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ABSTRACT
Background. The COVID-19 pandemic has had a significant influence on economies
and healthcare systems around the globe. One of the most important strategies that
has proven to be effective in limiting the disease and reducing its rapid spread is early
detection and quick isolation of infections. Several diagnostic tools are currently being
used for COVID-19 detection using computed tomography (CT) scan and chest X-ray
(CXR) images.
Methods. In this study, a novel deep learning-based model is proposed for rapid
detection of COVID-19 using CT-scan images. The model, called pre-trained quantum
convolutional neural network (QCNN), seamlessly combines the strength of quantum
computing with the feature extraction capabilities of a pre-trained convolutional
neural network (CNN), particularly VGG16. By combining the robust feature learning
of classical models with the complex data handling of quantum computing, the
combination of QCNN and the pre-trained VGG16 model improves the accuracy of
feature extraction and classification, which is the significance of the proposed model
compared to classical and quantum-based models in previous works.
Results. The QCNN model was tested on a SARS-CoV-2 CT dataset, initially without
any pre-trainedmodels and thenwith a variety of pre-trainedmodels, such as ResNet50,
ResNet18, VGG16,VGG19, andEfficientNetV2L. The results showed theVGG16model
performs the best. The proposed model achieved 96.78% accuracy, 0.9837 precision,
0.9528 recall, 0.9835 specificity, 0.9678 F1-Score and 0.1373 loss.
Conclusion. Our study presents pre-trained QCNN models as a viable technique for
COVID-19 disease detection, showcasing their effectiveness in reaching higher accuracy
and specificity. The current paper adds to the continuous efforts to utilize artificial
intelligence to aid healthcare professionals in the diagnosis of COVID-19 patients.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Quantum
Computing, Neural Networks
Keywords Quantum neural network (QNN), Pre-trained convolutional neural network,
Deep learning, COVID-19

INTRODUCTION
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has become a global health
crisis that has affected millions of people worldwide (World Health Organization (WHO),
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2021). COVID-19 infection causes mild to a serious respiratory condition. Elderly people
are more at risk individuals, including those with other diseases like cardiovascular, cancer,
diabetes, and recurrent respiratory diseases. The three signs of COVID-19 that are most
common are a dry cough, a fever, and exhaustion. However, the severe signs include loss
of smell and taste, breathing issues, chest pain, and aches and pains (Singhal, 2020). Early
detection and diagnosis of COVID-19 are crucial for timely treatment and prevention of
further spread of the disease. While RT-PCR remains the gold standard for COVID-19
disease testing, it has limitations such as high false-negative rates and long turnaround
times (Mohammadpoor, Sheikhi Karizaki & Sheikhi Karizaki, 2021). In addition, RT-PCR
may not always be available or feasible, especially in resource-limited settings (Fang et
al., 2020). CT-scan and CXR images have been proposed as an alternative diagnostic tool
for COVID-19 disease, as they are faster, more widely available, and less invasive than
RT-PCR. These pictures reveal a bilateral alteration (Tao et al., 2020; Hossein et al., 2020).
Additionally, it takes effort, time, and qualified radiologists to examine the CT-scan and
CXR medical images. Inter-observer variability is another problem with the radiologist’s
assessment (Popovic & Thomas, 2017). However, CT-scan and CXR images are also prone
to interpretive errors and may lack specificity for COVID-19 disease, as they can resemble
other respiratory illnesses such as pneumonia or influenza. Therefore, accurate and reliable
detection of COVID-19 disease in CT-scan and CXR images is challenging but necessary
for effective patient management and disease control (Tingting et al., 2019; Kaur et al.,
2019).

Recent advances in deep learning and neural networks have shown promise in detecting
COVID-19 disease in CT-scan and CXR images. Deep learning is a subset of machine
learning that involves training artificial neural networks (ANNs) on large datasets to
recognize patterns in data and make accurate predictions. Artificial intelligence (AI)
techniques like deep learning have been used in a range of diagnoses in the medical
profession (Tseng et al., 2021; Lee et al., 2017). Convolutional neural networks (CNNs)
are a type of artificial neural network that can automatically learn features from images
and classify them into different categories (Sun et al., 2019). Transfer learning, which
involves using pre-trained CNN models on large datasets, has been shown to improve the
performance of CNNs on medical imaging tasks (Singh et al., 2020).

One advantage of deep learning and neural networks is their ability to identify complex
patterns and relationships in data that may be difficult for humans to detect. This is
particularly useful for medical image analysis, where subtle differences between images can
indicate the presence of disease. Another advantage of deep learning and neural networks
is their ability to generalize to new and unseen data, which can improve the accuracy and
robustness of diagnostic models (Rahaman et al., 2019; Islam, Rahaman & Islam, 2020).

Faster computing has greatly benefited from the amazing growth that quantum
computing has experienced throughout time. In addition, quantum computing is more
powerful than traditional computing. Furthermore, quantum computing has greater power
than conventional computation. The innovative quantum neural network (QNN) is being
explored by many academics worldwide. It is a hybrid of traditional neural networks with
quantum computing. Low-cost learning cannot be performed by typical ANNs because to
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their restricted processing capability. On the other hand, QNN can be used instead of ANN
because of its higher computing capability compared to its conventional equivalent (Jeswal
& Chakraverty, 2019a). According to what we know, QNN started operating in 1995.
Kak (1995) brought neural network (NN) concepts to the field of quality control. QNNs
are more trainable than conventional neural networks, both theoretically and practically.
This suggests that QNNs are a good fit for medical applications (Abbas et al., 2021).

In the present study, we offer a novel model that smoothly combines the strength
of quantum computing with the feature extraction capabilities of a pre-trained CNN,
more notably VGG16. We seek to tackle complex tasks more effectively and accurately by
combining the advantages of conventional deep learning with the quantum computing.
Our approach employs a pre-trained QCNN, facilitating rapid model adaptation and
reducing data requirements. Compared to pre-trained CNN models, our hybrid model
performs better because it makes use of the advantages of both classical and quantum
computing approaches.

Our contributions can be summarized as follows:

• The integration of VGG16, a pre-trained CNN known for its robust feature extraction
capabilities, allows our QCNN to effectively capture intricate patterns and characteristics
within COVID-19 CT scan images. By utilizing the rich feature representations from
VGG16.
• Comparative analysis with classical pre-trained CNN models, including ResNet50,
ResNet18, VGG19, and EfficientNetV2L with and without quantum component,
demonstrates that our QCNN model with VGG16 feature extraction achieves higher
accuracy, precision, recall, and F1-scores. This improvement is attributed to the QCNN’s
ability to capture and analyze complex patterns within the data more effectively.
• Our approach has shown robustness across various datasets and imaging conditions,
indicating its potential for real-world deployment. The feature extraction and quantum
component ensure that the model generalizes well to different types of CT scan images,
capturing subtle variations and complex patterns indicative of COVID-19.
• By demonstrating improved performance in diagnosing COVID-19 from CT scan
images, our QCNN model holds promise for real-world clinical applications. The
enhanced accuracy makes it a practical tool for timely and reliable diagnosis, aiding
healthcare professionals in making informed decisions.

In summary, our study presents a cutting-edge QCNN model that combines the best
of both classical deep learning and quantum computing. In addition to improving the
model’s efficiency and forecast accuracy, this integration opens the door for further uses
of quantum-enhanced machine learning in medical imaging.

The rest of this study is organized as follows: In ‘Related Works’ we review related
works on COVID-19 disease detection with CT-scan and CXR images using deep
learning. In ‘Materials & Methods’, we describe our methodology for COVID-19 disease
detection. In ‘Results’, we present our experimental results and performance evaluation. In
‘Discussion’ we discuss the strengths and limitations of our approach and provide future
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directions for research. Finally, in ‘Conclusions’, we conclude our study and summarize
our contributions.

RELATED WORKS
The COVID-19 pandemic has spurred research into using various imaging techniques to
detect the virus, including chest CT-scan and CXR images. In recent years, transfer learning
has emerged as a powerful technique in machine learning, which involves adapting pre-
trained deep learningmodels for new tasks. Several studies have explored the use of transfer
learning in detecting COVID-19 disease from chest CT-scan images, with promising results.
Also, recent developments in QNNs have generated a great deal of interest in using them
to detect COVID-19. Utilizing the superposition and entanglement aspects of quantum
mechanics, QNNs have the ability to handle complicated medical data, such as genomic
sequences and radiological images, with unsurpassed efficiency. This burgeoning field holds
promise for revolutionizing COVID-19 disease diagnostics, offering the potential for faster
and more accurate detection methods, which are crucial in managing and mitigating the
ongoing global health crisis. In this section, we will review some of the relevant works that
have explored the use of transfer learning and QNNs in COVID-19 disease detection from
chest CT-scan and CXR images, highlighting their approaches, results, and limitations.

A transfer learning-based classification strategy for the detection of COVID-19 disease
from CT-scan images was suggested by Jaiswal et al. (2020) in a study. A total of 2,492
images were used in the trials. The basis model was a pre-trained DenseNet201 architecture.
The authors also compared the results with those of the VGG16, InceptionResNet, and
ResNet152V2 CNN architectures. In comparison to other CNN models, the DenseNet
model achieved 96.25% accuracy on the test dataset.

Angelov & Soares (2020) proposed a method based on explainable Deep Learning
Approach (xDNN). The xDNN classifier provided better results in terms of all metrics
than the other state-of-the-art approaches, including ResNet, GoogleNet, VGG-16, and
Alexnet. The proposed approach achieved 97.38% of Accuracy.

In 2022, Amouzegar et al. (2022) presented a method based on pre-trained models. In
this research, they presented a combined model of ResNet18, GoogleNet and ShuffleNet
models, and the results obtained are 97% accurate.

A transfer learning-based DenseNet-121 architecture was suggested in another study
(Hasan et al., 2021), and it obtained 92% accuracy.

Cifci (2020) presented another approach for this problemutilizing deep transfer learning.
He did his work using CT-scan images and employed AlexNet and InceptionV4 as his
pre-trained models as they are popular for assessing medical pictures. AlexNet performed
far better than InceptionV4 in his tests, according to the results. the overall accuracy of
AlexNet was 94.74%.

The system Horry et al. (2020) developed uses pre-trained model concepts in X-ray
images. Four widely used pre-trained models were incorporated into their proposed
system: Inception, Xception, VGG, and Resnet. The best performance in their experiments,
according to the experimental findings, was reached by the VGG19-basedmodel, which had
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an accuracy rate of 83%. A model named DeepCOVID was created byMinaee et al. (2020)
to predict COVID-19 from X-ray images using deep transfer learning. Four well-known
pre-trained models ResNet18, ResNet50, SqueezeNet, and DenseNet121 were used in their
study to diagnose COVID-19. Using SqueezeNet, their model’s greatest performance was
95.6% specificity.

A technique using X-ray images based on deep learning for COVID-19 disease diagnosis
was introduced by Moutounet-Cartan (2020). They employed well-known models in their
system, including VGG16, VGG19, InceptionResNetV2, InceptionV3, and Xception. The
most accurate model, VGG16, had an 84.1% accuracy rate.

The COVIDXNet system, proposed by Hemdan, Shouman & Karar (2020), sought to
identify coronavirus infection using CNNs and X-ray images. There were seven pre-trained
models employed in their work. According to experimental findings, Inception V3 had the
weakest performance. With 90% accuracy, DenseNet and VGG19 were the best models.

To identify COVID-19 patients from CXR images,Wang, Lin & Wong (2020) suggested
a COVID-Net architecture based on convolutional neural networks. In addition to the
COVID-Net architecture, VGG-19 and ResNet-50 from deep neural networks were
employed to diagnose diseases. Classification of normal, non-COVID19 disease, and
COVID-19 disease was classified with 83.0%, 90.6%, and 93.3% accuracy using the
VGG-19, ResNet-50, and COVID-Net architectures, respectively.

For the categorization of Normal, Lung Opacity, Pneumonia, and COVID-19
infection, Khan et al. (2022) suggested utilizing three different pre-trained deep learning
algorithms, namely convolutional neural network-based EfficientNetB1, NasNetMobile,
and MobileNetV2. The study made use of the open-access COVID-19 Radiography
Database dataset that is available on the Kaggle website. The COVID-19, pneumonia,
and normal lung opacity were correctly categorized by the EfficientNetB1 model with an
accuracy of 96.13%.

For COVID-19 identification utilizing CT and CXR images, Chouat et al. (2022) used
pre-trained deep neural networks InceptionV3, ResNet50, Xception, and VGGNet-19.
The COVID-19 Radiography Database dataset, which consists of free-to-use CT scans,
COVID-CT, and CXR pictures, was used in the study. The data augmentation (rotation,
flipping, shifting, and scaling) strategy was performed within the parameters of the study
to enhance the performance of deep learning models used for COVID-19 detection. The
most successful model, VGGNet-19, provided 87% accuracy in the study using CT images,
whereas the most successful model, Xception, produced 98% accuracy in the study using
CXR pictures.

Choudhary et al. (2022) used pre-trained deep neural networks VGG16 and ResNet34
for COVID-19 detection using CT images. The accuracy of the results produced by applying
the ResNet34 model is 95.47%, and the accuracy of the VGG16 model is 93.7%.

The hybrid quantum–classical convolutional neural network (HQ-CNN) model
described by Houssein et al. (2022) is presented and uses random quantum circuits as
a base to identify COVID-19 patients in chest X-ray pictures. On the first trial (COVID-19
and normal cases), the suggested HQ-CNN model outperformed other models with an
accuracy of 98.6% and a recall of 99%.
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By contrasting COVID-19 signals in CT images with non-COVID pneumonia signals,
Sengupta & Srivastava (2021) established a prototype methodology for categorizing
COVID-19. The simulation work evaluates the application of quantum machine learning
algorithmswhile assessing the effectiveness for deep learningmodels for image classification
problems, and establishes performance quality that is necessary for improved prediction
rate when dealing with complex clinical image data exhibiting high biases. The simulation
demonstrates that QNN outperforms DNN, CNN, and 2D CNN in terms of accuracy gain
by more than 2.92%, with an average recall of almost 97.7%.

In a hybrid classical-quantum machine learning system, where the data are classical,
the operations are carried out using quantum operators after the data are first encoded in
the quantum language. In this context, Mari et al. (2019) looked into transfer learning in
hybrid classical-quantum neural networks. Quantum pretraining and auto-encoders were
examined for image classification by Piat et al. (2018). Guillaume et al. (2019) examined
using classical neural networks to learn with quantum neural networks. An architecture for
a hybrid quantum convolution neural network was proposed by Henderson et al. (2020).

In the above section, we discussed some related works that used pre-trained models
(Jaiswal et al., 2020; Angelov & Soares, 2020; Amouzegar et al., 2022; Hasan et al., 2021;
Cifci, 2020; Horry et al., 2020; Minaee et al., 2020; Moutounet-Cartan, 2020; Hemdan,
Shouman & Karar, 2020; Wang, Lin & Wong, 2020; Khan et al., 2022; Chouat et al., 2022;
Choudhary et al., 2022) or QNNs (Houssein et al., 2022; Sengupta & Srivastava, 2021; Mari
et al., 2019; Piat et al., 2018; Guillaume et al., 2019; Henderson et al., 2020) in their method
and achieved high accuracy.

Particularly in the field of quantum-enhanced neural networks, our pre-trained QCNN
model is distinguished. HQ-CNN, hybrid quantum–classical transfer learning, quantum
auto-encoders, and CNNs are only a few of the cutting-edge methods in quantummachine
learning that serve as inspiration. To increase efficiency on particular tasks, each of these
models has presented novel approaches to combine the concepts of quantum computing
with traditional neural networks.

Our model takes advantage of these methods’ benefits while resolving their drawbacks.
The model utilizes both the improved pattern recognition potential of quantum circuits
and the strong feature extraction capabilities of the VGG16 by combining quantum
convolutional layers with a pre-trained VGG16 architecture. Compared to models that rely
just on quantum circuits or intricate hybrid architectures, the integration of pre-trained
models significantly improves both the need for substantial training and convergence times.
Furthermore, stable training and dependable performance are indicated by the model’s
low loss value, which is important for practical medical applications. Overall, the proposed
QCNN model sets a new standard for quantum-enhanced neural networks and offers an
effective tool for medical image analysis, demonstrating the successful fusion of classical
and quantum computing approaches.

Combining the advantages of pre-trained CNNs and QNNs presents a promising way
to improve the already excellent accuracy achieved by previous works. Although these
conventional pre-trained models are excellent in their respective fields, they might be
constrained when it comes to some challenging jobs. By combining classical and quantum
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capabilities, pre-trained QCNNs close this gap and enable a more reliable and adaptable
model.

MATERIALS & METHODS
The development of a model by combining pre-trained CNN, like VGG16 with QCNN,
can be an effective approach for resolving challenging problems. In the suggested model,
convolutional and fully connected layers are added after the VGG16 layers that aremodified
for feature extraction. Quantum computing principles are infused with a QNN, which is
applied after a standard fully connected layer. By utilizing both classical and quantum
computing, this novel architecture seeks to increase COVID-19 disease detection accuracy.

VGG16
The well-known CNN architecture VGG16 (Simonyan & Zisserman, 2014) achieved 92.7%
top-5 test accuracy in the ILSVRC 2014 challenge on the ImageNet dataset. It is composed
of convolutional, dense, and pooling layers, with 3 × 3 filters for convolutional and 2 ×
2 for max pooling, respectively. The model takes in 224 × 224 input images and uses two
convolution layers with 64 filters and a max pooling to reduce the output height and width
to 112× 112× 64. Additionally, two convolutional layers with 128 filters are used, followed
by a max pooling layer that lowers the activation size to 56× 56× 128. Similarly, a pooling
layer that lowers the output activation to 28 × 28 × 256 comes after three convolutional
layers with 256 filters. After pooling layers, there are two stacks of three convolutional
layers with 512 filters. Next, the output of the last pooling layer, which is 7 × 7 × 512, is
accepted by dense layers with 4,096 nodes. One further dense layer with 4,096 nodes comes
after the first dense layer. The model’s 1,000-node softmax layer is the last component
(Choudhary et al., 2022).

Quantum neural networks
Quantum neural network is a useful tool which has seen more development over the years
mainly after twentieth century. Similar to ANNs, QNNs are a new, practical, and usable
idea. The quantum computation paradigm, which is superior to the standard ANN, was
combined with the fundamentals of ANN to create QNN, which is now superior. QNN
is utilized in huge data management, computer gaming, and function approximation,
among other applications. QNN algorithms find use in the modeling of social networks,
automated control systems, and associative memory devices, among other domains (Jeswal
& Chakraverty, 2019b).

Quantum computing has been demonstrated to be useful for enhanced state
approximation and feature representation in quantum machine learning. Quantum
computing is expected to play a major role in numerous sectors and has the potential to
surpass traditional computers (Watabe et al., 2021). Quantum bits, or qubits, are used in
quantum computing, which is inspired by particles in quantum states. Superposition is the
capacity of a particle in a quantum state to exist in two states at once (Gultom, 2017). The
strategy to tackle this phenomenon is translated into computations with 0,1 or both qubits
(Kaye, Laflamme & Mosca, 2006).
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Qubit
The essential building units of information utilized in quantum computing are qubits,
which are represented by a state vector (Gado & Younes, 2021). Paul Dirac is the creator of
the Dirac notation, which is one of the notations used in quantum mechanics. The sign
used to identify a vector in Dirac notation is written as follows:

|a 〉= ket (1)

〈 a| = bra. (2)

Furthermore, these notations will be operated by quantum logic gates. The essential
component of quantum information is a quantum bit, or qubit. There are two possible
states for this two-level system to exist in.

Gates and operations
Unitary operators, or unitary matrices with respect to a basis, are what quantum gates
are known as. In the context of quantum computing, and more specifically the quantum
circuit model of computation, a simple quantum circuit that operates on a limited number
of qubits is called a quantum logic gate, or simply a quantum gate. The fundamental
components of quantum circuits are classical logic gates, just as they are the fundamental
components of conventional digital circuits. A group of qubits (i.e., objects having a
Qid) can be subjected to an effect called a gate. Qubits can have gates applied to them by
either calling the gate on the qubits themselves or by calling the gate on their method. An
operation is the object that is produced by these calls.

Circuit
A Circuit is made up of manyMoments. AMoment is a collection of Operations that occur
inside the same imaginary time interval. An operation is an effect that modifies a certain
subset of qubits; gate operations are the most prevalent kind of operations. The structure
of the circuit is shown in Fig. 1.

CNN vs QCNN architecture
Classical neural networks are mathematical models that may be taught to identify patterns
in data and figure out complicated problems. They are inspired by the human brain. Their
foundation is made up of a network of linked nodes, or neurons, arranged in layers and
having parameters that may be taught through the use of deep learning or machine learning
training techniques.

The goal of quantum machine learning (QML) is to create new and improved learning
schemes by fusing ideas from conventional machine learning with quantum computing.
By fusing parametrized quantum circuits with conventional neural networks, QNNs
implement this general idea. QNNs are observed from two perspectives since they are
located at the intersection of two fields:

• From amachine learning perspective, QNNs are analogous to their classical counterparts
in that they are algorithmic models that can be trained to uncover hidden patterns in
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Figure 1 Schematic diagram of the quantum circuit components, including Qubit, Moment and Oper-
ation (Kaye, Laflamme &Mosca, 2006).

Full-size DOI: 10.7717/peerjcs.2343/fig-1

data. With the use of quantum gates that are trained using weights that can be adjusted,
these models are able to load classical data (inputs) into a quantum state. The procedures
for importing and processing data are depicted in a generic QNN example in Fig. 1. To
train the weights using backpropagation, the output obtained frommonitoring this state
can thereafter be fed into a loss function.
• QNNs are quantum algorithms that are built on parametrized quantum circuits andmay
be trained variationally using classical optimizers, according to the theory of quantum
computing. As shown in Fig. 2, these circuits include an ansatz (with trainable weights)
and a feature map (with input parameters).
• Fig. 2: Generic quantumneural network structure (Treinish, 2023), showing three stages:
(1) Data Loading (Feature Map), (2) Data Processing (Ansatz), and (3) Measurement
(Treinish, 2023)

Based on quantum computing, the QCNN is an advancement of the CNN. The primary
characteristics and architectures of CNNs are extended into quantum systems by QCNN
(Oh, Choi & Kim, 2020).

The integration of the QNN component with the classical neural network architecture
is facilitated by the Qiskit framework, a comprehensive open-source quantum computing
development platform developed by IBM. Qiskit provides a robust set of tools for quantum
circuit design, simulation, and execution on quantum hardware. Utilizing the Qiskit
framework and EstimatorQNN, it incorporates quantum circuit-based operations for
enhanced data processing. The feature map and ansatz circuits define the quantum layer’s
structure, facilitating data encoding and processing in a quantum format. These circuits
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Figure 2 Generic quantum neural network structure (Treinish, 2023): showing three stages: (1) Data
Loading (Feature Map), (2) Data Processing (Ansatz), and (3) Measurement (Treinish, 2023).

Full-size DOI: 10.7717/peerjcs.2343/fig-2

are composed into a single quantum circuit object, which is then configured within the
EstimatorQNN class. This class enables gradient computation with respect to input data
and parameters, crucial for model training. Integrated seamlessly into the classical neural
network architecture via the TorchConnector wrapper, the QNN enhances the model’s
computational capabilities, potentially improving its ability to capture complex patterns
in image data.

Dataset
In this study, wemake use of the SARS-CoV-2 dataset of COVID-19 CT-scan images, which
Soares et al. (2020)made available. This dataset includes 2,482 CT-scan images taken from
hospitals in Sao Paulo, Brazil. Out of the 2,482 images, 1,252 images belong to the COVID-
19 positive class, and 1,230 images belong to the COVID-19 negative class. Both COVID-19
positive and COVID-19 negative images are randomly shown in Fig. 3. The dimension of
the images in the dataset is 224 × 224. As shown in Table 1, the dataset was divided into
two parts as 80% training and 20% validation. The dataset can be downloaded from this
online location (https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset).

Data transformation
In order to optimize chest CT-scan pictures for later analysis and classification tasks, the
paper’s technique involves a comprehensive data preprocessing phase. This crucial first
step guarantees that the dataset is suitably formatted and standardized for use by machine
learning algorithms. Critical parameters like the root directory holding the dataset and
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Figure 3 (A) COVID-19 positive, (B) COVID-19 negative images from the SARS-CoV-2 dataset. Image
source: https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset.

Full-size DOI: 10.7717/peerjcs.2343/fig-3

Table 1 COVID and non-COVID images from the SARS-CoV-2 CT-scan dataset.

Class Training Validation Total

COVID 1,012 240 1,252
Non-COVID 972 257 1,229
Total 1,984 497 2,481

transformation settings are supplied when the custom dataset is first created. This stage
offers a framework that is required for the next preprocessing steps.

Firstly, the images are resized to a uniform size of (256, 256) pixels, ensuring consistency
in dimensions across the dataset. This resizing operation is crucial for mitigating
discrepancies in image sizes, which can adversely affect model performance during training
and inference. The photos are then converted to grayscale whilemaintaining three channels,
which is done in order to minimize computing complexity without sacrificing important
image information.

In order to make the preprocessed pictures compatible with PyTorch-based machine
learning frameworks, they must finally be transformed into PyTorch tensor format. This
conversion makes it possible to handle and manipulate data inside the computational
network in an effective manner, which makes it easier to integrate machine learning
algorithms. Finally, DataLoader objects are created for both the training and testing
datasets with a batch size of 64 and enabling shuffling.

A data loader is a crucial component in machine learning workflows, efficiently
managing the loading of large datasets during model training and testing phases. It
facilitates batch processing, essential for stochastic gradient descent optimization, by
feeding data in manageable portions to the model, leading to faster convergence and
better generalization. data loader also seamlessly integrates data augmentation techniques,
shuffling, and sampling of the dataset to prevent overfitting and enhance diversity in
training examples. Its support for parallelism enables faster loading of batches, leveraging
multi-core processors. Moreover, data loader offers flexibility for customizing data loading
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pipelines, including preprocessing steps and handling different data formats, making it an
indispensable tool for streamlining the data pipeline in machine learning tasks. After all
data preprocessing, data loader objects are created for both the training and testing datasets
with a batch size of 64 and shuffling of inputs.

We improved and normalized the raw picture data so that our neural network model
could use it. This was accomplished by implementing several data transformations.
Prioritizing the input data in a way that makes learning and inference easier is a critical part
of preprocessing, and it will eventually increase the performance of the model in image
classification tasks.

The proposed pre-trained QCNN architecture
First, the model uses weights from a large-scale image dataset (ImageNet) to incorporate a
pre-trained VGG16 model. Using the generalizable features that VGG16 captures requires
completing this step. The feature extractor is created by removing the last two layers of
the VGG16 model. These layers typically consist of fully connected layers responsible
for making predictions across multiple classes. By removing them, the feature extractor
retains the ability to extract high-level features from the input images. Following the
feature extractor, the model includes convolutional layers. These layers serve to further
process the features extracted by the pre-trained VGG16 model. Each convolutional layer
applies filters to the input data, capturing different aspects of the image and progressively
extracting more abstract features. After first convolution layer, max pooling is applied.
Max pooling reduces the spatial dimensions of the feature maps, retaining only the most
important information. This helps in reducing computational complexity and extracting
robust features invariant to small translations in the input images. Dropout regularization
is applied after the second and fourth convolution layer. Dropout randomly sets a fraction
of the input units to zero during training, which helps prevent overfitting by reducing
the reliance on any individual neuron. This encourages the model to learn more robust
features that generalize better to unseen data. These components enable the model to learn
intricate patterns and representations from the input data. Then the output of these layers
is flattened and passed through fully connected layers.

One feature that sets the model apart is the incorporation of a QNN. The architecture
of the model incorporates quantum computing concepts with the application of this QNN
after the second fully connected layer. Flexible tools for encoding classical data and applying
quantum operations within the ansatz circuit are provided by Qiskit’s ZZFeatureMap and
RealAmplitudes classes. ZZFeatureMap is a quantum feature map that converts classical
data to quantumdata. The reason for choosing a quantum featuremap is to get the quantum
advantage. The ZZFeatureMap is a second-order Pauli-Z evolution circuit. Pauli-Z is one
of the three Pauli matrices (along with Pauli-X and Pauli-Y). It acts on a single qubit,
flipping the sign of the qubit’s state if it is in the |1 〉 state and leaving it unchanged if it
is in the |0 〉 state. A second-order Pauli-Z evolution circuit is a structured sequence of
quantum gates that approximates the evolution of a quantum system under a Hamiltonian
consisting of Pauli-Z terms (Havlíček et al., 2019).
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TheRealAmplitudes circuit is a heuristic trial wave function used as ‘‘ansatz’’ in chemistry
applications or classification circuits in machine learning. In quantum computing, the
term ‘‘ansatz’’ refers to a trial wave function or trial state used as a starting point for
approximations or optimizations. In quantum computing, an ‘‘ansatz’’ is a specific
form or structure for a quantum state or circuit, often used in variational algorithms.
The RealAmplitudes class in Qiskit is a common ansatz used in variational quantum
algorithms, such as the Variational QuantumEigensolver (VQE) orQuantumApproximate
Optimization Algorithm (QAOA) (Aleksandrowicz et al., 2019; Qin, 2023).

Gradient-based training ismade easier withQiskit’s EstimatorQNNclass, which contains
the entire QNN. The Estimator QNN (Gonaygunta et al., 2024) is a neural network that
takes in a parametrized quantum circuit with designated parameters for input data and
weights and outputs their expectation values. Quite often, a combined quantum circuit
is used. Such a circuit is built from two circuits: a feature map (ZZFeatureMap), which
provides input parameters for the network, and an ansatz (RealAmplitudes). This QNN
component applies quantum operations to the output of the fully connected layers and
makes predictions.

A final linear layer that produces the binary classification output completes the
architecture. The model produces two values that represent the probability that each
input belongs to a class. A concatenation operation is then used to combine the results.

The flowchart shown in Fig. 4 outlines pipeline for classifying CT-scan images as either
COVID or non-COVID for our proposed model. The first step in the procedure is the
acquisition of CT scan pictures, which are then preprocessed by resizing and formatting
them appropriately. After that, the dataset is loaded using a DataLoader and split into
training and testing sets. Then this data is fed to our model which includes the mentioned
layers such as feature extraction by VGG16, basic CNN model and a QNN. Finally, our
model generates the output.

The overarching goal of this unique architecture, which is shown in Fig. 5, is to capitalize
on the strengths of both classical deep learning and quantum computing. Combining these
methods should improve the model’s capacity to identify COVID-19-like patterns in
medical images, potentially improving the accuracy and efficiency of COVID-19 detection
models.

RESULTS
The experiments were conducted within the Python environment of Kaggle Notebooks,
utilizing the PyTorch framework version 2.0.0 for model development and training.
The model was trained on both CPU (Intel(R) Xeon(R) CPU @ 2.00 GHz) and GPU
(T4 with 16GB memory) and 29 GB RAM. Data preprocessing was facilitated by the
Torchvision library version 0.15.1, which offered a suite of tools for image transformation
and normalization. Alongside PyTorch, Numpy 1.23.5 andMatplotlib 3.7.2 were employed
for array manipulation, visualization, and analysis of experimental results. Quantum
computing techniques were integrated into the experiments through the utilization of
the Qiskit framework version 1.0.1 and its Qiskit machine learning module version 0.7.1,
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Figure 4 Flowchart of proposed QCNNmodel.
Full-size DOI: 10.7717/peerjcs.2343/fig-4

Figure 5 The architecture of the proposed pretrained QCNNmodel. Image source: https://www.kaggle.
com/datasets/plameneduardo/sarscov2-ctscan-dataset..

Full-size DOI: 10.7717/peerjcs.2343/fig-5

enabling seamless incorporation of quantum-enhanced machine learning methods. Model
performance metrics were evaluated using the Torchmetrics library version 1.2.0, which
provided a comprehensive set of metrics for assessing model effectiveness and robustness.

Optimizers are algorithms crucial for training machine learning models by adjusting
parameters to minimize the chosen loss function. We used Adam optimizer for our
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Table 2 Training parameters for proposed model.

Parameter Value

Batch size 64
Epochs 50
Optimizer Adam
Learning rate 0.001
Loss Cross-entropy

model training which stands out for its adaptive learning rate capabilities, adjusting rates
individually for each parameter. This optimization method is widely used due to its
efficiency and effectiveness in guiding model convergence during training.

The model trained for 50 epochs with batch size of 64 and Adam optimizer with learning
rate of 0.001 and Cross-Entropy loss function. Table 2 shows training parameters for the
proposed model.

Performance metrics
The models’ performance was verified using the common assessment measures. The
experiments used accuracy, precision, recall, specificity and F1-score as assessment
measures. The following equations establish the various assessment metrics: FN stands for
false negatives, TN for true negatives, TP for true positives, and FP for false positives.

Accuracy =
TP+TN

TP+TN +FP+FN
. (3)

Accuracy: Accuracy in classification is ametric that quantifies the proportion of correctly
classified instances out of the total number of instances in the dataset. It is the most
extensively used assessment metric to evaluate the classification performance and it is
provided by this formula:

Precision: Precision in classification is a measure that quantifies the accuracy of positive
predictions made by a classifier. It represents the ratio of true positive predictions to the
total number of positive predictions made by the classifier, regardless of the actual class of
the instances. Precision is calculated using this formula:

Precision=
TP

TP+FP
. (4)

Recall: Recall in classification, also known as sensitivity or true positive rate, measures the
ability of a classifier to correctly identify all relevant instances, or the proportion of true
positive instances that were correctly identified by the classifier. It is calculated using this
formula:

Recall =
TP

TP+FN
. (5)

Specificity: Specificity in classification, also known as true negative rate, measures the
ability of a classifier to correctly identify all negative instances. It quantifies the proportion
of true negative instances that were correctly identified by the classifier out of all actual
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negative instances. Specificity is calculated using this formula:

Specificity =
TN

TN +FP
. (6)

F1-score: The F1-score is a metric that combines precision and recall into a single value,
providing a balance between the two measures. It is calculated using the harmonic mean
of precision and recall, giving equal weight to both metrics. The formula for calculating
the F1-score is:

F1−Score= 2×
Precision×Recall
Precision+Recall

. (7)

Confusion matrix: A confusion matrix is a table that summarizes the performance of a
classification model by displaying the counts of true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) predictions made by the model on a dataset. It is a
square matrix where rows represent the actual classes and columns represent the predicted
classes. The main diagonal of the matrix contains the counts of correct predictions (TP
and TN), while off-diagonal elements represent incorrect predictions (FP and FN). The
confusion matrix provides insights into the classification performance, helping to evaluate
the model’s accuracy, precision, recall, and other metrics.

Loss function: A crucial part of machine learning models is the loss function, which
measures the difference between expected and actual values to determine how well the
model performed during training. It is essential for directing the optimization process in
the direction of reducing this difference and raising the accuracy of the model. In this study
we used Cross-entropy loss function. Cross-entropy loss, also known as log loss, is a widely
used loss function in classification tasks, particularly in scenarios involving multiple classes.
It quantifies the difference between the predicted probability distribution and the actual
distribution of class labels. Mathematically, for a classification problem with N samples
and K classes, where yik denotes the true label (1 if sample i belongs to class k, 0 otherwise)
and pik denotes the predicted probability of sample i belonging to class k, the cross-entropy
loss is given by:

Cross−Entropy Loss=−
1
N

N∑
i=1

K∑
k=1

yik log
(
pik
)
. (8)

The loss penalizes incorrect predictions more heavily, especially when the predicted
probability diverges significantly from the true label. This property encourages the model
to assign high probabilities to the correct class labels.

Accuracy per epoch graph: This graph displays the accuracy of a machine learning model
on both the training and validation data over multiple epochs during the training process.
Each epoch represents one complete pass through the entire training data. The accuracy
per epoch graph typically has the number of epochs on the x-axis and the accuracy on the
y-axis. It consists of two lines or curves: one representing the accuracy on the training data
and the other representing the accuracy on the validation data. Monitoring accuracy per
epoch helps assess how well the model is learning from the training data and generalizing
to unseen data.

Asadoorian et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2343 16/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2343


Table 3 Different performance measures for experimented models on validation data.

Model Accuracy (%) Precision Recall Specificity F1-Score Loss

ResNet50 96.17 0.9754 0.9482 0.9756 0.9616 0.1736
ResNet18 94.16 0.9203 0.9625 0.9222 0.9409 0.3128
VGG19 93.96 0.9414 0.9414 0.9378 0.9414 0.3062
EfficientNetV2L 96.78 0.9523 0.9836 0.9526 0.9676 0.1808
VGG16 95.57 0.9527 0.9527 0.9583 0.9527 0.2430
QCNNModel 90.4 0.9277 0.8851 0.9237 0.9059 0.3545
ResNet50 + QCNN 90.64 0.9160 0.9053 0.9048 0.9106 0.3125
ResNet18 + QCNN 92.76 0.8996 0.9532 0.9046 0.9256 0.2978
VGG19 + QCNN 93.16 0.9696 0.9075 0.9630 0.9375 0.2851
EfficientNetV2L + QCNN 95.96 0.9673 0.9518 0.9677 0.9595 0.1412
ProposedModel VGG16 + QCNN 96.78 0.9837 0.9528 0.9835 0.9678 0.1373

Notes.
The results of the proposed model are shown in bold.

Loss per epoch graph: This graph illustrates the loss, also known as the error or cost, of
a machine learning model on both the training and validation data across multiple epochs
during training. The loss per epoch graph usually has the number of epochs on the x-axis
and the loss value on the y-axis. Similar to the accuracy per epoch graph, it comprises two
lines or curves: one representing the loss on the training data and the other representing the
loss on the validation data. The loss per epoch graph provides insights into the convergence
and performance of the model during training, with lower loss values indicating better
model fit.

Experimental results
The performance of the proposed model evaluated on SARS-CoV-2 CT dataset is discussed
in this section. In this study, first we trained the dataset on pretrained models including
ResNet50, ResNet18, VGG16, VGG19 and EfficientNetV2L and then the QCNN model
was combined with these models for comparison. Table 3 provides a comparative analysis
of various evaluation metrics across the mentioned models, offering insights into their
respective performance and effectiveness. Out of all the models that were examined,
the VGG16 model performed the best and showed remarkable results. The proposed
model achieved 96.78% accuracy, 0.9837 precision, 0.9528 recall, 0.9835 specificity, 0.9678
F1-Score and 0.1373 loss. Figure 6 illustrates the accuracy per epoch graph, loss per epoch
graph and confusion matrix, respectively.

The graphs collectively demonstrate the high performance and reliability of the model.
The accuracy per epoch graph shows a rapid increase in training accuracy, with the
validation accuracy closely following, indicating effective learning and minimal overfitting.
The loss per epoch graph reveals a steady decrease in both training and validation loss,
which signifies good generalization. The confusion matrix further highlights the model’s
efficacy, showcasing its high accuracy and reliability in classifying the data correctly.
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Figure 6 (A) Accuracy per epoch graph, (B) loss per epoch graph, (C) confusionmatrix of the pro-
posed model.

Full-size DOI: 10.7717/peerjcs.2343/fig-6

Table 4 is a comparison between different approaches of QCNNmodels across different
studies, providing an overall insight about their approach, dataset used and results gained.

As mentioned earlier feature extraction is a crucial step in the process of capturing
high level features of images. Figure 7 illustrates the feature extraction process of the
VGG16 model applied to CT scan samples from both COVID-19 and non-COVID
patients. In Fig. 7A, the COVID samples display various stages of convolutional layers,
progressively highlighting distinctive patterns and textures within the chest images, essential
for identifying COVID-19 related anomalies. Similarly, Fig. 7B shows the feature extraction
for non-COVID samples, where different convolutional layers capture unique structural
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Table 4 Comparison of the proposed model with other quantum-based CNNmodels in related works.

Model Architecture Dataset Dataset type Accuracy

HQ-CNNModel: Hybrid
Quantum-Classical Convolutional
Neural Network (Houssein et al.,
2022)

Combines classical CNN with a
quantum convolutional layer

Multiclass collection of 5,445 im-
ages

CXR 98.6 (COVID-19 and
Normal)98.2 (COVID-19
and viral pneumonia)98
(COVID-19 and bacterial
pneumonia)88.2 (Multi-
class)

Quantum Neural Network for
Quicker Clinical Prognostic Anal-
ysis (Sengupta & Srivastava, 2021)

Quantum neural network model
optimized for classification tasks

Various datasets of COVID 19
with +10,000 images

CT 96.92

Transfer learning in hybrid
classical-quantum neural
networks (Mari et al., 2019)

Transfer learning between classi-
cal and quantum networks.

ImageNet for pre-training and
smaller, specific datasets for fine-
tuning

– –

Image classification with
quantum pre-training and
auto-encoders (Piat et al., 2018)

Hybrid quantum–classical frame-
work with data compression,
quantum pre-training using Re-
stricted Boltzmann Machine
(RBM), and classical training

MNIST, Fashion-MNIST and two
medical imaging datasets

DigitsClothesMedical
images

94 MNIST83.2 Fashion-
MNIST87.9 Laparoscopic
tools 99.8 X-ray

Learning to learn with quantum
neural networks via classical neu-
ral networks (Guillaume et al.,
2019)

Combines classical neural net-
works with quantum neural net-
works, utilizing variational quan-
tum algorithms

– – –

Quanvolutional Neural Networks
(QNNs) (Henderson et al., 2020)

Combines classical convolutional
neural networks with quanvolu-
tional layers, where quantum cir-
cuits are used for feature extrac-
tion

MNIST – –

Proposed Model VGG16 +
QCNN

Combines pre-trained VGG16
model with QCNN

SARS-CoV-2 CT 96.78
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Figure 7 VGG16 feature extraction for (A) COVID sample and (B) non-COVID sample. Image source:
https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset.

Full-size DOI: 10.7717/peerjcs.2343/fig-7

and textural features of healthy or non-COVID-affected lungs. The comparison between the
two sets reveals how the VGG16 model distinguishes between COVID-19 and non-COVID
cases by extracting and emphasizing different sets of features at each convolutional layer,
enabling accurate classification based on the learned representations of the lung tissues.

These extracted features fed to the QCNN model to classify the image. Figure 8
demonstrates the model’s prediction ability in recognizing COVID-19 from chest CT
scan images. Predictions are labeled above each image, and the model distinguishes
between COVID-19 and non-COVID cases accurately. While the second and fifth images
are correctly categorized as non-COVID, the first, third, and fourth images are correctly
identified as COVID. This demonstrates the model’s effectiveness and reliability in assisting
medical professionals with accurate diagnosis of COVID-19 based on chest CT scans.

We evaluated the model on multiple datasets to enable a more thorough investigation
of the performance of our suggested model. Details of each dataset, including the
total number of photos, the number of covid and non-covid images, and the accuracy
of our model tested on each dataset, including SARS-CoV-2, are shown in Table 5.
COVID-19 Lung CT Scans dataset (https://www.kaggle.com/datasets/luisblanche/covidct)
contains 746 CT-scan images, which are collected from COVID-19-related papers
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Figure 8 Prediction of the model from CT-scan images. Image source: https://www.kaggle.com/datasets/
plameneduardo/sarscov2-ctscan-dataset.

Full-size DOI: 10.7717/peerjcs.2343/fig-8

Table 5 Comparison of tested datasets on proposed QCNNmodel and achieved accuracy.

Dataset name No. of
images

No. of
COVID
images

No. of
Non-COVID
images

Accuracy

COVID-19 Lung CT Scans
(https://www.kaggle.com/datasets/luisblanche/covidct)

746 349 397 91.33

COVID-19 Lung CT Scans
(Aria et al., 2021)

8,439 7,495 944 97.13

COVID 19 X-ray and CT Scan Image
(https://www.kaggle.com/datasets/ssarkar445/covid-19-
xray-and-ct-scan-image-dataset)

8,055 5,427 2,628 96.59

Covid 19 CT Scan Dataset
(https://www.kaggle.com/datasets/drsurabhithorat/covid-19-
ct-scan-dataset)

7,621 5,203 2,418 96.63

SARS-CoV-2 CT-Scan Dataset
(https://www.kaggle.com/plameneduardo/sarscov2-ctscan-
dataset)

2,481 1,252 1,229 96.78

from medRxiv, bioRxiv, NEJM, JAMA, Lancet, etc. The COVID-19 Lung CT Scans
dataset (Aria et al., 2021) includes 8439 images gathered from actual patients in teaching
hospitals’ radiology departments in Tehran, Iran. The COVID-19 X-ray and CT Scan
Image (https://www.kaggle.com/datasets/ssarkar445/covid-19-xray-and-ct-scan-image-
dataset) is a large dataset that includes both CT and X-ray images. We analyzed the
CT images because our model was trained on them, and the multisource dataset
contains 8055 CT-scan images and 9544 X-ray images. The Covid 19 CT Scan Dataset
(https://www.kaggle.com/datasets/drsurabhithorat/covid-19-ct-scan-dataset) is a collection
of 7621 CT images. In comparison to previous datasets, the SARS-CoV-2 dataset
(https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset) has demonstrated
superior performance and data balancing. Overall, the model shows good results on
tested dataset too.

DISCUSSION
In this study, we employed a pre-trained QCNN model, utilizing the architecture of the
VGG16 model as a foundation. Our QCNN model performs exceptionally well, with a
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remarkable accuracy of 96.78% in a variety of classification tasks. The purpose of this part
is to examine the consequences, constraints, and possible future paths that result from our
research.

Our QCNN model’s remarkable accuracy highlights the value of applying quantum-
inspired techniques to deep learning problems. It is clear that using quantum-inspired
features in conjunction with VGG16’s powerful design has significantly improved
classification performance. Notably, the model’s ability to capture complex patterns
and characteristics within the data has been made possible by the incorporation of
quantum principles, leading to enhanced predictive capabilities. Complex patterns in
CT images are seen as single or multiple lesions, patchy or segmental Ground-Glass
Opacities (GGOs). GGOs are hazy areas (lighter-colored or gray patches) seen on CT scans
that indicate increased lung density without obscuring the underlying bronchial structures
or pulmonary vessels. They are one of the hallmark features of COVID-19 pneumonia. The
model effectively identifies these subtle changes in lung tissue density and differentiates
them from normal lung parenchyma, which can be challenging because of their diffuse and
variable appearance. The model’s capacity to learn from and adjust to the training data is
demonstrated by the training process’ steady increase in accuracy, and this tendency is also
seen in the validation process’ accuracy.

Comparing our results with prior studies reveals the superiority of our QCNN
model in achieving high accuracy rates. Although traditional deep learning models have
demonstrated impressive results across several fields, our method demonstrates the
possibility of quantum-inspired methods to improve classification precision and resilience.
The noteworthy progress exhibited by our QCNN model emphasizes the necessity of
investigating novel approaches to extend the capabilities of deep learning.

Even though our QCNN model has demonstrated remarkable success, there are several
limits that must be acknowledged regarding our study. First off, a number of variables that
might affect generalizability, like dataset size, distribution, and quality, could affect how
well the model performs.

Limited data diversity could lead to reduced model performance when applied to new
or unseen datasets from different institutions or regions. Larger and more varied datasets,
such as those from different clinical settings, and geographic locations, should be used in
future research to validate the QCNN model. This process can be facilitated by working
together with several healthcare facilities.

Furthermore, the computing resources needed for inference and training might provide
real-world challenges, especially in contexts with limited resources. Specialized hardware
is needed for the integration of computing components, which is not yet commonly
accessible in many clinical settings. To overcome these constraints, more study is needed
to maximize the scalability, resilience, and efficiency of the model. Research should explore
the development of hybrid models that can function effectively on classical hardware while
benefiting from quantum-inspired algorithms. Furthermore, developments in quantum
computing technology and how they apply to clinical procedures should to be monitored
and taken advantage of.
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QCNNs, among other deep learning models, are frequently criticized for being difficult
to interpret. Gaining the confidence of medical experts and ensuring reliable clinical use
require an understanding of the decision-making process involved in these models.

The current model evaluation focused on accuracy and performance metrics, but did
not assess the real-time application and integration of the model within existing clinical
workflows. Future studies should evaluate the model’s performance in real-time settings,
ensuring it meets the operational requirements of clinical environments.

Future research projects might investigate a number of intriguing directions by building
on the foundations created in this work. Investigating novel quantum-inspired architectures
and techniques holds potential for further enhancing model performance and addressing
current limitations. Additionally, extending the applicability of QCNN models to complex
real-world datasets and scenarios can provide valuable insights into their practical utility.
Furthermore, exploring the synergy between quantum computing and deep learning may
unlock unprecedented opportunities for advancing artificial intelligence capabilities.

CONCLUSIONS
Wedescribed a uniquemethod for COVID-19 disease identification in this study thatmakes
use of a pre-trained QCNN model. With the use of the publicly accessible SARS-CoV-2
CT dataset, the model demonstrated its ability to detect COVID-19 patients with a high
degree of specificity and accuracy. Our pre-trained QCNN methodology accomplished
competitive results whenwe compared our results with other current approaches, indicating
its potential as a useful tool to assist doctors in COVID-19 disease diagnosis.

In this study, we set out to explore the potential of integrating quantum computing with
deep learning for the accurate diagnosis of COVID-19 from CT-scan images. Our primary
research focus is to improve COVID-19 detection accuracy and efficiency over conventional
methods by combining QCNNs with pre-trained CNNs. According to our research, the
hybrid QCNN model performs better at detecting COVID-19 because it makes use of a
pre-trained VGG16’s feature extraction capabilities. The model demonstrated remarkable
accuracy, precision, recall, specificity, and F1-score.

Although our model achieves better accuracy by combining the VGG16 pre-trained
model with our QCNN model, it does not certainly apply to all the pre-trained models.
Our obtained results of this combination support the concept that quantum computing
can enhance deep learning models, making them more effective for complex medical
diagnostic tasks. This shows that important features in medical images can be analyzed
with the help of deep learning models, such as QCNNmodels. These models also can adapt
to new and unforeseen data.

Still, there are some restrictions. The scope and variety of the dataset were the study’s
first limitations. It is imperative to conduct additional validation with bigger datasets
that encompass a wider range of demographic and geographical variables among patient
groups. Furthermore, there are a number of variables that might impact the model’s
performance, including co-existing diseases and picture quality. To increase interpretability
and confidence in the model’s predictions, further research could aim at combining new
clinical data or utilize explainable AI approaches.
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Our study shows the promise of pre-trained QCNN models for COVID-19 disease
detection in spite of these drawbacks. The suggestedmethod presents a promising approach
for more study and advancement in the creation of robust and reliable AI-powered
instruments to support healthcare decision-making.
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