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ABSTRACT
Understanding spoken language is crucial for conversational agents, with intent
detection and slot filling being the primary tasks in natural language understanding
(NLU). Enhancing the NLU tasks can lead to an accurate and efficient virtual assistant
thereby reducing the need for human intervention and expanding their applicability in
other domains. Traditionally, these tasks have been addressed individually, but recent
studies have highlighted their interconnection, suggesting better results when solved
together. Recent advances in natural language processing have shown that pretrained
word embeddings can enhance text representation and improve the generalization
capabilities of models. However, the challenge of poor generalization in joint learning
models for intent detection and slot filling remains due to limited annotated datasets.
Additionally, traditional models face difficulties in capturing both the semantic and
syntactic nuances of language, which are vital for accurate intent detection and slot
filling. This study proposes a hybridized text representation method using a multi-
channel convolutional neural network with three embedding channels: non-contextual
embeddings for semantic information, part-of-speech (POS) tag embeddings for
syntactic features, and contextual embeddings for deeper contextual understanding.
Specifically, we utilized word2vec for non-contextual embeddings, one-hot vectors
for POS tags, and bidirectional encoder representations from transformers (BERT)
for contextual embeddings. These embeddings are processed through a convolutional
layer and a shared bidirectional long short-term memory (BiLSTM) network, followed
by two softmax functions for intent detection and slot filling. Experiments on the air
travel information system (ATIS) and SNIPS datasets demonstrated that our model
significantly outperformed the baseline models, achieving an intent accuracy of 97.90%
and slot filling F1-score of 98.86%on theATIS dataset, and an intent accuracy of 98.88%
and slot filling F1-score of 97.07% on the SNIPS dataset. These results highlight the
effectiveness of our proposed approach in advancing dialogue systems, and paving
the way for more accurate and efficient natural language understanding in real-world
applications.

Subjects Natural Language and Speech, Neural Networks
Keywords Joint learning, Intent detection, Slot filling, Dialogue system, Classification

INTRODUCTION
Advancements in artificial intelligence have led to the development of intelligent agents
known as dialogue systems that can engage in conversations with humans and assist in

How to cite this article Muhammad YI, Salim N, Zainal A. 2024. Joint intent detection and slot filling with syntactic and semantic fea-
tures using multichannel CNN-BiLSTM. PeerJ Comput. Sci. 10:e2346 http://doi.org/10.7717/peerj-cs.2346

https://peerj.com/computer-science
mailto:muhammadidris@graduate.utm.my
mailto:muhammadidris@graduate.utm.my
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2346
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2346


daily tasks. A core component of these systems is natural language understanding (NLU),
which enables interactions between human beings and dialogue systems (Weld et al., 2022).
NLU aims to extract meaning from a user’s utterances and to infer their intentions. The
two primary tasks in NLU are intent detection and slot filling. An intent detection is a
classification task, whereas slot filling is a sequence labeling task. Traditionally, these tasks
have been handled separately, but it has been shown that modeling them together yields
better performance (Suhaili, Salim & Jambli, 2021). This joint approach captures both
intent and slot label distributions within an utterance considering both local and global
contexts (Louvan & Magnini, 2020). Unlike separate models, the joint model reduces error
propagation by using a single model for training and fine-tuning, which can enhance intent
detection and slot filling performance (Firdaus, Ekbal & Cambria, 2023).

Improvements in intent detection and slot filling performance have significant
importance and potential applications in real-world scenarios. For instance, in customer
service, enhanced NLU models can lead to accurate and efficient virtual assistants, thereby
reducing the need for human intervention and improving customer satisfaction (Huang &
Rust, 2021). Moreover, advancements in intent detection and slot filling not only enhance
the performance of dialogue systems but also expand their applicability and effectiveness
in various domains, leading to more intuitive and efficient human-machine interaction
(Hao et al., 2023; Lim et al., 2022;Wang et al., 2023; Zhou et al., 2022).

Encoder–decoder neural network architectures are often used for joint learning
classification owing to their strong sequential processing capabilities. However, these
models face challenges such as generalization issues and the need for substantial annotated
datasets. To address generalization, transfer learning with pretrained language models
is utilized, starting with a model pretrained on a large corpus and then fine-tuning it
on a specific task with domain-specific data. Most existing methods for joint models use
either non-contextual embeddings (Bhasin et al., 2020; Firdaus et al., 2021; Pan et al., 2018)
or contextual embeddings (Ni et al., 2020; Qin et al., 2019) to address these issues. Non-
contextual embeddings provide foundational representations that are useful for initializing
embedding layers, capturing word-level semantics, reducing dimensionality, and handling
out-of-vocabulary words. However, these embeddings can mislead the model’s predictions
owing to the distributional hypothesis, which assumes that words appearing in similar
contexts have similar meanings. For instance, in the latent space ‘‘bad’’ and ‘‘good’’ are
mapped close together as neighbors, which can be problematic for intent detection where
semantics and context are crucial. In addition, non-contextual embeddings struggle to
differentiate between the different meanings of polysemous words, leading to ambiguity in
intent detection and slot filling tasks. For instance, in the utterance ‘‘Add Brian May to my
reggae infusion list,’’ the model might incorrectly label the slot for ‘‘May’’ as ‘‘timeRange’’
which negatively impacts the performance of the model. On the other hand, contextual
embeddings capture the meaning of words within the context of the surrounding words
in a sentence, offering better adaptability for specific tasks. However, they are limited by
the vocabulary used during pretraining. To enhance the understanding of the model, some
studies have incorporated syntactic representations of utterances alongside word vectors
(Guo et al., 2014). For example, part-of-speech (POS) tag embeddings encode syntactic
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properties and provide grammatical roles, and help the model disambiguate words with
multiple meanings (Wang et al., 2021). Therefore, we assert that combining contextual,
non-contextual, and syntactic features is essential for effective feature extraction in joint
learning classification for intent detection and slot filling. This study explores the impact
of these embeddings on the joint model and compared the impact of domain-specific and
general embeddings.

Earlier approaches to joint models relied on statistical methods that could not capture
deep semantic information. Deep neural networks have revolutionized natural language
processing tasks such as intent detection and slot filling. Common models for intent
detection include convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and transformer models such as bidirectional encoder representations from
transformers (Khattak et al., 2021). For the slot filling task, RNNs and encoder–decoder
models have shown promising results (Liu & Lane, 2016a; Siddique, Jamour & Hristidis,
2021). While RNNs capture the chronological features of utterances, they often miss
the local semantic features that are crucial for accurate slot identification. CNNs, on
the other hand, effectively capture local semantic information and generate higher-level
representations (Kim, 2014), but they do not capture sequential dependencies, which are
essential for analyzing natural language.

Motivated by these issues, this study proposes a joint learning classification model that
utilizes a multichannel convolutional neural network (MCNN) to extract features from
three embedding layers: contextual (BERT), non-contextual (word2vec), and POS tag
embeddings. These features were encoded using a shared BiLSTM to retain sequential
correlations and capture the global dependencies in the utterances. The output from the
BiLSTM is then fed into the intent and slot filling decoders for intent detection and slot
filling. The major contributions of the proposed model are summarized as follows:
1. We introduced a joint model that employs an MCNN with three input channels:

contextual, non-contextual, and POS tag embeddings. This setup extracts contextual,
semantic, and syntactic information for intent detection and slot filling tasks.

2. We examined the significance of different embeddings in the context of joint learning
classification.

3. We analyzed the impact of using general embeddings versus domain-specific
embeddings on the air travel information system (ATIS) and SNIPS datasets.

4. We conducted a series of experiments on the ATIS and SNIPS datasets and
demonstrated that our approach outperformed the baseline methods.
The remainder of this paper is organized as follows: In sections, ‘‘Related Work,’’

‘‘Proposed model,’’ ‘‘Experimental Study,’’ ‘‘Experimental Results and Analysis’’ and
‘‘Conclusion and Future Work.’’

RELATED WORK
Classical approaches
Joint learning classification for intent detection and slot filling has been widely studied by
many researchers. Jeong & Lee (2008) conducted one of the earliest studies on this topic
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(Jeong & Lee, 2008). They used a triangular-chain conditional random field (CRF) tomodel
the dependencies between slots and intent. In another study conducted by Wang (2010),
a maximum entropy model was used for intent detection and CRF for slot-filling tasks.
In addition, (Celikyilmaz & Hakkani-Tur, 2012) presented a multilayer hidden Markov
model for joint learning tasks. Although classical models can successfully capture the
dependencies between slots and intent, they face scalability challenges, particularly when
dealing with large datasets (Cohn, 2007; Jia, Liang & Liang, 2023; Mairesse et al., 2009).
Classical models often involve mathematical computation during training and prediction.
As the size of the dataset increases, these computations become computationally expensive,
making it difficult to scale models efficiently. They also encountered issues with feature
creation, as features needed to be predefined by humans before model training could
occur (Weld et al., 2022; Xu & Sarikaya, 2013; Zhang & Wang, 2016). The manual feature
engineering process is time-consuming and limits the ability of these models to adapt to
the complexity of natural language (Ferrario & Naegelin, 2020). These limitations have led
to the development of alternative approaches, particularly deep-learning approaches.

Deep learning approaches
The first study to exploit deep neural networks in a joint learning model for intent
detection and slot filling was conducted by Xu & Sarikaya (2013). They utilized a CNN
for feature extraction and a CRF for analysis. Guo et al. (2014) employed recursive neural
networks to analyze the dependency structures of utterances, incorporating features such
as n-grams and named entities, and used tree-derived features for intent detection and slot
filling. Although their model achieved state-of-the-art performance, it lacks bidirectional
connections, leading to slow and ambiguous models. Many subsequent studies have
employed different methodologies using RNNs for joint learning classification owing to
their suitability for capturing temporal dependencies. In some studies, RNNs were used
as word-level classifiers, with intermediate hidden states used for slot filling tasks and the
weighted sum of the hidden states for intent detection. In other studies, RNNs functioned
as sentence classifiers, using the last hidden state was used for intent detection. Zhou et al.
(2016) proposed a hierarchical LSTM (HLSTM) with two layers: the bottom-layer served
as a sentence classifier, with the last hidden state was employed for intent detection, while
the upper layer performed word-level classification for slot labeling. Liu & Lane (2016b)
introduced a jointmodel that using LSTM cell. In their proposedmodel, the intent and slots
are detected at each time step as the input arrived, and the overall intent was obtained using
the last hidden state. Hakkani-Tür et al. (2016) tagged each utterance with a special token
before passing it to a BiLSTM to obtain a latent semantic representation of the entire input
utterance for intent detection along with intermediate hidden states for slot labeling. Liu &
Lane (2016a) proposed another joint model that used a context vector generated from the
weighted sum of RNN hidden states to obtain both intent and slots. Zhang & Wang (2016)
combined a gated recurrent unit and max pooling layer in their joint model. Chao, Ke &
Xiaofei (2020) employed a BiLSTM model with POS tag as embeddings, while Firdaus et
al. (2018) used a bidirectional gated recurrent unit model with hybridized non-contextual
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and POS tag embeddings. Most recently, Hardalov, Koychev & Nakov (2023) proposed a
transformer based model incorporating named entity recognition as a feature.

Hybrid models
Our approach is closely related to the work in Firdaus et al. (2019), where two non-
contextual embeddings were used. Glove and word2vec were concatenated and served
as features for a CNN to capture the sentence representation. This was then fed into a
BiLSTM to obtain contextual information within utterances. However, this method’s
reliance on non-contextual embeddings is a notable drawback. In another study conducted
by Qin et al. (2021), a hybrid model combining BERT and BiLSTM was proposed to
establish bidirectionality between intent detection and slot filling tasks. However, this
study considered only contextual embeddings.

In nutshell, while classical models laid the foundation for intent detection and slot filling,
their scalability and manual feature engineering requirements limit their applicability
to large datasets and complex language tasks. Deep learning approaches, particularly
those leveraging RNNs and CNN, have significantly advanced the field by automating
feature extraction and capturing temporal dependencies. However, these models still
face challenges such as limited contextual understanding and ambiguity in bidirectional
connections. Hybrid models have attempted to bridge these gaps by combining various
types of embeddings and model architectures. Nevertheless, existing hybrid models often
rely on non-contextual embeddings, which fail to fully exploit the contextual nuances
of languages. Moreover, the integration of syntactical features such as POS tags remains
underexplored. Our proposed model addresses these issues by integrating contextual,
non-contextual, and syntactic embeddings using a multichannel CNN architecture. This
approach not only enhances feature representation but also disambiguates polysemous
words, leading to improved performance in intent detection and slot filling tasks. To the
best of our knowledge, this is the first study to use an MCNN architecture that leverages
contextual, non-contextual, and POS tag embeddings in different channels to improve the
performance of joint learning classification for intent detection and slot filling.

Proposed model
Figure 1 illustrates the architecture of the proposed joint model for intent detection and slot
filling. This model integrates both the CNN and BiLSTM, as used in Wu et al. (2024). The
proposed model comprises three input layers, three convolutional layers with subsequent
max pooling, a shared BiLSTM encoder, and two dense layers that implement softmax
functions. These components jointly detect the intent of the user’s input utterance and
the associated slots by assigning them with multiclass labels (B, I, O), where ‘‘I,’’ ‘‘O,’’ and
‘‘B’’ signify Inside, Outside, and Beginning of slots, respectively. Details of the model are
described in the following subsections.

Input layer (embedding layer)
The proposed model utilizes three types of embeddings: non-contextual, contextual, and
POS tag embeddings each as an independent input channel for the network. This layer
converts each word in the input sentence into its corresponding vector.
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Figure 1 MCNN-BiLSTM joint model architecture for intent detection and slot filling.
Full-size DOI: 10.7717/peerjcs.2346/fig-1

Non-contextual embeddings channel
The main purpose of this channel is to capture the semantic information of input words. In
this study,weused two types of non-contextual embeddings: general pretrained embeddings
and domain-specific embedding. For the general embeddings, we used pretrained word2vec
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embeddings trained on 100 billion words from Google News (Mikolov, Yih & Zweig, 2013),
whereas for domain-specific embedding, we used the continuous bag of words architecture
trained on the ATIS and SNIPS datasets. Each word is represented by 300-dimensional
vectors, with word padding applied to ensure uniform sentence length. Formally, to capture
the semantic features of each word for an utterance of length n, ith word is mapped to a
d-dimensional embedding expressed as:

Xn
1 ={x1,x2,...,xn}for X ∈R

d (1)

Contextual embeddings channel
The idea behind using this channel is to capture the contextual representations of the input
sentences, which is crucial for intent detection tasks (Roma et al., 2023). For this purpose,
we used a pretrained bert-base-uncased model developed by Google and pretrained on
Wikipedia and BookCorpus corpora (Devlin et al., 2018). The model had 12 stacked layers,
768 hidden units, 12 attention heads, and 110 million parameters. We prepared our data
by adding special tokens, [CLS] and [SEP], at the beginning and end of each sentence,
respectively, to denote the start and end of each sequence. Each sentence was then tokenized
to obtain the corresponding tokens for each word, which were then encoded into their
corresponding numerical identifiers based on the BERT vocabulary. These identifiers
are then converted into tensors and fed into the pretrained BERT model to obtain the
embedding weights for each token through the hidden states of the last layer. However, in
this study, we computed the means of the hidden states to obtain a fixed size representation
of the entire sequence, which served as our contextualized embeddings.

POS tag embeddings channel
The main purpose of this channel is to incorporate syntactic representations of sentences
alongside word vectors to help our model disambiguate words with multiple meanings.
In this study, we employed a tokenization function from the natural language tool kit
(NLTK) library to split each sentence into its words. Each word is then assigned a POS tag
using a POS tagger from the library, which indicates the syntactic role of the word in the
sentence. These POS tags were then converted into one-hot encoded vectors. These vectors
were then aggregated to create a POS tag embedding matrix for each sentence. This matrix
represents the syntactic structures of the sentence, where each row corresponds to a word,
and its respective POS tag. Formally, the sequence of POS tags can be represented as:
|S|1n={s1,s2,...,sn},withs∈R

36 where 36 denotes the dimensionality of the vector.

Convolutional layer
After encoding all the sentences into vectors and applying zero padding to ensure a uniform
length across all embedding channels. Convolution operations are then applied to extract
local features from the embedding channels. This allows the model to identify and leverage
important patterns and dependencies in the data. In this study, we applied convolution
operations with different filter sizes to POS embeddings (P), contextual embeddings (Q),
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and non-contextual embeddings (R). Conventionally, convolution operations involve
sliding filters over embeddings to detect patterns and to generate feature maps.

Let wn ∈Rhws,wc ∈Rhws,wp ∈Rhws be filters applied for the non-contextual, contextual,
and POS embedding, respectively, where ws is the window size h is the embedding
dimension for each word. Thus, the generated features can be expressed as:

Zi= f (w.xi:i+ws−1+b) (2)

where ( ·) is the convolution operator, f is a non-linear activation function (ReLU in this
case), b is the bias. This function is applied to each window

[
x1:ws,x2:ws+1,...,xn−ws:n

]
in

each channel. Thus, the feature map for each embedding type is given as:

POS features: zp=
[
zp1 ,z

p
2 ,...,z

p
n−ws+1

]
(3)

Contextual features: zq=
[
zq1 ,z

q
2 ,...,z

q
n−ws+1

]
(4)

Non-contextual features: zr =
[
z r1 ,z

r
2 ,...,z

r
n−ws+1

]
(5)

However, it is important to note that various filters can be employed to capture diverse
features from embedding matrices (Rakhmatulin et al., 2024).

Max pooling layer
The pooling operation is designed to reduce the resolution of the feature maps by applying
a pooling function to several units within a defined local region, known as the pooling
size. This process helps to generalize the features obtained from the convolutional layer
(Zhao & Zhang, 2024). Specifically, the purpose of using the max pooling layer in this study
was to capture the most significant features from the convolutional layer by selecting the
maximum value from each feature map segment (Kim, 2014). Thus, the maximum values
for POS and contextual and non-contextual features are expressed as follows:

Z̃p=max
[
zp1 ,z

p
2 ,...,z

p
n−ws+1

]
(6)

Z̃q=max
[
zq1 ,z

q
2 ,...,z

q
n−ws+1

]
(7)

Z̃r =max
[
z r1 ,z

r
2 ,...,z

r
n−ws+1

]
(8)

After pooling the maximum features for each channel, we obtain the final maximum
feature by concatenating the three features using the following equation:

Z = Z̃ 1
P⊕···⊕ Z̃m

P ⊕ Z̃ 1
q ⊕···⊕ Z̃n

q ⊕ Z̃ 1
r ⊕···⊕ Z̃ o

r (9)

where ⊕ is the concatenator operator and m, n, o are the filters for POS tag, contextual,
and semantic features respectively.
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Shared BiLSTM layer
Bidirectional long short-term memory network (BiLSTM) is a type of recurrent neural
network (RNN) architecture known for its ability to capture long-term dependencies in
sequential data. BiLSTM is an extension of the basic LSTM that integrates forward and
backward LSTM structures to capture deeper contextual information (Qi et al., 2024).
Essentially, BiLSTM employs two separate LSTM networks to analyze input sequences. The
forward LSTM processes the sequence starting from the first token, whereas the backward
LSTM processes it from the final token. Subsequently, the outputs of both LSTM networks
are merged at each time step. This arrangement ensures that the output at any given time
step encompasses both the preceding and succeeding context from the input sequence,
thereby facilitating amore effective capture of long-term dependencies within the sequence.
The essence of using BiLSTM in this study is to capture sequential dependencies, which
are essential for analyzing natural languages (Pogiatzis & Samakovitis, 2020). Thus, the
concatenated output of the convolutional layer Z is passed through the BiLSTM layer to
generate the output ht .

Eht = LSTM
(
zt , Eht−1

)
(10)

←−
ht = LSTM

(
zt ,
←−−
ht−1

)
(11)

ht = EWt . Eht +
←−
Wt .
←−
ht +b (12)

The output of the BiLSTM is given as:

H = [h1,h2,...,hn] (13)

Output layer
Intent detection output
The intent output is computed using a max pooling layer to acquire the most relevant
representation of the entire sequence from BiLSTM, as used by Zhang & Wang (2016).
However, in this study, the output of the max pooling layer was passed to a global max
pooling layer to provide a global summary of the entire sequence. A fully connected layer
with softmax activation was used to detect the intent. Therefore, the intent output vector
is computed as follows:

hmaxpool ={max(h1,h2),...,max(hn−1,hn)} (14)

hglobal =max(h1,h2,...,hn) (15)

y i= Softmax
(
W .hglobal+b

)
(16)

where hmaxpool , is themax pooled hidden state, hglobal is the global summary of the sequence,
y i is the intent label, W is the transformation matrix, and b is the bias vector.

Slot filling output
To obtain the slots, we passed the output of the BiLSTM to a fully connected layer that
used softmax as an activation function and computed the output vector as follows:

y si = softmax (W .hi+b) (17)
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where y s is the slot label and W ,b are the transformation matrix and bias vectors,
respectively.

Model versions
Our proposed model for the joint learning classification of intent detection and slot filling
encompasses seven versions, each of which is tailored to different settings of embeddings
passed to different channels in the MCNN model. These versions are described below.

• MCNN-BiLSTM-1: This version primarily aims to assess the influence of pretrained
word embeddings. The non-contextual word embedding channel was initialized
randomly, whereas the other channels were ignored. This means that only randomized
word embeddings were considered for training.
• MCNN-BiLSTM-2a: In this setting, the non-contextual embedding channel is initialized
with pretrained word2vec embeddings with other ignored channels.
• MCNN-BiLSTM-2b: In this setting, the non-contextual embedding channel is initialized
with domain-specific word2vec embeddings with other ignored channels.
• MCNN-BiLSTM-3: In this case, only the channel for the BERT contextual embeddings
was initialized, and all others were ignored.
• MCNN-BiLSTM-4: Two channels were used for training. Specifically, the contextual
embedding channel was initialized using BERT embeddings and the non-contextual
embedding channel was initialized using word2vec embeddings.
• MCNN-BiLSTM-5: Two channels were used for training. The non-contextual
embedding channel was initialized with word2vec embeddings, and the POS embedding
channel was initialized with POS tag embeddings.
• MCNN-BiLSTM-6: In this version, contextual embedding and POS tag embedding
channels are initialized using BERT and POS tag embedding, respectively.
• MCNN-BiLSTM-7a: In this version, all three channels are used for training. Specifically,
we used domain-specific word2vec embeddings trained on the ATIS and SNIPS datasets
as inputs for non-contextual embeddings. This study aimed to assess the impact of
general embeddings compared to domain-specific embeddings.
• MCNN-BiLSTM-7b: This variant is similar to that of MCNN-BiLSTM-7a. However, in
this case, instead of domain-specific word2vec embedding, we used a general purpose
pretrained word2vec embedding as an input to the non-contextual embedding channel.

Experiment study
In this section, we describe the datasets used in our experiments. Subsequently, we present
a detailed experimental methodology for assessing the effectiveness of the proposed
approach. Finally, we conducted a comparative analysis of the baseline methods.

Dataset
To verify the validity of our proposed model, we conducted experiments on the most
widely used datasets in NLU research, namely, ATIS (Hemphill, Godfrey & Doddington,
1990) and SNIPS (Coucke et al., 2018). These datasets were selected in this study for
their complementary characteristics: ATIS provides a focused, domain-specific challenge,
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Table 1 Description of ATIS and SNIPS datasets.

Dataset Characteristics Rationale for Selection

ATIS Domain-Specific: Focused on air travel information
Imbalanced intent Types: 75% of the
intents belongs to one class (atis_flight)
Historical Significance: One of the
earliest and widely used NLU datasets.
No. of Intents: 21
No. of slots: 128
Training/Test/Validation data: 4478/893/500

•Well-defined structure for benchmarking.
• Facilitates comparison with existing models
• Standard benchmark for evaluating advancements in
NLU.

SNIPS Diverse Domains: Covers multiple
domains like music, weather, restaurant
bookings, creative works, book rating etc.
Balanced Intent Types: Balanced intent
distribution across different domains
Varied Language Styles: Includes colloquial
language and diverse query structures
Modern Benchmark: Reflects contemporary
conversational patterns and intent types.
No. of Intents: 7
No. of slots: 72
Training/Test/Validation data: 13084/700/700

• Tests model’s generalizability across different domains.
• Challenges models with real-world user inputs.
• Relevant for evaluating state-of-the-art NLU models

Table 2 An example of a semantic frame.

Entity slots Intent

I O
want O
to O
fly O
from O
Baltimore B-fromloc.city_name
to O
Dallas B-toloc.city_name
round B-round_trip
trip I-round_trip

atis_flight

whereas SNIPS offers a broader andmore diverse set of challenges. Together, they provide a
comprehensive test bed for evaluating the effectiveness and generalizability of our proposed
model in comparison with the existing models. Table 1 presents the key characteristics of
the ATIS and SNIPS datasets.

Table 2 presents an example of a semantic frame from the ATIS dataset, using the
sentence ‘‘I want to fly from Baltimore to Dallas round trip.’’ The slots use the IOB
(in-out-begin) format for slot tagging. In this example, the intent is to find a flight,
with ‘Baltimore’ tagged as the departure city, ‘Dallas’ as the arrival city, and ‘round trip’
indicating the type of trip.
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Experimental set-up
We conducted a grid search to select the hyperparameters that would yield the best
performance for our model. The grid search involved systematically varying the
hyperparameters and evaluating the performance of the model on a validation set. The
following selections were made based on the empirical testing and previous research
findings:

Filter sizes and fetaure maps
We explored a range of filter sizes for capturing varying n-gram features in the input text.
Specifically, we tested filter sizes of (1, 2, 3, 4, 5, 6) and determined that a combination
of filter sizes (2, 3, 5) provided the best balance between capturing short and long-term
dependencies. The number of feature maps was also tuned with values ranging from 64
to 256. A value of 128 was chosen because it provides a good trade-off between capturing
sufficient detail and computational efficiency.

Dropout
To prevent overfitting, we experimented with dropout rates from 0.1 to 0.7. A dropout
rate of 0.5 was found to be optimal for the feature maps and after the shared encoder, as it
effectively regularized the model without significantly impacting training convergence.

Hidden units and activation function
The number of hidden units was varied from 100 to 300 in increments of 50. The selection
of 200 hidden units was based on their ability to offer sufficient capacity for learning
complex patterns without overfitting.

Regularization
L2 regularization is applied to the weights of the dense layers. We experimented with L2
coefficients ranging from 0.0001 to 0.01, finding that 0.01 provided the best regularization
effect, helping to prevent the model from becoming complex.

Optimizer and learning rate
The Adam optimizer was chosen for its efficiency and adaptive learning rate capabilities.
We also experimented with learning rates ranging from 0.0001 to 0.01. The default learning
rate provided by Adam (0.001) was found to be optimal in this case.

Batch size
We tested batch sizes of (16, 32, 64, 128) and determined that a batch size of 32 provided
the best balance between computational efficiency and model performance.

Table 3 summarizes the selected hyperparameters used in the study, and their selection
was guided by both the grid search results and a literature review.

The following metrics were used to evaluate the performance of the model.

Accuracy
Accuracy is the most commonly used evaluation metric for intent detection. This metric
has been used in several related studies (Liu & Lane, 2016a; Qin et al., 2021; Saleem & Kim,
2024). It was computed as the ratio of the number of correct intent predictions to the
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Table 3 Hyperparameters of the proposed model.

Hyperparameter size

Filter size [2,3,5]
Filter number 128
Dropout 0.5
Hidden units 200
L2 regularization 0.01
Learning rate 0.001
Batch size 32

number of utterances, as shown in Eq. (18).

Accuracy =
Number of correct intent prediction

Number of utterances
(18)

F1-score
For the slot filling task, F1-score is the most widely used metric employed in previous
studies (Firdaus et al., 2018; Guo et al., 2024; Hakkani-Tür et al., 2016; Zhu et al., 2024). It
is a measure of the average overlap between the ground truth response and prediction
(Saranya & Amutha, 2024), and is computed using Eq. (19).

F1− score= 2∗
Precision.Recall
Precision+Recall

(19)

Where precision and recall are defined as:

Precision=
TruePositives

TruePositives+FalsePositives
(20)

Recall =
TruePositives

TruePositives+FalseNegatives
(21)

The experiments were conducted in a Jupyter 6.5.4 IDE environment, installed on a
Windows 10 platform with an Intel Core i7 processor, 16.0 GB RAM. Python 3.11.5
was used for the experiments with Keras 2.15.0 and TensorFlow 2.15.0, as the primary
frameworks for building and training the neural network models. The Pytorch library was
also utilized to handle tensor operations and generate BERT embeddings. Numpy 1.24.3,
pandas 2.0.3, NLTK 3.8.1, and Gensim 4.3.0, were used in the experiments.

Comparative methods
To examine the effectiveness of our proposed model, we initially identified the best-
performing settings of our model and subsequently compared them with the following
baseline models:

• RNN-LSTM (Hakkani-Tür et al., 2016): This model uses a BiRNN with LSTM to
perform joint learning classification using lexical features represented by 1-hot encoding.
• BiRNN-attention (Liu & Lane, 2016a): This model employs an encoder–decoder
architecture with an attention mechanism with random embedding initialization.
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• CNN-BiLSTM (Wang, Tang & He, 2018): Uses CNN to extract features from word2vec
word embeddings and the BiLSTM layer as an encoder and decodes it with an attention-
based RNN. This baseline model was used as a representative deep learning-based
method that exploits the CNN and BiLSTM models.
• BiGRU/BiLSTM-MLP (Firdaus et al., 2018): Amultitask ensemblemethod with features
obtained from glove, word2vec, and POS tags.
• BiLSTM-self-attention (Qin et al., 2019): This model uses stack propagation, which
utilizes intent information to guide the slot filling task.
• BiLSTM+Attention (Chao, Ke & Xiaofei, 2020): A joint model with POS scaling
attention to help the model focus on verbs and nouns that are important in representing
user behavior and object operations, respectively.
• SASGBC (BERT only) (Wang, Huang & Hu, 2020): This model uses BERT to encode an
input sequence, integrate intent information with slot gates, and establish a contextual
semantic relationship with self-attention.
• BiLSTM+attention (Qin et al., 2021): This model exploits the pretrained BERT model
together with BiLSTM and co-interactive attention, and initializes the embedding layer
with glove embeddings.
• BERT (Hardalov, Koychev & Nakov, 2023): A contextual BERT model is used to design
a joint model with name entity recognition(NER) features.

It should be noted that following the common practice in the literature (Firdaus et
al., 2018; He et al., 2021), this study directly used the findings of the aforementioned
state-of-the-art methods presented in their original publications and compared them with
our proposed model.

EXPERIMENTAL RESULT AND ANALYSIS
Table 4 and Fig. 2 illustrate the performance of different variations of the proposed
model. MCNN-BiLSTM-1 yielded inferior results compared to MCNN-BiLSTM-2a,
MCNN-BiLSTM-2b, and MCNN-BiLSTM-3, which benefitted from the pretrained
embeddings. This highlights the effectiveness of pretrained word embedding over randomly
initialized embedding in the joint learning classification of intent detection and slot filling,
which is consistent with prior research findings (Bhasin et al., 2020; Do & Gaspers, 2019;
Firdaus et al., 2021). Similarly, one can notice that MCNN-BiLSTM-2a utilizing general
embedding outperforms MCNN-BiLSTM-2b with domain-specific embedding. This is
likely because general embeddings capture a broader range of linguistic patterns and
semantic relationships than domain-specific ones, which may not adequately represent
the complexities of the target domain. Additionally, MCNN-BiLSTM-4 outperformed
the versions with single embedding, emphasizing the benefits of incorporating different
embeddings and syntactic information into the joint model, which aligns with previous
research findings (Firdaus et al., 2018; Siddhant, Goyal & Metallinou, 2019). Moreover,
the MCNN-BiLSTM-5 results show the benefit of harnessing POS tag embedding for
better sequence labeling. This can be attributed to the POS tag helping to disambiguate
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Table 4 Performance of different versions of the proposed model.

Model Embeddings ATIS SNIPS

Intent
(Accuracy)

Slot
(F1-score)

Intent
(Accuracy)

Slot
(F1-score)

MCNN-BiLSTM-1 Random 79.00 96.04 86.79 94.01
MCNN-BiLSTM-2a Word2vec 94.27 97.93 95.04 95.45
MCNN-BiLSTM-2b Domain-specific word2vec 93.48 96.12 88.10 95.04
MCNN-BiLSTM-3 BERT 96.25 96.02 97.24 94.46
MCNN-BiLSTM-4 BERT + wor2vec 97.28 98.41 97.45 96.96
MCNN-BiLSTM-5 Word2vec + POS 94.80 98.62 97.58 96.52
MCNN-BiLSTM-6 BERT + POS 96.31 94.83 98.07 94.38
MCNN-BiLSTM-7a BERT + domain-specific word2vec + POS 96.75 98.72 97.89 97.04
MCNN-BiLSTM-7b BERT + word2vec + POS 97.90 98.86 98.88 97.07

Notes.
The best results are shown in bold.

Figure 2 Graphical representation of the performances of the different versions of the proposed
model based on accuracy and F1-score.

Full-size DOI: 10.7717/peerjcs.2346/fig-2

non-contextual embedding, although it has a lesser effect on contextual embedding, as
seen in MCNN-BiLSTM-6.

The results clearly indicate that MCNN-BiLSTM-7b outperformed all the other model
versions across all datasets. These findings emphasize the advantages of utilizing three
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Figure 3 Performances of the different versions of the proposed model based on accuracy.
Full-size DOI: 10.7717/peerjcs.2346/fig-3

input vectors to enhance the accuracy and F1-score. This is likely owing to the context-
rich embeddings provided by BERT, which are crucial for intent detection, whereas
word2vec embeddings aid in understanding the semantic relationship between slots.
However, it is worth noting that the distribution hypothesis problem influences word2vec
embedding. Therefore, the inclusion of POS tag embedding, which is an important linguistic
feature, helps mitigate this issue by disambiguating words and ultimately improving model
performance. The MCNN-BiLSTM-7a results also show that using non-contextual general
word embedding for the ATIS and SNIPS datasets performed better than domain-specific
non-contextual word embedding. This finding supports the idea that domain-specific
embedding of small datasets results in noisy outputs (Sarma, Liang & Sethares, 2018).

Similarly, as shown in Fig. 3, in all the variants, the intent accuracy for SNIPS is always
higher than that of ATIS, which is likely due to the balanced nature of the SNIPS dataset
intents compared to that of the ATIS datasets, which has 75% of its datasets belonging to
a single intent.

For the F1-score, one can notice that the F1-score for ATIS is higher than that of SNIPS,
as shown in Fig. 4. This is also likely due to the sequence length; the maximum sequence
length for the ATIS dataset is higher than that for the SNIPS dataset, and RNN-based
models have difficulty capturing long-range dependencies.

COMPARISON WITH EXISTING METHODS
To better evaluate the effectiveness of our proposed approach, we conducted a comparison
with the existing methods. Specifically, we selected the best-performing setting of our
proposed model, MCNN-BiLSTM-7b, as presented in Table 4 and Fig. 2, and compared it

Muhammad et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2346 16/26

https://peerj.com
https://doi.org/10.7717/peerjcs.2346/fig-3
http://dx.doi.org/10.7717/peerj-cs.2346


Figure 4 Performances of the different versions of the proposed model based on F1-score.
Full-size DOI: 10.7717/peerjcs.2346/fig-4

Table 5 Results of the proposed method compared with the baseline methods.

Model Features ATIS Dataset SNIPS

Accuracy F1-score Accuracy F1-score

RNN-LSTM (Hakkani-Tür et al., 2016) Lexical features (one-hot encoding) 94.6 89.40 – –
BiRNN + Attention(Liu & Lane, 2016a) Random embeddings 94.4 95.78 – –
CNN-BiLSTM (Wang, Tang & He, 2018) Word embeddings(word2vec) 97.17 97.76 – –
Bi-GRU + feature (Firdaus et al., 2018) Glove + Word2vec + POS 97.76 97.93 – –
BiLSTM+Attention (Chao, Ke & Xiaofei, 2020) POS 95.70 95.60 97.70 89.2
BC (Wang, Huang & Hu, 2020) BERT embeddings 97.20 96.34 98.0 95.68
BiLSTM+BERT (Qin et al., 2021) Word embeddings (Glove) 97.70 95.5 98.80 95.9
Enriched Transformer (Hardalov, Koychev & Nakov, 2023) BERT embeddings + NER 97.87 96.25 98.86 96.57
MCNN-BiLSTM-7b Word2vec + BERT + POS 97.90 98.86 98.88 97.07

Notes.
The best results are shown in bold.

with other existing methods. Table 5 and Fig. 5 present the performance of our proposed
approach in comparison with the state-of-the-art methods on the ATIS and SNIPS datasets.
The best performing variant of the proposed model outperformed the state-of-the-art
approaches.

Compared to the RNN-LSTM model, which relies on lexical features encoded using
the classical one-hot encoding model, our model demonstrated superior performance.
Specifically, our model shows an improvement of 3.3% in accuracy and 3.26% in the F1-
score on the ATIS dataset. This underscores the advantage of using word embeddings
in deep learning models instead of classical embeddings such as one-hot encoding.
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Figure 5 Graphical representation of the results of the proposed model compared to baselines.
Full-size DOI: 10.7717/peerjcs.2346/fig-5

Furthermore, the proposed model outperformed the BiRNN-attention model, which
utilized random embeddings with notable gains of 3.5% and 3.08% in accuracy and F1-
score, respectively. This could be due to the random initialization of the embeddings, which
were assigned arbitrarily, without considering the semantic meanings of the input words.

When compared to CNN-BiLSTM model, which is based on CNN and BiLSTM and
utilizes word2vec embeddings, our proposed method outperforms it with gains of 0.73%
accuracy and 1.1% F1-score. This is because CNN-BiLSTM utilizes only one input layer
compared to our proposed model, which utilizes three input vectors: non-contextual
embeddings (word2vec), contextual embeddings (BERT), and syntactic embeddings
(POS), as opposed to reliance on single embeddings. This leverages the advantages of the
proposed model over traditional CNN-based models in leveraging multiple input channels
for improved performance. Compared with BiGRU, which utilizes two non-contextual
embeddings with POS features, our proposed model outperformed it with gains of 0.14%
and 0.93% in accuracy and F1-score, respectively, on the ATIS dataset. The advantage of our
proposed model is likely to be due to the use of contextual embedding. Similarly, compared
with the BiLSTM-attention model that uses POS features, our model outperformed it on
both datasets with gains of 2.2% and 1.18% accuracy and 1.18% and 7.87% F1-score,
respectively. This shows that using external features such as POS and NER alone might
not allow a model to attain its ultimate performance. However, they should also be used
as supplementary features for other word embedding. When compared with the BC model
that utilizes BERT embeddings, our proposed model outperformed it with gains of 0.7%
increase in accuracy and 2.52% increase in F1-score for the ATIS dataset, and 0.88%
increase in accuracy and 1.39% increase in F1-score for the SNIPS dataset. Table 5 also
shows that our model outperformed the BiLSTM-BERT model that utilized word2vec
embeddings with a gain of 0.2% increase in accuracy and 3.36% increase in F1-score for
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Table 6 T -test between the proposed model and the baselines on ATIS dataset in terms of accuracy.

MCNN-BiLSTM-6
Vs

Baselines

Paired Difference

Mean Std. Deviation Std.
Error
Mean

95%Confidence
Interval of the difference

t Sig.
(2-tailed)

Lower Upper

Pair 1 6-RNN 3.30000 0.02236 0.01000 3.27224 3.32776 330.000 5.059E−10
Pair 2 6-BiRNN 3.50000 0.02236 0.01000 3.47224 3.52776 350.000 3.9981E−10
Pair 3 6-CNN 0.73000 0.02236 0.01000 0.70224 0.75776 73.0000 2.1102E−7
Pair 4 6-BiGRU 0.140000 0.02236 0.01000 0.11224 0.16776 14.0000 1.5101E−4
Pair5 6-BiLSTM 2.20000 0.02236 0.01000 2.17224 2.22776 220.000 2.5609E−9
Pair6 6-BC 0.70000 0.02236 0.01000 0.67224 0.72776 70.000 2.4956E−7
Pair7 6-BiLSTM+BERT 0.20000 0.02236 0.01000 0.17224 0.22776 20.000 3.6883E−5
Pair8 6-Transfomer 0.03000 0.02236 0.01000 0.00224 0.05776 3.000 0.04000000

the ATIS dataset and 0.08% increase in accuracy and 1.17% increase in F1-score for the
SNIPS dataset. Moreover, despite the use of NER features and BERT embeddings in an
enriched transformer model, our proposed model outperformed it with a 0.03% gain in
accuracy and 2.61% gain in F1-score for the ATIS dataset and 0.02% gain in accuracy and
0.5% gain in F1-score for the SNIPS datasets. This demonstrates the benefit of harnessing
the additional features of non-contextual embeddings in our proposed model.

The key factor responsible for the good performance of our model compared to the
baseline models is the use of multiple embeddings obtained through a multichannel
convolutional neural network, which has been proven to perform well on some tasks in
the NLP field. The POS tag embedding layer disambiguates word2vec embeddings for
better sequence labeling. In contrast, the BERT embedding layer input improved intent
detection. Another key factor is the use of the BiLSTM layer over the MCNN layer to
obtain a contextual utterance representation for the intent and slot detection. This model
is relatively uncomplicated and requires no feature engineering, which saves time and
improves performance.

Statistical analysis of the proposed model performance in
comparison to the baseline
To validate the significance of the improvements in our proposed model compared
to state-of-the-art baseline methods, we used a statistical package for social sciences to
conduct a statistical significance assessment using a t -test with a significance level of 0.05. A
t -test yielding a p-value less than 0.05 indicates that the observed differences are statistically
significant, suggesting less than 5% probability that these differences occurred by chance,
thereby confirming a substantial difference between the outcomes of the two groups.

Tables 6 and 7 present the results of our statistical analyses on the accuracy and
F1-score metrics, respectively, based on a five-fold validation on the ATIS dataset. Notably,
the computed p-values in these tables were below the critical significance level of 0.05,
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Table 7 T -test between the proposed model and the baselines on ATIS dataset in terms of F1-score.

MCNN-BiLSTM-6
Vs

Baselines

Paired Difference

Mean Std.
deviation

Std.
Error
Mean

95%Confidence
Interval of the difference

t Sig.
(2-tailed)

Lower Upper

Pair 1 6-RNN 9.46000 0.03162 0.01414 9.42074 9.49926 668.923 2.4951E−7
Pair 2 6-BiRNN 3.08000 0.03162 0.01414 3.04074 3.11926 217.89 2.6665E−9
Pair 3 6-CNN 1.10000 0.03162 0.01414 1.06074 1.13926 77.782 1.6374E−7
Pair 4 6-BiGRU 0.93000 0.03162 0.01414 0.89074 0.96926 65.761 3.2034E−7
Pair5 6-BiLSTM 3.26000 0.03162 0.01414 3.22074 3.29926 230.517 2.1246E−9
Pair6 6-BC 2.52000 0.03162 0.01414 2.48074 2.55926 178.191 5.9500E−9
Pair7 6-BiLSTM+BERT 3.36000 0.03162 0.01414 3.32074 3.39926 237.588 1.8828E−9
Pair8 6-Transfomer 2.61000 0.03162 0.01414 2.57074 2.64926 184.555 5.1709E−9

Table 8 T -test between the proposed model and the baselines on SNIPS dataset in terms of accuracy.

MCNN-BiLSTM-6
Vs

Baselines

Paired Difference

Mean Std.
deviation

Std.
Error
Mean

95%Confidence
Interval of the difference

t Sig.
(2-tailed)

Lower Upper

Pair1 6-BiLSTM 1.18000 0.05831 0.02608 1.10760 1.25240 45.251 1.4264E−6
Pair2 6-BC 0.88000 0.05831 0.02608 0.80760 0.95240 33.746 4.5994E−6
Pair3 6-BiLSTM+BERT 0.08000 0.05831 0.02608 0.00760 0.15240 3.068 0.03700
Pair4 6-Transfomer 0.02000 0.05831 0.02608 −0.05240 0.09240 0.767 0.486000

Table 9 T -test between the proposed model and the baselines on SNIPS dataset in terms of F1-score.

MCNN-BiLSTM-6
Vs

Baselines

Paired Difference

Mean Std.
deviation

Std.
Error
Mean

95%Confidence
Interval of the Difference

t Sig.
(2-tailed)

Lower Upper

Pair1 6-BiLSTM 7.87000 0.10440 0.04669 7.74037 7.99963 168.557 3.1597E−10
Pair2 6-BC 1.39000 0.10440 0.04669 1.26037 1.51963 29.771 2.6447E−8
Pair3 6-BiLSTM+BERT 1.17000 0.10440 0.04669 1.04037 1.29963 25.059 3.5163E−8
Pair4 6-Transfomer 0.50000 0.10440 0.04669 0.37037 0.62963 10.709 9.7354E−8
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indicating statistical significance. The statistical analyses of accuracy and F1-score metrics
are presented in Tables 8 and 9, respectively. The results show that the performance of the
proposed model is statistically significant based on the F1-scores (Table 9). However, in
Table 8, the baseline model proposed by Hardalov, Koychev & Nakov (2023), which uses
an enriched BERT model, shows no statistically significant difference from the proposed
model. This outcome can be attributed to the fine-tuning of the entire BERT transformer,
capturing a richer task-specific context. However, it is computationally more expensive
compared to using static BERT embeddings, as employed in our proposed model.

CONCLUSION AND FUTURE WORK
The motivation for this study arises from the need to enhance dialogue systems’
performance in real-world scenarios, where accurate and nuanced language understanding
is crucial. Current models often struggle with complex language structures, particularly in
tasks like intent detection and slot filling, due to a lack of comprehensive integration of
contextual, syntactic, and semantic features. To address these challenges, this study focused
on developing a joint model that integrates these diverse linguistic features to improve
performance. The experimental results demonstrated that a multichannel convolutional
neural network architecture with three distinct channels for non-contextual, contextual,
and part-of-speech tag embeddings significantly enhanced both intent detection and slot
filling tasks. Specifically, the use of contextual embeddings improved the model’s ability to
understand complex language structures, which is vital for accurately capturing user intent.
Non-contextual embeddings, which achieved higher F1-scores, proved more effective for
slot filling tasks, while general embeddings showed broader applicability than domain-
specific ones, especially for smaller datasets. This highlights the importance of embedding
diversity in enhancing model performance. Additionally, the integration of part-of-speech
tag embeddings contributed to reducing errors in slot filling by disambiguating polysemous
words. Building on the strengths of our approach, future research could explore methods
to dynamically integrate and weigh different types of embeddings based on the context
and specific characteristics of the dataset. Beyond part-of-speech tags, the inclusion of
other linguistic features, such as named entity recognition tags or dependency parsing
information, could further enhance the model’s understanding. Furthermore, addressing
dataset imbalances, like those present in ATIS, through data augmentation techniques or
synthetic data generation, offers another avenue for improvement.
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