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ABSTRACT

Inductive link prediction (ILP) in knowledge graphs (KGs) aims to predict missing links
between entities that were not seen during the training phase. Recent some subgraph-
based methods have shown some advancements, but they all overlook the relational
semantics between entities during subgraph extraction. To overcome this limitation,
we introduce a novel inductive link prediction model named SASILP (Structure and
Semantic Inductive Link Prediction), which comprehensively incorporates relational
semantics in both subgraph extraction and node initialization processes. The model
employs a random walk strategy to calculate the structural scores of neighboring nodes
and utilizes an enhanced graph attention network to determine their semantic scores. By
integrating both structural and semantic scores, SASILP strategically selects key nodes
to form a subgraph. Furthermore, the subgraph is initialized with a node initialization
technique that integrates information about neighboring relations. The experiments
conducted on benchmark datasets demonstrate that SASILP outperforms state-of-
the-art methods on inductive link prediction tasks, and verify the effectiveness of our
approach.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Natural
Language and Speech, Neural Networks

Keywords Knowledge graphs, Inductive link prediciton, Graph attention network, Personalized
PageRank, Random walk

INTRODUCTION

A knowledge graph is a collection of triplets organized in the structure of (h,rt). It plays
a critical role in domains such as information retrieval (Wang et al., 2020), intelligent
recommendation (Yu ef al., 2020), and intelligent Q & A (Kaiser, Saha Roy ¢ Weikum,
2021). However, most existing knowledge graphs are incomplete. To address this issue,
numerous link prediction methods have been developed. Most of these methods use an
embedding-based approach, which involves mapping entities and relations into a vector
space and obtaining low-dimensional representations through training. A scoring function
is then used to evaluate the plausibility of a triplet’s existence. This approach, known as
transductive inference (Ji et al., 2021), can be used to infer missing entities or relations, as
shown in Figs. 1A and 1B.
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Figure 1 (A-B) Transductive link prediction in knowledge graph.
Full-size @ DOI: 10.7717/peerjcs.2324/fig-1
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Figure 2 (A-B) Inductive link prediction in knowledge graph.
Full-size & DOI: 10.7717/peerjcs.2324/fig-2

However, embedding-based approaches encounter a significant challenge in practice:
their effectiveness relies on the assumption that all entity representations have been
acquired. If the test set includes entities that are absent from the training set, the model
must be retrained. In real-world business scenarios, new entities and relations continuously
emerge, necessitating the model’s ability to adapt to the dynamically changing data
environment. Frequent model retraining can be resource-intensive and time-consuming,
making it impractical for real business deployments. To address the link prediction problem,
which involves new entities and relations in the test set, researchers have proposed inductive
link prediction methods. These methods can be classified into two forms: Fully Inductive
and Partially Inductive. In the fully inductive method, the entities observed during training
and testing do not overlap, while relations at inference time consist of a mixture of known
and new relations, as shown in Fig. 2B. Conversely, the partially inductive approach involves
testing entities that did not occur in the training, while relations at inference time remain
consistent with that observed during training, as shown in Fig. 2A.

The inductive link prediction discussed in our paper refers to partial inductive link
prediction methods. These methods typically involve three main steps: subgraph extraction,
node initialization representation, and graph neural network aggregation.
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Subgraph extraction methods can be divided into two categories. The first category of
methods uses the k-hop distance between a node and the head or tail entity related to
the target relation as a measure of node importance. According to this perspective, nodes
that are nearer to the head or tail entity linked to the target relation are considered more
important. Therefore, when extracting a subgraph, the method first identifies and obtains
the set of k-hop neighboring entities of the head or tail entity associated with the target
relation. Subsequently, the subgraph is constructed by calculating the intersection of these
two sets.

The second category of methods uses probabilistic, such as PageRank (PR) (Brin ¢
Page, 2012), Hyperlink-Induced Topic Search (HITS) (Kleinberg, 1999), and Personalized
PageRank (PPR) (Lofgren ¢» Goel, 2013), to evaluate the importance of nodes through
random walk. These methods construct subgraphs based on node scores, which reflect the
importance of nodes in the knowledge graph with respect to the target relation.

In knowledge graphs, relations in triplets are rich in semantic information, and
entities with the same relation are semantically similar. For instance, in the triplet (X,
film_regional_released, Y), based on the relation, we can infer that the head entity (X)
represents the movie, and the tail entity (Y) represents the place name. This relational
semantics enables us to capture semantic associations between entities more effectively.

Subgraph extraction methods based on random walk and k-hop node sets fail to
adequately capture the complex dependencies between nodes. The attention mechanism
can be used to learn the edge weights in the graph, which reflect the interdependence
between nodes.

Inspired by the previous work, we propose a novel inductive link prediction model
called Structure and Semantic Inductive Link Prediction (SASILP). This model can predict
missing links between unseen nodes. SASILP employs a method that combines graph
structure and relational semantic information to extract subgraphs and initialize subgraph
representations. Specifically, we use graph attention networks and random walk algorithms
to obtain the nodes’ semantic and structural scores, respectively, and use these scores as the
basis for subgraph extraction. Moreover, we aggregate entity-related relations to initialize
entities. In this way, SASILP can effectively incorporate relational information into the
enclosing subgraph, thus improving the performance of inductive link prediction.

The main contributions of this paper are as follows:

e We introduce a novel subgraph extraction method for inductive link prediction,
which realizes subgraph extraction by combining structural and relational semantic
information.

e We propose a novel method for node initialization that considers the underlying relation
semantics present in all known triplets. This approach can provide comprehensive
information to represent emerging entities and meet the requirements of the induction
scenario.

e We conducted inductive link prediction experiments on the benchmark datasets. The
results show that SASILP outperforms the baseline models in 3 out of 4 metrics on
WNI18RR_v2, WN18RR_v3 and FB15K237_v4.
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RELATED WORK

Path and rule-based link prediction

These approaches use path information or logical rules between entities in a knowledge
graph to predict links. The Path Ranking Algorithm (PRA) (Lao ¢ Cohen, 2010) analyses
the path patterns between entities. AMIE (Galdrraga et al., 2013), RuleN (Meilicke et al.,
2018), Neural-Lp (Wang et al., 2019) and DRUM (Yang, Yang ¢ Cohen, 2017) learn logical
rules from the knowledge graph. AMIE and RuleN generate logical rules based on path
search traversal, which has limited scalability. Neural-Lp generates logical rules through
recurrent neural networks, while DRUM learns rules in a differentiable manner. These
rules can capture semantic information that is independent of entities. However, they still
face challenges in handling complex logic and large scale data, as well as improving the
accuracy and interpretability of rules.

Embedding-based link prediction

Embedding-based link prediction predicts links by mapping entities and relations in the
knowledge graph to embeddings in a low-dimensional space. The embeddings capture
semantic information about the entities and relations, enabling the computation of
possible relations between entities. TransE (Bordes et al., 2013) is one of the earliest models
for embedding knowledge graphs, which assumes that the sum of the embeddings of the
head and tail entities should be close to the relation embeddings. TransE is a model suitable
for 1-to-1 relations. However, it has limitations when dealing with 1-to-many, many-to-1,
and many-to-many relations. To handle complex relation types better, TransH (Wang
et al., 2014) TransR (Lin et al., 2015), and TransD (Ji et al., 2015) are proposed. DistMult
(Yang et al., 2015) and ComplEx (Trouillon et al., 2016) capture complex interactions
between entities by using different scoring functions. ComplEx introduces complex
embeddings to model symmetric and antisymmetric relations. With the development
of neural network technology, neural network-based knowledge graph representation
models have shown good performance in representation learning, M-DCN (Zhang et
al., 2020) utilize multi-scale processing to optimize quality in the convolution layer for
knowledge graph embedding. It generates various sizes of convolution filters to learn
different characteristics between the embeddings of entity and relation. SHGNet (Li et
al., 2023) designs a hierarchical aggregation architecture for feature propagation. And the
method incorporates neighbor information via node aggregation and relation weighting,
which can selectively aggregate informative features. TEGS (Li ef al., 2024) amalgamates
textual encoding and graph structure information, facilitating the concurrent acquisition
of contextualized and structured knowledge. These approaches assume that all entities
and relations are known during training. They cannot predict entities and relations that
have not appeared in the training set. For knowledge graphs where new nodes and edges
are constantly being added, embedding-based link prediction methods require frequent
re-training to adapt to the changes.
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GNN-based link prediction

In recent years, graph neural networks (GNNs) (Scarselli et al., 2008) have made significant
progress in link prediction tasks. GNNGs efficiently capture both local and global information
in the graph structure. Graph Convolutional Network (GCN) (Kipf ¢» Welling, 2016) learns
the representation of nodes by performing convolutional operations on graphs. Graph
attention network (GAT) (Velickovic et al., 2017) introduces an attention mechanism that
allows the model to dynamically focus on important neighboring nodes. The relational
graph convolutional network (R-GCN) (Schlichtkrull et al., 2018) is specifically designed to
deal with heterogeneous relations in graphs. These methods enhance the expressive power
of the model and improve the accuracy of link prediction, however, they cannot predict
relations between newly added entities.

To achieve efficient generalization of patterns and predict relations between new
entities without frequent model retraining, innovative approaches have been developed.
These approaches combine subgraph extraction techniques with GNNs for inductive
link prediction. Grail (Teru, Denis ¢ Hamilton, 2020) extracts an enclosing subgraph of
target triplet from knowledge graph, and models the subgraph with GNN to capture
the topological structure. COMPILE (Mai et al., 2021) highlights the edge direction in
the enclosing subgraph based on Grail. TACT (Chen et al., 2021) considers the semantic
correlation between two relations in the knowledge graph based on subgraph structural
information. SNRI (Xu et al., 2022) contains the neighborhood path information of all
nodes in the enclosing subgraph. RMPI (Geng et al., 2023) first transforms a triplet’s
surrounding subgraph in the original KG into a new relation view graph, where inter-
relation features are more straightforwardly represented. It then learns the embedding of
an unseen relation from the relational subgraph by the relational message passing network.
LCILP (Mohamed et al., 2023) extracts subgraph using a PPR-based local clustering
technique.

Although these methods have achieved good results, they only use node information in
the graph when selecting nodes for subgraph extraction, without considering the influence
of edges, which are important components of knowledge graph.

METHODS

This section describes the knowledge graph inductive link prediction model entitled
SASILP. The objective of the model is to assign a score to the given triplet (u, 1, v), where
u and v represent nodes that were not observed in the training graph but are present

in the inference graph, and r; denotes the target relation between nodes u and v. The
overall framework of SASILP is shown in Fig. 3, it consists of four parts: importance score
calculation, subgraph extraction, node initialization, and score function construction.

Subgraph extraction

Most of the current inductive link prediction methods rely on the subgraph around the
target relation, where the nodes of the subgraph are selected based on their proximity
to the target nodes. Inspired by GENI (Park et al., 2019), we introduce a novel subgraph
extraction method that constructs the subgraph by scoring nodes based on a combination
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of node distances and relational semantics. The subgraph extraction method is composed
of four parts: (1) Calculation of the semantic importance score of nodes using attention
mechanisms. (2) Computation of the structural importance scores of nodes using the
PPR algorithm. (3) Calculating the final importance score of nodes by weighting and
summing their structural and semantic importance scores. X is a weight paremeter that
adjusts the proportion of structural and semantic information in the calculation of node
importance. (4) Selecting nodes to form a subgraph based on their scores. Specifically,
nodes associated with the target relation are initially ranked in descending order based on
their importance scores. Subsequently, these nodes are incrementally added to an initially
empty set of seed nodes. After each node addition, the conductance of the current set of
seed nodes is computed. The process stops when the calculated conductance value falls
below a predefined threshold. The resulting seed node set and its corresponding local
subgraph is the subgraph we need.

1. Semantic importance score for node

In knowledge graphs, relations contain crucial semantic information essential for
understanding the graph structure and conducting effective node importance assessment.
Different semantic relations exert varying influences on node importance. For the target
relation ‘lives in’ in Fig. 4, the relations ‘parent of’, ‘work in’, and ’located in’ are less
important than ‘be good at’, is friend of’, and ‘husband of'. Nodes connected to more
relevant relations should receive higher priority in importance assessment.

GATs are effective in capturing the relative importance between nodes, so we adopt
the attentation weight as the semantic score of the node. However, GAT may overlook
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Algorithm 1 Subgraph extracting algorithm.

Require: graph G = (V, E) with vertices V and edges E; seed set S= {m, n}; teleportation
probability @ € (0, 1]; residual error 8; weight paramater A; the embedding of nodes
h; conductance threshold ¢;
Ensure: subgraph S
1: for vin G do:
scoreg,, =APPR(G,v, a, B);
SCOTeseman =semantic_weight(G,h);
score = A X scoregy, +(1-1) X scoreseman;

. sort nodes in descending order according to their scores
: compute the conductance of the set S;
: while conductance < ¢ do:
add node to the set of seed nodes S;
10: end while

11: return S;

2
3
4
5. end for
6
7
8
9

the relational semantic information when dealing with knowledge graphs. To address this
issue, we integrates relational information into the computation of attention weights by
sharing relation embeddings, as shown in Fig. 5. At each layer of the model, node features
are passed to the next layer through the output of the previous layer, while edge features
remain shared across all layers. The node updates its features by considering not only its
information but also the relational information around it. This approach allows for a more
accurate assessment of the importance of nodes in the knowledge graph In graph attention
calculation, the weight coefficient e;; from node v; to node v; is defined as

k
eij =als(i) | Y _pji Il s(7)] (1)
m=1

where s(i) is the embedding of node i obtained by other ways such as TransE or one-hot.
Since there can be many different types of relations between two entities in the knowledge
graph, in order to distinguish different types of edges, k is the number of edge between
node i and j, p? represents the embedding of the m-th edge. a is an attention calculation
function. All the computed weight coefficients are normalized by the softmax function:

_ exp(LeakyRelu(e;j))
Y e ~;exp(LeakyRelu(er))’

where LeakyRelu is the activation function. N; is the set of nodes in the graph.

Ol,'j e € Ni (2)

2. Structural importance score based on the PPR algorithm.

The PPR algorithm is primarily used to determine the structural importance score of
entities in the knowledge graph. It sets the head and tail entities of the target relation as the
seed node set, then performs a random walk with a restart from the seed node set, it returns
to the start node with probability c and jumps to neighbor nodes with probability 1-c. After
many iterations, the algorithm reaches a stable value. The probability distribution can be
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Figure 4 The different importance of different relation for link prediction in knowledge graph.
Full-size Gal DOI: 10.7717/peerjcs.2324/fig-4

viewed as the structural score scorey,, link to the other nodes of the seed node:
r=cW+(1—c)e (3)

where ¢ € (0, 1], W denotes the transfer probability matrix, W[i,j] represents the probability
from node j to node i. e denotes the initialization vector, If the start node is i, then e [i]
equals 1. Otherwise, e [i] equals 0. The vector r is a column vector that represents the
probability of being at node i. To reduce computational complexity, an approximate PPR
algorithm is commonly used.

3. Node importance score

The final importance score of nodes is obtained by weighting and summing the structural
importance score and semantic importance score. The score is defined as follows:

score = A X sCOtesry + (1 — A) X $COT€serman (4)

where A denotes the weight given to the structural importance score, and (1 —X) denotes
the weight given to the semantic importance score.

The entities should be sorted in descending order based on their score and added to
the seed set S. Then, the conductance of the set S should be calculated. If the conductance
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Figure5 Attentation mechanism.
Full-size Gl DOI: 10.7717/peerjcs.2324/fig-5

reaches the specified threshold, the set can be used as an extracted subgraph of the target
relation. The calculation of the conductance is defined as:

_ HGj)eE,ies,jgs)
#(S)= min(vol(S),2m—vol(S))

(5)

where E is the set of edges, 7 is a point in set S, j is a point outside of set S, and vol(S) is the
sum of the degrees of all points in S, m is the number of edges in graph, 2m-vol(S) denotes
the sum of the degrees of the nodes not included in S.

Initialization representation of nodes

An appropriate initialization can deploy the intrinsic properties and structural information
of entities, and it can bolster the model’s representational capacity and generalizability. Most
inductive link prediction models for subgraph node initialization adopt structure-based or
attribute-based initialization. However, these methods fail to take into account the impact
of relations in initializing the embeddings.

In a triplet, entities with the same relation are often semantically similar. Consequently,
the relational is instrumental in capturing the essence of both the head and tail entities
within the representational framework. By incorporating relation information associated
with the entity into the entities themselves, it can implicitly indicate the specific category
of the entity at the semantic level, thereby providing more useful information for the
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representation of new entities. Based on the aforementioned concept, when initializing
the node embedding, the relations associated with the entity are aggregated to form the
semantic information embedding of the entity’s relation. For entity e, there are both
relations to and from it. To clarify the direction of the relation, we use 1, to represent the
relation embedding pointing to the entity, and rj, to represent the relation embedding apart
from the entity. Since an entity may have multiple relations with other entities, the semantic
embedding of entity e is formed by aggregating all the relation embeddings around it, it is
defined as

1 m ) mny )
= Qon'+) ) m+m=N, (6)
" i=0 =0

where n; denotes the number of edges apart from entity e, 1, denotes the number of edges
pointing to entity e, and N , denotes the total number of edges connected to entity e.
ry' denotes the relation embedding originating from entity e, and r;' denotes the relation
embedding directed from entity e.

The representation of entity e is composed of structural information embedding and
semantic information embedding e, .

e=ces| e (7)

the structural information embedding can be obtained by DRNL (Zhang ¢ Chen, 2018) in
GrailL.

Subgraph representation
The subgraph representation module uses RGCN to learn the representations of entities in
subgraphs, and it is defined as:

+ 1
k k k
W =o |33 - WO + WP no (8)

i,r
reR v eNvfr)

where R denotes the set of all relations in the extracted subgraph, and Nvi(r) denotes the
set of neighbors that have relation r with node v;.a; , is used to perform the normalization
operation. W, is the transformation matrix over relation r in the k-th layer. w, is the
weight parameter corresponding to the node itself, o () is the activation function, and hgk)
represents the embedding of node #; in the k-th layer. The pooled average of all nodes in
the subgraph is used as the subgraph representation h;:

1
W< = A > hf 9)
S1iev

where V; is the set of node, h; denotes the embedding of node i.

Scoring and loss function
To obtain the likelihood score of the triplets, the scoring function is designed as follows:

f(h,rt)=[E} ®Ef @ F, @EL W (10)
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where EX, EX, EgK are the embeddings of the head entity, tail entity and subgraph in the
K-th layer, E, is the representation of the relation, and W is the weight matrix, and the loss
is computed by summing up the scores of all triplets in knowledge graph:
IN|

Loss = Z max(0,f (hi, i, ;) — f (his k. 5) +¥) (11)

(hi,ri,t)€G
where |N| denotes the number of triplets in knowledge graph, G denotes the knowledge
graph, y is margin hyperparameter. f (h;, 7, t;) is the score of positive triplets, and f (h;, rx, ;)
is the score of negative triplets. In this paper, the positive triplets are the triplets existing
in the knowledge graph, and the negative triplets are constructed by replacing the head (or
tail) of the triplets with uniformly sampled random entities.

EXPERIMENTS

DataSet

FB15K is a subset of the FreeBase Knowledge Base (KB) (Bollacker et al., 2008), which
contains general facts about the world with various relation types. FB15K237 is a subset
of FB15K, created by removing reversible relational data. The dataset contains 15k subject
terms and a total of 237 relations. WN18 is a dataset derived from WordNet KB (Miller,
1995), which is a comprehensive database of English vocabulary used to capture lexical
relations, such as hyper-subordination between words. WN18 contains a significant
number of reversible relations, but WN18RR removes these reversible relations to improve
the accuracy of the link prediction task. WN18RR only encompasses 11 relations. To
evaluate the model’s link prediction capability on a new graph, we adopts Grail’s dataset
partitioning method. Four entities are randomly selected as root nodes from the dataset,
and the k-hop neighborhood nodes around each root node are merged to create the
training dataset. The sample training graph is then removed from the entire graph, and
the same method is applied to the remaining graph to obtain the test graph. The process
parameters are adjusted to generate a series of graphs with increasing size. The dataset is
divided into four parts, denoted as v1, v2, v3, and v4, based on the increasing number. The
same method is used to obtain the training and test sets for WN18RR. The dataset statistics
are presented in Table 1.

Baselines and implementation details
1. Baselines

We selected rule-based link prediction methods, namely Neural _LP (Wang et al., 2019),
DRUM (Yang, Yang ¢» Cohen, 2017), and RuleN (Meilicke et al., 2018), as well as subgraph
extraction-based models, including GraiL (Teru, Denis & Hamilton, 2020), SNRI (Xu et al.,
2022), LCILP (Mohamed et al., 2023) and RMPI (Geng et al., 2023) to serve as our baseline
models. Neural LP, DRUM: Neural LP and DRUM both are end-to-end differentiable
approaches to learn first-order logical rules from knowledge graph.
RuleN: RuleN learn specific kinds of rules from knowledge graph with a sampling strategy.
GraiL: Grail extracts enclosing subgraphs around the target relation and models the
subgraph with RGCN to predict relations.
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Table 1 Statics of the dataset. #entities, #relations, #triplets denote the number of entities, relation and

triplets.
WNI18RR FB15K237
#entities #relations #triplets #entities #relations #triplets
vl train 2,746 9 6,678 2,000 183 5,226
test 922 9 1,991 1,500 146 2,404
v train 6,954 10 18,968 3,000 203 12,085
test 2,923 10 4,863 2,000 176 5,092
v train 12,078 11 32,150 4,000 218 22,394
test 5,084 11 7,470 3,000 187 9,137
v train 3,861 9 9,842 5,000 222 33,916
test 7,208 9 15,157 3,500 204 14,554

SNRI: SNRI integrates complete neighboring relations into the enclosing subgraph and
apply MI maximization to inductive link prediction.
LCILP: LCILP extracts subgraph by PPR-based local clustering technique.
RMPI: RMPI transforms a triplet’s surrounding subgraph into a new relation graph, and
learn the embedding of an unseen relation from the relation graph.

2. Parameter setting

The Python implementation of the experimental code was completed on a server
configured with Ubuntu 16.04LTS operating system, featuring Intel(R) Xeon(R) Gold
6348 CPU @ 2.60 GHz configuration, 38GB RAM, and a single v100s GPU. During
caculation of random walk, we set the teleportation probability to a commonly used value
of « =0.15 (Vattani, Chakrabarti ¢ Gurevich, 20115 Leskovec ¢ Faloutsos, 2006) for all the
datasets, and the approximation parameter 8 to le—3 for WN18RR and v1 of FB15K237,
while we set it to 1e—4 for the remaining partitions of FB15K237 (v1, v2, v3). During GAT,
we adopt MultiLabelSoftMarginLoss as the loss function during training, and set epoch
as 50 for WN18RR, 2000 for FB15K237. The model was trained using Pytorch (Paszke et
al., 2019) and optimized with the Adam (Kingma ¢ Ba, 2014) optimizer, with an initial
learning rate of 0.001, batch sizes of 8, 16 and 32, hops of 1, 3 and 5, and a training epoch
of 50.

Evaluation metrics

The performance of the model in the knowledge graph is evaluated using Mean Reciprocal
Ranking (MRR) and hit rate (hits@@k). MRR averages the inverse of the rankings of all
the triplets in the test set. The specific calculation method is as follows:

1 s 1
MRR=—Y)
|S| 4~i=1rank;

(12)

where S is the set of triplets, |S| represents the number of triplets and rank; is the predicted
rank of links in the first triplet. Hits@k refers to the probability of hitting in the first k
results.

IS

1
hits@n = E __II(rank,- <n) (13)
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where S, |S|, rank; and MRR in Eq. (13) involves the same symbols as those used in Eq. (12),
and I() denotes the indicator function (which returns a value of 1 if the condition is true,
and 0 otherwise). Typically, n is assigned a value of 1, 3, 5, or 10.

Results and discussion

To compare the performance of SASILP with existing inductive link prediction models,
we conducted link prediction experiments on the benchmark datasets WN18RR and
FB15K237. We referenced the publicly reported experimental results of the baseline
models Neural-LP, DRUM, RuleN and Grail.. However, due to incomplete information
in the literature, the results for the SNRI, LCILP and RMPI models are obtained through
local execution on our machine.

e Results

Several observations can be obtained from Tables 2 and 3

(1) SASILP outperforms the rule_based models including Neural-LP, DRUM, and RuleN
in all metrics. Compared to the best-performing RuleN model, our method has achieved
significant improvements across various metrics; specifically, on dataset WN18RR_v3,
MRR has been enhanced by 7.27%, and Hits@10 has been improved by 13.88%. Similarly,
on FB15K237_v2 dataset, our approach has demonstrated outstanding performance,
with MRR showing an improvement of 1.94% and Hits@10 by 4.72%. This is likely due
to SASILP model is not only learn path-based rules, but exploit complex patterns in
knowledge graph.

(2) Our model performs better in most cases than the latest subgraph_based model
including Grail, SNRI, LCILP and RMPI. Compared with the best-performing model
LCILP, our method has also shown improvements, specifically, on dataset WN18RR_v3
MRR has been enhanced by 0.77%, and Hits@5 has been improved by 2.4%. It indicates
that incorporating relational semantics into subgraph extraction has a beneficial influence
on the inductive link prediction experiments.

(3) On FB15K237, RuleN outperforms Grail on all datasets for Hits@1. This is likely due
to RuleN focus on the existence of the rule-based path (i.e., 1 or 0) rather than calculating
the probability of the path. However, for Hits@10, GraiL outperforms RuleN, suggesting
that Grail performs better for a wider range of link predictions.

The performance improvements substantiate the effectiveness of our model in the task
of inductive link prediction.

e Performance comparison of different subgraph extraction strategies

We conduct additional experiments on dataset WN18RR to analyze the impact of hop
selection in extracting subgraphs. The values of MRR, Hits@1, Hits@5, and Hits @@10
were taken for k =1, 3 and 5, respectively. The results are shown in Fig. 6.

Figure 6 shows that the performance in terms of MRR, Hits@1, Hits@5, and Hits@10
is the least favourable on all datasets when k = 1. However, there is not much difference
when k =3 and k = 5. This may be due to the fact that the subgraph consisting of 1-hop
neighbors includes a small number of nodes, which limits the availability of contextual
semantic information for relation prediction. When k = 3, subgraphs can provide sufficient
contextual semantic information to improve link prediction performance. However, the
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Table 2 Inductive link prediction performance on WN18RR.

Datasets Model MRR Hits@1 Hits@5 Hits@10
Neural-Lp 71.74 68.34 74.37 74.37
DRUM 72.46 69.60 74.37 74.37
RuleN 79.15 76.06 81.91 80.85
WNISRR vl Grail 80.45 78.19 82.45 82.45
SNRI 78.99 73.14 85.11 89.63
LCILP 79.58 73.67 87.23 88.3
RMPI 78.86 75.21 82.39 82.45
SASILP 80.49 74.73 87.77 88.56
Neural-Lp 68.54 66.89 68.93 68.93
DRUM 68.82 67.46 68.93 68.93
RuleN 77.82 76.53 78.23 78.23
WNISRR v2 Grail 78.13 76.30 78.68 78.68
SNRI 79.96 76.19 82.43 85.03
LCILP 80.86 77.78 83.22 83.22
RMPI 78.01 76.51 78.68 78.68
SASILP 81.21 78.00 84.13 84.13
Neural-Lp 44.23 41.16 45.92 46.18
DRUM 44.96 42.17 46.05 46.18
RuleN 51.53 48.60 53.22 53.39
WNISRR_v3 Grail 54.11 50.33 57.19 58.43
SNRI 46.34 41.40 47.85 53.88
LCILP 58.03 51.74 64.46 65.54
RMPI 56.22 52.89 58.31 58.84
SASILP 58.80 51.90 66.86 67.27
Neural-Lp 67.14 65.84 67.13 67.13
DRUM 67.27 66.11 67.13 67.13
WN18RR_v4 RuleN 71.65 70.57 71.59 71.59
Grail 73.84 72.39 73.41 73.41
SNRI 73.41 67.74 78.31 81.32
LCILP 77.88 75.72 79.43 79.43
RMPI 73.43 72.3 73.41 73.41
SASILP 77.31 74.46 79.91 79.99

Notes.
Best results are shown in bold.

number of nodes in the subgraph increases when k equals 5, and the performance of
inductive link prediction does not improve significantly. On the contrary, it decreases on
some datasets. This suggests that although an increase in the number of hops introduces
more information about nodes, not all of the introduced nodes are necessarily useful for
link prediction. Some of them may be noisy nodes, which do not benefit the performance
of relation prediction.

e Ablation study

We conduct ablation studies on FB15K237_v2 to validate the importance of relation
semantics for subgraph extraction in SASILP. Table 4 shows the results of the ablation
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Table 3 Inductive link prediction performance on FB15K237.

Datasets Model MRR Hits@1 Hits@5 Hits@10
Neural-Lp 46.13 40.21 52.08 52.92
DRUM 47.55 42.71 51.46 52.92
RuleN 45.97 41.16 49.51 49.76
FB15K237 vl Grail 48.56 40.00 58.54 64.15
SNRI 48.82 38.05 59.02 73.90
LCILP 47.15 38.04 56.1 58.29
RMPI 51.65 44.15 59.12 65.07
SASILP 49.23 41.02 59.93 65.43
Neural-Lp 51.85 45.68 58.06 58.94
DRUM 52.78 47.49 57.93 58.73
RuleN 69.08 62.13 76.78 77.82
FB15K237 v2 Grail 62.54 52.20 75.21 81.80
SNRI 64.72 53.34 77.62 85.77
LCILP 56.68 47.07 67.78 72.91
RMPI 65.42 55.88 77.45 81.57
SASILP 71.02 60.02 78.43 82.54
Neural-Lp 48.70 44.09 52.46 52.90
DRUM 49.64 45.84 52.63 52.90
RuleN 73.68 65.95 83.12 87.69
FB15K237 v3 Grail 70.35 60.25 82.36 82.83
SNRI 65.37 54.91 78.03 85.66
LCILP 50.74 42.81 60.4 63.7
RMPI 65.5 56.67 75.75 81.53
SASILP 71.26 65.73 84.64 88.76
Neural-Lp 49.54 44.12 54.81 55.88
DRUM 50.43 45.53 54.88 55.88
RuleN 74.19 67.21 82.27 85.60
FB15K237_v4 Grail 70.60 60.99 82.62 89.29
SNRI 62.75 51.05 76.79 85.50
LCILP 65.34 57.02 76.45 80.84
RMPI 66.62 55.79 80.41 87.21
SASILP 75.67 66.04 83.45 89.97

Notes.
Best results are shown in bold.

study. After removing the relation semantic score in subgraph extraction, the MRR value
reduces by 8.34%, and the Hits@5 value reduces by 18.36%. This result demonstrates the
effectiveness of relation semantics in inductive link prediction.

e Case Study

To analyze the subgraph under different subgraph extraction strategies, we selected two
nodes (07s9rl0, 06 x 77 g) in FB15K237_v2 as seed nodes. The subgraphs extracted using
Grail contain 1,218 nodes, the value of Hits@10 is 52.2%, While SASILP extracted using
SASILP contains 11 nodes, the value of Hits@10 is 60.02%. Figure 7 shows the semantics
of the extracting subgraph, where the purple circle represents the two seed nodes and the
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Figure 6 Performance of SASILP on k-hop.
Full-size & DOI: 10.7717/peerjcs.2324/fig-6

Table 4 Ablation results of MRR and Hits@5 on FB15K237_v2.

Method MRR Hits @ 5
SASILP w/o realtion semantic 62.68 60.07
SASILP 71.02 78.43

yellow dotted line represents the relation to be predicted. The number of subgraph nodes
decreased sequentially, but it did not influence the link prediction performance. It may be
caused that the nodes in the subgraph have a close semantic correlation with the missing
relation, and it also demonstrates the effectiveness of our subgraph extraction method.

CONCLUSIONS AND FUTURE WORK

We propose a novel model SASILP for inductive link prediction in knowledge graphs. The
model focues on the subgraph extraction and node initialization methods. The subgraph
is constructed by nodes that are selected according to the importance score. The node is

initialized by integrating structure and relational semantic information. The experimental
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results demonstrate that SASILP outperforms the baseline models on the WN18RR and
FB15K237 datasets.

Most existing models only apply to scenarios where there are new entities in the target
graph. They cannot handle the real-world knowledge graphs where new entities accompany
new relations. Therefore, we plan to investigate the link prediction scenarios that contain
both new entities and relations in the knowledge graph.
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