
Submitted 26 January 2024
Accepted 28 August 2024
Published 17 December 2024

Corresponding author
Dayananda Pruthviraja,
dayananda.p@manipal.edu

Academic editor
Jyotismita Chaki

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.2339

Copyright
2024 Pruthviraja et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Deep convolutional neural network
architecture for facial emotion
recognition
Dayananda Pruthviraja1, Ujjwal Mohan Kumar2, Sunil Parameswaran2,
Vemulapalli Guna Chowdary2 and Varun Bharadwaj2

1 Information Technology, Manipal Insitute of Technology, Manipal Academy of Higher Education,
Bengaluru, Karnataka, India

2Department of Computer Science and Engineering, PES University, Bengaluru, Karnataka, India

ABSTRACT
Facial emotion detection is crucial in affective computing, with applications in human-
computer interaction, psychological research, and sentiment analysis. This study
explores how deep convolutional neural networks (DCNNs) can enhance the accuracy
and reliability of facial emotion detection by focusing on the extraction of detailed
facial features and robust training techniques. Our proposed DCNN architecture uses
its multi-layered design to automatically extract detailed facial features. By combining
convolutional andpooling layers, themodel effectively captures both subtle facial details
and higher-level emotional patterns. Extensive testing on the benchmark Fer2013Plus
dataset shows that our DCNNmodel outperforms traditional methods, achieving high
accuracy in recognizing a variety of emotions. Additionally, we explore transfer learning
techniques, showing that pre-trained DCNNs can effectively handle specific emotion
recognition tasks even with limited labeled data.Our research focuses on improving
the accuracy of emotion detection, demonstrating the model’s capability to capture
emotion-related facial cues through detailed feature extraction. Ultimately, this work
advances facial emotion detection, with significant applications in various human-
centric technological fields.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Sentiment
Analysis, Neural Networks
Keywords Deep convolutional neural networks, Computer vision, Emotion classification, Image
processing, Deep learning

INTRODUCTION
Facial emotion detection stands as a transformative breakthrough that not only bridges
human-machine gaps but also revolutionizes decision-making and unravels human
behavior intricacies. In today’s landscape, integrating facial emotion detection is not
merely additive but a force reshaping interactions. In the age of automation and
artificial intelligence, machines’ capacity to comprehend and reciprocate emotions gains
pivotal importance. This technology introduces empathy to automated systems, altering
communication, learning, and engagement dynamics.

How to cite this article Pruthviraja D, Mohan Kumar U, Parameswaran S, Guna Chowdary V, Bharadwaj V. 2024. Deep convolutional
neural network architecture for facial emotion recognition. PeerJ Comput. Sci. 10:e2339 http://doi.org/10.7717/peerj-cs.2339

https://peerj.com/computer-science
mailto:dayananda.p@manipal.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2339
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2339


Use cases:

• Virtual learning: Enhancing virtual learning environments by adapting content based
on students’ emotional responses.
• Personalized e-commerce: Creating personalized shopping experiences by understand-
ing customer emotions.
• Medical diagnostics: Improving medical diagnoses through emotional assessments,
particularly in mental health.
• Social robotics: Developing more empathetic and interactive robots that can better
understand and respond to human emotions.

Interpreting emotions from facial expressions faces challenges due to cultural nuances,
context-based interpretations, and individual diversity. Ethical concerns involving privacy,
consent, and datamisuse spotlight its nuanced landscape. These challenges stimulate diverse
hypotheses and perspectives, emphasizing the need for comprehensive field understanding.

Several open-source pre-trained models exist for facial emotion recognition, such as
OpenFace (Amos, Ludwiczuk & Satyanarayanan, 2016), VGG-Net (Simonyan & Zisserman,
2014), Efficient Net (Tan & Le, 2019), and ResNet (He et al., 2015). These models, trained
on large datasets like Fer2013 and Fer2013Plus (Zahara et al., 2020), extract facial emotion
features. The goal is to improve how machines recognize these emotions, making human–
computer interactions more natural and helpful. This can be achieved using powerful tools
in deep learning like deep convolutional neural networks (DCNNs) to better understand
the emotions people show on their faces. Our proposed DCNN model provides better
facial detection accuracy compared to previously trained models. It offers faster model
convergence due to a well-tuned learning rate scheduler and larger batch sizes, which
allows it to process more data in each epoch.

Motivation
The driving force behind the progression of facial emotion detection using DCNN
algorithms stems from the profound significance of deciphering human emotional
expressions. Emotions are intrinsic to human communication, and accurate and instant
recognition could revolutionize human–computer interfaces, psychological assessments,
and even the realm of social robotics. Extracting intricate emotional nuances from facial
cuts could reshape technology into a more empathetic and adaptable entity, enhancing our
interactions in the digital realm.

Contribution
Our significant contribution lies in markedly enhancing the accuracy and classification
capabilities of facial emotion detection through the implementation of DCNN algorithms.
By devising innovative model architectures and employing advanced deep learning
techniques, we have been able to capture intricate nuances of facial expressions that
were previously challenging to discern. This has led to a substantial increase in accuracy
rates, thereby enablingmore precise emotion recognition.Moreover, ourmodel’s adeptness
at classifying emotions, even in cases of subtle or complex expressions, sets a new standard
for performance. Our research addresses the critical need for accurate and reliable emotion

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 2/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2339


classification, fostering a deeper understanding of human emotions and paving the way for
applications that demand high-level emotional analysis, such as mental health diagnostics
and human–computer interaction.

MATERIALS AND METHODS
Environmental setup
The experimental setup for this research was meticulously crafted to meet the demanding
computational requirements of training and evaluating DCNN architectures tailored for
facial emotion recognition. The hardware configuration boasted a powerful Intel Core
i5 11th gen processor, augmented by a robust ensemble of graphics processing units
(GPUs) including the Nvidia RTX 3050, alongside commercially available T4, A100, and
V100 models, ensuring accelerated training capabilities. With ample memory (RAM)
exceeding 4GB VRAM and high-capacity storage devices, the setup provided ample
resources to seamlessly handle the intricacies of model development. On the software side,
an operating system optimized for deep learning tasks was coupled with TensorFlow 2.9.0
for initial experimentation, transitioning to TensorFlow 2.15.1 for the latest reproducibility
standards. GPU support was harnessed to maximize the potential of the deep learning
framework, while essential Python libraries such as NumPy, Pandas, and Matplotlib
facilitated streamlined data preprocessing, model evaluation, and visualization. The
chosen development environment was meticulously curated to foster a seamless workflow,
ensuringmaximumproductivity throughout the research process. The Fer2013Plus dataset,
renowned for its comprehensive representation of facial emotions, served as the cornerstone
for training and evaluating the facial emotion recognition models. Hyperparameters such
as learning rate, batch size, and optimizer were meticulously tuned to optimize model
performance. Subsequent evaluation of the trained DCNN architecture encompassed a
thorough assessment utilizing standard evaluation metrics including accuracy, precision,
recall, and F1-score, culminating in a comprehensive understanding of its efficacy in
recognizing facial emotions.

Data pre-processing
Resizing and standardization
Each individual model is capable of adopting a unique target size for its input tensor.
The size 48×48 is chosen to enhance the versatility and obtain a substantial amount
of information. Additionally, the pixels were normalized by dividing the pixel values by
255 (Gal & Rubinfeld, 2018). By adjusting each pixel’s range to span from 0 to 1 the model’s
convergence rate is accelerated. This strategic normalization step aligns with the objective
of optimizing the training process.

Colour space conversion
The Fer2013Plus dataset contains Y’UV images. However, when they are loaded into the
model, it is loaded as a three channel tensor (red, green, blue). These tensors are then
converted into grayscale as it helps to better form relations between the images (Chavolla
et al., 2018). It reduces complexity, reduces dimensionality(the images only have a single

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 3/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2339


color channel), reduces noise, and increases computational efficiency as they take up less
space in the memory.

Label encoding
The labels of the dataset have been loaded into the model as a one-hot encoded tensor.
Since, one-hot encoding doesn’t assume any magnitude, which basic integer values do, the
model doesn’t have any assumptions on the values of ones and zeroes. Additionally, under
normal encoding circumstances the model has a higher probability of assuming a relation
between the encoded integer values, which is mitigated in one-hot encoding.

Data augmentation
To prevent overlearning, increase variation and for better generalization, the training
images have been picked at random and have been flipped horizontally. It was determined
that this level of augmentation is optimal and further augmentation leads to loss in
semantics which can potentially cause unrealistic samples, resulting in the loss of original
information.

Model architecture
Input layer
Input layer is used to define the tensor shape the model takes in as input. This layer
processes the inputs which are 2D arrays of pixel values. It converts the arrays into 1D
tensors, by multiplying the input shapes to get single values that are compatible with all
the other convolutional layers in the model.

Convolutional layer
Convolutional layers are the building blocks of a CNN model. They extract features
and distinguish between images. They have kernels with a specified size that slide
with a predefined stride value over the image pixel and obtain a dot product upon
multiplication (Albawi, Mohammed & Al-Zawi, 2017). This produces a feature map which
is unique to the filter. As an input to the next layer, the previous layers feature maps are
added using a bias to get the input for the next convolution neuron. Initializing the weights
of a neural network is crucial because it can influence the convergence speed, optimization
landscape, and overall generalization of the model. Poor initialization can lead to slow
convergence, vanishing gradients, and hinders the network’s ability to learn meaningful
features. The kernel initializer is a parameter in neural network layers that determines
how the weights of the layer should be initialized at the beginning of training. It specifies
a method for setting initial values for the weights in order to help the network converge
more effectively and potentially improve its performance (Xu &Wang, 2022). A kernel
initializer ‘‘He Normal’’(used when exponential linear unit activation functions are used)
is used in this model.

Activation function
In the convolutional layers, the ELU activation function is used. It doesn’t have the ‘‘dying
relu problem’’ (Lu, 2020) which means the gradients for the remaining neurons become
very small hindering further learning. To solve this problem ELU allows a small negative

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 4/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2339


slope for negative inputs. The ELU activation function can be expressed:

f (x)=
{
x↔ x > 0a(ex−1)otherwise (Clevert, Unterthiner & Hochreiter, 2016). (1)

Equation (1) represents a piecewise function that operates differently for positive and
non-positive values of x . When x is greater than 0, f (x) returns the input x itself. For
non-positive x values, it computes a value using the formula a(ex − 1), where ’a’ is a
constant and ’e’ is the base of the natural logarithm.

At the output layer of the model the Softmax activation function (Nwankpa et al., 2018)
is used since it is a multiclass classification.

s(xi)=
exi∑n
j=1e

xj
(Abadi et al., 2015). (2)

Equation (2) defines a softmax function s(xi) applied to a vector ’x’ with ’n’ elements.
It calculates the exponential of each element xj in the vector, sums up all the exponential
values, and then divides each individual exponential value by the sum to normalize the
vector elements into probabilities.

It is designed to convert raw scores, or logits into probability distributions over multiple
classes. During training the softmax function’s output probabilities are compared to the
label’s using the loss function (categorical crossentropy; Bessel & Bradley, 1818) to update
the model’s parameters and improve its predictions.

Normalization layer
A normalization layer is placed after a convolutional layer. During the forward pass in
training, this layer takes in the feature map (output) of the previous layer as its input and
gives the normalized version of it as an output for the next layer. It normalizes the data
by calculating the mean and standard deviation of the feature map (mini-batch) of the
previous layer and it subtracts the input by the mean and divides the difference by the
standard deviation.

µi=
1
K

K∑
k=1

(
xi,k
)2(Thompson & Wesolowski, 2018) (3)

σ 2
i =

1
K

K∑
k=1

(
xi,k−µi

)2 (Zhang & Sabuncu, 2018) (4)

x̂i=
xi−µi√
σ 2
i +ε

(5)

yi= γ · x̂i+β. (6)

Equation (3) calculates the mean µi of values of a vector xi,k across a set of K elements.
It sums each element’s value in xi,k for all K instances and then divides the sum by K to
obtain the average value of the vector.

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 5/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2339


Equation (4) measures the variance σ 2
i of a vector xi across a batch by calculating the

average squared deviation of each value from the batch mean µi. It sums the squared
differences for all K instances and divides by K, indicating the overall variability of the data
around the mean.

Equation (5) calculates the normalized value xi of an input xi,k by subtracting the batch

mean and dividing by the batch standard deviation
√
σ 2
i +ε, ensuring the input has a mean

of 0 and a standard deviation of 1.
Equation (6) transforms the normalized value of x̂i by scaling with the parameter and

shifting with the parameter β, resulting in the final output yi. This step provides flexibility
to the model, allowing it to adjust the normalized data during training.

This implies that at the output there is a zero mean and unit deviation, this results in
lesser sensitivity to the initialized kernels weights. Crucially, it reduces the variance to zero
and hence eliminates internal covariate shift in the model, which leads to lesser chances of
vanishing gradients. It gives a regularized data which adds noise into the model which may
help generalization, but lengthens training time. Overall, this is necessary due its advantage
of eliminating internal covariate shift (Ioffe & Szegedy, 2015).

Pooling layer
Pooling layers are generally placed before a convolutional layer in the model. It
systematically reduces the dimensionality of the feature map of the previous layer using the
hyperparameters specified like stride and pooling window. By doing so, it helps the model
retain only the prominent features by selecting the maximum value which has the most
significant activation (Nirthika et al., 2022). This gives an added benefit that unnecessary
noise is not retained helping the model train on the most prominent features, this in turn
increases generalization as it learns the model can now identify the features in different
positions in the image. This can also help increase the depth of the model as it reduces
the number of parameters to be trained for the layers after it, making it possible to add
more convolutional layers with greater neuron count. As the model is able to generalize
more and it can identify prominent features at differing positions and orientations, it helps
prevent overfitting on the training data.

Dropout layer
The dropout layer is a regularization technique that temporarily deactivates a randomly
chosen fraction of neurons when training to prevent overfitting. It introduces a form
of model averaging and a certain amount of noise in the network which encourages the
model to learn more robust features. This layer also allows for training different subsets
of neurons at different iterations of training, helping to improve generalization. While a
dropout layer may slow down the convergence, it results in a more accurate model. The
dropout layer has a hyperparameter known as dropout rate which is used to specify the
number of neurons to be deactivated at the training iteration (Park & Kwak, 2017).

Table 1 gives a comprehensive description of the proposed DCNN model depicting
the hierarchical arrangement of the layers along with the crucial information about the
number of parameters the model is training on and the dimension of the images at each
layer.

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 6/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2339


Algorithm1: ProposedModel
Step 1: Input the facial images from the Fer2013Plus dataset
Step 2: Pre-process the images by resizing them to 48×48 and normalizing them
Step 3: Images are classified into Anger, Contempt, Disgust, Fear, Happiness, Neutral,
Sadness and surprise
Step 4: The proposed DCNNmodel is built with 2,364,744 trainable parameters
Step 5: The proposed DCNNmodel effectively learns the facial features
Step 6: Making predictions on the test data and analyzing the performance metrics

Table 1 Proposed DCNNmodel architecture.

Layer (type) Output Shape Param #

input (InputLayer) [(None, 48, 48, 1)] 0
conv2d_1 (Conv2D) (None, 48, 48, 64) 640
batchnorm_1 (BatchNormalization (None, 48, 48, 64) 256
conv2d_2 (Conv2D) (None, 48, 48, 64) 73792
batchnorm_2 (BatchNormalization) (None, 48, 48, 64) 256
maxpool2d_1 (MaxPooling2D) (None, 16, 16, 64) 0
dropout_1 (Dropout) (None, 16, 16, 64) 0
conv2d_3 (Conv2D) (None, 24, 24, 128) 73856
batchnorm_3 (BatchNormalization) (None, 24, 24, 128) 512
conv2d_4 (Conv2D) (None, 24, 24, 128) 147584
batchnorm_4 (BatchNormalization) (None, 24, 24, 128) 512
maxpool2d_2 (MaxPooling2D) (None, 12, 12, 128) 0
dropout_2 (Dropout) (None, 12, 12, 128) 0
conv2d_5 (Conv2D) (None, 8, 8, 256) 295168
batchnorm_5 (BatchNormalization) (None, 8, 8, 256) 1024
conv2d_6 (Conv2D) (None, 12, 12, 256) 590080
batchnorm_6 (BatchNormalization) (None, 12, 12, 256) 1024
maxpool2d_3 (MaxPooling2D) (None, 6, 6, 256) 0
dropout_3 (Dropout) (None, 6, 6, 256) 0
flatten (Flatten) (None, 9216) 0
dense1 (Dense) (None, 128) 1179776
batchnorm_7 (BatchNormalization) (None, 128) 512
dropout_4 (Dropout) (None, 128) 0
out_layer (Dense) (None, 8) 1032

It is structured to acquire hierarchical patterns through sequences of convolutional and
pooling layers, followed by fully connected layers and a class prediction output.

Essential components and design decisions include:
1. Input layer: The network starts with an input layer, shaping it to accept designated

image data of shape (48,48,1).
2. Convolutional layers: The architecture features three sets of 2-dimensional

convolutional layers, each with two successive convolutions. These layers extract

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 7/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2339


Figure 1 A graphical representation of the proposed DCNNmodel. Plotted using visual
keras (Gavrikov, 2020).

Full-size DOI: 10.7717/peerjcs.2339/fig-1

features through the exponential linear unit (ELU) activation function, mitigating
gradient issues.
The first set (conv2d_1 and conv2d_2) employs 64 filters of size (3, 3) with ’same’
padding. The second set (conv2d_3 and conv2d_4) enhances feature representation
with 128 filters of size (3,3) with ‘same’ padding. The third set (conv2d_5 and conv2d_6)
performs further feature extraction using 256 filters of size (3,3) with ‘same’ padding.

3. Batch normalisation layers: A batch normalization layer follows every convolutional
layer and the final dense layer. Totaling to 7 batch normalization layers, they increase
the model’s training stability and increase convergence.

4. Max pooling layers: Max-pooling layers of pool size (2,2) follow each convolutional
set (maxpool2d_1, maxpool2d_2, maxpool2d_3), minimizing feature map dimensions
while conserving key information.

5. Dropout: Dropout layers with a dropout rate of 0.3 (dropout_1, dropout_2, dropout_3)
and 0.4 (dropout_4) are integrated to mitigate overfitting by randomly deactivating
neuron outputs during training.

6. Flatten layer: The ultimate max-pooled feature maps are compressed into a 1D vector,
fed into fully connected layers.

7. Dense layers: Two fully connected layers are employed, with the initial dense layer
(dense_1) encompassing 128 neurons and ELU activation.

8. Output layer: The final layer (out_layer) is a dense layer with neurons equivalent to the
classification task’s class count. It uses the softmax activation for class probabilities.

9. Model creation: The Keras functional API (Lu, 2020) amalgamates the entire structure,
producing the ‘‘DCNN’’ model.
This architecture in Fig. 1 strives to balance feature extraction capacity and model

complexity. Utilizing multiple convolutional layers, upping filter counts, and applying
dropout and batch normalization, the model aims to acquire intricate hierarchical features
from input images while averting overfitting. It’s a suitable DCNN for image classification
tasks—categorizing input images into distinct classes.

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 8/20

https://peerj.com
https://doi.org/10.7717/peerjcs.2339/fig-1
http://dx.doi.org/10.7717/peerj-cs.2339


Optimizers and learning rates
For training the proposed DCNN model, the Adam optimizer (Kingma & Ba, 2014), with
an initial learning rate of 0.01, has been used. It is beneficial to use the Adam optimizer
since it adjusts the learning rates of individual parameters based on the magnitude of
historical gradients, and for faster learning, the optimizer accelerates gradient descent by
taking an exponentially weighted average of the gradients. This optimizer also adjusts
learning rate for each parameter by taking into account the recent gradient, resulting in
speeding up convergence and reducing the need for manual learning rate tuning. This
combination of adaptive learning rate and momentum helps reduce oscillations during
optimization (Kingma & Ba, 2017).

Adam uses exponentially decaying moving averages of past gradients and squared
gradients, estimating first and second moments without storing full gradient history,
benefiting memory-efficient training, especially in deep networks.

Model call backs
Two call back functions have been used during the training phase of the model.

Early stopping
Early Stopping is a model call back technique in machine learning that halts the
training process when a predefined performance metric ceases to improve or starts
deteriorating (Prechelt, 2000). This call back has three main hyperparameters, monitor
which has been set to monitor the validation loss, delta checks for the minimum change in
the monitored metric, patience value is set to wait for a specified amount of epochs (a cycle
through the training data) before the model training is stopped. This call back is mainly
used to prevent overfitting of the model by stopping the model training process.

Learning rate scheduler
A learning rate scheduler is a technique in machine learning that dynamically adjusts
the learning rate during training. It helps optimize the training process by decreasing
the learning rate over time, allowing the model to converge faster initially and then
fine-tune as it approaches convergence. This aids in finding an optimal balance between
rapid progress and stable refinement, resulting in better convergence and improved
model performance (Kim et al., 2021). Specifically using Reduce LROnPlateau API
from tensorflow keras callbacks (Lu, 2020) provides hyperparameters such as monitor,
min_delta, mode, factor, patience, min_lr, etc. The hyperparameter mode is used to specify
whether the learning rate should decrease when the quantity being monitored has stopped
improving. Figure 2 shows the decrease in learning rate with epochs.

RESULTS
The proposed DCNN model is run on different GPUs ranging from commercial grade
machine learning optimized GPUs to gaming GPUs. It is done so to get an insight of
how the model performs across GPUs with varying computational power and memory. It
also helps estimate the scalability of the model for real-life deployment. By looking at the
model’s performance metrics, memory consumption and training time and other such key

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 9/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2339


Figure 2 A curve representing learning rate and epochs.
Full-size DOI: 10.7717/peerjcs.2339/fig-2

parameters the model can be rated as to how consistent it is. The proposed model takes
up about 2.4 GB of V-RAM when being trained on the FER2013Plus (Zahara et al., 2020)
dataset. By doing so, an ideal infrastructure can be selected for the model which balances
between training time and accuracy.

Model accuracy
A graph of epochs vs Accuracy, depicted in Fig. 3, gives key insights on how the proposed
model is learning on the data set. During model training for the first few epochs it is seen
that the accuracy starts out low and increases quickly, which indicates the model is learning
the basic features and patterns from the data. However, as the training progresses the curve
tends to plateau which indicates that convergence is reached. Rapid changes in the curve
indicates a higher learning rate which needs to be reduced in order to stop overshooting
the optimal weights. The main purpose of this curve is to show overfitting when the model

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 10/20

https://peerj.com
https://doi.org/10.7717/peerjcs.2339/fig-2
http://dx.doi.org/10.7717/peerj-cs.2339


Figure 3 An illustration of the change in accuracy with epochs.
Full-size DOI: 10.7717/peerjcs.2339/fig-3

learns too many patterns on the training data so it can’t generalize it for the validation data
set.

In Fig. 4, the epochs vs validation accuracy graph, a lot of fluctuations can be noticed
which is due to the smaller size of the dataset used for evaluation. Notably, it can be seen
that the validation accuracy increases, which supports the notion that the model is good at
generalizing and not overfitting.

From the above graphs, we can inference that, early stopping is activated at different
epochs for different GPUs. We see that the model trained on Nvidia T4 GPU has the best
training accuracy (92.3%). The model reaches its best training accuracy by epoch 13 for
the Nvidia RTX-3050 GPU this is because early stopping activates at a local minima during
training. These effects can be further minimized by increasing the patience value.

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 11/20

https://peerj.com
https://doi.org/10.7717/peerjcs.2339/fig-3
http://dx.doi.org/10.7717/peerj-cs.2339


Figure 4 An illustration of the increase in validation accuracy with epochs.
Full-size DOI: 10.7717/peerjcs.2339/fig-4

The second figure displays epochs with respect to validation accuracy of inferencing the
model with multiple GPUs separately. The Nvidia RTX-3050 GPU seems to have finished
inferencing quickly in terms of epoch count at a cost of validation accuracy when compared
to Nvidia T4, which takes longer to infer with respect to epoch count but provides better
validation accuracy. Overall, this shows the versatility of the model as it can be trained on
different kinds of GPUs with different V-RAM configurations and still achieve comparable
results.

Model loss
As it can be observed in Fig. 5, at the initial phase of training, the loss is high due to random
weight initialization. However, in the subsequent epochs the loss reduces gradually hinting
that the key features for each label has been learnt. The slope of the curve gradually
decreases and then flattens, signifying that the model has converged. Further, to achieve

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 12/20

https://peerj.com
https://doi.org/10.7717/peerjcs.2339/fig-4
http://dx.doi.org/10.7717/peerj-cs.2339


Figure 5 An illustration of the drop in loss with epochs.
Full-size DOI: 10.7717/peerjcs.2339/fig-5

better loss values the model has to be fine tuned by training layers specifically. The learning
rate scheduler callback decreases the learning rate with epochs, which further helps in
decreasing the loss and preventing overfitting. The decrease in validation loss can be
observed in Fig. 6. Comparing the validation loss and training loss graphs an insight into
the bias–variance trade-off (Yang et al., 2020) of the model is obtained. Generally low
training loss and high validation loss means overfitting whereas, high training loss and
high validation loss means the model is underfitting. From Figs. 5 and 6, it is observed that
the model has comparable training and validation losses leading to the conclusion that it
is neither over-fitting nor under-fitting (Zhang, Zhang & Jiang, 2019).

The training loss versus epochs curve displays the effectiveness of the Learning Rate
scheduler as this allows the model to reach loss convergence very fast across varying system
conditions. It is observed that Nvidia A100 isn’t the best case scenario for this model.

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 13/20

https://peerj.com
https://doi.org/10.7717/peerjcs.2339/fig-5
http://dx.doi.org/10.7717/peerj-cs.2339


Figure 6 An illustration of the drop in validation loss with epochs.Noise is induced in this curve due to
the small data size of validation data.

Full-size DOI: 10.7717/peerjcs.2339/fig-6

The validation loss versus epochs curve displays the versatility of validation loss during
inference, Nvidia RTX-3050 GPU outperforms every other GPUwhen it comes to inferring
as the validation loss is the least, every other GPU overlearns after a point hence leading
to higher validation loss. This suggests that Nvidia RTX-3050 is better as generalising the
dataset as it performs well during inferencing.

Figure 7 gives the training times taken by various GPUs to train the proposed DCNN
model. It is found that the model trains faster on GPUs with more V-RAM.

The proposed DCNN model has been compared to other pre-trained models, namely,
EfficientNetB4, VGG16, VGG19, ResNet50V2, on the Fer2013Plus dataset, and their
performances were taken as a baseline. Figure 8 plots the differences between the proposed
DCNNmodel with othermodels in terms of training accuracy, validation accuracy, training
loss, validation loss. Table 2 gives a comprehensive overview of all the performance metrics

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 14/20

https://peerj.com
https://doi.org/10.7717/peerjcs.2339/fig-6
http://dx.doi.org/10.7717/peerj-cs.2339


Figure 7 Training time of various GPUs.
Full-size DOI: 10.7717/peerjcs.2339/fig-7

employed, namely validation accuracy, validation loss, training accuracy, training loss,
F1-score, recall and precision.

EfficientNetB4
EfficientNetB4 consisting of 475 layers within performs with around 36.5% of validation
accuracy compared to 81.3% of validation accuracy on the proposed DCNNmodel. When
observing the accuracy vs epochs curve a lot of noise and fluctuations are observed in the
EfficientNetB4 model. This is due to the model being highly complex as it uses many layers
and some of them are connected to each other non-sequentially using functional apis.
Hence, the model tends to overlearn certain features and cannot generalize, which leads
to it having the worst performance compared to any other pre-trained models that were
compared.

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 15/20

https://peerj.com
https://doi.org/10.7717/peerjcs.2339/fig-7
http://dx.doi.org/10.7717/peerj-cs.2339


Figure 8 (A) Training accuracies; (B) loss curves; (C) validation accuracies; (D) validation losses.
Full-size DOI: 10.7717/peerjcs.2339/fig-8

Table 2 Comparison with other previously trained models with respect to the proposed DCNNmodel.

Model Used Val_Accuracy Val_Loss Accuracy Loss F1 score Recall Precision

Efficient-Net B4 36.583% 1.607 36.314% 1.5950 0.1960 0.3658 0.1330
ResNet 50 52.444% 1.282 53.410% 1.2392 0.2472 0.2826 0.2290
VGG 16 50.599% 1.314 51.772% 1.2706 0.2600 0.2949 0.2452
VGG 19 45.231% 1.478 45.850% 1.4512 0.2520 0.2700 0.2405
Proposed DCNN
(Without Aug-
mentation )

81.326% 0.575 92.242% 0.2280 0.2449 0.2511 0.2394

Proposed DCNN
(With Augmenta-
tion )

80.138% 0.559 84.272% 0.4401 0.2405 0.2498 0.2334

VGG-19
The VGG-19 model has a layer count of 22 and has a validation accuracy of about 45.23%.
This model mainly contains blocks of convolutional layers and pooling layers in them.
This model is substantially better than EfficientNetB4 because the model architecture is
simpler and the pooling layers reduces overlearning. This gave the idea to use blocks of
convolution layers and max pool layers in the proposed DCNN model.

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 16/20

https://peerj.com
https://doi.org/10.7717/peerjcs.2339/fig-8
http://dx.doi.org/10.7717/peerj-cs.2339


Figure 9 Comparison of model performance. (A) Without data augmentation; (B) with data augmenta-
tion.

Full-size DOI: 10.7717/peerjcs.2339/fig-9

VGG-16
This model architecture is similar to that of VGG19 and performs slightly better compared
to VGG19, it has a layer count of 19 and has a validation accuracy of 50.59%. This model
is lighter in terms of the density of layers compared to all the other models as well as to
the proposed DCNN model. Out of the compared models this is the simplest model that
could achieve a comparatively good validation accuracy.

ResNet50V2
Thismodel has a layer count of 190 layers. This model focusesmore on batch normalization
and padding layers. This model performs the best as compared to the other pre-trained
models discussed here. It has a validation accuracy of about 52.4%. This is a relatively
complex model in terms of layer density compared to proposed DCNN.

Figure 9 can be used to infer that augmenting the data can lead to varied results and
must be used cautiously.

CONCLUSIONS
Concluding this analysis, the evaluation of the proposed DCNNmodel on the Fer2013Plus
dataset showcases its robustness and adaptability through the strategic incorporation of
convolutional, max pooling, and dropout layers. These architectural elements contribute
significantly to themodel’s accuracy, striking a balance betweenoverfitting andunderfitting.
The hierarchical combination of convolutional layers and pooling layers aids the model in
extracting relevant features at different scales, ultimately contributing to its accuracy and
generalization. The integration of dropout layers further acts as a regularizer, mitigating
overfitting by preventing the model from relying excessively on specific neurons.

Through the careful orchestration of these layers, the DCNN model achieves a
harmonious blend of feature extraction, dimensionality reduction, and regularization.

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 17/20

https://peerj.com
https://doi.org/10.7717/peerjcs.2339/fig-9
http://dx.doi.org/10.7717/peerj-cs.2339


This approach ensures that the model learns pertinent and prominent features, avoids
overfitting or underfitting, and attains impressive accuracy on the dataset.

ACKNOWLEDGEMENTS
We thank IEEE Bengaluru chapter and MIT Bengaluru for providing us support to carry
out this research.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Dayananda Pruthviraja conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.
• Ujjwal Mohan Kumar conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Sunil Parameswaran performed the experiments, performed the computation work,
prepared figures and/or tables, and approved the final draft.
• Vemulapalli Guna Chowdary analyzed the data, performed the computation work,
authored or reviewed drafts of the article, and approved the final draft.
• Varun Bharadwaj analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Data can be found in the Supplemental Files.
The dataset used to train the model, the dataset is available at GitHub: https:

//github.com/microsoft/FERPlus.git.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2339#supplemental-information.

REFERENCES
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean

J, DevinM, Ghemawat S, Goodfellow I, Harp A, Irving G, IsardM, Jia Y, Kaiser L,
Kudlur M, Levenberg J, Zheng X. 2015. TensorFlow: large-scale machine learning
on heterogeneous distributed systems. ArXiv arXiv:1603.04467.

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 18/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2339#supplemental-information
https://github.com/microsoft/FERPlus.git
https://github.com/microsoft/FERPlus.git
http://dx.doi.org/10.7717/peerj-cs.2339#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2339#supplemental-information
http://arXiv.org/abs/1603.04467
http://dx.doi.org/10.7717/peerj-cs.2339


Albawi S, Mohammed TA, Al-Zawi S. 2017. Understanding of a convolutional neural
network. In: 2017 International conference on engineering and technology (ICET).
Antalya: 1–6 DOI 10.1109/ICEngTechnol.2017.8308186.

Amos B, Ludwiczuk B, SatyanarayananM. 2016. OpenFace: a general-purpose face
recognition library with mobile applications. Pittsburgh: Carnegie Mellon Univer-
sity. Available at https://elijah.cs.cmu.edu/DOCS/CMU-CS-16-118.pdf .

Bessel FW, Bradley J. 1818. Fundamenta astronomiae pro anno MDCCLV: deducta ex
observationibus per annos 1750-1762 institutis viri incomparabilis James Bradley in
specula astronomica Grenovicensi. Gotha: Regiomonti.

Chavolla E, Zaldivar D, Cuevas E, Cisneros M. 2018. Color spaces advantages and
disadvantages in image color clustering segmentation. In: Hassanien A, Oliva D, eds.
Advances in soft computing and machine learning in image processing. Studies in com-
putational intelligence, vol. 730. Cham: Springer DOI 10.1007/978-3-319-63754-9_1.

Clevert D-A, Unterthiner T, Hochreiter S. 2016. Fast and accurate deep network
learning by exponential linear units (ELUs). In: ICLR 2016.

Gal M, Rubinfeld D. 2018. Data standardization. SSRN Electronic Journal
DOI 10.2139/ssrn.3326377.

Gavrikov P. 2020. visualkeras. GitHub repository. Available at https://github.com/
paulgavrikov/visualkeras.

He K, Zhang X, Ren S, Sun J. 2015. Deep residual learning for image recognition. ArXiv
arXiv:1512.03385.

Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by
reducing internal covariate shift. ArXiv arXiv:1502.03167.

Kim C, Kim S, Kim J, Lee D, Kim S. 2021. Automated learning rate scheduler for large-
batch training. ArXiv arXiv:2107.05855.

Kingma D, Ba J. 2014. Adam: a method for stochastic optimization. In: International
conference on learning representations.

Kingma DP, Ba J. 2017. Adam: a method for stochastic optimization. ArXiv
arXiv:1412.6980.

Lu L. 2020. Dying ReLU and initialization: theory and numerical examples. Communica-
tions in Computational Physics 28(5):1671–1706 DOI 10.4208/cicp.OA-2020-0165.

Nirthika R, Manivannan S, Ramanan A,Wang R. 2022. Pooling in convolutional
neural networks for medical image analysis: a survey and an empirical study. Neural
Computing & Applications 34(7):5321–5347 DOI 10.1007/s00521-022-06953-8.

Nwankpa C, IjomahW, Gachagan A, Marshall S. 2018. Activation functions: compari-
son of trends in practice and research for deep learning. ArXiv arXiv:1811.03378.

Park S, Kwak N. 2017. Analysis on the dropout effect in convolutional neural networks.
In: Lai SH, Lepetit V, Nishino K, Sato Y, eds. Computer vision – ACCV 2016.
ACCV 2016. Lecture notes in computer science, vol. 10112. Cham: Springer, 189–204
DOI 10.1007/978-3-319-54184-6_12.

Prechelt L. 2000. Early stopping—but when? In: Orr GB, Müller KR, eds. Neural
networks: tricks of the trade. Lecture notes in computer science, vol. 1524. Berlin,
Heidelberg: Springer DOI 10.1007/3-540-49430-8_3.

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 19/20

https://peerj.com
http://dx.doi.org/10.1109/ICEngTechnol.2017.8308186
https://elijah.cs.cmu.edu/DOCS/CMU-CS-16-118.pdf
http://dx.doi.org/10.1007/978-3-319-63754-9_1
http://dx.doi.org/10.2139/ssrn.3326377
https://github.com/paulgavrikov/visualkeras
https://github.com/paulgavrikov/visualkeras
http://arXiv.org/abs/1512.03385
http://arXiv.org/abs/1502.03167
http://arXiv.org/abs/2107.05855
http://arXiv.org/abs/1412.6980
http://dx.doi.org/10.4208/cicp.OA-2020-0165
http://dx.doi.org/10.1007/s00521-022-06953-8
http://arXiv.org/abs/1811.03378
http://dx.doi.org/10.1007/978-3-319-54184-6_12
http://dx.doi.org/10.1007/3-540-49430-8_3
http://dx.doi.org/10.7717/peerj-cs.2339


Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image
recognition. ArXiv arXiv:1409.1556.

TanM, Le QV. 2019. EfficientNet: rethinking model scaling for convolutional neural
networks. ArXiv arXiv:1905.11946.

ThompsonMD,Wesolowski B. 2018. Variance. DOI 10.4135/9781506326139.n737.
Xu C,Wang H. 2022. Research on a convolution kernel initialization method for

speeding up the convergence of CNN. Applied Sciences 12(2):633–647
DOI 10.3390/app12020633.

Yang Z, Yu Y, You C, Steinhardt J, Ma Y. 2020. Rethinking bias-variance trade-off for
generalization of neural networks. In: International conference on machine learning.
Westminster: PMLR, 10767–10777.

Zahara L, Musa P, PrasetyoWibowo E, Karim I, Bahri Musa S. 2020. The facial emotion
recognition (FER-2013) dataset for prediction system of micro-expressions face
using the convolutional neural network (CNN) algorithm based raspberry Pi. In:
2020 Fifth international conference on informatics and computing (ICIC), Gorontalo,
Indonesia. 1–9 DOI 10.1109/ICIC50835.2020.9288560.

Zhang Z, SabuncuMR. 2018. Generalized cross entropy loss for training deep neural
networks with noisy labels. In: 32nd Conference on neural information processing
systems (NeurIPS 2018), Montréal, Canada.

Zhang H, Zhang L, Jiang Y. 2019. Overfitting and underfitting analysis for deep learning
based end-to-end communication systems. In: 2019 11th international conference
on wireless communications and signal processing (WCSP), Xi’an, China. 1–6
DOI 10.1109/WCSP.2019.8927876.

Pruthviraja et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2339 20/20

https://peerj.com
http://arXiv.org/abs/1409.1556
http://arXiv.org/abs/1905.11946
http://dx.doi.org/10.4135/9781506326139.n737
http://dx.doi.org/10.3390/app12020633
http://dx.doi.org/10.1109/ICIC50835.2020.9288560
http://dx.doi.org/10.1109/WCSP.2019.8927876
http://dx.doi.org/10.7717/peerj-cs.2339

