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ABSTRACT
In today’smodern society, socialmedia has seamlessly integrated into our daily routines,
providing a platform for individuals to express their opinions and emotions openly
on the internet. Within this digital domain, sentiment analysis (SA) is a vital tool
to understand the emotions conveyed in written text, whether positive, negative, or
neutral. However, SA faces challenges such as dealing with diverse language, uneven
data, and understanding complex sentences. This study proposes an effective approach
for SA. For this, we introduce a hybrid architecture named DistilRoBiLSTMFuse,
designed to extract deep contextual information from complex sentences and accurately
identify sentiments. In this research, we evaluate our model’s performance using two
popular benchmark datasets: IMDb and Twitter USAirline sentiment. The raw text data
are preprocessed, and this involves several steps, including: (1) implementing a com-
prehensive data cleaning protocol to remove noise and unnecessary information from
the raw text, (2) preparing a custom list of stopwords to retain essential words while
omitting common, non-informative words, and (3) applying Lemmatization to achieve
consistency in text by reducing words to their base forms, enhancing the accuracy of
text analysis. To address class imbalance, this study utilized oversampling, augmenting
minority class samples to match the majority, thereby ensuring uniform representation
across all categories. Considering the variability in preprocessing techniques across
previous studies, our research initially explores the efficacy of seven distinct machine
learning (ML) models paired with two commonly employed feature transformation
methods: term frequency-inverse document frequency (TF-IDF) and bag of words
(BoW). This approach allows for determining which combination yields optimal
performance within these ML frameworks. In our study, the DistilRoBiLSTMFuse
model is evaluated on two distinct datasets and consistently delivers outstanding
performance, surpassing existing state-of-the-art approaches in each case. On the IMDb
dataset, our model achieves 98.91% accuracy in training, 94.16% in validation, and
93.97% in testing. The Twitter USAirline Sentiment dataset reaches 99.42% accuracy
in training, 98.52% in validation, and 98.33% in testing. The experimental results clearly
demonstrate the effectiveness of our hybrid DistilRoBiLSTMFuse model in SA tasks.
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The code for this experimental analysis is publicly available and can be accessed via the
following DOI: https://doi.org/10.5281/zenodo.13255008.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Natural Language and
Speech, Sentiment Analysis, Neural Networks
Keywords Sentiment analysis, Deep learning, Machine learning, Hybrid model, NLP,
DistilRoBiLSTMFuse, IMDb, USAirline twitter

INTRODUCTION
The explosion of social media in recent years has transformed how we communicate,
creating a vast sea of textual data from tweets, posts, and comments. This digital
transformation presents both a goldmine and a labyrinth for those looking to understand
the nuances of public sentiment. Sentiment analysis (SA), a key aspect of natural language
processing (NLP), dives into this deep ocean of words to extract meaningful insights about
how people feel and think. In the study of Wang et al. (2022), sentiment analysis’s impact
stretches far and wide, touching everything frommarketing campaigns to customer service
strategies, from gauging political climates to monitoring public health trends. It is a tool
that has become indispensable in our increasingly digital world.

Where SA becomes truly invaluable is in its application across various industries. For
businesses, it is like having a direct line to the consumer’s mind, allowing them to tailor
products, services, and messages to meet the market’s ever-changing demands. It provides
a real-time pulse on public opinion for governments and non-profits, enabling more
responsive and effective policies and communications (Alvi et al., 2023). Moreover, by
identifying shifts in public mood or the early rumblings of social movements, SA offers a
proactive means to engage with and respond to global events. In essence, SA has become a
crucial navigator for navigating the complex web of digital communication, empowering
decision-makers with the insights needed to act swiftly and accurately in a world where
public opinion can shift at the speed of a tweet (Chinnalagu & Durairaj, 2021).

Sentiment analysis researchers face several challenges, including those related to the
complex structure of human language and the dynamic features of communication via
the internet. These challenges include accurately detecting and interpreting sarcasm and
irony, adapting models to the nuanced expressions found across different domains, and
addressing the continuous evolution of language with the emergence of new words and
slang. Additionally, managing data sparsity and class imbalance and ensuring privacy and
ethical considerations in data handling further complicate developing and applying SA
tools. The studies conducted by Pozzi et al. (2017), Birjali, Kasri & Beni-Hssane (2021),
Almalki (2022) and Xu, Chang & Jayne (2022) highlight, emphasize, or stress the need for
domain-specificmethodologies, advanced linguisticmodels, and ethical guidelines to tackle
these challenges effectively. As the SA task continues to grow in importance across various
sectors, frommarketing to public health, overcoming these hurdles remains a critical focus
for advancing the field and harnessing the full potential of SA in our increasingly online
world.
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The initial steps in SA typically involve preprocessing. Preprocessing is a critical phase
where data is cleaned and normalized to enhance model performance. Techniques such
as negation handling, stemming, and the removal of stop words and noise are essential
for refining data quality. In Duong & Nguyen-Thi (2021), they highlighted the impact of
preprocessing techniques on the performance of SA models, especially in languages with
limited datasets. After preprocessing, feature extraction (FE) methods are employed to
extract informative information from the data. Researchers have utilized several methods
for FE, such as the bag of words (BoW)model, term frequency-inverse document frequency
(TF-IDF), Word2Vec, Global Vectors for Word Representation (GloVe), etc. (Srivastava,
Bharti & Verma, 2021; Das & Chakraborty, 2018; Lou, 2023).

The advent of machine learning (ML) has significantly transformed SA, utilizing various
algorithms to classify sentiments from text data. Among these, support vector machines
(SVM), logistic regression (LR), naïve Bayes (NB), decision trees (DT), AdaBoost, and the
Passive-Aggressive (PA) classifier are prominent (Kilicoglu et al., 2019; Ruz, Henríquez &
Mascareño, 2020; Ondara et al., 2022).

The exploration of SA within the domain of social media presents a complex challenge
due to the inherently dynamic and unstructured nature of online linguistic expressions.
These expressions often include slang, emojis, abbreviations, and other informal linguistic
constructs, which traditional NLP models struggle to interpret accurately. However, recent
advancements in DL technologies have paved the way for more sophisticated models that
excel in decoding these nuanced linguistic features. Among these, convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) stand out for their capacity to
capture and analyze textual data with remarkable precision and adaptability (Fithriasari,
Jannah & Reyhana, 2020). CNNs, initially renowned for their application in image
recognition tasks, have been adeptly repurposed for text analysis in SA tasks. Their ability
to detect patterns across different parts of the input data makes them particularly effective
at understanding the context and significance of specific words or phrases within larger
text blocks. On the other hand, RNNs, with their sequential data processing capability,
excel at grasping the dynamic nature of language as it unfolds over time, making them
especially suited for analyzing sentences and longer text passages where context and order
significantly impact meaning.

The advent of transformer-based models, such as bidirectional encoder representations
from transformers (BERT), represents a significant leap forward in SA. Contrary to
their predecessors, transformers avoid sequential data processing in favour of employing
attention mechanisms. These mechanisms assess the significance of various words within
a sentence, irrespective of their positional order. This enables a deeper understanding of
context and sentiment polarity, significantly enhancing the model’s ability to interpret the
subtleties of human language with higher accuracy (Tan et al., 2022b).

SA remains a significant challenge in NLP, primarily due to the intricate task of decoding
long-distance dependencies and navigating the extensive lexical diversity found in text.
Recent advancements inMLhave catalyzed the development of hybridmodels that combine
the computational prowess of transformer models with the sequential insight provided by
sequencemodels. Specifically, our innovative approach utilizes the DistilRoBERTamodel, a
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streamlined variant of the RoBERTa transformer known for its efficiency and effectiveness
in generating discriminative word embeddings, which are crucial for capturing the nuanced
semantics of text essential for accurate SA.

Our hybrid model amplifies its capability by integrating BiLSTM networks. These
LSTMs excel at modeling the temporal dynamics of text, effectively encoding long-distance
dependencies that are vital for comprehending the context and the overall sentiment of
extended passages. This feature complements the transformer architecture’s ability to
process and understand text in parallel, enhancing the model’s aptitude for identifying
sentiment-bearing phrases and syntactic structures through sequential processing.

To address the challenges posed by lexical diversity and potential dataset imbalances,
we employ techniques such as oversampling rather than traditional data augmentation
through synonym replacement. This strategy ensures a broader representation of
linguistic expressions and nuances, enriching the model’s training data and bolstering
its generalization capabilities. By harmonizing the transformer architecture’s robust text
processing with the sequential depth and temporal sensitivity of LSTMs, the model achieves
a balanced and effective approach to SA. It is capable of efficiently processing large volumes
of text while retaining the nuanced understanding required to assess sentiment accurately.
This combination of technologies represents a comprehensive solution to the multifaceted
challenges of SA, leveraging the strengths of each approach to achieve superior performance.
The major contributions of this paper can be categorized into three main areas:

• In this study, we introduce a hybrid DL architecture, DistilRoBiLSTMFuse, that
integrates the strengths of theDistilRoBERTa andBiLSTM for enhanced SAperformance.
The model employs DistilRoBERTa for its efficient contextual embedding capabilities,
capturing nuanced textual features through self-attention mechanisms. This is
complemented by the sequential processing strength of the BiLSTM, which adeptly
manages long-range dependencies in text data, a critical aspect for understanding the full
context of sentiments. Integrating DistilRoBERTa’s ability to discern intricate contextual
clues with the BiLSTM’s proficiency in capturing temporal sequence dynamics results
in a model that sets a new standard for accuracy and efficiency in SA, showcasing the
potential of hybrid architectures in advancing the field.
• A comprehensive data preprocessing strategy, encompassing a thorough data cleaning
protocol, custom stop words removal, and lemmatization, is applied in our SA approach.
Our customized stopwords list is carefully crafted to retain essential terms associatedwith
SA, preserving each sentence’s original meaning and related sentiment. Furthermore,
we implement a data augmentation technique to address the challenge of an imbalanced
dataset. These steps are essential for enhancing the representation of minority classes,
providing a broader spectrum of data to the model, and ensuring that the input data
is of the highest quality. Consequently, this careful preprocessing contributes to more
accurate SA outcomes, strengthening the reliability and effectiveness of our analytical
efforts.
• In this experimental study, we apply seven widely recognized ML models alongside our
proposed hybrid DL model to two publicly accessible benchmark datasets. We further
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compare the performance of our approaches with those from recent studies to evaluate
the effectiveness and reliability of our proposed model for SA tasks. The experimental
findings underscore the efficiency of our model and its adaptability and resilience across
different types of textual content and SA challenges.

In ‘RelatedWork’, we thoroughly analyze the existing literature, focusing onML andML
approaches used in SA. ‘Methodology’ provides a comprehensive analysis of our research
methodology, including a thorough explanation of the data preprocessing techniques,
feature extraction techniques, the building procedure of our proposed hybrid model, and
the details of the parameter settings of the proposed model. ‘Models Parameter Settings’
thoroughly examines our findings, comparing them to previous research on the same
datasets. Finally, this paper concludes with a section where we summarize the findings and
contributions of the study, as well as the potential for future research in the field.

RELATED WORK
Several studies have been conducted in the rapidly evolving social media SA field,
highlighting significant advancements in applying FE, ML and DL techniques. Exploring
these methodologies has demonstrated significant potential for accurately interpreting the
substantial quantities of opinionated content produced on various social media platforms.

Feature extraction methods
Researchers have explored various feature extraction (FE) methods for sentiment analysis,
each offering distinct advantages and limitations. One prominent method is Word2Vec,
introduced by Mikolov et al. (2013), which represents words as continuous vectors in a
high-dimensional space, capturing semantic relationships between words. This method is
effective for capturing context and word similarity, making it widely applicable in various
NLP tasks due to its ability to create meaningful word embeddings.

Another widely used method is GloVe, developed by Pennington, Socher & Manning
(2014). GloVe generates word embeddings by aggregating global word-word co-occurrence
statistics from a corpus. This method effectively captures both local and global semantic
relationships, making it robust for various text-mining applications. BERT, introduced
by Devlin et al. (2018), employs a transformer architecture to understand the context of
words in a sentence bidirectionally. BERT’s ability to capture nuanced meanings and
relationships between words has led to state-of-the-art performance in many NLP tasks.

Despite the effectiveness of these advanced methods, more straightforward techniques
such as the BoW model and TF-IDF remain popular due to their simplicity and
interpretability. The BoW model converts text into a vector of word frequencies,
disregarding grammar and word order but maintaining multiplicity. Each document
is represented as a vector of the counts of each word’s occurrences, making it particularly
useful for initial exploratory studies and baseline models (Srivastava, Bharti & Verma,
2021). TF-IDF, on the other hand, measures the importance of a word in a document
relative to a corpus, reducing the impact of frequently occurring words that are less
informative. This method enhances the ability to distinguish between important and
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unimportant words in the text. In Das & Chakraborty (2018), they demonstrated that
TF-IDF can significantly improve the accuracy of sentiment classification when combined
with appropriate algorithms.

Due to their simplicity, ease of interpretation, and proven effectiveness, BoW and
TF-IDF are widely used for this study. These methods provide a solid foundation for
feature extraction, allowing for easy implementation and a transparent understanding of
how the model processes text data. Additionally, they serve as reliable benchmarks for
evaluating the performance of more complex models. Furthermore, BoW and TF-IDF are
computationally efficient, making them feasible for studies with limited resources.

Machine learning based approaches
Researchers have used differentMLmethods for SA task analysis. A seminal work byAlatabi
& Abbas (2020) demonstrated the effectiveness of an SA system based on the Bayesian
Rough Decision Tree (BRDT) algorithm, achieving an impressive accuracy of over 95%.
This study underscored the potential of ML techniques in extracting nuanced sentiment
from social media texts, marking a significant stride in the computational understanding
of user-generated content.

Further investigation into the domain by Omuya, Okeyo & Kimwele (2021) explored the
performance of naïve Bayes (NB), SVM, and K-nearest neighbor (kNN) algorithms in a
SA model. Their findings suggested that ML approaches could be highly effective, with
NB and SVM algorithms exhibiting high accuracy. This research added to the growing
body of evidence that ML techniques could provide robust frameworks for SA capable of
navigating the complex landscape of social media data.

In the study proposed by Jagdale, Shirsat & Deshmukh (2019) on SA on product reviews
usingML techniques, they reported that naïve Bayes and support vectormachine algorithms
had classified product reviews with accuracies of 98.17% and 93.54%, respectively, for
camera reviews. This study demonstrated the effectiveness of ML techniques in analyzing
sentiment from product reviews on platforms like Amazon.

Başarslan & Kayaalp (2021) analyzed social media review datasets with a DL approach
and achieved accuracy rates in the range of 81%–90% for the IMDb dataset and 75%–79%
for the Twitter dataset using various ML and DL methods. The BERT word embedding
method showed the best performance.

Jayakody & Kumara (2021) conducted an experiment for analyzing sentiment on
product reviews on Twitter usingML approaches and found that the LR + CountVectorizer
combination had achieved the highest accuracy rate of 88.26%. This underscored the
potential of combining ML algorithms with text vectorization techniques for effective SA.

In another study conducted by Kumar & Wahid (2021) on social media analysis for
sentiment classification using gradient boosting (GB) machines, XGBM outperformed
other models, showcasing the effectiveness of gradient boosting machines in SA on social
media datasets extracted from Kaggle.

Abd El-Jawad, Hodhod & Omar (2018) comprehensively compared ML and DL
algorithms for SA on social media and showed a maximum accuracy rate of 83.7%,
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highlighting the efficiency of hybrid learning approaches over standard supervised
approaches.

Pate et al. (2023) implemented an SA model using ML techniques for tweets, achieving
the highest accuracy of 94.65% with the SVM algorithm. This research emphasized the
importance of SA in understanding public sentiment on social media platforms.

Madhuri (2019) explored the effectiveness of C4.5, naïve Bayes (NB), SVM, and RF
on Indian Railways tweets, showcasing a diverse toolkit for handling social media text.
Similarly, Jung et al. (2016) applied multinomial naïve Bayes (MNB) to the Sentiment140
dataset, demonstrating good performance for large-scale data. Furthermore, Rahat, Kahir
& Masum (2019) utilized support vector classifier (SVC) andMNB for SA of airline reviews,
providing insights into customer sentiments.

Alatabi & Abbas (2020) used the BRDT algorithm, achieving an accuracy of more than
95%. This study showcased the success of ML techniques in SA on social media.

Hariguna & Ruangkanjanases (2023) developed a multi-output classification framework
for sentiment analysis by integrating ten distinct algorithms: BernoulliNB, decision tree,
kNN, logistic regression, LinearSVC, bagging, stacking, random forest, AdaBoost, and
ExtraTrees. Their objective was to assess the optimal performance and utility of each
algorithm within this model. Utilizing customer review data from the cryptocurrency
sector in Indonesia, the study found that LinearSVC and Stacking surpassed the remaining
algorithms, each recording a notable accuracy rate of 90%. The model demonstrated an
average accuracy of 88%, which was deemed satisfactory.

For the initial investigation, seven different machine learning models are employed:
LR, SVM, PA, RF, AdaBoost, MNB, and XGBoost. These models are chosen based on
their demonstrated effectiveness in prior research and their capability to address the
complexities of sentiment analysis tasks. LR is employed for its simplicity and efficiency
in binary classification problems, making it an effective baseline model. Support vector
machine is included for its robustness and high accuracy in high-dimensional spaces. The
PA algorithm is chosen for its suitability in online learning scenarios where data arrive
sequentially. RF, known for its versatility, is used to reduce overfitting through the averaging
of multiple DT. AdaBoost, an ensemble technique, is selected for its ability to improve
accuracy by combining weak classifiers into a strong classifier. Multinomial naïve Bayes
is included due to its effectiveness in text classification problems, given its assumption of
word independence. Finally, XGBoost is chosen for its superior performance in various
machine learning competitions, thanks to its powerful gradient-boosting algorithm.

Experiments with these models evaluate their performance in the context of sentiment
analysis. Each model’s parameters are meticulously tuned to optimize key metrics such
as accuracy, precision, recall, and F1 score. The results indicate that these models provide
a robust framework for sentiment analysis, each contributing unique strengths to the
classification task. The inclusion of these diverse models ensures a comprehensive
evaluation and comparison, leading to more reliable and generalizable findings. This
approach allows for the identification of the most effective model or combination of
models for the specific sentiment analysis application. Additionally, these models are used
to verify the effectiveness of the dataset, preprocessing methods, and feature extraction
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techniques employed in the study, ensuring that both the data preparation and the selected
machine learning models adequately address the complexities of sentiment analysis.

Deep learning based approaches
DL methods have become increasingly popular for sentiment analysis tasks. Xiang (2021)
proposed a model that used LSTM networks, showcasing a marked improvement in
prediction accuracy over traditional ML methods. This model’s success illustrated DL’s
capability to capture the intricate sentiment patterns in social media communications,
offering a more nuanced and context-aware analysis.

Similarly, a study by Wang et al. (2022) emphasized the advantages of DL techniques,
particularly in automatic feature extraction and the rich representation of social media
sentiments. These models’ ability to process large datasets and their adaptability to
various SA tasks underscored the transformative impact of DL on the field. The research
by Başarslan & Kayaalp (2021) utilized Yelp restaurant reviews, IMDb movie reviews, and
Twitter data, applying Word2Vec, GloVe, and bidirectional encoder representations from
transformers (BERT) for word embedding. They compared the performance of CNN, long
short-term memory (LSTM), recurrent neural networks (RNNs), SVM, and NB models.
The accuracy ranged from 81%–90% for the IMDb dataset and 85%–98% for the Twitter
dataset, demonstrating the superior performance of BERT in SA. Lubis, Fatmi & Witarsyah
(2023) addressed the challenges of noisy data and sarcasm detection in social media SA
using a DL approach based on the LSTM algorithm. Their study achieved an accuracy of
0.92, precision of 0.83, recall of 0.76, and an F1 score of 0.78 for SA, while sarcasm detection
with an RNNmodel reached an accuracy of 0.94. This underscored the capability of LSTM
in handling complex SA tasks, including sarcasm detection.

Agüero-Torales, Salas & López-Herrera (2021) provided an overview of DL for
multilingual SA from2017 to 2020 focused on cross-lingual and code-switching approaches.
They noted a shift towards more complex architectures, like transformers, despite a
stagnation in simpler models. Their findings highlighted the evolving landscape of DL in
SA across various languages. Anbukkarasi & Varadhaganapathy (2020) employed DBLSTM
for SA of self-collected Tamil tweets, leveraging the sequential nature of text data.Alahmary,
Al-Dossari & Emam (2019) utilized BiLSTM for SA of Saudi tweets, showcasing the efficacy
of RNN in capturing temporal dependencies. Additionally, Thinh et al. (2019) applied
CNN for SA of IMDb reviews, demonstrating the capability of CNNs in capturing spatial
patterns within text data. Dashtipour et al. (2018) developed deep autoencoders and deep
CNNs for SA on a novel Persian movie reviews dataset, comparing these models with a
shallow MLP. Their DL models demonstrated enhanced performance, highlighting the
potential of DL for SA in languages other than English. Singh et al. (2022) presented a DL
approach for analyzing COVID-19-related Twitter data using LSTM-RNN with attention
layers for feature weighting. They significantly improved performance metrics, with an
accuracy increase of 20% compared to existing approaches. The study underscored the
efficiency of DL with attention mechanisms in classifying sentiments from COVID-19
tweets.
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Li et al. (2023) presented the sentiment analysis model DC-CBLA in the travel industry
combining CNN, BiLSTM, and an attention mechanism to handle complex language in
customer reviews. Using BERT for accurate word vectors, it integrates local and global
text features and emphasizes important data through attention. Tested on two datasets,
it outperforms baselines with accuracies of 95.23% and 89.46%, as well as F1 scores of
97.05% and 93.86% for tourist attractions and hotels. In Table 1, we highlight previous
studies on sentiment analysis, detailing the methods implemented and the datasets utilized
in their research.

METHODOLOGY
In this experimental analysis, we develop an approach for SA that utilizes two benchmark
datasets: the IMDb movie reviews and Twitter USAirline. Our methodology encompasses
a series of structured steps to enhance the model’s performance in interpreting nuanced
expressions of sentiment across different platforms.

Initially, we collect (online) and load the datasets, which provide a rich spectrum of
sentiments from various contexts. Subsequently, we meticulously preprocess the data,
employing comprehensive data cleaning protocols, custom removal of stopwords, and
lemmatization to refine the quality of input for our analytical models. In the second phase,
the datasets are divided, with a portion designated for training and the remainder for
testing, ensuring that our model is accurate and robust when exposed to new data. Then,
we prepare the labels that are critical for the model’s learning process. This is followed by
the pivotal task of tokenization and data preparation, converting raw text into a structured
format suitable for ML algorithms. The third stage is constructing the model, where we
utilize the training set to train in the model and validation checks using the testing set
to ascertain the model’s generalization capabilities. Finally, we check the effectiveness of
the proposed model by utilizing different performance evaluation techniques. Figure 1
illustrates the flow chart of our methodology.

Dataset
IMDb dataset
The IMDb dataset (Maas et al., 2011) is a publicly available collection of 50,000 movie
reviews, curated explicitly for natural language processing and ML research, particularly in
SA. This dataset is meticulously structured to ensure an even distribution between positive
and negative reviews, with 25,000 instances in each category, making it an invaluable
resource for developing and evaluating binary classification models. The balance between
classes allows for a fair and rigorous testing ground for algorithms designed to discern
positive sentiments from negative ones based on textual data. One of the key features
of this dataset is its real-world applicability in understanding how sentiments can be
algorithmically interpreted from textual reviews. Each review in the dataset is a consumer’s
genuine opinion about a movie, providing rich, nuanced language that models must
navigate to classify the sentiment accurately. This challenge mirrors many real-world
applications where understanding sentiment is crucial, from analyzing customer feedback
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Table 1 Overview of previous sentiment analysis studies: methods, datasets, performance, pros, and cons.

Reference Method Dataset Accuracy (%) Pros Cons

Madhuri (2019) SVM Indian Railways Tweets 91.5 High accuracy May not generalize well
Anbukkarasi & Varadha-
ganapathy (2020)

DNN Tamil Tweets 86.2 Good for complex patterns Requires large resources

Younas et al. (2020) XLM-R Roman Urdu-English Text 71 Handles code-mixed language Lower accuracy
Jung et al. (2016) NB Sentiment140 90 Scalable with SparkR Naive Bayes assumptions
Thinh et al. (2019) Residual CNN IMDb 90.02 Effective feature extraction Computationally intensive
Prabhakar et al. (2019) Adaboost US Airline Twitter 85.3 Improves accuracy Sensitive to noise
Rahat, Kahir & Masum
(2019)

SVM Review Dataset 82.48 Robust in high dimensions Requires tuning

Dhola & Saradva (2021) BERT Airline Reviews 85.4 Captures context well High computational power
Wongkar & Angdresey
(2019)

Naive Bayes Twitter Data 75.58 Simple and fast Assumes independence

Uddin, Bapery & Arif
(2019)

LSTM-RNN Bangla Social Media 86.3 Handles sequences well Requires large datasets

Alahmary, Al-Dossari &
Emam (2019)

BiLSTM Saudi Dialect Tweets 94 Good for sequences Computationally expensive

Dholpuria, Rana &
Agrawal (2018)

CNN IMDb Reviews 99.33 Excellent feature extraction Risk of overfitting

Kumar & Chinnalagu
(2020)

SAB-LSTM COVID-19 Posts 88.4 Captures long-term dependencies Computationally intensive

Saad (2020) SVM US Airline Twitter 83.31 Effective for text data Requires tuning
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Figure 1 Flow chart of our methodology.
Full-size DOI: 10.7717/peerjcs.2349/fig-1

Figure 2 IMDb dataset distribution.
Full-size DOI: 10.7717/peerjcs.2349/fig-2

across various industries to monitoring social media sentiment in real-time. Figure 2
illustrates the data distribution of the IMDb Dataset.

Twitter USAirline dataset
The Twitter USAirline dataset (Crowdflower, 2015) is a focused collection of 14,160 tweets,
all related to experiences with American Airlines, captured for SA in the context of customer
service and public perception. Unlike balanced datasets, this one is notably imbalanced,
comprising 9,178 negative tweets, 2,363 positive tweets, and 3,099 neutral tweets. This
skewed distribution reflects the real-world scenario where customers are more likely to
share negative experiences on social media platforms like Twitter. The Twitter USAirline
dataset serves as an invaluable resource for analyzing consumer sentiment towards airline
services, offering insights into the factors that drive customer satisfaction and loyalty.
It is particularly useful for developing and testing ML models to automate social media
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Figure 3 USAirline dataset distribution.
Full-size DOI: 10.7717/peerjcs.2349/fig-3

monitoring for customer feedback, which can inform service improvements and crisis
management strategies. The data distribution of each class is visualized in Fig. 3.

The disparity in class distributions among the IMDb and Twitter USAirline Sentiment
datasets highlights a significant challenge in SA: the impact of dataset balance on model
training and performance. While the IMDb dataset naturally offers an equal representation
of positive and negative sentiments, facilitating unbiased model training, the Twitter
USAirline Sentiment dataset initially presents a substantial imbalance with a higher
prevalence of negative tweets. This imbalance can skew model training, leading to a bias
towards negative sentiment recognition, as models are more frequently exposed to negative
examples.

Dataset preprocessing
Dataset splitting
In this study, we implement a systematic approach to data preparation to ensure robust
model evaluation and prevent overfitting. For both datasets, the data is segmented into
three parts: 70% for training the model, 15% for validation to ensure accuracy, and 15%
for testing to measure overall performance. This splitting strategy is chosen to balance the
need for a substantial amount of data for training the model while also reserving adequate
data for the validation and testing phases. The training set is utilized to train the machine
learning models, enabling them to acquire knowledge of the fundamental patterns in the
data. The validation set is used during themodel tuning phase to optimize hyperparameters
and make informed decisions on model enhancements without excessively fitting to the
training data. Finally, the test set is employed to analyze the final model’s performance,
offering an impartial evaluation of its ability to generalize to unfamiliar data.
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Data cleaning protocol
After data collection, a data cleaning protocol is applied to both datasets illustrated in
Algorithm 1. In this process, the initial step involves stripping away any HTML content
from the text. HTML tags are not part of the actual message or review content but
are used for formatting purposes on web platforms. For instance, a review on IMDb
might be submitted with bold tags to emphasize certain words, such as <strong>great
movie</strong>, which, after HTML removal, becomes ‘‘great movie’’. This step ensures
that the analysis focuses purely on the textual content, devoid of any web formatting
distractions.

Following the cleansing of HTML, the protocol tackles emojis by converting them into
descriptive text. Emojis, often used to express emotions or reactions, can carry significant
weight in SA. Consider a tweet that includes a emoji to express love or like, ‘‘I love
this movie ’’. The conversion process transforms it into ‘‘I love this movie heart_eyes’’,
thereby retaining the sentiment conveyed by the emoji in a textually analyzable form.

The next step expands contractions into their full expressions, addressing texts’ informal
and conversational nature, especially prevalent in social media datasets. A tweet might
say ‘‘I’m so excited for my trip!’’, which, after contraction expansion, reads ‘‘I am so
excited for my trip!’’. This standardization is crucial for ensuring that the analysis does not
misinterpret or overlook nuances in the text due to contraction use.

URLs and usernames are then removed, as they usually add little to the sentiment or
content analysis and can clutter the text with irrelevant information. For example, a tweet
from the Twitter USAirline dataset might include a mention or a link, such as ‘‘Thanks
@airline for a wonderful flight! Check out the pics at www.example.com’’. After this
cleaning step, the message is streamlined to ‘‘Thanks for a wonderful flight! Check out the
pics’’, focusing on the sentiment and factual content.

HTML-specific line breaks are addressed next, converting them into spaces to ensure the
text flows smoothly. This is particularly relevant for reviews or comments that may have
used line breaks for formatting, ensuring that the transition from web format to analyzable
text does not introduce unnatural breaks or gaps in the content.

Converting all text to lowercase is a critical step for standardization, ensuring that the
analysis treats the same words uniformly, regardless of their original case. A sentence
like ‘‘Amazing Flight Experience!’’ becomes ‘‘amazing flight experience!’’, removing any
ambiguity in word recognition due to case differences.

Removing text within square brackets helps discard any annotations or extraneous
information not part of the original message, often seen in IMDb reviews where users
might include side notes or references. For instance, ‘‘This movie was great (citation
needed)’’ simplifies to ‘‘This movie was great’’, focusing the analysis on the reviewer’s
opinion.

Special characters and, where necessary, digits are then stripped from the text to hone
in on the words themselves. This step is vital for cleaning data from platforms like Twitter,
where hashtags and special characters abound. A message like ‘‘Best movie ever!!! #excited’’
is cleaned to ‘‘Best movie ever excited’’, making it more straightforward for text analysis
tools to process.
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Lastly, reducing character sequences addresses the tendency in social media for users
to stretch out words for emphasis, a common feature in datasets. ‘‘Sooooo excited!!!!!!’’
would be normalized to ‘‘Soo excited!!’’, ensuring that exaggerated character use does not
skew the analysis.

Through these meticulously applied steps, raw text from varied datasets transforms into
a clean, standardized format, ready for detailed and accurate analysis. This protocol ensures
that the focus remains on the inherent content and sentiment of the texts, free from the
clutter and distractions of their original formats.

Stopwords and custom stopwords
Understanding how language conveys sentiment is crucial in the nuanced field of SA
within NLP. Standard preprocessing steps often involve removing stopwords- common
words that carry little to no meaningful information for analysis. However, this method
can inadvertently strip away words critical for sentiment interpretation, particularly
negation words like ‘‘not’’ and ‘‘never,’’ which pivotally influence the sentiment conveyed.
For example, removing ‘‘not’’ from ‘‘I am not satisfied’’ changes the sentiment entirely,
illustratingwhy indiscriminate removal of stopwords can be problematic.Hence, adopting a
custom approach to stopwords removal is essential for preserving the integrity of sentiment
in texts.

The custom_remove_stopwords function represents this careful consideration by
utilizing a tailored list of stopwords that spares negation and other sentiment-critical
words. This approach ensures that the preprocessing enriches SA rather than detracting
from it. By thoughtfully selecting which words to exclude from the stopword list, the
function allows more accurate capture of sentiments expressed in various texts, such as
reviews, feedback, or social media posts. This tailored method acknowledges language’s
complexity and context’s importance, ensuring that SA remains as accurate andmeaningful
as possible.

Lemmatization
Lemmatization is a crucial preprocessing step in text analysis, offering a refined approach
to understanding and processing language data. Unlike the more rudimentary method of
stemming, which simply trims words to a common base form often leading to inaccuracies,
lemmatization considers the full morphological analysis of words. This method ensures
that the derived root word, or lemma, is valid according to the language’s lexicon, thus
maintaining linguistic integrity. By reducing words to their lemma, lemmatization achieves
a higher consistency across textual data. This is particularly beneficial for tasks that
depend on accurate word frequency counts, such as identifying key themes in a corpus or
conducting SA. The consistency ensured by lemmatization allows these tasks to operate on
a more accurate representation of the text, thereby yielding more reliable insights.

Furthermore, lemmatization enhances the efficiency of natural language processing
(NLP) tasks. By distilling words down to their base forms, it simplifies the linguistic
complexity of the text, making subsequent analyses less computationally intensive and
more streamlined. This process facilitates faster processing times and contributes to a
deeper understanding of the text. For instance, in SA, recognizing the base form of a word
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enables the algorithm to more accurately assess the sentiment being expressed, unaffected
by the morphological variations of the words. Similarly, in machine translation and
question-answering systems, lemmatization helps maintain the semantic correctness of the
translated or generated responses, ensuring they remain true to the original text’s intent.
Through these applications, lemmatization is an essential process in the NLP pipeline,
enhancing both the accuracy and efficiency of language-based analyses and applications.

Algorithm 1 Comprehensive Data Preprocessing Steps
1: function DataCleaningProtocol(text)
2: −→ Remove HTML tags
3: −→ Convert emojis into text
4: −→ Expand contractions
5: −→ Remove URLs and usernames
6: −→Handle HTML line breaks
7: −→ Convert text to lowercase
8: −→ Remove text within square brackets
9: −→ Remove special characters
10: −→ Reduce sequences of repetitive characters
11: −→ Remove ’#’ symbol from hashtags
12: return cleaned text
13: end function

14: function PreprocessData(dataset)
15: for each text instance text in the dataset do
16: → Apply DataCleaningProtocol(text )
17: → Apply custom_remove_stopwords(text, stopword_set )
18: → Apply lemmatize_texts(texts, nlp)
19: Store preprocessed text in corresponding columns in the dataset
20: end for
21: end function

Data augmentation
In our study, we focus on addressing the class imbalance within the Twitter USAirline
dataset, which consists of 14,160 tweets, characterized by a significant skew towards
negative sentiments—9,178 negative tweets compared to 2,363 positive and 2,619 neutral
tweets. This imbalance poses a considerable challenge for training SAmodels to understand
and classify diverse emotional expressions accurately.

To address this issue, we employ a dynamic data augmentation technique to ensure a
balanced representation of sentiment classes.We begin by loading the dataset and removing
any entries with missing data to maintain data consistency and quality, which are crucial
for reliable ML analysis. We then assess the distribution of sentiment classes, converting the
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sentiment labels into a one-hot encoded format to easily calculate the number of instances
for each class.

After identifying the class with the highest number of instances, we use this information
as a benchmark for balancing the other classes. For each underrepresented class, we calculate
the necessary number of additional samples needed to match the maximum count found
in the most populous class. Using the resample function from the sklearn library, we
effectively oversample each minority class.

After augmenting the dataset, we integrate the new samples and thoroughly shuffle the
data to prevent any potential order bias that could affect the training phase of our models.
This rigorous approach to data preparation through resampling and shuffling lays a robust
foundation for subsequent training, ultimately enhancing the performance and reliability
of our SA. This method ensures that our models are trained on a dataset that reflects a
more balanced view of the sentiments expressed, providing a fair representation of positive,
neutral, and negative tweets.

Features extraction
TF-IDF
Term Frequency-Inverse Document Frequency (TF-IDF), as described by Salton, Wong
& Yang (1975), is a statistical method employed to determine a word’s significance in a
document compared to its prevalence across a broader document collection or corpus.
This FE is particularly beneficial in information retrieval and text mining, including SA,
where it enhances the effectiveness of algorithms in discerning and categorizing sentiments
expressed in textual data. TF-IDF consists of two components: Term Frequency (TF),
which calculates the frequency of a word in a document, and Inverse Document Frequency
(IDF), which measures the rarity of the word across the corpus. The product of TF and IDF
scores of a word gives its TF-IDF value, with higher values indicating greater importance
to the document.

For instance, in the context of SA using the IMDb dataset, which consists of movie
reviews, TF-IDF can distinguish between commonly used words and those that are pivotal
in expressing sentiments about movies. A word like ‘‘breathtaking’’ in a movie review
might have a high TF-IDF score, indicating a strong positive sentiment, whereas common
words such as ‘‘the’’ would have a low TF-IDF score due to their high frequency across
reviews but low discriminatory power. Similarly, by analyzing tweets from the USAirline
Twitter dataset, TF-IDF can help identify terms that are uniquely expressive of customer
sentiments, such as ‘‘delayed’’ for negative sentiments or ‘‘comfortable’’ for positive ones,
against the backdrop of generic airline-related vocabulary.

BoW
The Bag of Word (BoW) model is a fundamental text representation technique used in
NLP and ML, especially in tasks such as SA (Harris, 1954; Schütze, Manning & Raghavan,
2008). It simplifies text content by treating it as a collection (or ‘‘bag’’) of individual
words without considering the order or structure of those words. The technique involves
creating a vocabulary of unique words from the entire dataset and then converting each
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text document into a vector. Each element of this vector represents the frequency of a
specific word in the document, reflecting its presence or absence in the vocabulary.

An example application of BoW can be drawn from SA on the IMDb dataset, which
consists of movie reviews. Applying the BoW model transforms each review into a vector
based on the occurrence of words within the review. Words that are commonly associated
with positive or negative sentiments (such as ‘‘excellent’’ or ‘‘poor’’) become crucial features
for training SAmodels. Similarly, when analyzing tweets from theUSAirline Twitter dataset,
the BoW model can capture frequently mentioned terms related to customer experiences,
such as ‘‘delay,’’ ‘‘cancel,’’ or ‘‘service,’’ which are indicative of the sentiment expressed in
the tweets.

Classification models
SVM
Support vector machines are a type of supervised learning technique employed in
classification, regression, and outlier detection tasks. Introduced in the early 1990s (Cortes
& Vapnik, 1995), SVMs are particularly effective for complex but small to medium-sized
datasets. They map data to a high-dimensional feature space to find a hyperplane that
separates different class memberships, even when the data is not linearly separable. Key
parameters influencing SVM performance include the kernel type (linear, polynomial,
radial basis function (RBF), and sigmoid), the soft margin cost parameter (C), and the
gamma parameter for non-linear classification.

SVMs have been successfully applied in various fields, including sentiment analysis. For
example, SVMs were used to classify sentiments in product reviews and achieved a high
accuracy of 89.98% (Tyagi & Sharma, 2017). Another study applied SVMs to hotel reviews
and demonstrated an accuracy rate of 94% (Simarmata & Zakariyah, 2023).

LR
Logistic regression (LR) is a widely used method for analyzing datasets where one or more
independent variables predict a dichotomous outcome (Kleinbaum, Kupper & Chambless,
1982). It is widely used in fields like medicine, social sciences, and machine learning for
predicting binary outcomes. LR models the probability of an outcome using the logistic
function and assumes a linear relationship between the log odds of the outcome and the
independent variables.

LR has been effectively used in sentiment analysis. For instance, it was applied to
classify airline tweets with an accuracy of 79% (Dhanalakshmi et al., 2023). Another study
demonstrated its application in sentiment analysis of tweets, achieving significant accuracy
using logistic regression combined with FE techniques (Jadia, 2023).

AdaBoost
AdaBoost, or Adaptive Boosting, is anMLmeta-algorithm developed by Freund & Schapire
(1997). It boosts the performance of a base classifier by combining multiple weak classifiers
into a strong one. Key parameters include the type of weak learners, the number of
boosting rounds, and the learning rate. AdaBoost adjusts the weights of misclassified
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instances, iteratively refining the model. It is popular for its simplicity and effectiveness,
despite susceptibility to noise and outliers.

In Prabhakar et al. (2019), they applied AdaBoost in sentiment analysis with notable
success. For instance, an improved AdaBoost approach was used for analyzing US airline
Twitter data, demonstrating significant performance improvements. Another study
combined AdaBoost with SVM for sentiment classification on Twitter, highlighting its
effectiveness in enhancing classification metrics (Dedhia & Ramteke, 2017).

PA
The passive-aggressive (PA) model (Crammer et al., 2006) is a family of online learning
algorithms designed for tasks requiring continuous updates, such as scenarios where data
arrives sequentially. These algorithms make minimal updates to the model to correct
mistakes (aggressive) while making no changes if the prediction is correct (passive).
This approach allows the PA algorithms to adapt to new data efficiently, maintaining
robustness and flexibility in dynamic environments. They are particularly effective in
NLP and computer vision applications, where incremental model updates are crucial. Key
parameters include the regularization parameter, which prevents overfitting by controlling
model complexity, and the loss function, which quantifies prediction errors and guides
updates.

Recent studies have applied the PA algorithm in various domains, demonstrating its
effectiveness. For example, a study applied the PA algorithm to sentiment analysis, showing
significant improvements in handling sequential data updates (Dedhia & Ramteke, 2017).

XGBoost
Extreme Gradient Boosting (XGBoost) is a robust ML algorithm developed by Chen &
Guestrin (2016). It builds on gradient boosting, enhancing performance with parallel
processing, tree pruning, and handling sparse data. Key parameters include booster type,
learning rate, tree depth, and regularization terms.

In sentiment analysis, XGBoost is highly effective. Afifah, Yulita & Sarathan (2021)
achieved 96.24% accuracy in analyzing telemedicine app reviews during the COVID-19
pandemic. Tumuluru et al. (2023) used an ensemble model with XGBoost for Twitter
sentiment analysis, showing superior performance (Tumuluru et al., 2023). Additionally,
Samih, Ghadi & Fennan (2023) and Bhavana, Karthik & Kumari (2023) demonstrated its
effectiveness in various sentiment analysis tasks.

MultinomialNB
MultinomialNB, or multinomial naïve Bayes, is a variant of the naïve Bayes classifier
tailored for classification with discrete features, commonly used in text classification and
sentiment analysis. This algorithm is effective when dealing with word frequencies and is
known for its simplicity and efficiency in handling large datasets.

In sentiment analysis, MultinomialNB has demonstrated significant effectiveness. For
instance, Srivastava, Bharti & Verma (2021) found that MultinomialNB achieved an 82%
classification rate using Bag-of-Words features, outperforming other models in their
study on hotel reviews (Srivastava, Bharti & Verma, 2021). Additionally, Ismail, Harous &
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Belkhouche (2016) highlighted that MultinomialNB performed better in Twitter sentiment
analysis, handling data sparsity and informal language effectively.

RF
RF, an ensemble learningmethod formulated by Breiman (2001), builds numerous decision
trees during the training phase and delivers the class mode (for classification) or the average
of predictions(for regression) from the trees. Crucial settings for this algorithm involve the
tree count, the count of features to examine at each node, and the trees’ maximum depth.

In sentiment analysis, Random Forest has proven effective in some task classifications.
For instance, The study of Fauzi (2018) demonstrated its effectiveness in sentiment
classification of Indonesian language texts, achieving an average OOB score of 0.829.
Another study showed that Random Forest outperformed SVM in classifying product
reviews from Flipkart, with an accuracy of 97% (Karthika, Murugeswari & Manoranjithem,
2019).

Building procedure of proposed architecture
DistilRoBERTa and embedding operation
DistilRoBERTa represents a significant advancement in NLP, reducing the complexities
of its predecessor, RoBERTa, yet retaining its contextual embedding capabilities. The
model is built on transformer blocks that employ self-attention mechanisms, enabling
deep contextual understanding of token representations, which is crucial for interpreting
the subtleties of language (Sanh et al., 2019).

Token representation
Initially, tokens transform vector space, incorporating both lexical and positional
information as follows:

Ei=We[Tokeni]+Wp[i] (1)

where Ei represents the embedding of the ith token, We is the token embedding matrix,
Wp[i] denotes positional encoding for position i, and Tokeni signifies the token’s index
within the vocabulary.

Self-attention mechanism
The self-attention mechanism computes attention scores to ascertain the relative
importance of each token within the sequence:

Attention(Q,K ,V )= softmax
(
QKT
√
dk

)
V (2)

Here, Q, K , and V correspond to the query, key, and value vectors, respectively, derived
from the input embeddings, with dk representing the dimensionality of the keys, facilitating
a dynamic aggregation of context.

Multi-head attention
DistilRoBERTa extends the attention mechanism across multiple ‘‘heads’’ to diversify its
focus:

MultiHead(Q,K ,V )=Concat(head1,head2,...,headh)WO (3)
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where headi=Attention(QWQ
i ,KW

K
i ,VW

V
i ) (4)

Each head processes the input vectors through distinct sets of projection matrices WQ
i ,

W K
i , and W V

i , with the outputs concatenated and further projected, enabling the model
to capture complex inter-token relationships.

Position-wise feed-forward networks
After the multi-head attention, each transformer block incorporates a position-wise
feed-forward network:

FFN(x)=max(0,xW1+b1)W2+b2 (5)

This layer introduces additional non-linearity, allowing for further learning of complex
patterns within the data. Through the iterative application of these mechanisms across its
transformer blocks, DistilRoBERTa adeptly encodes input tokens into vectors laden with
rich contextual information, facilitating advanced understanding and interpretation in
downstream NLP tasks.

Sequential processing via BiLSTM
After the initial embedding of tokens using DistilRoBERTa, the model employs a BiLSTM
layer to enhance its understanding of the input sequence. BiLSTM networks extend
the conventional LSTM architecture by processing data in both forward and backward
directions, allowing the model to capture context from both past and future tokens within
a sequence. This dual-direction processing is instrumental in understanding the nuanced
dependencies that exist in natural language data.

LSTM fundamentals
At the core of an LSTMunit are several gates that control the flow of information: the forget
gate (ft ), input gate (it ), and output gate(ot ). These gates determine what information is
retained or discarded as the sequence is processed. The LSTM cell state (Ct ) serves as a
form of memory that carries information across the sequence of tokens (Graves & Graves,
2012).

The operations within an LSTM cell at time step t can be described by the following
equations:

• Forget gate:

ft = σ (Wf · [ht−1,xt ]+bf ) (6)

• Input gate:

it = σ (Wi · [ht−1,xt ]+bi) (7)

C̃t = tanh(WC · [ht−1,xt ]+bC) (8)

• Cell state update:

Ct = ft ∗Ct−1+ it ∗ C̃t (9)
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• Output gate:

ot = σ (Wo · [ht−1,xt ]+bo) (10)

ht = ot ∗ tanh(Ct ) (11)

Here, xt is the input at the current time step, ht−1 is the previous hidden state, σ denotes
the sigmoid activation function, and tanh is the hyperbolic tangent activation function.
The weights (W ) and biases (b) are parameters learned during training.

Bidirectional processing
In a BiLSTM layer, two separate LSTM networks process the input sequence: one in the
forward direction and the other in the backward direction. The forward LSTM (

−−−→
LSTM )

processes the sequence from start to end, while the backward LSTM (
←−−−
LSTM ) processes it

from end to start. The outputs of both LSTMs at each time step are concatenated to form
the final output for that time step:

ht = [
−→
ht ;
←−
ht ]. (12)

This concatenated output combines information from both past and future contexts,
providing a comprehensive representation of each token within the sequence.

The application of BiLSTM layers in the model enables a richer representation of the
text data, leveraging both preceding and succeeding contextual information to enhance
the model’s ability to understand and classify sentiment in text accurately. Through the
integration of BiLSTM layers, the model acquires a dynamic capacity to capture temporal
dependencies and relationships, critical for the nuanced task of SA.

Sequential processing via BiLSTM
Following embedding, a first layer of bidirectional LSTM with 256 units captures the
context in both directions of the sequence (Schuster & Paliwal, 1997):

Hi=
−−−→
LSTM(Ei)⊕

←−−−
LSTM(Ei). (13)

Dropout and layer normalization are applied subsequently to enhance model performance
and stability.

Refinement via second BiLSTM layer
A second BiLSTM layer, with dropout (Srivastava et al., 2014) and global average pooling,
further refines the contextual analysis:

GlobalAveragePooling(H) (14)

Classification dense layer
The model’s output stage comprises a dense layer with 256 neurons activated by the ReLU
function, introducing non-linearity and enabling the learning of complex patterns within
the condensed feature set (Nair & Hinton, 2010). A subsequent dropout layer (rate of 0.4)
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precedes the final classification layer, which employs a softmax activation to produce a
probability distribution over the target sentiment classes (Bridle, 1990):

Softmax(zj)=
ezj∑
k ezk

(15)

for each class j, where z represents the input vector to the softmax function.

Model compilation and training
The model is compiled with the popular and widely used Adam optimizer, a choice
driven by its ability to adapt learning rates for different parameters and its efficiency in
large-scale data and parameter scenarios. The learning rate is set to a conservative value
of 1e−5, balancing the trade-off between learning speed and the risk of overshooting the
minimum of the loss function. Categorical cross-entropy is the loss function suitable for
multi-class classification tasks, given its effectiveness in measuring the discrepancy between
the predicted probability distribution and the true distribution.

Loss=−
M∑
c=1

yo,c log(po,c) (16)

where yo,c is a binary indicator that signifies whether the class label c is the accurate
classification for observation o, and po,c is the predicted probability that observation o is
classified as class c .

Training involves two principal methods: checkpointing and early stopping.
Checkpointing entails preserving the state of the model at each epoch where there is
an enhancement in a monitored metric, such as validation accuracy. Early stopping,
alternatively, terminates the training process when there is no enhancement in the
observed metric after a designated number of epochs. This strategy prevents overfitting and
ensures computational resources are utilized efficiently: monitors validation loss, halting
training when no improvement is seen, facilitating model generalizability, and preventing
overfitting. The model undergoes training over a predefined number of epochs or until the
early stopping criterion is met, utilizing a batch size that balances the trade-off between
memory utilization and the granularity of the parameter updates.

This model architecture demonstrates (in Algorithm 2) a potent approach to SA,
showcasing the effective integration of transformer and RNN technologies for advanced
text processing and classification.

Performance evaluation metrics
For performance evaluation, several techniques have been widely applied to measure the
model’s effectiveness. Accuracy is calculated as the ratio of correct predictions (including
both true positives and true negatives) to the total number of cases analyzed. It is defined
by the formula where the sum of true positives and true negatives is divided by the total
case count (TP, FP, TN, FN). A higher accuracy indicates a model that is more effective
overall at classification. Accuracy is defined as:

Accuracy=
TP+TN

TP+FP+TN +FN
. (17)
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Algorithm 2Hybrid Architecture Building Procedure
Require: Preprocessed Training and Validation Datasets (Xtrain,Xtest,ytrain,ytest),
1: Transformer model identifier,
2: Hyperparameters: Sequence length, Batch size, Learning rate.

Ensure: A trained hybrid DL model for SA.

3: procedure BuildHybridModel
4: Initialize the transformer model and tokenizer.
5: Define input layers for input IDs and attention masks.
6: Obtain embeddings from the transformer using input IDs and masks.
7: LSTMbi=Bidirectional(LSTM(embeddings))
8: Dropout1=Dropout(LSTMbi)
9: LayerNorm= LayerNormalization(Dropout1)
10: LSTMbi2=Bidirectional(LSTM(LayerNorm))
11: Dropout2=Dropout(LSTMbi2)
12: Pooled =GlobalAveragePooling1D(Dropout2)
13: Dense1=Dense(Pooled,activation=′ relu′)
14: Dropout3=Dropout(Dense1)
15: Output =Dense(Dropout3,activation=′ softmax ′)
16: Compile the model with Adam optimizer and categorical crossentropy loss.
17: return compiled model
18: end procedure

19: procedure TrainModel(model, data, epochs, callbacks)
20: Train the model on Xtrain and ytrain with validation on Xtest,ytest.
21: Use callbacks for model checkpointing and early stopping.
22: return trained model
23: end procedure

Precision quantifies the accuracy of positive predictions, representing the ratio of true
positives (TP) to the total number of predicted positives, which includes both true positives
and false positives (FP). This metric is computed by dividing the true positives by the sum
of true positives and false positives, reflecting the precision with which the model predicts
positive classes. A higher precision value suggests greater accuracy in forecasting positive
outcomes. Precision is defined as:

Precision=
TP

TP+FP
. (18)

Recall assesses the percentage of actual positives that are accurately detected by the
model. It is determined by dividing the true positives by the total of true positives and false
negatives (FN), showcasing the model’s capability to correctly recognize positive instances.
A higher recall rate indicates a model’s proficiency in identifying positive classes effectively.
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Table 2 ImplementedMLmodels with used parameters.

Classifier Default parameters

LR C = 1.0, solver = ‘lbfgs’,max_iter = 100, random_state = None
SVM base_estimator=LinearSVC(random_state=0), cv=10
PA C = 1.0, fit_intercept=True,max_iter=1000, random_state=0
RF n_estimators=100, criterion=‘gini’,max_depth=None, random_state=None
AdaBoost base_estimator=None, n_estimators=50, learning_rate=1.0,

random_state=None
MultinomialNB alpha=1.0, fit_prior=True
XGBoost use_label_encoder=False, eval_metric=‘logloss’, random_state=0

Recall is defined as:

Recall=
TP

TP+FN
(19)

The F1-score serves as the harmonic mean between precision and recall, effectively
balancing the two. Itmerges thesemetrics into one unifiedmeasure,making it advantageous
for evaluating models where a trade-off between precision and recall is necessary. The
F1-score is defined as:

F1= 2 ·
Precision ·Recall
Precision+Recall

(20)

MODELS PARAMETER SETTINGS
In this section, we present the parameters utilized for each machine-learning model and
the proposed hybrid DL model. Also, this section will delve into the parameter selection
process for the proposed hybrid DL method.

Initially, we implemented sevenML classifiers on both datasets to check the performance
of ML for the SA task. In Table 2, we present the default parameters of seven implemented
ML classifiers utilized in our study. These classifiers encompass various algorithms, each
with hyperparameters influencing model performance. By providing an overview of
the default settings, we aim to offer insight into the initial configurations used in our
experiments. These parameters are a starting point for our analysis and experimentation,
allowing us to explore the behaviour and efficacy of different machine-learning models in
our research context.

Table 3 presents a detailed breakdown of the hyper-parameter tuning process for
our proposed hybrid DistilRoBiLSTMFuse model, designed for the SA. The selection of
hyper-parameters is conducted to ensure an optimal balance between learning efficiency
and model complexity. Various configurations are tested to determine the most effective
combination that enhances model performance.

For the BiLSTM component of our architecture, units are tested at 64, 128, 256, and
512 to find the optimal structure for sequence learning. The finalized model employs
a dual-layered approach with 256 units in the first BiLSTM layer and 128 units in the
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Table 3 The parameter selection of the proposed DistilRoBiLSTMFuse model.

Parameter Parameter-tested Optimal-value

BiLSTM unit 64, 128, 256, 512 BiLSTM(1): 256, BiLSTM(2): 128
Optimizer Adam, RMSProp, SGD Adam
Learning rate 0.0001, 0.00001 0.00001
Dropout unit 0.1, 0.2, 0.3, 0.4, 0.5 Dropout(1): 0.1, Dropout(2): 0.2, Dropout(3): 0.4

second, providing a robust framework for capturing long-term dependencies within the
text. The optimizer is a crucial element influencing the convergence speed and stability of
the training process. Our experimentation with Adam, RMSProp, and SGD culminated in
selecting the Adam optimizer, renowned for its adaptive learning capabilities. The learning
rate is evaluated at two magnitudes, 0.0001 and 0.00001, with the latter being identified as
the optimal value to fine-tune our model’s weights without overshooting during updates.
Lastly, we integrated dropout layers with tested rates ranging from 0.1 to 0.5 to mitigate
overfitting and enhance the model’s generalizability. The optimal dropout rates were
established at 0.1, 0.2, and 0.4 for the respective dropout layers, balancing regularization
and retaining essential features during training.

EXPERIMENTAL ENVIRONMENT
We conduct our experimental analysis using Kaggle’s computational resources, which
include access to a Tesla T4-16 GB GPU and 32 GB of RAM. This setup is operated on
a Windows 11 system, crucial for performing our experiments efficiently across different
research projects. Kaggle’s infrastructure meets our computational needs, facilitates
collaboration, and enables easy sharing of our findings.

For our deep learning framework, we utilize TensorFlow and Keras, which are well-
suited for building and training our DistilRoBiLSTMFuse model. Our data preprocessing
and analysis are handled using pandas and scikit-learn. These tools collectively form the
backbone of our experimental setup, ensuring robustness and reproducibility.

RESULTS
In this section, we present a detailed experimental analysis of SA using two datasets. In
order to demonstrate the efficacy of our method and investigate its potential, the results
derived from each dataset are examined individually. The analysis for each dataset is split
into two primary sections. First, we present and describe the implementedmodels, followed
by a thorough comparison of their performance against our proposed model. Afterwards,
we perform a comprehensive analysis, providing a detailed examination of recent studies
and comparing different approaches that have been used on the same dataset to our own
proposed model. The data preprocessing steps are applied in both datasets before using
ML and DL models.
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Table 4 Performance of ML with the feature extraction on the IMDb.

Model Accuracy Precision Recall F1-score

TFIDF
LR 0.8872 0.8873 0.8872 0.8872
SVM 0.8929 0.8929 0.8929 0.8929
PA 0.8795 0.8795 0.8795 0.8795
RF 0.8345 0.8345 0.8345 0.8345
AdaBoost 0.7963 0.7976 0.7965 0.7962
MultinomialNB 0.8607 0.8615 0.8605 0.8606
XGBoost 0.8554 0.8557 0.8555 0.8554

BoW
LR 0.8828 0.8828 0.8828 0.8828
SVM 0.8728 0.8728 0.8728 0.8728
PA 0.8703 0.8709 0.8704 0.8703
RF 0.8418 0.8418 0.8418 0.8418
AdaBoost 0.7947 0.7961 0.7949 0.7945
MultinomialNB 0.8445 0.8461 0.8443 0.8442
XGBoost 0.8559 0.8561 0.8560 0.8559

Experimental analysis on IMDb
In the initial exploratory phase of our SA research on the IMDb dataset, we systematically
apply seven ML models: LR, SVM, PA, RF, AdaBoost, MultinomialNB, and XGBoost.
These models are then evaluated using two widely used feature extraction methods (TFIDF
and Bow) to highlight the most effective combination for sentiment classification. The
performance of eachmodel is checked using four performance evaluationmetrics (accuracy,
precision, recall, and F1-score). The performance of seven ML models with two feature
extraction methods is illustrated in Table 4.

This table shows that our top-performing setup combines SVM with TFIDF, where
we observed the highest accuracy of 0.8929. This performance highlights that our
implementation of SVM + TFIDF is highly effective at discriminating between different
classes within the dataset. The effectiveness is likely due to SVM’s capability to manage
high-dimensional data and its robustness in maximizing the margin between class features.
Among ML, our second best-performing model is LR, which also utilizes TFIDF (0.8872).
This combination proves that LR, though slightly less efficient than SVM in this task,
performs robustly when combined with TFIDF. This feature extraction technique enhances
LR’s ability to focus on the most impactful features, improving its accuracy in classifying
the reviews. Conversely, the least effective model in our study is AdaBoost using BoW,
where the scores range from 0.7945 to 0.7961 across all metrics. This lower performance
could be attributed to AdaBoost’s sensitivity to noisy data and outliers, which are less
effectively managed by the BoW method than by TFIDF.

From Table 4, it is observed that while TFIDF generally leads to better outcomes with
these models, TFIDF combined with SVM is the most effective approach in our dataset
analysis. On the other hand, AdaBoost paired with BoW exhibits significant challenges,
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Table 5 Performance of the proposed DistilRoBiLSTMFuse model on the IMDb.

Class Precision Recall F1-score

Negative 0.9380 0.9415 0.9398
Positive 0.9414 0.9379 0.9397
Macro average 93.97 93.97 93.97
Weighted average 93.97 93.97 93.97
Accuracy (training) 98.91%
Accuracy (validation) 94.16%
Accuracy (testing) 93.97%

underscoring the critical importance of selecting the appropriate model and feature
extraction technique based on specific data characteristics.

Building upon the foundational groundwork laid by the initial ML models, our research
moved into the more complex area of DL by developing a proposed hybrid model: the
DistilRoBiLSTMFuse. This innovative model harnesses the strengths of DistilRoBERTa
for understanding contextual relationships within text and the BiLSTM architecture for
capturing long-term dependencies, thus aiming for a nuanced apprehension of SA in the
IMDb dataset. The experimental result of our proposed model on the IMDb dataset is
shown in Table 5.

The proposed approach demonstrates outstanding precision and recall in both the
negative and positive classes, achieving scores of around 0.94 in both categories. This high
level of performance indicates a robust ability to identify and classify both sentiments
with almost equal proficiency correctly. The F1-Scores, which are harmonic means of
precision and recall, also reflect this high accuracy, ensuring that both the retrieval and
relevance aspects of the model’s predictions are well-balanced. Further examining the
overall accuracy, the model achieves an outstanding 98.91% in training, which shows that
it effectively learns from the dataset with minimal overfitting. This high training accuracy
translates well into the validation and testing phases, where it maintains a high accuracy of
94.16% and 93.97%, respectively.

When comparing our model to traditional ML models discussed earlier, such as SVM
and LR using TFIDF and BoW, the DistilRoBiLSTMFuse model distinctly outperforms
them in terms of both training and testing accuracy. While the best SVM model with
TFIDF achieved an accuracy close to 0.8929, the DistilRoBiLSTMFuse model surpasses
this, reaching 93.97% in testing accuracy. This significant improvement highlights the
effectiveness of integrating advanced neural network architectures and hybrid models
in handling complex tasks like SA on the IMDb dataset, making it a superior choice for
achieving high accuracy and reliability in real-world applications.

Figure 4 depicts the accuracy and demonstrates the model’s learning progress, which
consistently improves during training and reaches a peak of 98.91% by the sixth epoch.
One significant characteristic of this figure is the significant increase in validation accuracy
during the third epoch, reaching a peak of 94.16%. Following this peak, the curve levels off.
These findings indicate that the third epoch is when the model attains optimal equilibrium
between the processes of learning and generalization. The second image illustrates the
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Figure 4 Performance (accuracy and loss) curve of the proposed model on IMDb.
Full-size DOI: 10.7717/peerjcs.2349/fig-4

model’s loss over epochs, showing a consistent decrease in the training loss. This decrease
indicates the model’s increasing accuracy in making predictions. On the other hand, the
validation loss reaches its lowest point at epoch 2, with a value of 0.1709, and subsequently
increases, suggesting that the model might be fitting too closely to the training data.
These visual cues emphasize the significance of monitoring both accuracy and loss in
order to avoid overtraining and sustain the model’s performance on new data. In this
experiment, we employ EarlyStopping strategies with a patience of 4. These techniques
help to reduce overfitting and ensure that the model generalizes effectively to new data, all
while maintaining computing efficiency.

The confusion matrix in Fig. 5 provides a comprehensive overview of the performance
of our proposed model on the IMDb dataset. In a confusion matrix, the diagonal elements
(top-left and bottom-right) represent the counts of true positive (3,527) and true negative
(3,521) predictions, indicating instances where the model correctly identified the positive
and negative classes, respectively. The high values along the diagonal demonstrate the
model’s effectiveness in making accurate predictions. On the other hand, the off-diagonal
elements (top-right and bottom-left) correspond to the counts of false positive (219) and
false negative (233) predictions. False positives arise when the model mistakenly identifies
an observation as belonging to the positive class, whereas false negatives happen when
the model wrongly labels an observation as negative. These off-diagonal values highlight
the instances where the model’s predictions were incorrect. From the confusion matrix of
Fig. 5, our proposed model shows higher performance, as evidenced by the high number
of correct predictions. The model has a robust capacity to classify occurrences in the IMDb
dataset effectively.

Figure 6 presents our proposed model’s receiver operating characteristic (ROC) curves
on the IMDb dataset. The ROC curve represents the true positive rate (sensitivity) versus
the false positive rate (1-specificity) across different threshold values. The ROC curve for
the positive class is shown in orange, and the ROC curve for the negative class is shown
in blue. Both curves have an area under the curve (AUC) of 0.98, indicating the model’s
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Figure 5 Confusionmatrix on IMDb.
Full-size DOI: 10.7717/peerjcs.2349/fig-5

excellent discriminative ability. An AUC value of 0.98 suggests that the model effectively
distinguishes between the positive and negative classes. The curves near the top-left corner
of the plot suggest a high level of performance, marked by a minimal occurrence of false
positives and false negatives.

Comparative analysis on IMDb
The comparative analysis provided in Table 6 presents details of various models’
performances on the IMDb dataset, including ML and DL methods applied in previous
studies. Traditional ML techniques such as decision trees (Zharmagambetov & Pak, 2015),
AdaBoost (Vadivukarassi, Puviarasan & Aruna, 2018), logistic regression (Dholpuria, Rana
& Agrawal, 2018), KNN (Dholpuria, Rana & Agrawal, 2018), and NB (Jung et al., 2016)
have shown a range of performances, with LR and NB achieving high accuracies around
87%. On the DL side, models like GRU (Hossen et al., 2021), LSTM (Hossen et al., 2021),
BiLSTM (Garg & Kaliyar, 2020), and combinations like CNN-LSTM (Jain, Saravanan
& Pamula, 2021) and CNN-BiLSTM (Rhanoui et al., 2019) performed well but did not
surpass 90% in accuracy.

On the other hand, the more advanced DL models incorporating transformer
architectures, specifically RoBERTa-LSTM (Tan et al., 2022a) and our proposed model
DistilRoBiLSTMFuse, demonstrate superior performance. The RoBERTa-LSTM model
achieved an impressive accuracy of 92.96%, making it the second-best in this analysis. Our
model, DistilRoBiLSTMFuse, outperformed all with an accuracy of 93.97%. This represents
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Figure 6 ROC curve on IMDb.
Full-size DOI: 10.7717/peerjcs.2349/fig-6

Papia et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2349 30/46

https://peerj.com
https://doi.org/10.7717/peerjcs.2349/fig-6
http://dx.doi.org/10.7717/peerj-cs.2349


Table 6 The comparative analysis on IMDb.

Methods Accuracy Precision Recall F1-score Reference

DT 73.46 74 73 73 Zharmagambetov & Pak
(2015)

AdaBoost 83.37 83 83 83 Vadivukarassi, Puviarasan
& Aruna (2018)

LR 87.12 90 90 90 Dholpuria, Rana & Agrawal
(2018)

KNN 77.37 78 77 77 Dholpuria, Rana & Agrawal
(2018)

NB 87.01 87 87 87 Jung et al. (2016)
GRU 87.88 88 88 88 Hossen et al. (2021)
LSTM 85.11 85 85 85 Hossen et al. (2021)
BiLSTM 86.28 87 86 86 Garg & Kaliyar (2020)
CNN-LSTM 86.07 86 86 86 Jain, Saravanan & Pamula

(2021)
CNN-BiLSTM 86.16 86 86 86 Rhanoui et al. (2019)
RoBERTa-LSTM 92.96 93 93 93 Tan et al. (2022a)
DistilRoBiLSTMFuse 93.97 93.97 93.97 93.75 Our proposed

a 1.01% improvement over the RoBERTa-LSTM, indicating a significant advancement
given the high-performance levels already achieved by the top models.

The superior performance of our model, DistilRoBiLSTMFuse, can be attributed to
its innovative architecture that combines the distilled strengths of the RoBERTa with the
sequential data processing capabilities of BiLSTM. This hybrid approach leverages the
deep contextual understanding of transformer models with the proven effectiveness of
bidirectional LSTM for sequence learning. The integration enhances the model’s ability
to discern nuanced sentiment expressions within the IMDb reviews, leading to a notable
accuracy improvement of 1.01% over the second-best model, RoBERTa-LSTM. This
advancement underscores the potential of combining distilled transformer models with
traditional recurrent neural networks to push the boundaries of SA accuracy.

Experimental analysis on USAirline
We also implemented the same preprocessing and ML models with two distinct feature
extraction methods on the Twitter USAirline dataset (presented in Table 7). The
performance mentioned in this table is achieved after using the data balancing method.
Among the models implemented in this analysis, the PA Classifier + TFIDF method
provides the highest performance, with scores of 0.9693 for accuracy, 0.9696 for precision,
0.9694 for recall, and 0.9695 for the F1 score. This model is adept at handling large-scale
streaming data and adjusting its parameters dynamically in response to each instance’s
error, making it highly effective for text classification tasks. Closely following the PA
classifier, the RF + TFIDF exhibited superior performance, with an accuracy of 0.9635 and
an F1-score of 0.9636. Its ability to reduce overfitting by averaging multiple deep decision
trees contributes to its robust performance across different datasets. On the other end
of the spectrum, the MNB model demonstrated the lowest performance metrics under
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Table 7 Performance evaluation of MLmodels using feature extraction methods on USAirline.

Model Accuracy Precision Recall F1-score

TFIDF
LR 0.9390 0.9391 0.9393 0.9392
SVM 0.9628 0.9629 0.9630 0.9629
PA 0.9693 0.9696 0.9694 0.9695
RF 0.9635 0.9635 0.9638 0.9636
AdaBoost 0.8471 0.8538 0.8482 0.8474
MultinomialNB 0.8798 0.8815 0.8803 0.8787
XGBoost 0.9475 0.9480 0.9479 0.9478

BoW
LR 0.8529 0.8572 0.8541 0.8532
SVM 0.8489 0.8527 0.8502 0.8492
PA 0.8306 0.8334 0.8318 0.8313
RF 0.8624 0.8622 0.8635 0.8615
AdaBoost 0.7990 0.8331 0.8008 0.7913
MultinomialNB 0.7394 0.7591 0.7412 0.7312
XGBoost 0.9432 0.9434 0.9436 0.9435

the COUNT transformation, with an accuracy of 0.7394 and an F1-score of 0.7312. This
outcome suggests that while naïve Bayes is a simple and fast classifier, its performance may
lag when the independence assumption between features is often violated, as in text data.

Since each class of this dataset is not balanced, we evaluate our proposed
DistilRoBiLSTMFuse model under two distinct conditions: with and without the
implementation of data augmentation techniques. This comprehensive analysis aimed
to determine the impact of data augmentation on enhancing model performance. Table 8
demonstrates the performance of our proposed DistilRoBiLSTMFuse model on the
USAirline Tweet dataset without data augmentation. Precisionwithin this contextmeasures
the accuracy of themodel’s predictions for each sentiment class, denoting the proportion of
correctly identified positive instances relative to all positive predictions made by the model.
Recall captures the model’s capacity to detect all pertinent instances within a specific class
across the dataset. The F1-score, as a harmonic mean of precision and recall, serves as an
aggregate measure of the model’s accuracy, balancing both the precision and recall metrics.
Table 8 indicates that the negative class achieves remarkably high precision and recall,
resulting in a nearly perfect F1-score of 99.97%.

The neutral and positive classes exhibit slightly lower performance metrics but still
maintain commendable scores above 85% across all three metrics, indicative of robust
model performance in these categories. Furthermore, the table presents overarching
performance indicators such as the macro average and weighted average of precision,
recall, and F1-score, alongside a consolidated measure of Accuracy during the testing
phase. The macro average stands at 91.89%, reflecting the average performance across all
classes, unweighted by class frequency. Theweighted average, which considers the frequency
of each class, mirrors the testing accuracy, both marked at 95.50%. This high accuracy
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Table 8 Performance of the DistilRoBiLSTMFuse without augmentation on USAirline.

Class Precision Recall F1-score

Negative 99.95 100.00 99.97
Neutral 88.56 89.60 89.07
Positive 87.34 85.92 86.63
Macro average 91.95 91.84 91.89
Weighted average 95.49 95.50 95.50
Accuracy (testing) 95.50%

Table 9 Performance of the proposed DistilRoBiLSTMFuse with augmentation on USAirline.

Class Precision Recall F1-score

Negative 1.0000 1.0000 1.0000
Neutral 0.9826 0.9657 0.9741
Positive 0.9670 0.9832 0.9751
Macro average 0.9832 0.9830 0.9831
Weighted average 0.9834 0.9833 0.9833
Accuracy (training) 99.42%
Accuracy (validation) 98.52%
Accuracy (testing) 98.33%

indicates that the model performs exceptionally well across varying class distributions,
highlighting its effectiveness in handling unbalanced data typical of real-world scenarios.

After an initial analysis of our proposed model without augmentation, we conducted
further analysis using data augmentation and balancing each class. Table 9 illustrates the
performance of our DistilRoBiLSTMFuse model with each class balanced. After balancing,
the model achieved perfect scores across all metrics for the negative class, indicating that it
was both highly precise and comprehensive in identifying negative sentiments. There were
no instances where the model misclassified a negative sentiment or failed to detect it. In
the case of the neutral class, the scores are slightly lower but still very high, with a precision
of 98.26% and a recall of 96.57%. This suggests that while the model is mostly accurate
at identifying neutral sentiments, there is a small margin of error where it might confuse
them with other sentiments or miss them altogether. The positive class similarly shows
excellent results, with a precision of 96.70% and a recall of 98.32%. This indicates a strong
ability to identify positive sentiments, though there is a slight tendency to over-identify
other sentiments as positive.

The model consistently achieves precision, recall, and F1-scores near 98.3% on both
macro and weighted scales, showcasing its high accuracy and adeptness at equitably
managing these metrics across various classes. Accuracy metrics further reinforce the
model’s robustness, showing high consistency in performance across training, validation,
and testing phases—99.42%, 98.52%, and 98.33%, respectively. This consistency is crucial
for validating the model’s effectiveness in real-world applications, demonstrating that it
maintains high accuracy even on unseen data.
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Figure 7 Performance (accuracy and loss) curve of the proposed model on USAirline.
Full-size DOI: 10.7717/peerjcs.2349/fig-7

Figure 7 illustrates the training trajectory of anMLmodel, with the progression of epochs
revealing a consistent increase in accuracy and a corresponding decrease in loss for both
the training and validation sets. The validation accuracy ascends to a peak of approximately
98.52% around the eighth epoch, as highlighted on the graph. This peak represents the
model’s highest generalization performance. In parallel, the loss graph exhibits a downward
slope, with both the training and validation losses diminishing as the epochs progress. The
validation loss is notably minimized to its lowest at the same eighth epoch, with a value of
around 0.0610. This confluence of the highest validation accuracy and the lowest validation
loss at the same epoch suggests that the model has achieved an optimal balance of learning
and generalizing, indicating its readiness for effective real-world applications without the
complication of overfitting.

Figure 8 illustrates the confusion matrix for our model’s performance on the USAirline
dataset. The diagonal elements represent the counts of correct predictions, with 1,416 true
positives for Class 0, 1,296 true positives for Class 1, and 1,350 true positives for Class 2,
indicating the instances where the model correctly identified each class. Conversely, the
off-diagonal elements represent the misclassifications. Specifically, there are 46 instances
where Class 1 was misclassified as Class 2, and 23 instances where Class 2 was misclassified
as Class 1. These misclassifications are relatively few in number.

Figure 9 presents the ROC curves for our model on the USAirline dataset. The ROC
curves for Class 0, Class 1, and Class 2 are depicted in blue, orange, and green, respectively.
Each curve has an area under the curve (AUC) of 1.00, indicating the perfect discriminative
ability of the model for all classes. The curves’ proximity to the top-left corner of the
plot demonstrates the model’s high performance in distinguishing between the different
classes. The AUC values of 1.00 confirm that the model has achieved perfect classification
performance, effectively separating each class without any errors.
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Figure 8 Confusionmatrix on USAirline.
Full-size DOI: 10.7717/peerjcs.2349/fig-8

Comparative analysis on USAirline
Table 10 provides a comparative analysis of various methods applied to previous studies
to the Twitter USAirline Sentiment dataset.

In the ML category, methods like DT, AdaBoost, LR, KNN, and NB show a range of
performance, with LR outperforming others with an accuracy of 80.5% and F1-score of
72%, as reported in the cited study. Moving to the DL methods, models such as GRU,
LSTM, BiLSTM, CNN-LSTM, and CNN-BiLSTM are listed, with GRU leading this group
with an accuracy of 78.55% and an F1-score of 72%. The RoBERTa-LSTM model emerges
as the second-best performer with significant scores across the board—91.37% accuracy,
91% precision, and a 91% F1-score—indicating a substantial improvement over the
traditional DL models.

On the other hand, the proposed DistilRoBiLSTMFuse model is established as the most
cutting-edge approach for this task by achieving the highest testing accuracy of 98.33%,
precision of 97.34%, and an F1 score of 98.33%. It demonstrates a notable improvement
over the RoBERTa-LSTM model, which is the second-best in this comparison. The gains
are significant, with a 6.96 percentage point increase in accuracy and similar improvements
in othermetrics. Our DistilRoBiLSTMFusemodel stands out for its efficiency and advanced
performance, establishing a new benchmark for SA on the Twitter USAirline dataset. It
reflects a well-tuned model that has successfully captured the nuances of natural language,
likely due to an effective combination of distillation techniques and a robust fusion of
bidirectional LSTM with a transformer architecture. The performance leap suggests that
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Figure 9 ROC curve on USAirline.
Full-size DOI: 10.7717/peerjcs.2349/fig-9

Papia et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2349 36/46

https://peerj.com
https://doi.org/10.7717/peerjcs.2349/fig-9
http://dx.doi.org/10.7717/peerj-cs.2349


Table 10 The comparative results on the Twitter USAirline.

Methods Accuracy Precision Recall F1-score Ref

DT 71.4 62 56 58 Zharmagambetov & Pak
(2015)

AdaBoost 74.59 67 63 65 Vadivukarassi, Puviarasan
& Aruna (2018)

LR 80.5 78 69 72 Dholpuria, Rana & Agrawal
(2018)

KNN 68.41 60 60 60 Dholpuria, Rana & Agrawal
(2018)

NB 69.5 79 44 45 Jung et al. (2016)
GRU 78.55 73 71 72 Hossen et al. (2021)
LSTM 77.56 71 69 69 Hossen et al. (2021)
BiLSTM 77.46 71 69 70 Garg & Kaliyar (2020)
CNN-LSTM 76.02 68 69 69 Jain, Saravanan & Pamula

(2021)
CNN-BiLSTM 77.32 70 65 67 Rhanoui et al. (2019)
RoBERTa-LSTM 91.37 91 91 91 Tan et al. (2022a)
DistilRoBiLSTMFuse 98.33 98.34 98.33 98.33 Our proposed

the model’s architecture and training regime are highly effective for the specific challenges
posed by SA in social media text data.

DISCUSSION AND FUTURE WORK
Scalability and applicability of the data preprocessing strategy
Scalability to other datasets
The data preprocessing strategy employed in this research is designed to be versatile and
adaptable, ensuring it can be readily applied to a wide range of datasets beyond the two
datasets used in this experimental analysis for sentiment analysis.

This study uses several preprocessing steps to ensure the quality of the text and
remove redundant information which helps the classification model to achieve optimal
performance. Most of the preprocessing steps, for example: HTML Removal, Contraction
Expansion, and Lowercasing, are widely applicable to most of the sentiment analysis
datasets (which datasets are available online). For the Stopword Removal technique, we
have created a custom comprehensive list by analyzing the datasets used in sentiment
analysis. Besides, to handle contractions commonly found in informal text, we utilized a
contractions expansion dictionary. This dictionary maps contractions to their expanded
forms, ensuring that all textual data is standardized. The use of such a dictionary is crucial
in dealing with the informal and often abbreviated nature of user-generated content (For
example: ‘‘I’m’’ is expanded to ‘‘I am’’). Our contractions expansion dictionary also includes
domain-specific terms relevant to the datasets we are working with, such as abbreviations
and slang commonly used in movie reviews and social media posts (for instance: ‘‘CGI’’
expanded to ‘‘Computer-Generated Imagery’’). This approach ensures that all forms of
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contractions and abbreviations are consistently developed, reducing variability in the text
data and improving the effectiveness of subsequent text analysis techniques.

Some of the datasets need specific preprocessing based on their data format. For
example, the Twitter US Airline dataset was processed by combining the ‘negativereason’
and ‘text’ columns into a new column named ‘review,’ filling any missing values in
‘negativereason’ with an empty string. Additionally, the ‘sentiment’ column was derived
from ‘airline_sentiment,’ and the dataset was refined to include only the ‘review’ and
‘sentiment’ columns for further analysis. This tailored preprocessing step ensures that the
dataset’s unique structure and relevant information are adequately prepared for subsequent
analysis.

To address the issue of class imbalance in our datasets, researchers commonly employ
various techniques, such as the Synthetic Minority Over-sampling Technique (SMOTE).
Initially, we utilized a widely implemented method, SMOTE, to assess the performance of
our machine learning model. SMOTE works by creating synthetic samples for the minority
classes, thereby balancing the dataset and enhancing the model’s ability to learn from
underrepresented classes.

However, in our proposed approach, we implemented a custom oversampling method
designed to meet our specific needs. This method involves several key steps. First, we
calculated the number of instances for each class and identified the maximum class count,
which served as the target count for oversampling. Next, for each minority class, we
determined the number of additional samples needed to match the maximum class count.
We then randomly sampled instances from these minority classes with replacements to
achieve the desired count. After oversampling, the dataset was shuffled to ensure that the
samples were randomly distributed, a crucial step to prevent any order bias that might
affect the training process. This custom oversampling technique ensures that each class
in the dataset is equally represented, thus mitigating the risk of model bias towards the
majority class. By balancing the class distribution, our approach enhances the model’s
ability to learn and generalize across all classes, improving performance and robustness.

Our approach offers several advantages over traditional methods, like SMOTE.
Specifically, it avoids the potential for overfitting to synthetic samples generated by SMOTE,
as it only uses real instances from the dataset. Additionally, thismethod is straightforward to
implement and computationally efficient, making it suitable for large-scale datasets. These
steps are not specific to the datasets used in this study but are fundamental preprocessing
techniques applicable to various text datasets. The general nature of these steps ensures that
they can be easily adapted and applied to other datasets with minimal modifications. This
flexibility demonstrates the robustness and versatility of the preprocessing strategy, making
it suitable for a wide array of text analysis tasks across different domains and contexts.

Future work
Future work will focus on validating the proposed DistilRoBiLSTMFuse model with a
broader range of datasets, including those from different domains and languages. This
validation will help determine the model’s robustness and adaptability across diverse
textual data. Additionally, we aim to extend the preprocessing strategy to incorporate
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advanced techniques to achieve more robust performance and applicability for more
diverse datasets. Exploring the integration of domain-specific ontologies and knowledge
graphs will enhance the contextual understanding of the text, especially in specialized fields.

Another important direction for future research is the development of adaptive
preprocessing methods that dynamically adjust based on the dataset’s characteristics,
ensuring optimal preprocessing for various types of text data. Furthermore, we will explore
the scalability of our approach to multilingual datasets, addressing the challenges of
processing text in different languages and scripts to create more inclusive and versatile
sentiment analysis models.

Finally, incorporating unsupervised and semi-supervised learning techniques will be
investigated to improve the model’s performance on datasets with limited labelled data,
enhancing its applicability in real-world scenarios. By exploring these advanced methods,
we aim to develop a more robust and versatile sentiment analysis framework that can adapt
to various datasets and provide high accuracy and reliability in different applications.

CONCLUSION
This study has successfully demonstrated the efficacy of the proposed hybrid architecture,
DistilRoBiLSTMFuse, for SA. By utilizing the potent combination of distilled transformers
and BiLSTM, our model handles the complexities of language in social media texts.
The model underwent meticulous evaluation using the IMDb and Twitter USAirline
sentiment benchmark datasets, including rigorous preprocessing and data augmentation
to ensure robustness against class imbalances and to refine its interpretive abilities. Our
comparative analysis shows that our proposed model, DistilRoBiLSTMFuse, outperforms
seven traditional ML models and two feature transformation methods. It achieves an
accuracy of 94.16% on the validation and 93.97% on the testing set using the IMDb
dataset. Impressively, it also records 98.52% validation and 98.33% testing accuracy on the
Twitter USAirline Sentiment dataset. This performance establishes a new standard for state-
of-the-art SA methods. These results underline our model’s potential as a transformative
tool for understanding and analyzing online sentiment, providing significant implications
for academic research and practical applications. In the future, we intend to explore
integrating multimodal data, including visual and auditory information, to enrich the
SA process further and address the evolving complexity of online communication. This
approach aims to provide a more holistic understanding of sentiments expressed across
diverse social media platforms, enhancing the model’s applicability and performance in
real-world scenarios.
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