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ABSTRACT
Continual relation extraction (CRE) aims to extract relations towards the continuous
and iterative arrival of new data. To address the problem of catastrophic forgetting,
some existing research endeavors have focused on exploring memory replay methods
by storing typical historical learned instances or embedding all observed relations as
prototypes by averaging the hidden representation of samples and replaying them in
the subsequent training process. However, this prototype generationmethod overlooks
the rich semantic information within the label namespace and are also constrained by
memory size, resulting in inadequate descriptions of relation semantics by relation
prototypes. To this end, we introduce an approach termed Label-Guided Relation
Prototype Generation. Initially, we enhance the representations of label embeddings
through a technique named label knowledge infusion. Following that, we utilize the
multi-head attentionmechanism to form relation prototypes, allowing them to capture
diverse aspects of typical instances. The embeddings of relation labels are utilized at
this stage, leveraging their contained semantics. Additionally, we propose a feature-
based distillation loss function called multi-similarity distillation, to ensure the model
retains prior knowledge after learning new tasks. The experimental results indicate that
our method has achieved competitive performance compared to the state-of-the-art
baseline models in CRE.

Subjects Natural Language and Speech, Neural Networks
Keywords Continual relation extraction, Catastrophic forgetting

INTRODUCTION
Continual relation extraction (CRE) (Wang et al., 2019b) requires models to learn new
relations from a class-incremental data stream.

However, as new tasks are learned, and new relations continuously emerge, the model
tends to forget knowledge about old relations, a phenomenon known as catastrophic
forgetting.

Some recent works have proposed a variety of methods to alleviate the catastrophic
forgetting problem in continual learning, including regularization methods (Liu et
al., 2018), dynamic architecture methods (Fernando et al., 2017) and memory-based
(Chaudhry et al., 2018) methods. In recent years, the previous works have demonstrated
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the effectiveness of memory-based methods in CRE. The main idea of the memory-
based methods is to mitigate catastrophic forgetting by replaying samples stored in
memory after learning new tasks. Due to constraints in memory and computational
resources, these approaches typically store only typical samples from the dataset. The
task of memory replay is to fully leverage the information contained in these instances
to maintain the knowledge acquired in previous learning tasks. Relation prototypes
to enhance continual relation extraction (RP-CRE) (Cui et al., 2021) devises a relation
prototype-based method to refine the samples embedding through a memory net to fully
utilize typical samples, while the relation prototypes calculation is relatively simplistic and
sensitive to the typical samples. Consistent representation learning (CRL) (Zhao et al.,
2022) introduces supervised contrastive learning and knowledge distillation to maintain
prior knowledge. While it narrows the representations of samples within the same relation
using supervised contrastive learning, it falls short in maintaining a sufficient separation
between the representations of samples from different relations, potentially leading to
confusion. Continual Relation Extraction framework with Contrastive Learning (CRECL)
(Hu et al., 2022) comprises a classification network and a contrastive network to decouple
the representation and classification processes. However, its method for generating relation
prototypes is still limited to the instances stored in memory.

Overall, existing memory-based methods may encounter follow limitations in CRE,
restricting the model’s performance.

• The relation prototype calculation in existing memory-based CRE methods is sensitive
to typical samples. Typically, these methods generate relation prototypes by directly
averaging the vector representations of typical samples. If the quality of the selected
typical samples is low, the obtained expression of relation prototypes may not be robust
enough.
• These methods generally employ contrastive learning with relation prototypes serving
as anchor points for memory replay or knowledge distillation. However, this kind of
approach do not effectively preserve a notable distinction between the representations of
samples belonging to different relations and also may lead to the loss of specific features
associated with certain samples, and this approach also blurs the distinct features of
instances.

To address the above challenges, we propose an approach named Label-Guided Relation
PrototypeGeneration. Specifically, we utilize amulti-head attentionmechanism to combine
the hidden representations of instances, so that varying importance of instances can be
introduced in the prototypes. We use the embedding of relation labels as query vectors
for the attention module, leveraging the rich semantic information they contained (Chen
et al., 2022). However, labels are typically highly abstract representations of relations,
providing limited specific details about the relationships. To capture patterns among
different samples within the same relation, we concatenate labels and text as input to the
encoder while learning the new task, with the expectation that more specific semantic
knowledge can be infused into the relation labels. After replaying the memory, we also
design a multi-similarity distillation loss function for knowledge distillation. By mining
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hard positive and hard negative samples, we aim to ensure that the embedding space
remains undamaged during the learning of new tasks while making instances between
different relationship categories as distinguishable as possible.

In summary, our contributions in this paper are summarized as follows:

• We propose a novel method for generating relation prototypes, using knowledge-
injected relation tokens to capture distinctive features of different typical instances.
• We designed a distillation loss function based on typical instances. This aims to
maintain old knowledge while making instances belonging to different relations more
distinguishable.
• The comprehensive experiments on two benchmark datasets empirically demonstrate
that our proposed method achieves competitive performance compared to the state-of-
the-art baseline models.

RELATED WORK
Existing continual learning models mainly focus on three areas: (1) Regularization-based
methods (Kirkpatrick et al., 2017; Liu et al., 2018) aim to strike a balance between learning
new information and retaining knowledge from previous tasks by introducing constraints
or penalties during the training process, limiting the extent to which the model can
change its parameters. (2) Dynamic architecture methods (Chen, Goodfellow & Shlens,
2015; Fernando et al., 2017) provide a flexible framework that allows the model to adapt
to new tasks without erasing previously acquired knowledge. These approaches attempt to
overcome catastrophic forgetting by dynamically adjusting the model’s structure or using
mechanisms that selectively focus on relevant information for each task. (3)Memory-based
methods (Wang et al., 2019b;Dong et al., 2021) equipmodels withmechanisms to store and
retrieve information effectively. ERDIL (Dong et al., 2021) leveraging exemplar relation
graphs and a specialized loss function to effectively handle few-shot class-incremental
learning tasks. EA-EMR (Wang et al., 2019b) is a classical CRE model. The proposed
methods includes a modified stochastic gradient approach and an explicit alignment
model.

In recent studies, memory-based methods have been extensively applied in the CRE
scenarios. The results of these studies also indicate the effectiveness of memory-based
approaches in this domain. Additionally, the prototype method (Cui et al., 2021; Zhao et
al., 2022) is increasingly being adopted in recent research to preserve existing knowledge
and reduce overfitting.

METHODOLOGY
Problem formulation
In continual relation extraction, there is a series of K tasks {T1,T2,...,Tk}, where the k-th
task has its own training set Dk and relation set Rk . The relation sets of different tasks are
disjoint. Each instance in the training set Dk is represented as (xi,ri), where xi is the input
text, and ri is the relation label. The objective of continual relation learning is to avoid
catastrophic forgetting of previous learning tasks while learning new tasks, ensuring that
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satisfactory performance can still be achieved within the relation set R̂k , where R̂k =
⋃k

i=1Ri

is the relation set already observed till the k-th task.
Additionally, an episodic memory space M̂k =

⋃k
i=1Mi will be used to store some typical

samples of previously learned data formemory replay. Here,Mi is selected from the training
set Di of the i-th task. Constrained by memory size and resource consumption, storing
all observed data is impractical, so typically, only the most representative m instances are
stored.

Framework
The overall framework is shown in Fig. 1. For a new task Tk , our proposed method mainly
includes four stages, with the specific training process shown in Algorithm 1. (1) New task
training and label knowledge injection (Line 2∼10): The purpose of this stage is to learn
the newly emerging relations Rk in Tk . Relation labels will be inserted into the text at this
stage to capture specific descriptions of the relationships in the text. Additionally, for each
r in Rk , the K-means algorithm will be used to select representative instances from Dk to
be stored in memory M̂k . (2) Relation prototype generation (Line 11): The embeddings
of relation label r and the instances stored in memory are used as inputs for multi-head
attention to generate relationship prototypes hr for each observable relationship type. (3)
Memory replay (Line 12∼16): Contrastive learning is performed using the classic instances
and the generated relationship prototypes to maintain the knowledge previously learned.
(4) Multi-similarity distillation (Line 17∼21): We conduct distillation learning using the
embedding space based on the outputs of the encoder from the previous stage and the
current encoder.

New task training and label knowledge Infusion
For a new task Tk , we train on its training set Dk . Given an input sentence xi and two
entityes within the sentence, we insert special markers [E11]/[E12] and [E21]/[E22] at the
beginning and end of the head and tail entities, respectively, to indicate their positions in
the text.

In this stage, we aim to enrich the semantic information within the relation labels.
Specifically, we concatenate the relation label with the sentence using the token [SEP].
Formally, for an instance xi and its corresponding relation label ri, the sequence fed into
the encoder takes the form: [CLS]ri[SEP]xi[SEP]. Although the model’s objective is to
predict the semantic relation between given entity pairs, the knowledge gained during
this process shapes the representations of label tokens. Consequently, the model learns to
generate embeddings for label tokens that capture semantic information based on their
contextual usage in a sentence. To prevent the model from solely relying on the label and
neglecting the context sentence, we employ a random inserting approach. This means that
the relation label will be inserted into a sentence with a certain probability.

When learning a new task, for each training instance, we use the embeddings of [E11]
and [E21] as representations for the head and tail entities. The input of the classifier is
calculated using:

h=W1
[
h11;h21

]
+b (1)
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Figure 1 Framework of the proposed model for task Tk.
Full-size DOI: 10.7717/peerjcs.2327/fig-1

where h11,h21 ∈Rd are the hidden representations of the tokens [E11], [E21] respectively.
d is the dimension of the hidden embeddings output from encoder. [;] denotes the
concatenation operation.W1 ∈Rd×2d and b∈Rd are two trainable parameters.

We calculate the probability distribution of the current instance being classified into
each relation using the softmax function:

P (x;θk)= softmax (W2h). (2)

Here, W2 ∈R|R̃k |×d is the trainable parameter in the classifier. The loss function for the
current learning task is computed as follows:

L1=−
1
|Dk |

∑
xi∈Dk

∑
r∈Rk

δri,r logP (r |xi;θk). (3)

P (r |xi;θk) represents the probability that the current model θkclassifies the input xi as
relation r. ri is the label of xi such that if r = ri, δri,r = 1, and 0 otherwise.

Prototype generation
To fully leverage the semantic knowledge embedded in relation labels, we use the labels to
guide the generation of relation prototypes. Specifically, for a particular relation type r , its
hidden embedding representation hr is obtained by averaging the encoder outputs of each
word in the relation label. For instance, for the relation label ‘‘Organization founded’’, the
embedding representation is calculated as follows: horg :founded = 1

2(hOrganization+hfounded).
In contrast to the previous approach, which simply averaged the embedding

representations of instances stored in memory to obtain relation prototypes, we aim
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Algorithm 1 Training procedure for Tk

Input:
The training set of Dk of the k-th task, previous encoder Ek−1, history memory M̂k−1, current
relation set Rk , history relation set R̂k−1.

Output:
Encoder Ek , memory M̂k , relation set R̂k .
1: Ek← Ek−1;
2: for i← 1 to epoch1 do
3: for each (x,r)∈Dk do
4: Insert the relation label r into the text x with a certain probability p;
5: Update Ek with L1;
6: end for
7: end for
8: Select informative examples from Dk to store intoMk ;
9: M̂k← M̂k−1∪Mk ;
10: R̂k← R̂k−1∪Rk ;
11: Generation prototypes hr for each r ∈ R̂k ;
12: for i← 1 to epoch2 do
13: for each (x,r)∈ M̂k do
14: Update Ek with LC ;
15: end for
16: end for
17: for i← 1 to epoch3 do
18: for each (x,r)∈ M̂k do
19: Update Ek with LC ;
20: end for
21: end for
22: return Ek,M̂k,R̂k ;

to make relation prototypes attentive to different patterns within instances. Inspired by
KIP-framework (Zhang et al., 2022), we utilize the hidden representation of the relation
label as the query vector and employ a multi-head attention mechanism to form relation
prototypes.

Specifically, we first obtain the hidden embedding representations of instances in
memory with relation class r through encoder:

Hxr ={hx |∀x ∈Mr } (4)

where Mr represents all instances in memory with relation class r , and hx ∈Rd is the
embedding representation of instance x . The output of the i-th attention head in the
multi-head operation is denoted as pi ∈Rd and is computed as follows:

Attention(Q,K ,V )= softmax
(
QKT
√
d

)
V (5)
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pi=Attention
(
hrW

Q
i ,HxrW

K
i ,HxrW

V
i

)
(6)

where h_r is the hidden embedding corresponding to the relationship label r, and
WQ

i ,W
K
i ,W

V
i ∈Rd×dh , where dh= d/N , with N being the number of attention heads.

At last, the prototype of relation r is calculated by (6):

pr = LN (W3[h1;h2;...;hN ]) (7)

where LN (·) is the operation of layer normalization, [;] denotes the concatenation
operation. W3 ∈Rd×Ndh is a trainable matrix. N is the number of the attention head.
pr is the prototype of relation r.

Contrastive replay
After learning a new task, to mitigate the problem of catastrophic forgetting caused by
changes in model parameters, we need to replay the stored typical instances in memory. In
this phase, we employ the contrastive learning for memory replay. Specifically, we use the
InfoNCE loss to train the model. For a specific instance xi, the loss is computed as follows:

Lc =−
1∣∣M̂k
∣∣ ∑
xi∈M̂k

log
exp

(
hxi ·pri/τ1

)∑
r∈R̂k

exp
(
hxi ·pr/τ1

) (8)

where ri is the relation label of instance xi, pri is the corresponding relation prototype,
and τ1 is the temperature parameter. Utilizing contrastive learning methods provides
a more effective classification space, preserving previously learned knowledge while
incorporating new knowledge from the current task. However, contrastive replay may
alter the distribution of instance’s representation. To address this drawback, we propose a
multi-similarity distillation method.

Multi-similarity distillation
In certain previous works, distillation is employed during the memory replay process to
preserve prior knowledge. For instance, CRL use the similarity metric between relations
in memory as memory knowledge. However, knowledge distillation based on relation
prototype may lead to the loss of specific samples of individual instances. In this step, our
goal is to ensure that the current model produces features similar to those of the previous
model while keeping the model’s classification space as clear as possible to avoid confusion.

Considering a specific sample xi, with the current model and the previous model’s
output hidden representations denoted as hlxi and hl−1xi , respectively, we aim to make these
two representations as similar as possible. Then, the first term of distillation loss function
is computed as follows:

Lnd =−
1∣∣M̂k
∣∣ ∑
xi∈M̂k

(1−cos(hlx ,h
l−1
x )) (9)

where cos(·) represents the cosine similarity between two vectors.
Furthermore, to enhance the discriminability of hidden representations of instances of

different classes, we employ a contrastive learning approach. Inspired by themulti-similarity
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loss (Wang et al., 2019a), we introduce a multi-similarity distillation method. We define
the similarity between instance xi and xj as Sij :

Sij = hTxihxj . (10)

Subsequently, we leverage this similarity to mine hard positive and negative samples.
The selection criteria for negative sample pairs

{
xi,x−j

}
is:

S−ij >minrk=riSik−ε. (11)

Similarly, the selection criteria for positive sample pairs
{
xi,x+j

}
is:

S+ij >minrk 6=riSik+ε. (12)

Here, ε is a hyperparameter. The set containing all selected positive sample pairs is
denoted as Ni, and the set of negative pairs is denoted as Pi. By doing so, we filter out
sample pairs with less informative content, thus improving the efficiency of the model.
Thenwe apply a soft weighting to each sample pair based on their similarity. The calculation
of weights of positive pairs w+ij and negative pairs w−ij is as follows:

w−ij =
1

eβ(λ−Sij)+
∑

k∈Ni
eβ(Sik−Sij)

(13)

w+ij =
1

e−α(λ−Sij)+
∑

K∈Pi e
−α(Sik−Sij) (14)

where α,β,λ are hyper-parameters At last, the second term of distillation loss function is
computed as:

Lms=−
1∣∣M̂k
∣∣ ∑
xi∈M̂k


1
α
log

1+∑
k∈Pi

e−α(Sik−λ)


+
1
β
log

1+∑
k∈Ni

eβ(Sik−λ)



. (15)

Compared to methods that randomly select sample pairs or choose the most challenging
sample pairs, the multi-similarity distillation approach, when weighting sample pairs,
considers not only the similarity of the sample pairs themselves but also tasks into account
other sample pairs. This assigns more weight to sample pairs that carry more information,
making the method more robust. Through this approach, the output of the current model
not only aligns with that of the previous model but also leads to the aggregation of instances
of the same category in the embedding space, making it easier to distinguish instances of
different categories.

Overall, the distillation loss function is defined as:

Ld = Lnd+Lms. (16)
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EXPERIMENT
Datasets
In our experiment, we utilized two benchmark datasets, FewREL (https://github.com/
thunlp/FewRel) and TACRED (https://catalog.ldc.upenn.edu/LDC2018T24).

The FewREL (Han et al., 2018) datasets is a dataset for few-shot relation classification.
To maintain consistency with previous benchmark models, we employed its version with
80 relations, each consisting of 700 instances.

The TACRED (Zhang et al., 2017) dataset is a large-scale relation extraction dataset
comprising 42 different relations and a total of 106,264 instances. To ensure a balanced
distribution of instances for each relation category, consistent with previous benchmark
models, the number of training samples for each relation is restricted to 320, and the
number of test samples for each relation is limited to 40.

Experimental setup and evaluation metrics
For a fair comparison, we employ the same setting and obtain the divided data from the
open-source code of [5], [6] to guarantee exactly the same task sequence. We report the
average accuracy of five different sampling task sequences. The number of stored instances
in the memory for each relation is 10 for all methods.

Baseline
We compared the experimental results with the baseline models listed below.

Embedding aligned EMR (EA-EMR) (Wang et al., 2019b) enhances adaptability and
knowledge retention amidst changing data and relations by anchoring sentence embeddings
and using an explicit alignment model.

Episodic memory activation and reconsolidation (EMAR) (Han et al., 2020) activates
episodic memory and reconsolidate with relation prototypes during both new and
memorized data learning.

Curriculum-meta learning (CML) (Wu et al., 2021) employs a curriculum-meta learning
approach to swiftly adapt to new tasks and mitigate interference from previous work.

Relation prototypes CRE (RP-CRE) (Cui et al., 2021) employs relation prototypes and
multi-head attention mechanisms to address the issue of the hidden representation space
being disrupted after learning new tasks.

Consistent representation learning (CRL) (Zhao et al., 2022) introduces supervised
contrastive learning and knowledge distillation to maintain previously learned knowledge.

Continual relation extraction framework with contrastive learning (CRECL) (Hu et
al., 2022) consists of a classification network and a contrastive network, decouple the
representation and classification process

Classifier decomposition (CDec) (Xia et al., 2023) introduces a classifier decomposition
framework to address biases in CRE, promoting the learning of robust representations.

Main results
The overall performance of our proposed model on two datasets is shown in Table 1. All
baseline model results mentioned in the table are cited from their respective papers. From
the analysis of Table 1, the following conclusions can be drawn:
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Table 1 Accuracy (%) on all observed relations after learning each task. The best results are marked in bold.

Dataset Method T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

EA-EMR 89.0 69.0 59.1 54.2 47.8 46.1 43.1 40.7 38.6 35.2
EMAR(BERT) 98.8 89.1 89.5 85.7 83.6 84.8 79.3 80.0 77.1 73.8
CML 91.2 74.8 68.2 58.2 53.7 50.4 47.8 44.4 43.1 39.7
RP-CRE 97.9 92.7 91.6 89.2 88.4 86.8 85.1 84.1 82.2 81.5
CRL 98.2 94.6 92.5 90.5 89.4 87.9 86.9 85.6 84.5 83.1
CRECL 97.8 94.9 92.7 90.9 89.4 87.5 85.7 84.6 83.6 82.7
CDec 98.4 95.4 93.2 92.1 91.0 89.7 88.3 87.4 86.4 84.2

FewRel

Ours 98.1 95.6 94.0 92.0 91.3 89.4 88.8 87.6 86.0 84.6
EA-EMR 47.5 40.1 38.3 29.9 28.4 27.3 26.9 25.8 22.9 19.8
EMAR(BERT) 96.6 85.7 81.0 78.6 73.9 72.3 71.7 72.2 72.6 71.0
CML 57.2 51.4 41.3 39.3 35.9 28.9 27.3 26.9 24.8 23.4
RP-CRE 97.6 90.6 86.1 82.4 79.8 77.2 75.1 73.7 72.4 72.4
CRL 97.7 93.2 89.8 84.7 84.1 81.3 80.2 79.1 79.0 78.0
CRECL 96.6 93.1 89.7 87.8 85.6 84.3 83.6 81.4 79.3 78.5
CDec 97.9 93.1 90.1 85.8 84.7 82.6 81.0 79.6 79.5 78.6

TACRED

Ours 97.5 94.3 91.3 88.3 85.1 83.2 82.2 81.4 80.3 79.3

(1) Our model achieves competitive results compared to existing baseline models,
obtaining the best results in most tasks. This demonstrates the effectiveness of our
proposed method in CRE.

(2) Our model did not achieve the best results when evaluating Task 1 on both datasets.
This is because, in the initialization phase, there is no need to mitigate catastrophic
forgetting through relation prototypes and knowledge distillation. As tasks continue
to arrive, maintaining previously learned knowledge becomes more crucial, leading to
better performance for our model.

(3) All models perform better on the FewRel dataset compared to the TACRED dataset.
This could be attributed to the imbalanced distribution of relation types and the relatively
longer sentences in the TACRED dataset, which increases the search space and may lead
to performance degradation.

Ablation study
To validate the impact of the Label Knowledge Infusion (LKI) module and the Multi-
Similarity Distillation (MSD) module on the model’s performance, we conducted an
ablation study, with the results shown in Table 2. Specifically, for w/o LKI (w/o context),
We do not randomly insert relation labels into the text context when training on new
tasks. For w/o LKI (special token), we replaced relation labels with special tokens. In other
words, during the training of a new task, a special token was randomly inserted into each
training instance for each relation, and this special token was used to generate relation
prototypes through multi-head attention operations. For w/o MSD, we did not employ
multi-similarity distillation during the memory replay stage to maintain previously learned
knowledge. As for avg. prototype, we obtained relation prototypes by averaging the hidden
representations of typical samples. The results from Table 2 indicate that removing specific
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Table 2 Ablation study results. We remove label knowledge infusion (LKI), Multi-smilarity distillation
(MSD) in order and report the accuracy of the last five tasks in FewRel and TACRED. The best results are
shown in bold.

Method T6 T7 T8 T9 T10

Intact Model 89.4 88.8 87.6 86.0 84.6
w/o MSD 87.9 86.9 85.5 84.7 84.0
w/o LKI (w/o context) 88.6 87.4 86.3 84.5 82.7
w/o LKI (special token) 88.4 87.4 85.9 84.0 83.4

FewRel

avg. prototype 88.0 86.9 85.4 84.1 82.4
Intact Model 83.2 82.2 81.4 80.3 79.3
w/o MSD 82.4 81.1 80.2 79.8 78.6
w/o LKI (w/o context) 83.2 81.4 79.6 79.0 78.0
w/o LKI (special token) 82.0 81.2 80.5 79.0 78.4

TACRED

Avg. prototype 83.8 81.2 80.1 79.5 77.8

modules leads to a decrease in model performance, demonstrating the effectiveness of each
module in our model. Not usingMSD for knowledge distillation during the memory replay
phase disrupts the distribution of relation embeddings in the embedding space, resulting
in poorer performance on previously learned relation categories.

To figure out how the label knowledge infusion module work, we conducted the
following experiment. Firstly, we employed t-SNE to visualize the distribution of relation
labels in the embedding space at different epochs during the learning of new tasks. This
aimed to confirm whether relation labels could acquire more semantic knowledge through
training via textual context. The results are depicted in Fig. 2. During training new task,
with an increase in the number of iterations, the embedding of relation labels moves from
the boundary of the embedding space toward the center. This indicates that, through
self-attention mechanism (Vaswani et al., 2017) and gradient propagation, relation labels
can capture different patterns in training instances. If this process is not conducted, directly
using relation label lacking contextual semantics to generate relation prototypes will result
in a significant performance drop. Subsequently, replacing relation labels with special
tokens also led to a decrease in model performance. We believe that, compared to using
special tokens, relation labels provide a highly generalized semantic understanding of the
corresponding relationship. This plays a crucial role both in injecting semantic information
into tokens representing relation labels and in generating relation prototypes.

Analysis of memory size
To mitigate catastrophic forgetting, when new data arrives, we need to select a certain
number of instances for memory replay using the k-means algorithm. The selection is
limited by the memory size. Usually, memory size is a significant factor influencing model
performance. Due to resource constraints and computational limitations, only a small
number of representative instances are stored. This requires that the model is minimally
affected by changes in memory size. To investigate the performance of our model under
different memory sizes, we conducted experiments with memory sizes set to 2, 5, and 15
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Figure 2 (A–C) The distribution of relation labels across different epochs in the embedding space.
Full-size DOI: 10.7717/peerjcs.2327/fig-2

Figure 3 (A–C) Accuracy with reference to different memory sizes.
Full-size DOI: 10.7717/peerjcs.2327/fig-3

instances, respectively. We compared the results with baseline models CRL and CRECL.
The experimental results are shown in the Fig. 3.

When the memory size is set to 2 and 5, the performance of our proposed model is
better than the baseline models. We believe this phenomenon can be attributed to two
reasons: (1) During the new task training phase, we inject rich semantic information into
the relation labels, acting as a knowledge base. (2)We employ amulti-attentionmechanism
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Table 3 All relations are divided into three groups based on their similarity. ‘‘Accuracy’’ indicates the
average accuracy of the model after learning. ‘‘Drop’’ indicates the accuracy drop after learning.

Model Similarity TACRED

Accuracy Drop

[0.85,1.00) 64.8 11.4
[0.70,0.85) 76.6 5.0CRL

(0.00,0.70) 89.6 0.6
[0.85,1.00) 60.7 13.9
[0.70,0.85) 70.0 8.4CRECL

(0.00,0.70) 79.9 4.3
[0.85,1.00) 67.6 9.8
[0.70,0.85) 78.1 4.2Ours

(0.00,0.70) 88.7 1.2

to generate relation prototypes, making full use of the limited information contained in
the memory.

When the memory size is set to 15, our model did not consistently achieve the best
performance in some cases. We believe that with a memory size of 15, the instances stored
in memory already provide sufficient information for the model to retain prior knowledge.
This results in our proposed method having limited impact on performance improvement.

Effectiveness of multi-loss distillation
The main reason for catastrophic forgetting in CRE is the presence of similar relations in
the learning data stream. Due to their similar semantics, instances of these relations tend to
cluster together in the embedding space, leading to classification difficulties. Table 3 shows
the performance of CRL and CRECL on different groups of similar relations, where it can
be observed that the more similar the learned relations are, the greater the performance
decline of the model. Therefore, to improve model performance, it needs to have the ability
to distinguish similar relations. Additionally, the proposed model demonstrates a smaller
performance decline after learning similar relations compared to the baseline models,
proving its stronger capability to distinguish similar relations.

To investigate the impact of multi-loss distillation on the distribution of instances of
different relations in the embedding space, we selected five highly similar relations from
the TACRED dataset and visualized the distribution of their corresponding samples using
t-SNE. From Fig. 4, it can be seen that through multi-loss distillation, instances with the
same relation label tend to cluster together in the embedding space, while there is a clear
boundary between instances of different relations.

CONCLUSION
In this paper, we propose a label-guided relation prototype generation method. To capture
different emphases of instances stored in memory, we employ a multi-head attention
mechanism to generate relation prototypes. We use the embedding of relation label as
query vectors to leverage their semantic knowledge. Additionally, we learn patterns in
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Figure 4 (A–B) The distribution of five similar relations in the embedding space.
Full-size DOI: 10.7717/peerjcs.2327/fig-4

the text by randomly inserting relation labels into the text. Furthermore, we introduce
multi-similarity distillation to maintain existing knowledge while making it easier to
distinguish between instances with different labels. We validate the effectiveness of the
model through a series of experiments and explore how each module work. We believe
that the rich information contained in relation labels has not been fully utilized. In future
work, we plan to investigate how to full use of these labels, such as expanding the memory
by generating pseudo-instances only through entity pairs and relation label embeddings to
improve model performance.
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