25
Number of training set 800
Number of testing set 200

Training results

The model in this study conducts crisis prediction on the training set, yielding the confusion

matrix illustrated in Table 4.
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Table4 Confusion matrix of model training.

Categorization Results Number of projects Accuracy/%
Construction safety No construction safety
hazards exist hazards
Construction safety hazards exist 29 2 31 96.55%
No construction safety hazards 3 29 32 93.6%
1
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Figure 3 Model training diagram.
Full-size &l DOI: 10.7717/peerjcs.2351/fig-3

Analyzing the prediction outcomes of the training samples reveals two misclassifications
out of 31 positive samples and three discrimination errors in 32 negative samples, totaling
five classification errors across 63 samples. Consequently, the deduced accuracy of the
model in this study is 95.24%, and the Recall is 96.55%. Figure 3 depicts the classification
accuracy curve of the BIRNN-BIiLSTM model at 150 iterations on the training set.

The model in this paper demonstrates the robustness and generalization capabilities by
converging and stabilizing after 18 iterations. The convergence at an early stage signifies
efficient learning and optimal performance on the given training set. This outcome
highlights the model’s adaptability to different data instances, showcasing its ability to
generalize effectively beyond the training data. The convergence and stability at a relatively
low iteration count also suggest that the model successfully captures the underlying patterns

and relationships within the dataset, providing confidence in its reliability for real-world

applications and predictive tasks.

Model comparison
Utilizing prediction accuracy as the evaluation metric, the prediction results of different

models are depicted in Fig. 4. Notably, the traditional LSTM network exhibits a 4.59%
improvement in accuracy compared to RNN, showcasing the enhanced performance of
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Figure 4 Results of ablation experiments.
Full-size Gl DOI: 10.7717/peerjcs.2351/fig-4

LSTM networks in analyzing and predicting time series. Additionally, introducing BiLSTM
cells and the Dropout mechanism further improves the accuracy of the RNN network in
model prediction. Specifically, the prediction accuracy of the BILSTM model increases by
1.60%, the introduction of Dropout improves accuracy by 2.72%, and incorporating both
mechanisms simultaneously enhances the prediction accuracy by 4.61%. This underscores
the positive impact of these enhancements on the model’s predictive capabilities.
Furthermore, the Attention-based Time-Incremental Network (ATIN), RNN-LSTM,
BiGRU, and TCN are included to compare with the model proposed in this study. The
results are illustrated in Figs. 5 and 6.

BiRNN-BiLSTM (Ours) demonstrates superior performance in terms of mean squared
error (MSE) and root mean squared error (RMSE) with values 0of 0.48 and 0.69, respectively.
This signifies a significant advantage in minimizing squared errors and efficiently capturing
the difference between predicted and actual values. The ATIN model also displays favorable
results with relatively low MSE (0.51) and RMSE (0.71), indicating good performance
regarding both squared and relative magnitude of the error. Conversely, the BiGRU model
exhibits higher MSE (0.78) and RMSE (0.88), suggesting comparatively poorer performance
in error minimization.
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Our focus centers on the model’s capacity to capture the absolute and relative percentages
of prediction error accurately. In this context, BIRNN-BiLSTM (Ours) once again excels,
demonstrating the lowest mean absolute error (MAE) at 0.54 and the lowest mean absolute
percentage error (MAPE) at 3.36%. The ATIN model also performs well, yielding a low
MAE of 0.56 and MAPE of 3.58%. Conversely, the BIGRU model exhibits a higher MAE
of 0.68 and a higher MAPE of 4.14%, indicating relatively weaker performance.

The outstanding performance of BiRNN-BILSTM (Ours) can be attributed to the
advantageous features embedded in its model architecture. The combination of BIRNN
and BiLSTM enables the model to capture long-term dependencies more effectively in
time-series data. This bidirectional recursive structure enhances the model’s understanding
of contextual information within sequences during training, improving its ability to learn
complex patterns in time-series data. Additionally, the bidirectional structure facilitates a
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more comprehensive utilization of historical information, rendering the model adaptive
and robust.

Case analysis

The study focuses on three construction projects—Project A, Project B, and Project C—
situated in the power industry sector in the Qingpu District of Shanghai. These projects
were assessed based on their safety performance, which was categorized into five distinct
levels: V = [V1, V2, V3, V4, V5] = [(0,30), (30,60), (60,70), (70,80), (90,100)]. These levels
correspond to “very poor”, “poor”, “average”, “good”, and “excellent”, respectively.

The data collection process involved several systematic steps to ensure accuracy and
comprehensiveness. Initially, safety performance data were systematically gathered from
each of the three construction projects. This data collection included direct observations,
safety reports, and incident records. Observations were conducted on-site to capture
real-time safety practices and compliance with safety regulations. Safety reports provided
detailed accounts of safety performance over time, while incident records offered insights
into any safety breaches or accidents that occurred. The results are depicted in Fig. 7.

Figure 7 shows that Project C outperforms Project A and Project B in overall construction
safety evaluation. Project B lags, particularly regarding unsafe behaviors, while Project
A exhibits a lower evaluation value in on-site management, creating a discernible
gap with Project C. The variations in scale and composition among these projects
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contribute to differences in their construction safety evaluation levels. These distinctions
underscore the efficacy of this study’s index system and model as an effective measure for
comprehensive construction safety evaluation. Despite these differences, the three selected
projects consistently receive high scores in evaluating operating personnel, attributed to
implementing the real-name system and ensuring information security management and
unity among engineering personnel. The analysis primarily focuses on the basic situation
of the operating personnel, as illustrated in Fig. 8.

Firstly, examining the data on operational staff performance reveals that Project C
outshines the others with a score of 90.5, significantly surpassing Project A (85.4) and
Project B (88.3). Secondly, regarding site management, Project C demonstrates superior
operational and management efficiency with a score of 80.4. In contrast, Project A (65.6) and
Project B (70.4) lag, suggesting that Project C exhibits higher organizational coordination
and site management. At the organizational management personnel level, Project C again
excels with a score of 92.5, markedly higher than Project A (79) and Project B (81.4),
indicating superior leadership and organizational coordination capabilities. However, the
data on unsafe behaviors reveal that Project C has a relatively high score (77.8), potentially
signifying a higher frequency of unsafe behaviors. In contrast, Project A (60.4) and Project
B (54.6) score lower, indicating better safety practices. This aspect requires attention,
prompting a more in-depth safety assessment and implementing improvement measures.

Figure 9 presents the predicted construction safety evaluation scores of Projects A, B,
and C. The scores show that Project C’s construction safety evaluation score gradually
improves as the project progresses. In contrast, Projects A and B experienced a decline,
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with Project A showing a noticeable decrease, indicating potential safety hazards in the
later stages of the project.

Considering the results from Figs. 7 and 8, it is evident that Project C excels in
organizational management, which primarily contributes to its higher construction safety
evaluation score. The outcomes of this assessment demonstrate the model’s accuracy in
analyzing the dynamic safety evaluation scores of various project sites. This insight is
valuable for managers, providing guidance to facilitate timely rectification and effective
management of project sites.

DISCUSSION

Regarding model validation, the improved performance of BIRNN-BiLSTM can be
attributed to its ability to handle outliers and volatility effectively. The bi-directional
structure allows the model to efficiently capture sudden and anomalous sequence
variations, enhancing its stability. This stability contributes to more accurate measurement
of prediction errors and reduces the fluctuation of absolute errors. Additionally, the
BiRNN-BiLSTM model carefully weighs the importance of different time points during the
learning process, enhancing its ability to capture relative errors’ characteristics and ability
to discern actual trends. The BILSTM model employs input, forget, and output gates to
correct the signal transmission process, replacing ordinary nodes in the hidden layer of
the RNN. This ensures that the gradient of the error function does not become too high
during training, maintaining a strict time step for the gradient of the error function. The
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Dropout mechanism is implemented to put some neurons into a failed state, preventing
mutual adaptation during training.

Analyzing the case study results reveals frequent age and other labor-related violations,
indicating a high construction safety risk. As China experiences a decline in its demographic
dividend and an increase in the aging population, this issue is particularly pronounced
in the labor employment sector. Research indicates that the average age of labor workers
is approaching 45 years old, with regulations prohibiting workers over 55 (for men) and
50 (for women) from engaging in heavy physical work on construction sites. Despite
these regulations, violations related to the age of workers persist, significantly increasing
the safety risk on construction sites and hindering urban management efforts. While the
three projects effectively control the age of workers, there are deficiencies in acquiring
qualification certificates. Managers should further optimize the details of real-name list
control, implement qualification checks for construction workers, and enhance on-site
construction safety evaluations. Additionally, the objective collection of worker types
facilitates targeted safety education and training activities by managers.

The implementation of the real-name management system for workers entails unified
management of detailed information, including personnel details, skill information,
and credit information. This approach significantly enhances the relevance of labor
management, allowing for the early detection and elimination of cases involving illegal
employment, laborers with a negative record, and those not in compliance with warehouse
regulations. Moreover, it reinforces vocational education for labor workers, enhances
training supervision and management, and elevates industry standards.

The real-name system for construction workers necessitates establishing a training
system documenting entry and skills training for labor workers. Those who fail the entry
training assessment are prohibited from entering the workplace. Furthermore, there is a
need to facilitate sharing real-name construction worker data across projects. Currently,
individual projects and enterprises utilize relatively closed real-name management systems,
hindering the interchangeability and sharing of data. To address this, the government
should establish standards for sharing real-name construction worker data, mandating
that relevant enterprises and units have access to this information. This initiative aims to
enhance project management levels and contribute to the development of smart cities. In
modern construction safety risk assessment, although various safety impact assessment and
risk analysis methods proposed by experts and scholars have yielded valuable insights, there
remains a need to collect more accident risk factors from construction sites. This collection
process validates safety risk assessment results through practical examples, correct analysis
of decision-making outcomes, and reduces analysis biases.

CONCLUSIONS AND LIMITATIONS

Conclusions

In this study, we quantify construction safety capability using the AHP method, establish
an evaluation system across multiple abstract dimensions, and conduct construction safety
evaluations by combining BiRNN and BiLSTM models. Validation results demonstrate that
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the proposed model effectively captures sudden and anomalous sequence changes through
its bidirectional structure. It comprehensively captures the temporal characteristics of the
construction process by considering historical and future information. The use of BIRNN
and BiLSTM for construction safety evaluation enhances the handling and utilization of
complex datasets, improving the robustness and generalization ability of the model across
different construction scenarios. This reduces the likelihood of accidents and enhances
emergency response efficiency, ensuring worker safety and minimizing potential losses.

Limitations

Both the BiRNN and BiLSTM models face challenges with gradient vanishing and
exploding, mainly when dealing with long sequences. Although BiLSTM incorporates
gating mechanisms to address these issues, they can still affect the model’s stability and
predictive accuracy in real-world construction safety evaluations. This limitation hinders
the effective processing of extensive time series data, potentially impacting the reliability of
safety assessments.

Future research could focus on developing advanced gradient management techniques
or incorporating alternative architectures that further mitigate gradient-related issues
in BiRNN and BiLSTM models. Exploring variations such as attention mechanisms or
transformer models might offer improved performance in handling long sequences.
Moreover, research into optimizing the computational efficiency of BiLSTM models is
needed to address the high resource requirements. Techniques such as model pruning,
quantization, or hybrid architectures that balance accuracy and computational demands
could be investigated to enhance the feasibility of real-time safety monitoring systems.

Addressing the challenge of data imbalance could involve integrating synthetic data
generation methods, anomaly detection techniques, or cost-sensitive learning approaches
to improve the model’s ability to detect rare safety events. Future studies should explore
strategies to better represent and learn from sparse safety incident data.
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