
Submitted 2 April 2019
Accepted 14 October 2019
Published 11 November 2019

Corresponding author
Indika Kahanda,
indika.kahanda@montana.edu

Academic editor
Christopher Mungall

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.233

Copyright
2019 Manuweera et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Computational methods for the ab initio
identification of novel microRNA in
plants: a systematic review
Buwani Manuweera1, Gillian Reynolds1,2 and Indika Kahanda1

1Gianforte School of Computing, Montana State University, Bozeman, MT, United States of America
2Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT,
United States of America

ABSTRACT
Background. MicroRNAs (miRNAs) play a vital role as post-transcriptional regulators
in gene expression. Experimental determination of miRNA sequence and structure is
both expensive and time consuming. The next-generation sequencing revolution,which
facilitated the rapid accumulation of biological data has brought biology into the ‘‘big
data’’ domain. As such, developing computational methods to predict miRNAs has
become an active area of inter-disciplinary research.
Objective. The objective of this systematic review is to focus on the developments of
ab initio plant miRNA identification methods over the last decade.
Data sources. Five databases were searched for relevant articles, according to a well-
defined review protocol.
Study selection. The search results were further filtered using the selection criteria that
only included studies on novel plant miRNA identification using machine learning.
Data extraction. Relevant data from each study were extracted in order to carry out an
analysis on their methodologies and findings.
Results. Results depict that in the last decade, there were 20 articles published on novel
miRNA identification methods in plants of which only 11 of them were primarily
focused on plant microRNA identification. Our findings suggest a need for more
stringent plant-focused miRNA identification studies.
Conclusion. Overall, the study accuracies are of a satisfactory level, although they may
generate a considerable number of false negatives. In future, attention must be paid
to the biological plausibility of computationally identified miRNAs to prevent further
propagation of biologically questionable miRNA sequences.

Subjects Bioinformatics, Computational Biology
Keywords ab initio, microRNA, Plant, Machine learning, Systematic review

INTRODUCTION
microRNAs (miRNAs) are a large family of small (approx. 20–25 nucleotides) single-
stranded RNAs, involved in post-transcriptional gene regulation through the cleavage
and/or inhibition of target mRNAs (Rogers & Chen, 2013; Voinnet, 2009). Despite being
found throughout the eukaryotic kingdom, plant microRNAs differ from their metazoan
counterparts in a number of ways, including their genomic loci (regions inwhich their genes
can be found i.e., introns, UTRs, etc.), biogenesis, length, methods of target recognition
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and number of targets per miRNA molecule (Axtell, Westholm & Lai, 2011; Moran et al.,
2017). Computationally, plant and animal miRNAs can be differentiated through several
distinguishing characteristics such as helix number, stack number, length of pre-miRNA
and minimum free energy (Zhu et al., 2016). Indeed, it is currently uncertain if plant
and animal microRNAs share a common origin or if they evolved independently in both
lineages (Axtell, Westholm & Lai, 2011; Moran et al., 2017; Zhang et al., 2018).

Despite the uncertainty regarding their origin, it has never been more important for the
focused characterization of plant microRNAs. Production levels for many of the world’s
crops are under threat from increases in global temperatures, changing patterns of rainfall
and extreme weather events such as droughts, heatwaves and heavy rainfall (Mall, Gupta
& Sonkar, 2017). A meta-analysis of over 1,700 simulations for wheat, rice and maize
has indicated that an increase of just 2 degrees will cause losses in aggregate production
(Challinor et al., 2014). Between 2030–2052, the Intergovernmental Panel on Climate
Change (IPCC) reports with high confidence that global temperature increases of 1.5
degrees is likely to become a reality if current rates of temperature changes are maintained
(Hoegh Guldberg et al., 2018). Although this will result in smaller net reductions for maize,
rice, wheat and potentially other cereal crops than would be observed with a 2 degree rise,
the risk to global food security and economics is not to be overlooked, especially regarding
staple crops such as wheat, that are required to increase in production levels to meet
projected increases in global demands (Liu et al., 2016; Ray et al., 2013; Hoegh Guldberg et
al., 2018; Challinor et al., 2014).

miRNAs are known to be involved in several important stress-response pathways
including drought, heat and salinity. For example, in the model plant Arabidopsis thaliana,
upregulation of miR389 is critical for thermotolerance (Guan et al., 2013), downregulation
of miR169 is observed in drought-tolerant varieties and overexpression of osa-MIR396c
inferred increased salt and alkali tolerance (Gao et al., 2010). However, it has become clear
that plant species show remarkable variety in the relationship between miRNAs and their
role in stress tolerance. For example, osa-MIR396c in rice (Oryza sativa) showed the same
response as A. thaliana in increased salinity and alkaline environments (Gao et al., 2010).
However, for other miRNAs such as miR169 the relationship between their expression and
drought tolerance appears to vary between species. In A. thaliana and the model legume
Medicago truncatula, miR169 is down-regulated in response to drought (Li et al., 2008;
Trindade et al., 2010; Sunkar, Li & Jagadeeswaran, 2012). Contrastingly, in rice and tomato
(Solanum lycopersicum cv. Ailsa Craig ), drought stress led to the up-regulation of miR-169
(Zhao et al., 2007; Zhang et al., 2011). Additionally (Zhou et al., 2010) identified a further
9 miRNAs that showed opposite expression patterns in A.thaliana in response to drought
stress. The observed interspecies variation in miRNA activity in response to stressful
stimuli demonstrates that there is a need for the discovery and functional characterization
of miRNAs for each species of plant of interest.

Thanks to advancements in next-generation sequencing (NGS) technology and
interdisciplinary collaborations, the rapid identification of species-specific plant miRNAs
and their expressions in response to stimuli is now possible (Liu et al., 2012; Unamba,
Nag & Sharma, 2015; Hu, Lan & Miller, 2017). NGS is both high throughput and highly
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accurate, facilitating the identification of sequence variations and novel miRNAs (Hu, Lan
& Miller, 2017). However, many computational methods such as those described in (Evers
et al., 2015; An et al., 2014; Hackenberg, Rodriguez-Ezpeleta & Aransay, 2011) only allow
for homology-based identification of miRNAs. This means the tools are not able to take
full advantage of the available information in the sequencing data, such as novel miRNA
identification. As such, numerous ab initio methods have been developed to facilitate
the discovery of novel miRNAs. However, caution is being urged when interpreting the
results of such computational inferences of biological data (Taylor et al., 2017; Taylor et
al., 2014). The generation of computational tools to identify miRNA sequences requires
biological assumptions to underpin the methods and, as with all new areas of research,
these assumptions change with new evidence over time (Ambros et al., 2003; Meyers et al.,
2008; Axtell & Meyers, 2018).

This systematic review surveys the computational methods that facilitate the ab initio
identification of plant miRNAs over the last decade (2008–2018). It seeks answers to
five research questions that aim to elucidate the developments, reliability and validity of
the methods used, and considers potential opportunities for future developments in the
computational identification of miRNAs.

METHODOLOGY
This systematic review focuses on the literature that was published between 2008 and 2018.
This time range was considered to collect and analyze the recent methodologies developed
on ab initio plant miRNA identification.

The following sections contain the steps of the review protocol: research questions,
search strategy, selection criteria, data extraction and quality assessment.

Research questions
This review is intended to answer the following research questions:

(Q1) How many methods were developed during the past decade?
(Q2) What kind of machine learning algorithms and features were used? Which

models/features performed well?
(Q3) How accurate and reliable are the developed models?
(Q4) What kind of computational and/or experimental validation methods were used? How

appropriate are those validation methods?
(Q5) What are knowledge gaps, open problems and/or opportunities?

Search strategy
The search strategy was used to identify plant miRNA prediction methods developed
between 2008 and 2018 in databases of IEEE Xplore (https://ieeexplore.ieee.org/Xplore/
home.jsp), Science Direct (https://www.sciencedirect.com/), PubMed (https://www.ncbi.
nlm.nih.gov/pubmed?otool=msubolib), Web of Science (http://www.webofknowledge.
com/) and Google Scholar (https://scholar.google.com/). The following terms were used
for the literature searches: ‘‘novel miRNA identification in plants’’ (including variations
of the word ‘‘identification’’ such as ‘‘prediction’’ and ‘‘discovery’’) and ‘‘computational
method’’. They were used as queries as shown below.
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Table 1 Article selection criteria.

Inclusion criteria Exclusion criteria

Studies that use machine learning algorithms Studies that only use sequence homology
Studies that solely use plants or include plant data Studies that use animal or unspecified species

datasets
Published journal articles or conference proceedings Literature reviews/surveys on the subject and

unpublished articles

(novel miRNA identification in plants) AND (computational method)
These search terms were utilized to narrow down the large number of mostly-irrelevant

retrieved articles from databases such as Science Direct and Google Scholar, into mostly
relevant articles.

Selection criteria
The selection criteria used for the review is shown in Table 1.

The review process began with a study search procedure. From the initial search results
to the final list of primary studies, the procedure was performed as follows.
1. The article search was carried out using the aforementioned search strategy mentioned

above. A total of 2,738 search results were found from all of the databases. That is
considering only 300 search results from Google Scholar as it gave over 18,000 results
per search term. In order to narrow-down from 18,000 Google Scholar results, we
restricted the output to the first ten pages of the search. This resulted in 300 articles
that are most relevant to the query.

• IEEE Xplore: 116
• Science Direct: 2140
• PubMed: 116
• Web of Science: 66
• Google Scholar: 300

2. Out of the search results from the databases, articles were first filtered by assessing the
title’s relevance. If deemed relevant to the subject, it was included in the initial list.

3. Secondly, the abstracts were assessed for relevance. This resulted in 41 articles.
4. Finally, the selection criteria (see Table 1) were applied on the remaining 41 articles

and 20 articles were retained as the final list (referred to as the primary list).

Data extraction
Table 2 outlines the criteria used for data extraction from the 20 primary studies. Data and
general information from each article were extracted to enable the five research questions
to be addressed (see Research Questions).

Quality assessment
The study quality assessment was performed on all 20 primary studies and was based on
six questions as detailed:
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Table 2 Data extraction form.

Search focus Data item Description

Article Details Title, Authors, Published year and publication venue
Article Type Journal article or conference proceedingsGeneral

Study Description Introduction of the study
Q1 Data Plant data only methods and methods including plant data

Datasets Dataset source, positive and negative example datasets, and
species

Features Types of features used
Machine Learning Algorithms Type of machine learning algorithm used for classification

Q2

Feature Selection Methods used to select/extract features for the model
Q3 Performance Metrics Accuracy values and other performance measurements
Q4 Validation Methods Cross-validation and Experimental validation methods
Q5 Future Work Suggested future work in Conclusion section and other

aspects that are not being addressed

(QA1) Are all the considered data being used for the model (without sample selection)? A
‘‘sample’’ refers to a single miRNA sequence considered for the experiments. In machine
learning, they are also referred to as an example or an instance of data.

(QA2) Do they mention any information about the negative dataset used? A typical
machine learning model require positive and negative examples, which are sequences
labeled as miRNAs or none-miRNAs, respectively. This question refers to any
information about the negative dataset such as what kind of sequences were considered
as negatives and how many examples were considered.

(QA3) Are there any feature selection methods considered in each method? Rather than
using all the features gathered, did the study use a feature selection method to select a
subset of most effective features for model development.

(QA4) Do they conduct any experimental validation of their findings? Did the study use
validation methods to experimentally validate the findings (miRNA predictions) output
from their machine learning models.

(QA5) Are the results of the performance evaluation quantified? Did the study present
their results using a typical performance measure such as accuracy used in machine
learning.

(QA6) Is the study focused only on plant miRNA identification? Did the study solely use
plant miRNA sequences for developing the prediction model or have they considered a
mixture of plant and animal miRNAs.

RESULTS
Figure 1 is the flow diagram depicting the study selection process with the numbers
described in the methodology (Liberati et al., 2009).
Table 3 illustrates the results of the quality assessment process. None of the articles
answered ‘‘Yes’’ to all the six questions. Zou et al. (2014) does not satisfy any quality
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Figure 1 PRISMA FlowDiagram (Liberati et al., 2009).
Full-size DOI: 10.7717/peerjcs.233/fig-1

assessment category, but it is still considered for the systematic review in order to analyze
their methodology.

Tables 4 and 5 shows the information collected from the primary studies during the
data extraction process. Table S2 shows the publication venues of the primary articles.
According to the table, BMC Bioinformatics journal has the most number of articles
selected.

The answers to all the research questions are being presented below based on the primary
studies selected.

(Q1) How many methods were developed during the past decade?
The primary list of articles consisted of 20 studies which were focused on the problem

of novel plant miRNA identification. Of these, 11 studies were focused solely on plant
miRNA identification. The remaining studies focused on both plant and animal miRNA
identification, with plant datasets either used to train the machine learning models or used
only to test the model (after training with non-plant datasets).

The plant-focused studies used datasets from several different species.Meng et al. (2014)
considered all the plant datasets available in miRBase (a miRNA database) by (Kozomara &
Griffiths-Jones, 2014). Breakfield et al., 2012; Silla, De O Camargo-Brunetto & Binneck, 2010
and Sunkar et al., 2008, each worked on one specific plant species (Arabidopsis, soybean
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Table 3 Quality assessment results.

Reference QA1 QA2 QA3 QA4 QA5 QA6

Tseng et al. (2018) No Yes Yes Yes Yes Yes
Yousef et al. (2016) Yes Yes Yes No Yes Yes
Yousef, Allmer & Khalifa (2015) Yes Yes Yes No Yes Yes
Breakfield et al. (2012) No Yes No Yes Yes Yes
Douglass et al. (2016) No Yes No Yes Yes Yes
Sunkar et al. (2008) No Yes Yes Yes No Yes
Abu-halaweh & Harrison (2010) Yes Yes Yes No Yes No
Guan et al. (2011) Yes Yes Yes No Yes No
Meng et al. (2014) No Yes Yes No Yes Yes
Williams, Eyles & Weiller (2012) No Yes Yes No Yes Yes
Xuan et al. (2011) No Yes Yes No Yes Yes
Yao et al. (2016) Yes Yes No No Yes Yes
Koh & Kim (2017) Yes Yes No No Yes No
Silla, De O Camargo-Brunetto
& Binneck (2010)

No Yes No No Yes Yes

Wu et al. (2011) No Yes Yes No Yes No
Zhong et al. (2015) Yes Yes No No Yes No
Kadri, Hinman & Benos (2009) No Yes No No Yes No
Vitsios et al. (2017) Yes No No No Yes No
Xiao et al. (2011) No Yes No No Yes No
Zou et al. (2014) No No No No No No

and rice respectively). Therefore, they used only that plant species or included a few
additional species to the dataset. As there is not an abundance of species-specific miRNA
data available, most studies used a combination of plant species data.

The primary list contains nine studies that used both plant and animal datasets. These
studies used the same features for both kingdoms miRNA identification. This might be
due to the lack of data in plants. Therefore, researchers tend to combine animal datasets in
order to get a larger dataset, and they consider the same features. This results in a number
of tools that are for both animals and plants that do not consider the differences between
their miRNAs.

Figure 2 shows the distribution of article publication on the subject in the past decade.
Most plant only publications occurred in 2016 and 2013, no publication was published on
novel plant miRNA identification. Figure 3 shows the distribution of specific plant species
used in the primary studies.

All the studies used both positive and negative datasets in their methods. Whilst plant
miRNA data was used for the positive set, a range of data was used for the negative set,
ensuring they were free of real miRNA sequences. Nine studies used protein coding regions
to collect pseudo miRNAs for their negative dataset. As almost all reported miRNAs are
found in the non-coding regions of the genome, these sequences are assumed as pseudo
miRNA data (Xuan et al., 2011). Guan et al. (2011), Koh & Kim (2017), Xiao et al. (2011),
Yousef, Allmer & Khalifa (2015) and Yousef et al. (2016) used the negative datasets from
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Table 4 Data extraction results.

Primary study Article
type

Data Dataset source Number of species
used

Negative datasets Feature selection
methods

Xuan et al. (2011) J P miRBase 14, Phyto-
zome 6 database

29 Protein coding re-
gion of A.thaliana and
G.max genomes

Considering informa-
tion gain and feature
redundancy

Yousef et al. (2016) J P miRBase 20, 21 5 in Brassicaceae and
training data from
Xuan et al. (2011)

Samples from Xuan et
al. (2011)

Using SVM-RFE (Re-
cursive feature elimina-
tion) implemented in
WEKA, selected top 60
ranked features.

Silla, De O Camargo-Brunetto
& Binneck (2010)

C P Plant MicroRNA
Database, deepBase,
Phytozome

131 Glycine max, 199
Athaliana, 100 Med-
icago truncatula

175 Arabidopsis
thaliana snoRNA
sequences from
deepBase2 and 225
RNA sequences
randomly generated

N/A

Meng et al. (2014) J P miRBase 19 From coding regions of
3 species

Using Back SVM-RFE,
47/152 features were
selected

Breakfield et al. (2012) J P miRBase 16, NCBI Se-
quence Read Archive

Arabidopsis From intergenic or in-
tronic genomic loca-
tions

N/A

Douglass et al. (2016) J P miRBase 21, Gene Ex-
pression Omnibus
(GEO)

4 smRNA sequences re-
maining after known
miRNA filtering

N/A

Yao et al. (2016) J P miRBase 21, Ensem-
blPlants database v18

9 From coding region of
5 species

Selected subsets of fea-
tures (based on types
of features) to check
the impact of those fea-
tures

Tseng et al. (2018) J P miRBase 21, Gene Ex-
pression Omnibus,
TAIR, RGAP

Arabidopsis and Rice Tested with different
combinations of fea-
tures (based on type)

Williams, Eyles & Weiller (2012) J P miRBase 18, TIGR
Plant Transcript As-
semblies

18 From Expressed Se-
quence Tags (EST) of
18 species

N/A

Sunkar et al. (2008) J P miRBase 9, TIGR Rice
Genome Annotation
Database

Rice Rice coding sequences
from TIGR

Wrapper-based
method. Using weights
from SVM

(continued on next page)

M
anuw

eera
etal.(2019),PeerJ

C
om

put.Sci.,D
O

I10.7717/peerj-cs.233
8/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.233


Table 4 (continued)

Primary study Article
type

Data Dataset source Number of species
used

Negative datasets Feature selection
methods

Yousef, Allmer & Khalifa (2015) J P miRBase 20, 21 8 From Xuan et al.
(2011)

Using SVM-RFE (Re-
cursive feature elemi-
nation) implemented
in WEKA, selected top
60 ranked features.

Xiao et al. (2011) J Eval: P+V miRBase 14 All miRBase 14 From previous work
(Human data)

N/A

Koh & Kim (2017) J A+P miRBase 21 miRBase21 excluding
virus

Pseudo hairpins form
microPred

N/A

Wu et al. (2011) J A+P miRBase 13 All miRBase 13 Random start
sequences; identical to
real miRNA but start
position is shifted by
5nt

Tested for the 10 high-
est raninking features

Zou et al. (2014) J A+P miRBase 19 All miRBase 19 Tested on different fea-
ture sets

Zhong et al. (2015) J A+P Previous studies (miR-
Base 12, 14, 17)

From previous studies Previous methods N/A

Guan et al. (2011) J A+P miRBAse 12 From protien coding
regions (from previous
studies)

N/A

Vitsios et al. (2017) J A+P miRBase 15 N/A
Abu-halaweh & Harrison (2010) C A+P previous work (Rfam 5

etc.)
12 Human coding regions FDT integrates two

measures, Classifica-
tion Ambiguity and
Fuzzy Information
Gain to identify the set
of the most significant
features

Kadri, Hinman & Benos (2009) J Test set: P microRNA registry
v10.1, UCSC genome
browser

2 Coding regions and
random genomic seg-
ments from genome
obtained by UCSC
genome browser

N/A

Notes.
J, Journal; C, Conference proceeding; P, Plant; A, Animal; V, Virus; N/A, Feature selection not used.
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Table 5 Data extraction results (2).

Primary study Input Types of features Types of MLmodels Predicted output Key results Experimental
validation

Sequence Structural Thermodynamic/
Stability

Other Discriminative Probabilistic Pr
ec
is
io
n

R
ec
al
l

F1
-s
co
re

Sp
ec
ifi
ci
ty

G
eo
m
et
ri
c
m
ea
n

A
cc
ur
ac
y

A
U
C

Xuan et al. (2011) pre-miRNA 17 64 triplet 34 SVM - RBF Kernel pre-miRNA 91.93 97.84 94.84 94.39

Yousef et al. (2016) pre-miRNA existing;
motif features

existing existing SVM - RBF Kernel pre-miRNA 98.8 100 99.48 0.994

Silla, De O Camargo-Brunetto
& Binneck (2010)

pre-miRNA 17 12 SVM - RBF Kernel pre-miRNA 89 95 92

Meng et al. (2014) pre-miRNA and
mature miRNA

20 96 29 SVM pre-miRNA and
mature miRNA

95.5 98.82 97.16 97.16

Breakfield et al. (2012) small RNA 15 including
all types

Naïve Baye’s Mature miRNA vs nc-
RNA

91.7 99.9 RT-PCR etc.

Douglass et al. (2016) small RNA Naïve Baye’s mature miRNA 0.998 RT-PCR

Yao et al. (2016) pre-miRNA Including
all types

SVM - RBF Kernel pre-miRNA 92.61 98.88 96.56 0.9,885

Tseng et al. (2018) small RNA 1 183 1 SVM mature miRNA 95.22 98.15 95.07 96.61 RT-PCR

Williams, Eyles & Weiller (2012) mature miRNA 22 4 3 Decision Tree mature miRNA 84.08 98.53

Sunkar et al. (2008) small RNA 4 to 9-mer seq. motifs SVM - Linear mature
miRNA

Northern
analysis

Yousef, Allmer & Khalifa (2015) pre-miRNA n-grams, motifs SVM and K-means mature miRNA 91.4

Xiao et al. (2011) pre-miRNA 24 network features
of stem-loop

Random Forest pre-miRNA 87.3 91.1 97.6 0.956

Koh & Kim (2017) pre-miRNA 17 12 SVM - RBF Kernal pre-miRNA 96 94.68

Wu et al. (2011) pri-miRNA 6,5,5 mature, pre,
pri-mirna

9,5,5 mature, pre,
pri-mirna

1,1,1 mature, pre,
pri-mirna

30 other features SVM mature miRNA regions 80

Zou et al. (2014) mature miRNA 4,096 32 triplet Random Forest mature miRNA and
their family

Zhong et al. (2015) pre-miRNA 81 49 9 SVM pre-miRNA 93.37 97.91 95.61

Guan et al. (2011) pre-miRNA misc. covering all types ADABoost pre-miRNA and mature
miRNA

94.32 97.11 96 97.54

Vitsios et al. (2017) mature miRNA 33 covering all types Random Forest Mature miRNA 71.4-
71.8

Abu-halaweh & Harrison (2010) pre-miRNA Including all types Fuzzy Decision Tree pre-miRNA 91.5 94.7 94.2

Kadri, Hinman & Benos (2009) pre-miRNA 4 parameters Hierarchical HMM pre-miRNA 84 88

Notes.
F1 Score, 2*(Precision*Recall)/(Precision+Recall); Geometric Mean, Sensitivity*Specificity.
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Figure 2 Distribution of publications in the past decade. .
Full-size DOI: 10.7717/peerjcs.233/fig-2

Figure 3 Plant species used (even though Arabidopsis belongs to the Brassicaceae family, it has been
used in significant amount of work as it is a model plant; therefore, it has been added to the figure sepa-
rate from Brassicaceae).

Full-size DOI: 10.7717/peerjcs.233/fig-3
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previous studies which were already available. Yousef, Allmer & Khalifa (2015) discusses a
one-class classifier for plant miRNAs where they only used the positive data set. However,
for the comparison with a binary classifier, they needed a negative dataset. The remaining
studies either randomly generated negative datasets or used other non-coding RNAs such
as small nucleolar RNA (snoRNA), transfer RNA (tRNA) etc.

(Q2) What kind of machine learning algorithms and features were used? Which model-
s/features performed well?

Many of the studies used the same or similar sets of features consisting of sequence-based,
structural and thermodynamic features. The studies use either the same set of features
from previous studies or extend them by adding new features to enhance performance.
The sequence-based features often consist of nucleotide/di-nucleotide frequencies, motifs,
n-grams, GC content and sequence length among others.

The structural features primarily consist of features as described in Xue et al. (2005)
and also minimum free energy (MFE) measures. Thermodynamic features include the
structure entropy and enthalpymeasures. The vast majority of studies utilize a combination
of various structural and sequence-based features which may aid in increasing the chances
of identifying a correct miRNA, despite their diversity within the plant kingdom.

Williams, Eyles & Weiller (2012) and Kadri, Hinman & Benos (2009) have used sliding
windows of size ranging 300–500 nt (known plant pre-miRNA are below 300 nt according
to Williams, Eyles & Weiller (2012) and for Kadri, Hinman & Benos (2009), most of the
pre-miRNA were covered when the window size is 500 nt) to scan genome sequences for
folding into hairpin structures and then collect structural features. Therefore, this range
can be used for scanning the whole genome of a specific plant spices.

Plant precursor sequences have varying sizes of secondary structures but there is no
unified technique reported for dealing with the issue. Williams, Eyles & Weiller (2012)
select the size of the majority of pre-miRNA in miRBase (<300 nt). Kadri, Hinman &
Benos (2009) use 50 nt minimum for selecting/ filtering pre-miRNAs. Xuan et al. (2011)
considered different ranges of lengths to get the majority of sequence information. Wu et
al. (2011) used 100 nt as the length of pre-miRNA. According to Meng et al. (2014), plant
pre-miRNA can range from 53–938 nt. Therefore, many of the studies have used a window
size that is being guided by this length range to select the set of pre-miRNA for their studies.

Apart from those features, Xiao et al. (2011) focused on other methods to achieve
structural features using network parameters. A few remaining studies haven’t described
the feature set with adequate information. But most of the studies tend to follow the same
set of features which were proven to be effective through previous studies. Figure 4 shows
the distribution of types of features used in the primary studies.

Different studies have been conducted to show the impact of different sets of features.
Some methods show that thermodynamic features (Yao et al., 2016) are better while
another reports that sequential features (Yousef et al., 2016) are better. However, there is
no concrete answer or common theme since there aren’t many studies comparing different
feature types for plant miRNA prediction.

Whilst most studies utilized features extracted from data generated from various plant
species, a few did use features extracted from non-plant species and then used this data
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Figure 4 Types of features used.
Full-size DOI: 10.7717/peerjcs.233/fig-4

to test their models’ performance on other species. Both Guan et al. (2011) and Kadri,
Hinman & Benos (2009) used human miRNA data to train their models and then tested
model performance on several plant species including the model plant species Arabidopsis
thaliana as well as Oryza sativa. Both methods performed well on these species, with
(Kadri, Hinman & Benos, 2009) achieving 97.4% and 85.7% of correctly predicted miRNA
for A.thaliana and O.sativa respectively. Guan et al. (2011) was able to achieve 96.53%
accuracy for A.thaliana and 97.61% for O.sativa as well an impressive 100% accuracy for
Chlamydomonas reinhardtii. Similarly, (Vitsios et al., 2017) demonstrated an accuracy of
between 90.7% and 82.9% for the identification of plant miRNAs using a model trained
on animals. Xiao et al. (2011) was also able to achieve similar results in the detection of
miRNA precursors trained on animal data, demonstrating an accuracy of 97.6% for plant
data. The success of these studies indicates that plant and animal miRNAs do share some
conserved sequence and structural characteristics.

The studies considered in this review all used machine learning algorithms to identify
novel miRNAs in plant species. The selected primary studies used the following machine
learning algorithms in their methods.
• Support Vector Machine (SVM) (Kecman, 2005)
• Random Forest (Breiman, 2001)
• Naive Bayes (Runkler, 2012)
• Decision Tree (Swain & Hauska, 1977)
• Hierarchical Hidden Markov Model (HHMM) (Fine, Singer & Tishby, 1998)
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Figure 5 Machine learning algorithms used.
Full-size DOI: 10.7717/peerjcs.233/fig-5

• ADABoost (Freund & Schapire, 1999)

Out of the above algorithms, 11 studies used SVM for their model. In general, models
using SVMs have provided good overall performances in miRNA identification. Three
other studies used Random Forest algorithm. The machine learning algorithms used are
limited to the above list in the past decade.

Figure 5 shows the distribution of machine leaning algorithms used in the past decade
on identifying novel miRNAs in plants.

The inputs to these machine learning models consist of either pre-miRNA, mature
miRNA or small RNA sequences. Meng et al. (2014) used both pre-miRNA and mature
miRNA as the inputs to develop an integrated model for both miRNA and pre-miRNA
prediction. Methods such as (Tseng et al., 2018; Douglass et al., 2016; Breakfield et al., 2012)
used small-RNA sequencing data for their models. These methods still output the predicted
miRNAs.

(Q3) How accurate and reliable are the developed models?
Considering the overall results reported by the authors, almost all themethods performed

well in identifying novel plant miRNAs –many of them achieved very good accuracy
values. Most of the studies used accuracy, recall, sensitivity and specificity to illustrate the
performance of the model. Eleven studies used accuracy as a performance measure and 10
of those studies achieved accuracies above 90%. Even though the reported performances
are not directly comparable, the highest accuracy of 99.48% was reported by Yousef et al.,
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(2016). Considering the results presented by each study, all of them performed well and
therefore, are seemingly reliable. All of the plant only methods perform well with accuracy
values of above 90%. These performance values are based on the considered specific
plant species and may not work for any species. Also, there is a potential for improving the
performances by considering feature selection and advancedmachines learning techniques.
Note that the analysis presented here is only based on the performances reported by the
authors.

While it may look like that many models are performing very well with performance
values above 90%, we would like to highlight the fact that more than 90% of the models
are developed/ tested with/on plant species with relatively less complex genomes such as
A. thaliana (see Fig. 3). Therefore, we raise the concern that these models may not work
for more complex plant genomes such as Wheat. With the recent sequencing of the whole
wheat genome, identifying novel miRNAs and their functions is of utmost importance. But
none of the existing methods reviewed in this survey focuses on complex plant species. The
lack of high-quality plant data in popular knowledgebases such as miRBase (Kozomara,
Birgaoanu & Griffiths-Jones, 2019) (which leads to lack of adequate training data) may be
hindering the bioinformatics community from developing plant-basedmodels for complex
plant genomes.

(Q4) What kind of computational and/or experimental validation methods were used?
How appropriate are those validation methods?

Except for two studies, all the other studies used a cross-validation technique for
evaluating their machine learning models. Five-fold cross validation was used by eight
studies while six studies used 10-fold cross validation. Using cross validation is helpful in
performance evaluation of the developed models.

Experimental validation of putative novel miRNA’s is an important part of miRNA
prediction. Of the 20 studies evaluated in this systematic review, only four (Tseng et
al., 2018; Breakfield et al., 2012; Douglass et al., 2016; Sunkar et al., 2008) experimentally
validated the presence of the novel miRNAs predicted by their machine learning methods.
The most popular method was stem-loop PCR, employed by Tseng et al. (2018), Breakfield
et al. (2012) and Douglass et al., 2016). Tseng et al. (2018) additionally utilized qPCR and
(Sunkar et al., 2008) employed Northern blot analysis and small RNA blots. (Tseng et al.,
2018) confirmed 18 out of 21 predicted miRNAs to be real miRNAs while (Sunkar et al.,
2008) has tested and confirmed seven out of 13 predicted miRNAs. Breakfield et al. (2012)
and Douglass et al. (2016) experimentally validated 8 of their predictions each to be true
miRNAs.

(Q5) What are knowledge gaps, open problems and/or opportunities?
Computational miRNA identification is still a relatively young branch of biology and as

such, it contains many knowledge gaps, open problems and opportunities. However, one
of the most pressing is the need for the biological validation of computationally predicted
miRNAs.

It’s become clear from studies conducted by Axtell & Meyers (2018), Taylor et al. (2014)
and Taylor et al. (2017) that many of the miRNA sequences deposited in databases such
as miRBase (Kozomara & Griffiths-Jones, 2014) are biologically implausible. Taylor et
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al. (2014) labeled one-third of all annotation plant miRNA loci and 75% of all plant
miRNA families as questionable in miRBase release 20 (Kozomara & Griffiths-Jones, 2014).
Similarly, (Axtell & Meyers, 2018) found that only 8.5% of land plant miRNA loci and 9.4%
of land plant families are labeled as high confidence in miRBase version 21 (Kozomara &
Griffiths-Jones, 2014).

Whilst there are many factors responsible for these observations, one of the causes may
simply be developments in the understanding of miRNA biology. The last ten years have
seen the release of two guidelines for the identification of plant miRNA identification,
one of which was released in 2008 and the other in 2018 (Meyers et al., 2008; Axtell &
Meyers, 2018). Prior to these releases, the first miRNA identification guide was produced
in 2003 (Ambros et al., 2003). As all computational identification methods are based
upon biological assumptions, it stands to reason that the use of tools that are based on
inaccurate or out-of-date assumptions will yield biologically questionable results. Whilst
this unmistakably calls for researchers to thoroughly inspect the methods of their chosen
tools to discern the assumptions upon which it is based, this is not always a straightforward
task. Most of the tools in this study made no reference to a specific guideline that was
followed, which is of course not a necessity and in some cases would be inappropriate. The
sources used may indeed be in accordance with the most recent guidelines or they may be
expanding upon those guidelines, such as performed in Yousef, Allmer & Khalifa (2015),
who investigated motif-based features for ab initio plant miRNA detection. Additionally, if
there have been developments in the understanding of miRNA biology that have succeeded
the information in the guidelines, it would, of course, make little sense to blindly abide by
the guidelines. An additional complication is a lack of clarity in the methods. These tools
are both biologically and computationally complex, and understanding the methods that
underlie them may not be a straightforward task for experts of various domains. There is
a need to ensure that the methods of such tools are written in such a way as to make clear
the underlying assumptions. Failure to do so could lead to a tool being inappropriately
selected, disregarded or improperly used. In some cases, this will require the user of such
tools to read the proceeding studies that have been referenced in place of the method
specifics.

Another cause of the questionable miRNA annotations that are deposited in databases
is the unquestionable use of the databases themselves (Taylor et al., 2017). As discussed
previously, many of the annotations within databases such as miRBase are questionable at
best and at worst incorrect (Taylor et al., 2014;Taylor et al., 2017;Axtell & Meyers, 2018). As
such, an additional opportunity for improvement presents itself to both computer scientists
and biologists; the selection of high-confidence miRNA’s to be used as benchmarks. Of
the papers discussed here all used either miRBase or its precursor the microRNA registry
database, of which seven used miRBase version 20 or 21. Of these papers; (Yao et al.,
2016; Yousef, Allmer & Khalifa, 2015; Yousef et al., 2016; Vitsios et al., 2017; Douglass et al.,
2016; Tseng et al., 2018; Koh & Kim, 2017), only (Douglass et al., 2016) makes reference to
the confidence of the sequences used. Whilst they do not explicitly say they used ‘‘high
confidence’’ sequences, they specify they required either one or two types of experimental
evidence dependant upon species and available evidence (Douglass et al., 2016). The
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addition of a ‘‘high confidence’’ tag was made available shortly after the release of miRBase
version 20, and it allows users to ‘‘vote’’ if they agree with the ‘‘high confidence’’ tag or
not (Kozomara & Griffiths-Jones, 2014). For studies that used miRBase prior to version 20,
the use of experimentally-validated miRNAs shows that the miRNA sequences used were
of high confidence. However only (Meng et al., 2014; Wu et al., 2011; Douglass et al., 2016)
specify the use of experimentally validated sequences. Whilst utilizing only high-confidence
miRNAs will increase the manual work required to obtain data from databases and will
likely significantly decrease the number of available sequences which may reduce statistic
power. However, it may be a necessity to reduce the rate at which false positive miRNAs are
being deposited into databases. Whilst it may be outdated due to further miRBase updates,
(Taylor et al., 2014) provides a link to a library of valid plant miRNAs in fasta format which
can be utilized and/or built upon as a benchmark for future plant miRNAomes.

Another important factor in the influx of incorrect annotations is the unquestioning
inclusion of all bioinformatically predicted miRNAs (Taylor et al., 2017). It is very likely
that computational prediction programs will produce false positives, and the only way to
avoid the inclusion of these incorrect annotations is themanual inspection of each positively
identified miRNA against the most recent set of guidelines, such as those written by Axtell
& Meyers (2018) and Taylor et al. (2017). Whilst this process will massively increase the
manual requirements for miRNA identification, it will go some way in preventing the
continuous influx of incorrectly annotation sequences into public databases (Taylor et al.,
2017). However, the best form of verification of the biological presence of a miRNA is
experimental validation. Of the papers discussed in this review, only four (Tseng et al., 2018;
Douglass et al., 2016; Sunkar et al., 2008; Breakfield et al., 2012) incorporated some form of
experimental validation. Of these, only two studies were based only upon the development
of a miRNA prediction model or classifier (Tseng et al., 2018; Douglass et al., 2016). Both
of these studies utilized small RNA-Seq data which may still yield false positive miRNA
predictions and indeed, this is demonstrated by the experimental validation of predictions
that used small RNA-seq data. For example, Tseng et al. (2018) experimentally confirmed
the presence of only 18 out of 21 predicted novel miRNAs within two biological replicates
and Douglass et al. (2016) was able to validate only two out of 12 high scoring putative
miRNAs using their stringent criteria. Whilst it is likely that experimental validation will
yield some level of false negative results, it may still be a necessity if progress is to made
towards mapping the genuine miRNAome of a given species.

Due to the rising concern of poor miRNA annotations in databases, it is likely that many
changes will be made by both database curators and researchers. For example, Axtell &
Meyers (2018) recommend that all miRNAs identified through a homology-based approach
only should be labeled as ‘‘putative’’. In addition, the authors of miRBase (Kozomara &
Griffiths-Jones, 2014) are aiming to incorporate a tiered confidence structure for miRNA
entries as well as a text-mining based approach to categorize miRNA related articles and
extract the biological meanings from the text. These changes may result in the alterations
of miRNA annotations and as such, it may benefit biologists to utilize the miRBase change
log function available from miRBase 22 or tools such as the miRBase Tracker (Van Peer
et al., 2014; Kozomara & Griffiths-Jones, 2014). The use of these tools will aid biologists in
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understanding the annotation history of a givenmiRNA, and perhaps, in the future provide
information regarding changes in supporting evidence.

Machine learning and feature selection methods related issues also exist in this field.
Different groups have used various techniques for selecting negative data without having
performed a comprehensive study on the most appropriate technique. But since the
quality of the negative data heavily impacts machine learning models, this should directly
be addressed. Also, as mentioned before, many authors use features proven to be most
effective for animals on models developed for plants without comprehensive evaluation.
This likely impacts the performance due to the noticeable differences between plant and
animal miRNA sequences (Yao et al., 2016; Douglass et al., 2016). On top of this, some
models have not considered feature selection at all (Silla, De O Camargo-Brunetto &
Binneck, 2010; Williams, Eyles & Weiller, 2012; Xiao et al., 2011 etc.).

As mentioned above, most of the methods haven’t conducted experimental validation
of the novel miRNAs predicted by the computational models. In fact, only 4 methods
have validated their findings (Breakfield et al., 2012; Douglass et al., 2016; Tseng et al.,
2018; Sunkar et al., 2008). Machine learning methods are not perfect; It is important to
confirm if the predictions of the model are accurate in order to claim the finding of novel
miRNAs. Also, the use of feature selectionmethods would be beneficial rather than using all
available features for the model. But only some of the methods have used feature selection
techniques. Considering the differences between plant and animal miRNA sequences,
focusing on features specific to plants (instead of using the features that were found
to work well for animal miRNAs), and identifying features effective for more complex
genomes such as Wheat and Barley would be essential.

Use of other sophisticatedmachine learning algorithms would be beneficial in enhancing
the performance of the tools. Apart from the machine learning algorithms mentioned in
the primary studies, other opportunities are available with advanced models such as neural
networks (Abe, 1997) and deep learning (LeCun, Bengio & Hinton, 2015). However, there
needs to be a large dataset in order to use deep learning models and given the sparsity of
experimentally validated sequences, this may not be an appropriate route at this time. As
such, semi-supervised models that learns from both labeled and unlabeled examples may
provide an added advantage. Due to the issues surrounding finding quality negative data,
one-class classification or PU learning models (using Positive and Unlabeled samples) (Wu
et al., 2017) may also be a fruitful choice.

CONCLUSION
In this work, we have conducted a systematic review of ab initio plant miRNA identification
tools that have been developed over the last decade. To achieve this, five questions were
posed which aimed to elucidate the developments and assess the reliability and validity of
the various methods used to identify novel plant miRNAs.

In total there are 20 studies that addressed plant miRNA identification using machine
learning. Although it is a relatively small number of studies, most of the studies report
promising results in the range of 90%of accuracy or above obtained through computational
validation. Only 55% of the studies focused on only plants and even fewer of them focused
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on a specific plant species. This demonstrates a pressing need for plant specific and
species specific methods. Compared with the dataset available for animal species, there is a
relatively small number of experimentally verified plant miRNAs. This limits the authors
and developers of machine learning tools, which require sometimes copious amounts of
data for the training of their models. Recognizing the most informative features that are
based on unique features of plant datasets will likely increase the accuracy of thosemethods.
Whilst many studies continued using features from previous studies resulting in a large set
of features, it’s important to verify that the assumptions that were made when the data was
created are still in line with the present understanding of miRNA biology.

While it is true that the models are performing well, they are being tested on low quality
data. So, we do raise this as a major concern. It is a well-known problem that a considerable
number of predicted miRNAs are false predictions (Taylor et al., 2017). So, cleaning up the
current knowledge bases should be a top priority. Otherwise, these errors will be propagated
as well.

An additional challenge is that not all the developed software are accessible by the
public. Some of them do not work as advertised due to technical issues and that further
decreases the number of available methods with respect to plant miRNA prediction. Given
that the intended audience of these tools would be biologists (i.e., non-experts in software
development), extreme care must be taken in improving the availability, user friendliness
and reliability. For the models involving different parameter options, guidelines must be
provided in finding the optimum parameter values for the dataset of interest.
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