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ABSTRACT
Medical data analysis is an expanding area of study that holds the promise of
transforming the healthcare landscape. The use of available data by researchers gives
guidelines to improve health practitioners’ decision-making capacity, thus enhancing
patients’ lives. The study looks at using deep learning techniques to predict the onset of
osteoporosis from theNHANES 2017–2020 dataset that was preprocessed and arranged
into SpineOsteo and FemurOsteo datasets. Two feature selection methods, namely
mutual information (MI) and recursive feature elimination (RFE), were applied to
sequential deep neural network models, convolutional neural network models, and
recurrent neural network models. It can be concluded from the models that the mutual
information method achieved higher accuracy than recursive feature elimination,
and the MI feature selection CNN model showed better performance by showing
99.15% accuracy for the SpineOsteo dataset and 99.94% classification accuracy for
the FemurOsteo dataset. Key findings of this study include family medical history,
cases of fractures in patients and parental hip fractures, and regular use of medications
like prednisone or cortisone. The research underscores the potential for deep learning
in medical data processing, which eventually opens the way for enhanced models for
diagnosis and prognosis based on non-image medical data. The implications of the
study shall then be important for healthcare providers to be more informed in their
decision-making processes for patients’ outcomes.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Text Mining
Keywords Deep learning, Convolutional neural networks (CNNs), Recurrent neural networks
(RNNs), Non-image medical data, Classification, Feature selection, Mutual information (MI),
Recursive feature elimination (RFE)

INTRODUCTION
Osteoporosis is a health issue where bones weaken and become fragile, making fractures
more likely to happen. It develops gradually over time and is often only detected when a
bone breaks due to impact or injury such as a fall. For a very long period, osteoporosis
(OP) was only associated with a decrease in the total density of bones, which decreased
bone mass and increased fracture risk (Mornar et al., 2024). The structure inside a bone
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can be likened to a honeycomb. In individuals with osteoporosis, the bone ‘‘walls’’ of this
honeycomb structure shrink while the spaces between the bones widen. Moreover, the
outer layer of the bone thins out, leading to weakened bone (Yang et al., 2013).

Themost commonmedical image acquisition are computed tomography (CT),magnetic
resonance imaging (MRI), and dual X-ray DXAwhich have been used inmedical prediction
models (Sistaninejhad, Rasi & Nayeri, 2023; Lakshmipriya, Pottakkat & Ramkumar, 2023),
but dual X-ray absorptiometry was regarded as the key standard method for determining
the patient’s bone mineral density (Molino et al., 2020) as it is affordable, less radiation to
the patients, and is widely available in most medical centers. This article aims to analyze
medical data collected from the NHANES 2017–March 2020 (NHANES, 2020) which
includes data collected from DXA images of the spine and femur in addition to the
dataset acquired from questionnaire reports of patients who may or may not suffer from
osteoporosis.

Deep neural networks are used in medical deep learning, a subset of artificial intelligence
(AI), to analyze medical data and produce predictions or diagnoses. In the field of
healthcare, deep learning distinguishes itself from rule-based or expert systems by making
decisions based on identifying patterns that may go unnoticed by humans (Nasir et al.,
2023). These algorithms are particularly skilled at detecting indications of diseases or
irregularities, proving valuable in tasks such as analyzing images. Their ability to adapt to
data and continuously improve makes them well-suited for applications offering accuracy
and cost reduction. By supporting treatment plans, deep learning has the potential to
transform healthcare through the development of predictive models (Merdas & Mousa,
2023).

According to an analysis of deep learning algorithms in 2022, there has been a noticeable
increase in the number of review and survey papers published on this topic over the past
three to four years (Egger et al., 2022).

Over this period, there has been a release of reviews on medical deep learning typically
around once a month. The analysis also found that the use of deep learning algorithms
in clinical settings has made a significant impact on the field of medicine (Mousa et al.,
2020). This detailed analysis delves into the progress made in deep learning technologies
and underscores their capacity to enhance outcomes.

The study’s main contributions are presented as follow:
1. This study demonstrates the potential application of deep learning algorithms in

medical data processing and improving diagnostic and prognostic models based on
non-image medical data. The output would be helpful for medical experts in making
decisions that are informed, hence bettering the health outcomes of patients.

2. A related work is provided to illustrate an overview of related research using deep
learning techniques to analyze medical data.

3. This study highlights the importance of feature selection methods to best improve the
accuracy of the prediction models. These models illustrate how they may be applied in
medical practice and reduce the risk of any bone fracture.
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4. The article highlights family medical history as a vital aspect in predicting osteoporosis
by paying close attention to such cases as fractures in the patient and hip fractures in
the parents.

5. A comparison of our developed model to another model developed by researchers
inAlalhareth & Hong (2023) to indicate the importance of the feature selectionmethods
and deep learning techniques.

RELATED WORK
Current status
Many researchers have attempted using machine learning techniques to predict
osteoporosis and showed promising results in this field.

A study conducted by Kranthi, Sailaja & Jyothi (2024) that uses deep learning methods,
particularly convolutional neural networks (CNNs), to automate the interpretation and
analysis of images by leveraging extensive medical image datasets. Their process includes
converting raw image data into structured formats to facilitate accurate analysis. Their
proposed model achieved an F1-score of 93.22% and a classification accuracy of 91.16%.
However, the authors stated some limitations such as overfitting and the complexity
of training the model. These issues highlight the need for optimization and substantial
computational resources to enhance model performance and reliability.

Sisodia, Nayak & Boghey (2024) developed a hybrid CNN-deep neural network (DNN)
model to predict stock and index prices for Bank Nifty, leveraging historical trading data
for feature extraction and accurate forecasting and achieving a prediction accuracy of
97.48%. Despite the high accuracy, the authors highlight some of the limitations such as
overfitting, the need for robust computational resources, and the complexity of training a
hybrid model.

Another recent study conducted in 2021 highlighted the effectiveness of a learning
network known as DeepDXA in evaluating bone mineral density (BMD) using pelvis
X-rays (Ho et al., 2021). By examining data within the X-ray images, this model can
predict BMD values with precision. DeepDXA presents an alternative in comparison to
conventional methods like dual-energy X-ray absorptiometry (DXA), which necessitates
specialized equipment and trained personnel. Moreover, DeepDXA has demonstrated
performance in predicting osteoporosis from hip X-ray images with an accuracy of 88%,
allowing for cost-effective identification of osteopenia and osteoporosis (Ho et al., 2021).
The findings of this research could have an impact on the accuracy and ease of diagnosing
osteoporosis, potentially improving outcomes by enhancing the precision and usability of
osteoporosis diagnosis in clinical environments. Other related work can be summarized in
Table 1. The purpose of this comparison to related work is to emphasize the advancements
in machine learning and deep learning techniques applied to osteoporosis prediction and
similar medical data analysis tasks. By doing so, the study aims to highlight the existing gaps
and limitations in current methods that it seeks to address, showcasing the effectiveness
and novelty of our approach.
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Table 1 Related work.

No. Authors Year Contribution

1. Y. Singh, V. Atulkar, J. Ren, J. Yang, H. Fan, L. Latecki and
H. Ling

2021 Deep learning was utilized in this study to predict bone
mineral density from dental panoramic radiographs, which
has the potential to be used as a tool for osteoporosis
screening. This research presents the evaluation of a
DCNN-based CAD system for the detection of osteoporosis
using dental panoramic radiographs, achieving 87.86%
accuracy with the inclusion of age data for BMD prediction
(Singh et al., 2021).

2. I. Wani and S. Arora 2020 Examined deep Learning techniques alongside energy X-
ray absorptiometry (DXA) to predict osteoporotic. This was
a review article that studies the implementation of neural
network models to assist in Osteoporosis prediction (Wani
& Arora, 2020).

3. Giulia Molino, Giorgia Montalbano, Carlotta Pontremoli,
Sonia Fiorilli ,and Chiara Vitale Brovarone

2020 Outline the advantages of using complex imaging
techniques such as MicoCT, which provide high resolution
for Osteoporosis diagnosis. Limitation: the authors state
the limitation of their study as these techniques produce
higher doses of radiation and have higher costs, making
them difficult to use in medical centers (Molino et al., 2020).

4. G. Long, C. Liu, T. Liang, Z. Zhang, Z. Qin and X. Zhan 2023 A systematic review providing an assessment and meta-
analysis of the diverse machine learning methods employed
in predicting osteoporotic fractures. This meta-analysis
identified, from ten studies involving over 1.2 million
participants, significant predictors of fracture risk in
postmenopausal women, including age, BMI, reproductive
history, and use of vitamin D. The results support a focus
on high-risk individuals for prevention strategies (Long et
al., 2023).

5. Efat Jabarpour, Amin Abedini, and Abbasali Keshtkar 2020 This study used data mining methods to predict the risk of
Osteoporosis. Their findings could be helpful to be used
as a sample for future Osteoporosis prediction in new
patients. Limitation: the study used data from 2006–2010
which affects the implication of their finding on the current
population. Also, the models’ accuracy was lower than any
other models and needs more improvement to increase
their accuracy (Jabarpour, Abedini & Keshtkar, 2020).

6. J. Smets, E. Shevroja, T. Hügle, W. Leslie and D. Hans 2021 Researchers investigate machine learning algorithms like
decision trees, support vector machines, and artificial neural
networks for predicting osteoporosis. Among 89 studies,
supervised learning models coupled with medical imaging
in risk prediction were highlighted, though data quality and
external validation challenges remain. Recommendations
pertain to the use of standardized checklists to improve
reproducibility (Smets et al., 2021).

(continued on next page)
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Table 1 (continued)

No. Authors Year Contribution

7. Kopperdahl, David L., Thor Aspelund, Paul F. Hoffmann,
Sigurdur Sigurdsson, Kristin Siggeirsdottir, Tamara B.
Harris, Vilmundur Gudnason, and Tony M. Keaveny.

2019 Machine learning methods were employed to
forecast risks, for women with osteoporosis. The
investigation found that machine learning systems
showed accuracy levels to those of methods used
to evaluate fracture risks (Kopperdahl et al., 2014).
Limitation: DXA was not used in this study; instead, a
CT-based measure of areal BMD was used, which may
not perfectly correlate with DXA measurements. Also, this
design limits the ability to estimate prevalence and absolute
risk directly.

8. M. A. Alsheikh, A. Selamat, and M. A. Al-Masni 2019 Investigate the application of data mining techniques in
diagnosing osteoporosis, including clustering, classification,
and association rule mining (Alsheikh, Selamat & Al-Masni,
2019).

Limitations
Recent studies have proven the significant advancement in osteoporosis prediction made
by machine learning based on image and non-image medical data and questionnaires
of patients. Fusing a wide range of clinical records, genetic data, and patient-reported
outcomes has increased the predictive precision of ML models.
1. Data integration and standardization: Combining data integration from a mix of

sources such as clinical records, genetic data, and questionnaires into one harmonious
format remains a significant challenge due to discrepancies in data formats and
standards. This requires effective techniques in data fusion (Ebbehoj et al., 2022).

2. Privacy and security: Medical data are highly sensitive and cannot be exposed to the
public domain. Among these, data handling and processing for protectionmust comply
with regulations such as HIPAA and GDPR (Vitabile et al., 2019).

3. Model interpretability: ML models, especially deep learning models, are considered a
black box. The interpretability of such models and their predictions is quite crucial for
clinical acceptance and trust (Cui et al., 2023).

4. Generalizability and bias: ML models being trained on specific datasets risk
generalizing on other populations due to differences in demographic characteristics
and clinical practices. Correcting biases in training data is essential, hence these models
must be validated on diverse datasets (Amal et al., 2022).
Our study effectively addresses several key limitations identified in the current research

for using machine learning (ML) techniques to predict osteoporosis based on non-image
medical data and patient questionnaires.
1. Data integration and standardization: Several datasets of femur, spine, and patient

questionnaire data obtained from the NHANES 2017–2020 were integrated into
our research. By merging the different datasets and incorporating feature selection
techniques such as recursive feature elimination (RFE) and mutual information (MI),
this study makes sure that the data used is complete and relevant to our research.
This approach is mainly instrumental in mitigating the issues that result from the
heterogeneity and standardization of data within multi-modal data integration.
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2. Privacy and security: The fact that NHANES data is an openly accessed dataset would
mean that its uses should be subject to all data protection regulations. Future work
may be strengthened by explicitly addressing how privacy and security are maintained,
particularly in line with guidelines set by HIPAA and GDPR, to enhance trust and
applicability for real-world clinical settings.

3. Interpretability of models: Our research makes use of sequential deep neural networks
(DNN), convolutional neural networks (CNN), and recurrent neural networks (RNN)
for prediction. The authors provide transparency in how such models work and
which features are most influential by detailing the architecture and process of feature
selection. This type of transparency improves the interpretability of models, which is a
critical limitation in the deployment of ML in clinical practice.

4. Generalizability and bias: Using a large, diverse dataset from NHANES helps to
enhance the generalizability of our findings. However, our study does point out
the limitation of working with data from a particular demographic (the Hispanic
population) which could not capture all variations in patient demographics. Future
research may do this by targeting more diverse populations to ensure the robustness
of the model in a different demographic group.

METHODOLOGY
Data preparation
One of the first data preparation steps is to ensure there is no missing or incorrect data that
could affect the decision-making process. The dataset size affects the process of processing
and analyzing (Kopperdahl et al., 2019). The datasets used in this article were NHANES
2017–2020 (NHANES, 2020), and are of the Hispanic population who are more likely to
have osteoporosis than any other ethnicity, making them a great selection for this study.
The Femur, Spine, and Questionnaire datasets were collected from the CDC Center for
Disease Control and Prevention. After first analyzing the data and comparing these three
datasets, some data rows were discarded since some of those patients were not included in
the questionnaire data. This could be because those patients refused to participate in the
questionnaire, or their information was incorrectly collected. The Femur dataset contains
3,545 rows, while the Spine dataset contains 1,889 data rows.

After comparing these datasets to the questionnaire dataset, a few data rows were omitted
from the resulting dataset as not all patients participated in the survey that was conducted
by CDC center, National Center for Health Statistics (CDC, 2021b). Only 1,725 and 3,544
data rows for spine and femur datasets, respectively, remain in this study. The resulting
datasets were only two datasets which were a result of the merging process of the Spine and
Femur datasets with the Questionnaire dataset based on a common identifier, which is the
patients’ sequence number. These two resulting datasets were SpineOsteo and FemurOsteo
Datasets.

All NHANES 2017–2020 sample individuals 50 years of age or older were eligible.
Pregnant women were not allowed to take the DXA test. Participants who were not
pregnant but had been omitted from the test were eligible non-respondents. The following
are the reasons for being disqualified from the DXA test:
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• Pregnancy (confirmed by a pregnancy test).
• Self-reported prior week exposure to radiographic contrast chemicals such as barium
or dyes.
• Weight exceeding 450 pounds that was measured (DXA table restriction).

The Shepherd Lab assessed and evaluated each participant and phantom scan
using conventional radiologic methods and study-specific protocols created for the
NHANES (NHANES, 2023). All femur scans performed between 2017 andMarch 2020were
analyzed using the Hologic software, APEX v4.0 (Hologic). The correctness and consistency
of the findings were confirmed by the Shepherd Research Lab’s expert examination of 100%
of the participant scans that were subjected to analysis (NHANES, 2023).

Femur dataset
In this section, a discussion about the type of data in this dataset will be presented. If a
participant had both hips broken, had both hips replaced, or had pins in both hips, they
were disqualified from the femur scan.

When assessing for osteoporosis, particular attention is given to the hip unless there has
been a fracture, hip replacement, or surgery involving the left hip. In some cases, scans are
conducted on the other hip to gather information on bone mineral density (BMD), bone
mineral content (BMC), bone area measurements, and other relevant data. These data
were extracted from DXA imaging of the selected area (NCHS, 2020). Only 1,048 missing
values of data were not recorded.

Spine dataset
The Spine data set includes bone measurements for the total spine and vertebrae L1–
L4 (CDC, 2021b), including:

• Bone mineral content (BMC).
• Bone area measurements.
• Bone mineral density (BMD).

The missing value for most of these data was 1,816 value, except for calculated vitamin
K and calculated vitamin D where the number of missing values was 690.

Questionnaire dataset
This dataset includes answered questions from the patients that were included in this data
collection process (CDC, 2021a). These questionnaires were summarized as follows:

• Information on a spine, wrist, or hip fracture that was self-reported.
• Age at each spine, wrist, or hip fracture and the total number of fractures
• The severity of each fracture of the hip, wrist, or spine
• Other bone fractures, the severity of the trauma that caused them, and the age at which
they happened.
• Whether the individual has ever received an osteoporosis diagnosis (this data was used
as target variable since it specifies if the patient had or had not have Osteoporosis).
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• Whether the participant has had treatment for osteoporosis using a prescription drug,
such as Actonel, Boniva, Fosamax, or Forteo.
• Whether or not the participant’s biological parents had osteoporosis diagnoses.
• Whether the participant’s parents ever suffered a hip fracture, and if so, when.

Feature selection
Selecting the best features that have a high correlation with the target variable is a very
important step in the process of analyzing and building a classification model (Chen et al.,
2019). There are many supervised and unsupervised algorithms for feature selection, as
shown in Fig. 1, where the supervised approach uses the target label or variable, unlike the
unsupervised algorithm, which doesn’t need access to the target variable (Oleszak, 2023).
• Recursive feature elimination (RFE) selects features in a recursive manner by training
the model and eliminating the least significant feature(s) at each iteration (Samb et al.,
2012). It assesses the importance of characteristics in relation to themodel’s performance.
The least significant characteristics were eliminated, and the classification features were
repeatedly updated (Chen et al., 2018). It is a wrapper feature selection algorithm that
uses a filter-based feature selection algorithm internally to build an efficient classifier. In
this article, RFE is based on the random forest algorithm RF-RFE, which was presented
by Breiman (2001) and was designed to select only 30 variables of the datasets for all
models.
• Mutual information (MI) serves as a method for uncovering the connections between
variables (Priscilla & Prabha, 2021). It explains how to determine the significance of a
group of features with the target variable. When the MI value is greater than zero for
two variables, they are considered statistically related; if the MI value is less than zero,
they are deemed statistically independent. The MI is directly linked to the entropies of
the variables (Estévez et al., 2009). In these models, only the 30 features with correlations
were selected using this algorithm.

Deep learning models
Deep learning is a subset of artificial intelligence and machine learning. Recent years
have seen major advances in this subfield, leading to the development of tools for the
comprehensive analysis of complicated medical data. Applying deep learning to the
medical sector began in the early 2010s (Litjens et al., 2017), with the highly successful
application of DL to image recognition. Significant performances from CNNs have been
reported for medical image analysis, allowing automatic detection and classification of
diseases from medical imaging data like X-rays, MRIs, and CT scans (McKinney et al.,
2020). The use of machine learning algorithms in the health sector has increased over
time which indicates the powerfulness of these algorithms in analyzing medical data and
feature selection techniques to assist in diagnosis and disease prediction models (Rana &
Bhushan, 2023; Salehi et al., 2023). The importance of deep learning methods in various
medical image analysis tasks such as segmentation and reconstruction has significantly
improved over time by providing higher accuracy and adaptability compared to traditional
methods (Gong et al., 2024). The models used are Sequential DNNs, CNNs, and RNNs.
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Figure 1 Feature selection methods.
Full-size DOI: 10.7717/peerjcs.2338/fig-1

Each of these models has a unique set of strengths and applications, especially regarding
medical diagnostics.
1. Sequential deep neural networks (DNN): This is a kind of neural network in which

neurons are applied layer by layer and each layer processes input data to extract features
and make predictions. It has a better performance for structured data and has also been
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used in much medical research works for predictive analytics (Denoyer & Gallinari,
2014).

2. Convolutional neural networks (CNN):Althoughmajorly used in image analysis, they
can still be applied for structured data. They use convolutional layers to detect local
patterns, making them suitable for identifying intricate relationships within medical
datasets (Mishra, 2020).

3. Recurrent neural networks (RNN): RNNs are created in a way to maintain a ‘memory’
of previous inputs to be able to handle sequential data. Long short-term memory
(LSTM) units can capture long-term dependencies within data and are therefore
extremely effective for time-series medical data (Jayawardhana, 2020).
This article discusses exploring the capabilities of learning methods such as DNN, CNN,

and RNN in handling medical image data. Our study focuses on categorizing a target
variable using a well-structured medical dataset. The constructed models will explore the
selected variables from the dataset that are most correlated with the target variable, which
in this article is the classification of patients with or without osteoporosis. The data were
split into training, validation, and testing sets.

In this article, six models were designed to analyze these datasets using deep learning
techniques that are most suitable for the analysis of medical data to develop classification
models. These six models were Sequential DNN, CNN, and RNN, and each of these models
used two different feature selection algorithms. Notably, all the models utilize the entropy
loss function, employ the Adam optimizer, and measure performance using accuracy as
the evaluation metric.

EXPERIMENTAL WORK
Extracted features
In this article, two feature selection algorithms were used to better understand which
features have more connection with each other and would benefit the model by using the
most suitable features out of 139 features in the datasets. These two algorithms wereMI and
RFE. The reasons for choosing these algorithms depend greatly on the type of our model
and the datasets. RFE andMImethods are suitable for classification models and non-image
datasets as they rank the importance of features based on the model’s performance. In
addition, MI and RFE algorithms are suitable for analyzing complex and nonlinear data,
such as the datasets in this research, since they take into account the nonlinear correlations
between features and class labels.

These two algorithms were used to extract important features to build the three
classification models. The extracted features are shown in Tables 2 and 3 from SpineOsteo
and FemurOsteo, respectively.

Using deep learning to extract important features from the two datasets combined
shows how important the role of deep learning algorithms is in this process to ensure that
only important features are selected to be trained in the DNN, CNN, and RNN models
in this study. The analysis shows that most selected features were from the Femur and
Spine datasets (64%) with the RFE algorithm and (54%) with the MI algorithm, and the
remaining features were from the Questionnaire dataset.
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Table 2 Selected features from the SpineOsteo dataset.

No. Recursive feature elimination (RFE) Mutual information classification (MI)

Abbreviation Feature’s name Abbreviation Feature’s name

1. DXXOSBMC Total spine BMC DXXOSBMC Total spine BMC
2. DXXOSA Total spine Area DXXOSA Total spine Area
3. DXXL1BMD L1 BMD DXXL1BMD L1 BMD
4. DXXL1BMC L1 BMC DXXL1BMC L1 BMC
5. DXXL1A L1 Area DXXL1A L1 Area
6. DXXL2BMD L2 BMD DXXL2BMD L2 BMD
7. DXXL2BMC L2 BMC DXXL2BMC L2 BMC
8. DXXL2A L2 Area DXXL2A L2 Area
9. DXXL3BMD L3 BMD DXXL3BMD L3 BMD
10. DXXL3BMC L3 BMC DXXL3BMC L3 BMC
11. DXXL3A L3 Area DXXL3A L3 Area
12. DXXL4BMD L4 BMD DXXL4BMD L4 BMD
13. DXXL4BMC L4 BMC DXXL4BMC L4 BMC
14. DXXL4A L4 Area DXXL4A L4 Area
15. OSQ040BA First-time wrist fracture younger/older than 50? OSQ040BA First-time wrist fracture younger/older than 50?
16. OSD050BA What reasons for a wrist fracture in 1st time? OSD050BA What reasons for a wrist fracture in 1st time?
17. OSQ130 Ever taken prednisone or cortisone daily OSQ130 Ever taken prednisone or cortisone daily
18. OSQ160A Mother had osteoporosis OSQ160A Mother had osteoporosis
19. OSQ160B Father had osteoporosis OSQ160B Father had osteoporosis
20. DXXOSBMD Total spine BMD OSD030CA Age when fractured spine 1st time
21. DXASPND0 Calculated value of Vitamin D OSQ040CA Under/over 50 when fracd. spine 1st time
22. OSQ010A Broken or fractured a hip OSQ090F Fracture result of severe trauma?
23. OSQ010C Broken or fractured spine OSQ040CB Under/over 50 when fracd. spine 2nd time
24. OSQ020C Times broken/fractured spine OSD110C Age when fracture occurred?
25. DXASPNK Calculated value of Vitamin K OSQ090E Fracture result of severe trauma?
26. OSQ040BB Under/over 50 when fracd. wrist 2nd time OSD030CB Age when fractured spine 2nd time
27. OSD110A How old when fracture occurred? OSQ090I Fracture result of severe trauma?
28. OSQ120A Any other fractures? OSQ040AA First-time hip fracture younger/older than 50?
29. OSQ140U Duration of using prednisone or cortisone? OSQ180 Mother’s age when fractured hip
30. OSQ150 Have parents had osteoporosis? OSQ210 Father’s age when fractured hip

The existence of 19 similar selected features in both RFE and MI for the spine dataset
and 21 similar selected features in both RFE and MI for the femur dataset indicates these
features are more important or relevant in both datasets. These qualities are consistently
identified as significant by both feature selection methods, indicating that they may give
helpful information for the classification process. The overlap in selected features between
the two algorithms implies that these features follow similar patterns and interact with
the target variable across numerous feature selection procedures. This suggests that these
features may have significant discriminating power and might be reliable markers in
classification models for distinguishing between distinct groups. Figures 2 and 3 illustrate
the selected features resulting fromMI and RFE, respectively. As can be noticed from Fig. 2,
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Table 3 The selected features from the FemurOsteo dataset.

Recursive feature elimination (RFE) Mutual information classification (MI)

Abbreviation Feature’s name Abbreviation Feature’s name

1. DXXOFBMC Total femur BMC DXXOFBMC Total femur BMC
2. DXXOFA Total femur area DXXOFA Total femur area
3. DXXNKBMD Femoral neck BMD DXXNKBMD Femoral neck BMD
4. DXXNKBMC Femoral neck BMC DXXNKBMC Femoral neck BMC
5. DXXNKA Femoral neck Area DXXNKA Femoral neck Area
6. DXXTRBMD Trochanter BMD DXXTRBMD Trochanter BMD
7. DXXTRBMC Trochanter BMC DXXTRBMC Trochanter BMC
8. DXXTRA Trochanter Area DXXTRA Trochanter Area
9. DXXINBMD Intertrochanter BMD DXXINBMD Intertrochanter BMD
10. DXXINBMC Intertrochanter BMC DXXINBMC Intertrochanter BMC
11. DXXINA Intertrochanter Area DXXINA Intertrochanter Area
12. DXXWDBMD Wards triangle BMD DXXWDBMD Wards triangle BMD
13. DXXWDBMC Wards triangle BMC DXXWDBMC Wards triangle BMC
14. DXXWDA Wards triangle Area DXXWDA Wards triangle Area
15. DXAFMRD0 Calculated value of Vitamin D DXAFMRD0 Calculated D Vitamin for femur
16. OSQ040AA Under/over 50 when fracd. hip 1st time OSQ040AA Under/over 50 when fracd. hip 1st time
17. OSQ100A Where fracture occurred OSQ100A Where fracture occurred
18. OSQ160A Mother had osteoporosis OSQ160A Mother had osteoporosis
19. OSQ160B Father had osteoporosis OSQ160B Father had osteoporosis
20. OSQ130 Ever taken prednisone or cortisone daily OSQ130 Ever taken prednisone or cortisone daily
21. OSQ140U Duration of using prednisone or cortisone? OSQ140U Duration of using prednisone or cortisone?
22. DXXOFBMD Total femur BMD OSD030CC Age when fractured spine 3rd time
23. DXAFMRK Calculated value of Vitamin K OSD030BB Age when fractured wrist 2nd time
24. OSQ010A Broken or fractured a hip OSD110B Age when fracture occurred?
25. OSQ020C Times broken/fractured spine OSQ100E Where fracture occurred
26. OSQ040BA Under/over 50 when fracd. wrist 1st time OSQ150 Parents ever told had osteoporosis?
27. OSQ040BB Second-time wrist fracture younger/older than 50? OSQ170 Did mother ever fracture hip?
28. OSQ040CA Under/over 50 when fracd. spine 1st time OSQ180 Mother’s age when fractured hip?
29. OSD110A Age when fracture occurred? OSQ190 Under/over 50 years old
30. OSQ120A Any other fractures? Osteo_class Does the Patient ever told you had Osteoporosis

the most important selected feature using the MI algorithm was if the fracture resulted
from severe trauma, and when using RFE, the highest importance registered feature was if
the patient ever took prednisone or cortisone daily, as shown in Fig. 3.

Proposed deep learning models
There were many attempts to create the best models that would better understand the data
and discover new patterns and relationships between these features. The most crucial stage
in building classification models is the feature selection procedure. After a considerable
number of attempts to create the best models to correctly analyze the datasets, only six
models were designed using two feature selection methods. It is important to state that
this article tested the same architecture of the three models—Sequential DNN, CNN, and
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Figure 2 Selected features usingMI algorithm.
Full-size DOI: 10.7717/peerjcs.2338/fig-2

RNN—on both datasets, and it is proven that these models performed at their best for
both datasets.

Each of these models was evaluated using confusion matrix, precision, recall, F1-score,
and accuracy after training the models using the SpineOsteo and FemurOsteo datasets
for both feature selection algorithms. These calculation metrics formulas are presented as
follows:
1. Precision calculates the number of correctly classified patients that have osteoporosis

out of all trained values.
Precision= TP

TP+FP (Japkowicz, 2006).
2. Recall measures the number of patients who had osteoporosis that had identified

correctly.
Recall = TP

TP+FN (George, 2012).
3. F1-score is the mean value between precision and recall.

F1 score= 2·TP
2·TP+FP+FN = 2 · precision·recallprecision+recall (Fioravanti et al., 2018).

4. Accuracy is the proportion of correct predictions (including true positives and true
negatives) to total forecasts.
Accuracy = TP+TN

TP+TN+FP+FN (Chicco & Rovelli, 2019).
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Figure 3 Selected features using RFE algorithm.
Full-size DOI: 10.7717/peerjcs.2338/fig-3

Sequential DNN model
Machine learning techniques, especially deep neural networks, are a very strong and
popular model that has been used in predictive problems, exploring, and explaining the
different and complex relationships between variables in the datasets (Japkowicz, 2006).

DNN model architecture. Layers are added to the model that are fully connected. The first
layer consists of 64 units/neuronswith rectified linear units (ReLU) as an activation function
for the hidden layers, as it has solid biological andmathematical foundations (Agarap, 2018).
The input dimensions are equal to the number of columns in the selected training data. The
second layer has 32 units/neurons that are also activated by ReLU. The third and final layer
has two units/neurons with SoftMax activation for the output or the classification layer,
as it produces a vector of values that add up to 1.0 and may be used to calculate the target
variable’s probability (Brownlee, 2023) making it appropriate for multi-class classification
issues. The model is trained using the training data for a specified number of epochs (30 in
this case) and a batch size of 75. It also uses the validation data to monitor the validation
accuracy during training before computing the model’s loss and accuracy on the test data.

As shown in Table 4 of the Sequential DNN model architecture, the total number of
trainable parameters, which are the weights and biases assigned to the model’s layers, is
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Table 4 Sequential DNNmodel architecture.

Layer Type Output Shape No. Param
in SpineOsteo
dataset

No. Param
in FemurOsteo
dataset

Layer 1 ReLU Dense (fully connected) 64 neurons 6,528 7,232
Layer 2 ReLU Dense (fully connected) 32 neurons 2,080 2,080
Layer 3 SoftMax Dense (fully connected) 2 neurons 66 66

Table 5 DNN calculation metrics for SpineOsteo and FemurOsteo datasets with RFE algorithm.

SpineOsteo dataset
(8,674 trainable parameters)

FemurOsteo dataset
(9,378 trainable parameters)

Predicted value Precision Recall F1-score Precision Recall F1-score

0 99.82% 98.93% 99.37% 99.89% 99.38% 99.63%
1 92.41% 98.65% 95.43% 94.87% 99.11% 96.95%
Accuracy 98.92% 99.47%

Table 6 DNN confusionmetrics for SpineOsteo and FemurOsteo datasets with RFE algorithm.

Predicted 0 Predicted 1 Predicted 0 Predicted 1

Actual 0 TN = 557 FP = 1 TN = 948 FP = 1
Actual 1 FN = 6 TP = 73 FN = 6 TP = 111

8,674 in the SpineOsteo dataset and 9,378 in the FemurOsteo dataset. This indicates that
all parameters were updated through model training.

Calculation metrics of DNN model. After creating this model, it is important to check the
accuracy of the model and how it fits the two datasets used in this article. The calculation of
the confusion matrix, precision, recall, F1-score, and accuracy are used to analyze the DNN
Model after training on the SpineOsteo and FemurOsteo datasets. Calculation metrics
and confusion metrics for SpineOsteo and FemurOsteo Datasets with RFE Algorithm are
presented in Tables 5 and 6, respectively. The predicted values are 0 (class of patients
without Osteoporosis) or 1 (class of patients with Osteoporosis).

The same model architecture was used with the same datasets, but a different feature
selection algorithm was employed, which is mutual information (MI), as it’s powerful in
determining the importance of each input variable (Yang & Moody, 1999). The Confusion
Matrix, accuracy, precision, recall, and F1-score were used as evaluation metrics for the
Sequential DNN model. The results are shown in Tables 7 and 8. The predicted values are
0 (class of patients without osteoporosis) or 1 (class of patients with osteoporosis).

CNN model
CNNs are a type of network that integrates convolution calculations into at least one of
its layers. They have become significant for their success in computer vision tasks (Taner,
Oztekin & Duran, 2021). Training a CNN model poses two challenges: the amount of
training data needed, and the time required for network training. This implies that, for a
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Table 7 DNN calculation metrics for SpineOsteo and FemurOsteo datasets withMI algorithm.

SpineOsteo Datasets FemurOsteo Dataset

Predicted value Precision Recall F1-score Precision Recall F1-score

0 99.82% 98.93% 99.37% 100% 99.79% 99.89%
1 92.41% 98.65% 95.43% 98.29% 100% 99.14%
Accuracy 98.52% 99.89%

Table 8 DNN confusionmetrics for SpineOsteo and FemurOsteo datasets withMI algorithm.

SpineOsteo DNNmodel FemurOsteo DNNmodel

Predicted 0 Predicted 1 Predicted 0 Predicted 1

Actual 0 TN = 557 FP = 1 TN = 949 FP = 0
Actual 1 FN = 6 TP = 73 FN = 2 TP = 115

CNN model to perform well, the training dataset and duration must be sufficient for the
CNN to master its tasks effectively (Abdulnabi et al., 2015).

CNN architecture. The preparation of a CNN model involves training the two datasets,
evaluating its performance, and computing the point significance based on the weights of
the correlations between the features and the target variable.

A 1D convolutional layer is used in the model. It has 64 filters and a kernel size of
three, uses the ReLU activation function, and then adds a Max Pooling layer to reduce the
spatial size of the previous layer’s output. The output of the preceding layer is flattened
into a 1D vector to connect with the fully connected layers when applicable. This Flatten
layer is frequently employed in a CNN to restructure the subsequent last layer into a
dense layer (Wang et al., 2020). Then, another two dense layers (fully connected layers)
are added: the first layer has 32 ReLU-activated units, and the second layer contains two
SoftMax-activated units.

The CNN model is trained using the training data for 30 epochs and a batch size of
50. It also uses validation data to check validation accuracy throughout training and then
computes the CNN model’s loss and accuracy on the test data. Table 9 shows the CNN
model architecture.

The total number of trainable parameters, which are the weights assigned to the model’s
layers, is 100,706 in the SpineOsteo dataset and 112,994 in the FemurOsteo dataset. This
indicates that all parameters were updated through model training.

Calculation metrics of CNN model. For the Spine and Femur datasets, the results of the
CNN model with the two selection features algorithms are shown in Tables 10 and 11 for
using the RFE algorithm, and Tables 12 and 13 when using the MI algorithm as explained
as follows:

RNN model
A recurrent neural network is a kind of network where the connections between the
computing units create a loop allowing it to manage various input sequences by using its
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Table 9 CNNmodel architecture.

Layer # Type Output shape
SpineOsteo model

Output shape
FemurOsteo model

No. Param
in SpineOsteo model

No. Param
in FemurOsteo model

Layer 1 1D convolutional layer 99 timesteps and 64
feature or channel

110 timesteps and 64
feature or channel

256 256

Layer 2 MaxPooling1D
layer

49 timesteps and 64
feature or channel

55 timesteps and 64
feature or channel

No additional
parameters

No additional
parameters

Layer 3 Flatten layer 49 timesteps and 3,136
feature or channel

55 timesteps and 3,520
feature or channel

No additional
parameters

No additional
parameters

Layer 4 ReLU Dense
(fully connected)

3,136 timesteps and
32 feature or channel

3,520 timesteps and
32 feature or channel

100,384 112,672

Layer 5 SoftMax Dense
(fully connected)

32 timesteps and 2
feature or channel

32 timesteps and 2
feature or channel

66 66

Table 10 CNN calculation metrics for SpineOsteo and FemurOsteo Datasets with RFE algorithm.

SpineOsteo CNNModel
(100,706 trainable parameters)

FemurOsteo CNNModel
(112,994 trainable parameters)

Predicted
value

Precision Recall F1-score Predicted
value

Precision Recall F1-score

0 99.82% 99.29% 99.55% 0 99.89% 100% 99.94%
1 94.49% 98.68% 96.77% 1 100% 99.15% 99.57%
Accuracy 99.29% Accuracy 99.94%

Table 11 CNN confusionmetrics for SpineOsteo and FemurOsteo datasets with RFE algorithm.

SpineOsteo CNNmodel FemurOsteo CNNmodel

Predicted 0 Predicted 1 Predicted 0 Predicted 1

Actual 0 TN = 557 FP = 1 TN = 948 FP = 1
Actual 1 FN = 4 TP = 75 FN = 0 TP = 117

internal memory. Each computational unit of an RNN has a changing numbered activation
over time along, with weights (Selvin et al., 2017).

In this article, an attempt to train an RNN model using LSTM units on the handed data
is explained step by step including processes to evaluate its performance and computes the
point significance grounded on the weights of the LSTM subcaste. Also, it calculates the
correlations between the features and the target variable.

RNN model architecture. A LSTM layer is included in the model as the first layer where its
complexity and representational capacity are controlled by 64 units or memory cells. The
LSTM layer works well with sequence data and is commonly employed in RNN models.
Following that, the second layer in the model is a fully linked layer and it is made up of
32 ReLU-activated units. The last layer is also a fully connected layer with two units with
SoftMax activation that is added for multi-class classification. Table 14 illustrates RNN
Model Architecture.
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Table 12 CNN calculation metrics for SpineOsteo and FemurOsteo datasets withMI algorithm.

SpineOsteo CNNmodel FemurOsteo CNNmodel

Predicted
value

Precision Recall F1-score Predicted
value

Precision Recall F1-score

0 99.64% 99.64% 99.64% 0 100% 99.07% 99.53%
1 97.47% 97.47% 97.47% 1 92.31% 100% 96.04%
Accuracy 99.15% Accuracy 99.21%

Table 13 CNN confusionmetrics for SpineOsteo and FemurOsteo datasets withMI algorithm.

SpineOsteo CNNmodel FemurOsteo CNNmodel

Predicted 0 Predicted 1 Predicted 0 Predicted 1

Actual 0 TN = 556 FP = 2 TN = 949 FP = 0
Actual 1 FN = 2 TP = 77 FN = 9 TP = 108

Table 14 RNNmodel architecture.

Layer Type Output shape No. Param
in SpineOsteo
dataset

No. Param
in FemurOsteo
dataset

Layer 1 LSTM layer 64 neurons 42,496 45,312
Layer 2 ReLU Dense (fully connected) 32 neurons 2,080 2,080
Layer 3 SoftMax Dense (fully connected) 2 neurons 66 66

Total number of trainable parameters 44,642 47,458

Calculation metrics of RNN model. The calculation metrics for precision, recall, and F1-
score, accuracy, and confusion matrix for RNN model would be illustrated as follow in
Tables 15 and 16 for using the RFE algorithm, and Tables 17 and 18 when using the MI
algorithm.

Overall, the models perform well with high accuracy, precision, recall, and F1-score.
The CNN and RNN models showed the highest precision and recall values, indicating
strong performance on the given classification task for both datasets. The learning rate was
0.001 where the models achieved high accuracy which indicates that these models were
effectively trained for the datasets as the three models Sequential DNN, CNN, and RNN
were designed in the same architecture with two feature selection algorithms.

DISCUSSION
Proposed model results
The feature selection algorithms were able to extract the importance and contribution of
the features in the classification process. The feature selection process showed that the area
measurement of L1 and L3 vertebrae, BMC of L3, L4, and Femur bone, and BMD value
of L1 had the highest correlation with the target variable, which was whether the patients
had osteoporosis or not. In addition to these values, other medical history information
had a significant impact on the classification process, for example, if the mother ever had

Shams Alden and Ata (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2338 18/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2338


Table 15 RNN calculation metrics for SpineOsteo and FemurOsteo datasets with RFE algorithm.

SpineOsteo RNNmodel FemurOsteo RNNmodel

Predicted
value

Precision Recall F1-score Predicted
value

Precision Recall F1-score

0 99.64% 98.03% 98.83% 0 99.58% 99.27% 99.42%
1 86.08% 97.14% 91.28% 1 94.02% 96.59% 95.29%
Accuracy 97.67% Accuracy 98.81%

Table 16 RNN confusionmetrics for SpineOsteo and FemurOsteo datasets with RFE algorithm.

SpineOsteo RNNmodel FemurOsteo RNNmodel

Predicted 0 Predicted 1 Predicted 0 Predicted 1

Actual 0 TN = 556 FP = 2 TN = 945 FP = 4
Actual 1 FN = 11 TP = 68 FN = 7 TP = 110

Table 17 RNN calculation metrics for SpineOsteo and FemurOsteo datasets withMI algorithm.

SpineOsteo RNNmodel FemurOsteo RNNmodel

Predicted
value

Precision Recall F1-score Predicted value Precision Recall F1-score

0 100% 98.94% 99.47% 0 100% 99.68% 99.84%
1 92.41% 100% 96.02% 1 97.44% 100% 98.71%
Accuracy 99.29% Accuracy 99.76%

a broken hip, which was the highest value among other medical information, the patient’s
age when the spine broke for the first time and whether he/she was under or above 50
years old, the age at which the patient’s father broke his hip, and if the parents ever had
osteoporosis. The two most important features were the age at which the patient broke
his/her wrist for the second time, with 27% importance, and the area measurement of the
L1 vertebra with 23% importance. Table 19 shows the comparison between the six models
where the predicted values are 0 (class of patients without osteoporosis) and 1 (class of
patients with osteoporosis).

The models and feature selection methods with the best performance, according to F1-
score, as it provides a balanced measurement between recall and precision, are summarized
as follows:

* The best model for the SpineOsteo dataset is the CNN model with the MI feature
selection algorithm, while the best model for the FemurOsteo dataset is the CNN model
with the RFE feature selection. This concludes that the CNN model is the best performing
model regardless of the dataset.

** In terms of feature selection algorithms, it appears that Mutual Information (MI)
outperforms Recursive Feature Elimination in the majority of scenarios, as it consistently
produces higher F1-scores. As a result, for these models and datasets, MI is the best feature
selection technique.
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Table 18 RNN confusionmetrics for SpineOsteo and FemurOsteo datasets withMI algorithm.

SpineOsteo RNNmodel FemurOsteo RNNmodel

Predicted 0 Predicted 1 Predicted 0 Predicted 1

Actual 0 TN = 558 FP = 0 TN = 949 FP = 0
Actual 1 FN = 6 TP = 73 FN = 3 TP = 114

Table 19 Comparison between the six models.

Model Dataset Feature
selection
algorithm

Predicted
value

Precision Recall F1-score Accuracy

0 99.82% 98.93% 99.37%
RFE

1 92.41% 98.65% 95.43%
98.92%

0 99.82% 98.93% 99.37%
SpineOsteo

MI
1 92.41% 98.65% 95.43%

98.52%

0 99.89% 99.38% 99.63%
RFE

1 94.87% 99.11% 96.95%
99.47%

0 100% 99.79% 99.89%

Sequential
DNN

FemurOsteo

MI
1 98.29% 100% 99.14%

99.89%

0 99.82% 99.29% 99.55%
RFE

1 94.49% 98.68% 96.77%
99.29%

0 99.64% 99.64% 99.64%
SpineOsteo

MI∗∗
1 97.47% 97.47% 97.47%

99.15%

0 99.89% 100% 99.94%
RFE∗∗

1 100% 99.15% 99.57%
99.94%

0 100% 99.07% 99.53%

CNN∗

FemurOsteo

MI
1 92.31% 100% 96.04%

99.21%

0 99.64% 98.03% 98.83%
RFE

1 86.08% 97.14% 91.28%
97.67%

0 100% 98.94% 99.47%
SpineOsteo

MI
1 92.41% 100% 96.02%

99.29%

0 99.58% 99.27% 99.42%
RFE

1 94.02% 96.59% 95.29%
98.81%

0 100% 99.68% 99.84%

RNN

FemurOsteo

MI
1 97.44% 100% 98.71%

99.76%

Notes.
*The best model for the SpineOsteo dataset is the CNN model with the MI feature selection algorithm, while the best model for
the FemurOsteo dataset is the CNN model with the RFE feature selection. This concludes that the CNN model is the best per-
forming model regardless of the dataset.

**In terms of feature selection algorithms, it appears that Mutual Information (MI) outperforms Recursive Feature Elimination
in the majority of scenarios, as it consistently produces higher F1 scores. As a result, for these models and datasets, MI is the
best feature selection technique

Comparison
In comparison to other related work, Alalhareth & Hong (2023) proposed an intrusion
detection system to identify attacks against the Internet of Medical Things (IoMT). They
used five classifier models: logistic regression (LR), support vector machines (SVM),
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Table 20 Comparison of our work to the related work presented by Brownlee (2023) usingMI algo-
rithm.

Model proposed by
M. Alalhareth and
S. C. Hong

Size of feature set

5 10 20 30 40 45

SVM 88.4% 92% 92.5% 93.1% 93% 93.1%
LR 88.1% 93.4% 93.4% 93.4% 93.4% 93.4%
RF 88.4% 92.5% 92.4% 92.4% 92.5% 92.5%
DT 85.9% 94.3% 94.7% 94.9% 94.7% 94.9%
LSTM 88.4% 93.4% 93.4% 93.3% 93.4% 93.4%

Proposed models usingMI with Feature set of size 30 features
SpineOsteo model FemurOsteo model

Sequential DNN 98.52% 99.89%
CNN 99.15% 99.21%
RNN 99.29% 99.76%

decision tree (DT), random forest (RF), and LSTM, with mutual information feature
selection algorithms. The researchers analyzed and evaluated their models based on
accuracy, precision, recall, and other metrics. Their approach was to increase the size of the
feature set to identify the accuracy of their feature selection algorithm and how it affected
their model’s accuracy by gradually increasing the number of features from 5 to 45 and
noticing that the accuracy of all models increased respectively.

In our models, the number of features was set to 30, as increasing the size of the feature
set produced overfitting of the models. The accuracy of the six models was at its best
when using the Mutual Information selection algorithm, as shown in Table 19, where it
can be noticed that models using the Mutual Information algorithm had higher accuracy
and F1-scores than models using the RFE algorithm. Table 20 illustrates the comparison
between the models presented in Alalhareth & Hong (2023) and our proposed model when
using the MI algorithm.

As can be noticed from the comparison above, the accuracy of the proposed models was
higher than the other models presented by Alalhareth & Hong (2023), which implies that
the type of deep learning models and type of dataset affect the accuracy of models, since
some feature types have a great impact and correlation with the target variable. The key
point is that the Mutual Information feature selection may minimize the dimensionality of
the input data while maintaining the essential information by selecting the most relevant
and informative features, thus enhancing the performance and efficiency of our model.

Authors’ novelty
The authors’ novelty can be summarized as follows:
1. Non-image data: Most studies into osteoporosis prediction rely on image data, making

non-image data the alternative one in most studies. This new approach significantly
extends the range of data types usually used for predictive modeling in medical science.
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2. First attempt: This is the first attempt at predicting osteoporosis utilizing a combination
of medical records and patient questionnaire data. This new combination of innovative
data sources is a new perspective on osteoporosis prediction.

3. Deep learning models: This study discovers how to use advanced deep learning models,
namely, sequential deep neural networks, convolutional neural networks, and recurrent
neural networks for osteoporosis prediction. This has been done novelly and opens the
application of state-of-the-art deep learning techniques on non-image medical data.

4. Effect of feature selection: The study demonstrates how feature selection can help
create a better accuracy model. A comparison of MI versus RFE methods used for
feature selection is a way of finding possibilities for improvement when developing the
predictive model in the health domain.

5. Family medical history: This study highlights the significant role of family medical
history in Osteoporosis prediction. This remark points to the potential benefits of
integrating detailed medical history information into predictive models in achieving
improvements in accuracy and relevance.
These contributions exemplify how deep learning applied to medical data analysis is

novel, leading to new research lines and clinical practice for osteoporosis prediction.

CONCLUSION
According to our findings, Sequential DNNs, CNNs, and RNNs are effective in classifying
non-image medical data. These findings indicate that the models have been trained to
categorize data with high accuracy and low error, as the accuracy progressively grows with
each cycle of the model’s training, indicating that the models are improving at accurately
identifying the data.

This research showcases the advancements and novel ideas introduced by the authors
in the field of medical data analysis by utilizing deep learning methods on non-image
medical data and has ventured into a fresh approach that broadens the scope of medical
data analysis. The study examined data obtained fromNHANES ensuring a comprehensive
dataset for efficient model training and validation, which highlights the impact of learning
techniques in enhancing medical diagnostic procedures. The preparation and evaluation
of the six models using both datasets highlighted the significance of tailoring the datasets
according to the classification task at hand. To our best knowledge, this study marks the
first attempt to forecast osteoporosis utilizing medical records and patient survey details.

Incorporating MI and RFE for feature selection has shown enhancements in model
performance, emphasizing feature selection’s role in creating precise predictive models.
The outcomes of this study hold implications for healthcare particularly concerning
osteoporosis prediction. By improving the precision and dependability of models, this
study can assist healthcare professionals in detection and treatment planning ultimately
leading to improved patient outcomes.

Deep learning played an important role in this research, showing the importance of
family medical history and one’s health concerning osteoporosis. Important features
significantly correlated with osteoporosis, such as bone measurements (e.g., area
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measurements of vertebrae and bone mineral content), and medical history information
(e.g., history of fractures, family history of osteoporosis, and prior use of medications like
prednisone or cortisone). The Sequential DNN, CNN, and RNN models all used a set of
selected features that included whether the patient’s father had osteoporosis, whether the
mother ever broke a hip when she was older or younger than 50, and whether a patient ever
took vitamin K or D. The research underscored the significant role of familymedical history
and individual health records in predicting osteoporosis. The findings pave the way for
more precise diagnostic tools and a better understanding of the relation between medical
history and osteoporosis risk. The study was limited to data from NHANES 2017–2020,
whichmay not capture all possible variations in patient demographics andmedical histories.
The study does not address the integration of these models into real-time clinical decision
support systems, leaving a gap in understanding how they can be implemented in actual
clinical workflows and practice.

Future work could include more comprehensive datasets to improve model robustness.
Also, future work would be integrating these models into clinical decision support
systems (CDSS) could assist healthcare providers in making more informed decisions
by providing real-time risk assessments and predictions. Another future contribution can
be implementing real-time data processing capabilities that could allow for the continuous
update and improvement of the models based on newly available patient data.
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