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ABSTRACT
The global impact of the COVID-19 pandemic, characterized by its extensive
societal, economic, and environmental challenges, escalated with the emergence of
variants of concern (VOCs) in 2020. Governments, grappling with the unpredictable
evolution of VOCs, faced the need for agile decision support systems to safeguard
nations effectively. This article introduces the Variant-Informed Decision Support
System (VIDSS), designed to dynamically adapt to each variant of concern’s unique
characteristics. Utilizing multi-attribute decision-making (MADM) techniques,
VIDSS assesses a country’s performance by considering improvements relative to its
past state and comparing it with others. The study incorporates transfer learning,
leveraging insights from forecast models of previous VOCs to enhance predictions
for future variants. This proactive approach harnesses historical data, contributing to
more accurate forecasting amid evolving COVID-19 challenges. Results reveal that
the VIDSS framework, through rigorous K-fold cross-validation, achieves robust
predictive accuracy, with neural network models significantly benefiting from
transfer learning. The proposed hybrid MADM approach integrated approaches
yield insightful scores for each country, highlighting positive and negative criteria
influencing COVID-19 spread. Additionally, feature importance, illustrated through
SHAP plots, varies across variants, underscoring the evolving nature of the
pandemic. Notably, vaccination rates, intensive care unit (ICU) patient numbers, and
weekly hospital admissions consistently emerge as critical features, guiding effective
pandemic responses. These findings demonstrate that leveraging past VOC data
significantly improves future variant predictions, offering valuable insights for
policymakers to optimize strategies and allocate resources effectively. VIDSS thus
stands as a pivotal tool in navigating the complexities of COVID-19, providing
dynamic, data-driven decision support in a continually evolving landscape.
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INTRODUCTION
The COVID-19 pandemic, which emerged in 2020, rapidly spread globally and posed a
significant health risk due to its extensive reach and prolonged duration. By the end of
February 2024, there were 7,003,577 reported deaths worldwide, along with 703,875,382
confirmed cases (Worldometer, 2023). Furthermore, the pandemic has led to various
challenges, significantly impacting society, the economy, and the environment (Mete et al.,
2023). During the initial phase of the epidemic, it was crucial to comprehensively
understand how the disease spreads and evolves. This understanding enables relevant
authorities and groups to make informed decisions and implement appropriate
preventative actions (Naeem et al., 2021). In 2020, the emergence of specific variants posed
a global health threat, leading the World Health Organization (WHO) to classify them as
variants of concern (VOCs). These VOCs were subject to prioritized global monitoring,
research, and adaptive responses. According to the latest WHO definition, VOCs exhibit
genetic changes that impact virus characteristics and demonstrate a growth advantage in at
least one WHO region. Currently, the WHO recognizes five VOCs: Alpha, Beta, Gamma,
Delta, and Omicron (World Health Organization, 2023; Xia et al., 2024).

Figure 1 illustrates the temporal evolution of nationwide VOC trends, specifically
highlighting the VOCs of COVID-19, spanning from December 2021 to February 2024
(BIOBOT, 2024).

Governments grappled with uncertainty and volatility during the pandemic as these
VOCs continued to evolve, challenging their efforts to protect their nations (Thaker et al.,
2023). Due to the dynamic COVID-19 spread patterns, countries must establish efficient
decision support systems that adapt to each VOC. These systems must adapt swiftly to
changing situations and effectively address the challenges posed by the pandemic. As
nations implement diverse policies to combat the crisis, outcomes vary significantly. An
efficient decision support system can play a pivotal role by forecasting future spread trends,
enabling proactive planning, resource allocation, and strategic economic management
(Ayris et al., 2022). Additionally, understanding a country’s current position relative to
others and comparing its performance over time provides valuable insights for redefining
and optimizing policies. Given the high correlation between VOCs, it is crucial to leverage
insights gained from previous VOCs.

Machine learning (ML) techniques, particularly transfer learning, offer a valuable
approach in this context. Transfer learning involves utilizing knowledge gained from
solving one problem and applying it to a different but related problem. In the case of
forecasting VOCs, transfer learning allows for the efficient incorporation of prior
knowledge into the predictive models. This approach enhances the accuracy and
effectiveness of VOC prediction models by leveraging the patterns and features learned
from the analysis of earlier variants (Xu et al., 2024).

Moreover, employing multi-attribution decision-making (MADM) techniques allows
for a comprehensive assessment of a country’s performance, both in comparison with its
past and relative to its counterparts in various VOCs. This approach aids in identifying
performance changes over time and evaluating the growth trajectory of the country in
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contrast to other nations. While our article is the first to specifically address decision
support systems for VOC using integrated MADM and transfer learning techniques, it is
worth noting that numerous studies have previously investigated the application of various
ML algorithms to forecast COVID-19 spreads and develop decision support systems for
the pandemic.

Fayemiwo et al. (2021) proposed a Deep transfer learning model (DTL) utilizing fine-
tuned VGG-16 and VGG-19 convolutional neural networks (CNNs) for COVID-19
detection from chest X-ray images. The VGG-16 DTL model exhibited superior
performance, achieving 99.23% accuracy in binary classification and 93.85% accuracy in
three-class classification. Bahgat et al. (2021) proposed an Optimized Transfer Learning-
based Approach for Automatic Detection of COVID-19 (OTLD-COVID-19), integrating
the Manta-Ray Foraging Optimization (MRFO) algorithm to optimize CNN architectures
for classifying COVID-19 pneumonia from other types. The study utilized chest X-ray
images from various public datasets and found DenseNet121 to yield the highest
performance, achieving 98.47% accuracy and robust evaluation metrics. Saeed et al. (2022)
proposed a novel mathematical framework, the complex fuzzy hypersoft (CFHS) set,
integrating complex fuzzy sets and hypersoft sets to improve COVID-19 diagnosis and
treatment, effectively handling uncertainty and data complexity. The framework was
validated by linking symptoms to medications using CFHS-mapping. Cai et al. (2022)
proposed a retrospective study to assess the impact of compliance with a respiratory
decision support system on COVID-19-associated ARDS patients requiring invasive
mechanical ventilation. The results demonstrated a significant association between higher
respiratory support decision scores and improved 28-day survival, indicating the potential
benefits of the decision support system in managing these patients. Shen et al. (2022)
proposed a Bayesian networks-based decision support model for COVID-19 risk
assessment, utilizing expert knowledge and ML. The model’s reliability was demonstrated
through comparison with other ML models, suggesting its potential as a global tool for
accurate severity assessment and epidemic risk management by healthcare professionals.
Karakosta et al. (2021) offered a study addressing the energy sector crisis amid the

Figure 1 Nationwide VOCs trends (Dec 2021–Feb 2024). Full-size DOI: 10.7717/peerj-cs.2321/fig-1
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COVID-19 pandemic, emphasizing the need for targeted energy efficiency investments.
The research highlighted the lack of decision support tools for identifying sustainable
investments, recommending the Triple-A Horizon 2020 standard as crucial for assessing
and financing energy efficiency projects.

Mete et al. (2023) suggested an innovative two-phase approach combining the Multi-
Choice Best-Worst Method (BWM) and Complex Proportional Assessment of
Alternatives (COPRAS) methods to reassess COVID-19 risks in 29 countries, using
indicators from the INFORM COVID-19 risk index. This approach provided valuable
insights for effective planning and response efforts. Ismail et al. (2024) conducted a study
on the impact of the COVID-19 pandemic on environmental governance decisions in
publicly listed European companies. The research revealed a significantly positive
influence of COVID-19 on environmental governance, emphasizing the challenges
companies face in maintaining sustainability efforts during the crisis. Abdulkareem et al.
(2022) suggested a multidimensional examination framework (MEF) for prioritizing
COVID-19 severe patients using combined MADM methods. The framework employed
the CRITIC method to identify objective weights and the Vise Kriterijumska Optimizacija
I Kompromisno Resenje (VIKOR) method to prioritize patients, highlighting the
importance of heart disease, cough, and nasal congestion in prioritization. Arshad et al.
(2024) applied an MADM algorithm using interval-valued multi-fuzzy hypersoft sets to
optimize antivirus mask selection during COVID-19, considering several criteria such as
effectiveness, comfort, and cost. This method integrated expert opinions and empirical
data to handle uncertainty, enhancing decision accuracy and reliability. Alsattar et al.
(2024) proposed a novel Dynamic Localisation-Based Decision (DLBD) method with
Fuzzy Weighting With Zero Inconsistency (FWZIC) in a Probabilistic Single-Valued
Neutrosophic Hesitant Fuzzy Set (PSVNHFS) environment for benchmarking Hybrid
Multi Deep Transfer and Machine Learning (HMDTML) models, effectively addressing
vagueness and uncertainty in COVID-19 chest X-ray images. Results showed Model M24
ranked highest, confirming the proposed method’s reliability and robustness. Abdullah,
Kedir & Takore (2024) presented a hybrid deep learning CNN model with transfer
learning, utilizing pre-trained structures like VGG16 and VGG19, achieving 92% accuracy
in COVID-19 diagnosis with SVM-linear and neural networks, aiding in accurate
diagnosis and validation of positive cases. Jeon et al. (2023) proposed a hybrid Fuzzy Multi-
Criteria Decision-Making (F-MCDM) model for assessing government strategies during
the COVID-19 pandemic, conducting an empirical case study in India with criteria such as
acceptance, effectiveness, cost, and simplicity. The top-ranked strategies were vaccinations,
social isolation, and emergency development, with implications discussed for developing
nations. Aydin & Yurdakul (2020) suggested a three-staged framework using Data
Envelopment Analysis (DEA) and ML to assess the COVID-19 performances of 142
countries, revealing optimal clustering at three groups and identifying influential
parameters such as GDP, smoking rates, and diabetes rates, while highlighting that these
factors do not significantly impact countries’ effectiveness levels.

Although the existing literature provides various decision support systems to address
the challenges posed by COVID-19, notable gaps remain within this field. In this regard:
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I) Insufficient attention has been given to the separate consideration of data and decision
support systems specifically tailored to VOC. A thorough investigation into each
variant can yield valuable insights, enabling the development of more effective policies
to address future VOC.

II) There is a deficiency in the assessment of each country’s performance in managing
different VOCs, and a comparative analysis with other nations is lacking.
Evaluating the effectiveness of policies across countries for each VOC can offer
valuable benchmarks and facilitate informed decision-making.

III) There is a notable gap in leveraging prior results related to VOCs for future
forecasting. By analyzing similarities between different VOCs, the utilization of past
VOCs’ outcomes can be instrumental in enhancing the accuracy of forecasting the
spread of future VOCs. This approach can contribute to a more comprehensive and
proactive strategy in managing the ongoing challenges posed by the evolving
landscape of COVID-19.

This research addresses the identified gaps in the existing literature by presenting the
following key contributions:

. A Variant-Informed Decision Support System (VIDSS) is proposed and designed to
adapt dynamically to each VOC. By tailoring the decision support system to the unique
characteristics of each VOC, VIDSS aims to establish more effective policies, addressing
the critical need for variant-specific strategies.

. The article employs MADM techniques to introduce a novel criterion. This criterion
evaluates a country’s performance by considering its improvement relative to its past
state and concurrently compares it with the improvements of other countries. This
approach provides a comprehensive assessment, allowing for nuanced policy
comparisons among nations facing distinct VOC challenges.

. Leveraging transfer learning, the study utilizes knowledge from forecast models of past
VOCs to enhance predictions for future VOCs. By integrating insights gained from prior
VOCs, this method contributes to more accurate and informed forecasting, filling the
gap in utilizing historical data for proactive decision-making in the face of evolving
challenges posed by COVID-19.

The existing literature reveals several gaps in decision support systems for COVID-19,
particularly in the separate consideration of data and systems tailored to VOCs. To address
this, the article introduces a VIDSS that dynamically adapts to each VOC, providing
tailored strategies. Additionally, the lack of comparative performance assessments
among countries and the underutilization of prior results for future forecasting is
addressed through the use of MADM techniques, which create a novel criterion for
evaluating and comparing countries’ performances in managing VOCs. Furthermore, the
notable gap in leveraging prior results related to VOC for future forecasting is filled by
utilizing transfer learning. This approach analyzes similarities between different VOCs and
integrates insights gained from past VOC to enhance predictions for future VOCs, thereby
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offering a comprehensive and proactive approach to managing the evolving COVID-19
landscape.

The rest of this article is organized as follows: “Framework and Preliminaries” provides
a detailed explanation of the proposed framework and its preliminaries. In “Results”, the
findings and computational results of the study are presented. “Managerial Insights” offers
a comprehensive discussion and provide managerial insights. Finally, “Conclusion and
Future Research Directions” provides final remarks, discuss limitations, and outline
potential avenues for future research.

FRAMEWORK AND PRELIMINARIES
In this section, we present a thorough overview of the methodology employed in our study,
commencing with essential preliminaries crucial for constructing the framework. This
encompasses a comprehensive understanding of the dataset, MADM approaches, and
transfer learning. Subsequently, we delve into a meticulous presentation of the VIDSS,
providing an in-depth exploration of its intricacies and functionalities.

Preliminaries
In this section, we provide essential preliminaries by offering detailed insights into the
dataset description and MADM methods. Subsequently, we provide a succinct yet
informative overview of transfer learning, laying the groundwork for a comprehensive
understanding of the framework employed in our study.

Dataset description

The basis of our analysis in this study lies in the COVID-19 world dataset (https://github.
com/owid/covid-19-data/tree/master/public/data) sourced from Our World in Data
(https://ourworldindata.org/coronavirus) (Our World In Data, 2024). This extensive
dataset spans the entire duration of the COVID-19 pandemic, with daily updates
meticulously recorded up to March 5, 2024 (Hasell et al., 2020;Mathieu et al., 2021). In this
study, the investigation revolves around the analysis of VOCs, with a particular focus on
the integration of COVID-19 variants data sourced from ECDC (https://www.ecdc.europa.
eu/en/publications-data/data-virus-variants-covid-19-eueea) and GISAID (https://www.
gisaid.org) (ECDC, 2023; GISAID, 2023). This comprehensive dataset (https://opendata.
ecdc.europa.eu/covid19/virusvariant/) encompasses the incidence of cases within each
country, categorized by specific VOCs and subvariants. Before exploring the details of the
dataset features, it is imperative to delineate the preprocessing procedures undertaken for
both features and observations:

1) In the COVID-19 variant dataset, all subvariants are relabeled with their corresponding
major VOCs. For instance, subvariants like BA.1 are renamed to their major VOCs,
such as Omicron.

2) The COVID-19 variant dataset is streamlined to focus solely on the investigation of the
five major VOC: Alpha, Beta, Gamma, Delta, and Omicron.

3) Features in the COVID-19 world dataset are aggregated based on the year-week
timeframe, aligning with the temporal resolution in the COVID-19 variant dataset.
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4) The COVID-19 world dataset is filtered to exclusively include countries present in the
COVID-19 variants dataset.

5) Both datasets are merged based on country and year-week features, fostering a
comprehensive alignment of information.

6) The merged dataset is further aggregated based on country and VOCs.

7) Null columns are eliminated, and any missing values are imputed with the median,
chosen for its robustness in handling potential outliers.

After the execution of these preprocessing steps, the characteristics of the integrated
dataset features are elucidated in Table 1.

MADM techniques
Utilizing MADM techniques necessitates the application of both weighting and ranking
methods. In this context, we employ the Criteria Importance Through the Intercriteria
Correlation (CRITIC) method for weighting the criteria and the Combined Compromise
Solution (CoCoSo) technique to rank the alternatives. We utilize the well-established
CRITIC method for weighting, acknowledged for its robustness in decision-making
contexts. Additionally, we employ the CoCoSo method, a novel approach in decision
science, to rank alternatives. Notably, our focus lies on deriving pivotal policies through
country comparisons, rather than a comparative analysis of decision-making
methodologies.

The CRITIC technique is used to assign weights to attributes based on a decision matrix,
ensuring coherence without contradictions. Notably, CRITIC offers advantages such as
accounting for interdependencies between attributes and eliminating the need for attribute
independence. Moreover, qualitative attributes can be effectively quantified using this
approach. The CRITIC method follows a systematic four-stage process, utilizing
correlation coefficients to identify attribute relationships, transforming qualitative
attributes into quantitative measures, and ultimately determining the superior attribute.
For detailed steps on the CRITIC method, readers can refer to the provided references
(Diakoulaki, Mavrotas & Papayannakis, 1995; Silva et al., 2023).

On the other hand, the CoCoSo ranking method integrates a hybrid model, combining
simple additive weighting (SAW) and exponentially weighted product (EWP) approaches.
It serves as a versatile tool for generating compromise solutions in decision-making
scenarios. To address a CoCoSo decision problem, one must identify alternatives and
relevant criteria. The subsequent validated steps involve normalization, weight assignment,
SAW calculation, EWP application, and the derivation of a comprehensive compromise
solution. Readers can refer to the provided references for a thorough explanation of the
CoCoSo method steps (Yazdani et al., 2019; Pajić, Andrejić & Kilibarda, 2022).

Transfer learning
Transfer learning is a prevalent ML approach that involves leveraging a model previously
trained on a specific task and applying it to a new, related task. This technique is
particularly popular in the realm of deep learning, as it enables the training of models
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based on deep neural networks even when confronted with limited datasets (Ibrahim &
Tapamo, 2024). Employing transfer learning proves beneficial in mitigating the challenges
associated with training, especially when dealing with a small training set (Fu, Zhu & Li,
2019). Transfer learning encompasses four distinct types: instance-based transfer, feature-
based transfer, parameter-based transfer, and relational-based transfer, offering a
foundational framework for understanding various approaches in transfer learning and
serving as a platform for the development of innovative methods (Pan & Yang, 2009).
Instance-based transfer involves transferring knowledge at the individual instance level,

Table 1 Description of integrated COVID-19 dataset’s features.

Features Description

Aged 65-older Percentage of the population aged 65 and older, based on the most recent available data

Aged 70-older Percentage of the population aged 70 and older in the year 2015

Cardiovascular death rate Annual mortality rate of cardiovascular disease, expressed as deaths per 100,000 individuals

Country Refers to the name of a nation

Diabetes prevalence Percentage of individuals between 20 to 79 years old within a specific population who have been diagnosed with
diabetes

Excess mortality Percentage disparity between reported weekly or monthly deaths in 2020–2021 and anticipated deaths based on
previous years

Extreme poverty Percentage of individuals living in conditions of extreme poverty within a specific population

Female smokers Percentage of women who smoke cigarettes

Gross Domestic Product (GDP)
Per Capita

Gross domestic product at purchasing power parity, presented in constant 2011 international dollars (most recent
year available)

Hospital patients Count of COVID-19 patients in hospitals

Hospital.Beds.Per.100K Number of hospital beds available for every 1,000 individuals within a specific population

HDI A composite indicator assessing the average level of success in health, education, and standard of living

ICU patients Count of COVID-19 patients in Intensive Care Units (ICUs)

Life expectancy Average lifespan at birth in the year 2019

Male smokers Percentage of men who smoke cigarettes

Median age Median age of the population based on UN projections for 2020

People fully vaccinated Total number of individuals who received all doses prescribed by the initial vaccination protocol

People vaccinated Total number of individuals who received at least one vaccine dose

Population Refers to the total population size of the country

Population density Number of people per square kilometer of land area, based on the most recent available data

Positive rate Proportion of COVID-19 tests returning positive results, presented as a rolling 7-day average

Reproduction rate Real-time estimate of the effective reproduction rate (R) of COVID-19

Stringency index A composite measure indicating the strictness of government responses to COVID-19, derived from nine
indicators (100 = strictest response)

Total cases Total confirmed cases of COVID-19 in each VOC

Total tests Cumulative number of tests conducted for COVID-19

Total vaccination Overall count of COVID-19 vaccination doses administered

Variant Refers to the specific COVID-19 variant

Weekly hospital admissions Count of newly admitted COVID-19 patients to hospitals

Weekly ICU admissions Count of newly admitted COVID-19 patients to intensive care units (ICUs)
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allowing models to leverage prior experience from one task to another. Feature-based
transfer entails transferring knowledge at the feature level, where relevant attributes
learned from one task inform a related task. Parameter-based transfer involves sharing
model parameters between tasks, enabling adaptation of learned parameters from one task
to another. Relational-based transfer focuses on transferring knowledge about the
relationships between data entities, aiding the model’s comprehension of connections in a
new task based on prior task experiences (Toscano-Miranda et al., 2024).

Proposed VIDSS
To enhance the clarity and coherence of the proposed VIDSS, we present a detailed
explanation in Fig. 2. The VIDSS process initiates with the acquisition of a comprehensive
dataset, integrating information on the spread of COVID-19 associated with each VOC
and the relevant features of countries affected. This dataset is further categorized, with each
subset filtered by individual VOCs in Stages (1) and (2). To facilitate understanding, we
investigate the relationships between two VOC datasets, establishing a foundation for
subsequent analyses.

For VOC 1, Stage (3) involves weighting each feature using the CRITIC method. In
Stages (4) and (5), the CoCoSo method is applied to assess countries’ performance based
on these weights, assigning scores accordingly. The only parameter setting of CoCoSo is
the λ parameter, which is set to 0.5 to balance the importance of both the subjective and
objective components in the decision-making process. In Stage (6), parameters for the
neural network are selected, initially chosen randomly for the first model. Subsequently,
Stage (7) involves training the model, while Stage (9) unveils feature importance,
elucidating the influential factors in the spread of the virus. In Stage (8), post-training, the
model’s parameters, including weights and biases, are saved for future VOC models.

For VOC 2, analogous actions are undertaken in Stages (10) to (12) to calculate scores
for each country. The novel criterion, the Relative Performance Index (RPI), is introduced
in Stage (13), considering a country’s performance relative to its performance in prior
VOCs and its growth compared to other countries. Equations (1) and (2) provides the RPI
formula:

Gi ¼
Sij � Si j�1ð Þ

Si j�1ð Þ
; (1)

RPIi ¼ Gi � 1
n

X

i¼1

Gi; (2)

where Gi represents the growth of country i, and Sij signifies the score of country i in
VOCs j.

Transfer learning is applied in Stage (14), utilizing parameters trained in the prior VOC
model. The subsequent training of the model occurs in Stages (16) and (17), determining
the most crucial features. At this juncture, policymakers can derive essential insights to
refine their strategies. Stage (18) highlights the first tool: feature importance, which may
differ across VOCs. Identifying the most influential features in each VOC pandemic aids in
policy formulation. Stage (19) introduces the second tool for policymakers–RPI,
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illustrating a country’s performance from different perspectives. Lastly, Stage (20)
introduces the model of spread, allowing efficient forecasting to assist countries in strategic
planning.

In summary, our proposed VIDSS method offers a systematic approach to analyzing
COVID-19 data by focusing on each VOC individually. The process starts with the
collection and categorization of data for each VOC. Using the CRITIC method, we assign
weights to various features, and the CoCoSo method evaluates countries’ performances
based on these weighted features. By incorporating transfer learning, we leverage
knowledge from previous VOCs to inform initial weights for future models, thereby
enhancing prediction accuracy. Key tools, such as feature importance and the newly
introduced RPI, provide policymakers with critical insights into the most influential
factors in virus spread and a comparative assessment of countries’ performances. This

Figure 2 VIDSS framework. Full-size DOI: 10.7717/peerj-cs.2321/fig-2
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comprehensive approach aims to improve decision-making and strategic planning in
effectively managing the COVID-19 pandemic.

RESULTS
In this section, the outcomes of the VIDSS framework are meticulously examined, with a
structured discussion on the various VOCs in a specific order based on their chronological
emergence, namely Alpha, Beta, Gamma, Delta, and Omicron. Commencing with the
Alpha variant, the initial dataset undergoes processing within the framework. The neural
network model is initialized with random parameters, and after the training phase, the
learned weights and biases are stored for use in the subsequent variant. The study employs
a rigorous K-fold cross-validation approach with k ¼ 10 to robustly assess model
performance across multiple folds. This method ensures comprehensive evaluation of
predictive accuracy while mitigating bias from data partitioning, enhancing the study’s
reliability and generalizability. Feature importance is vividly portrayed through SHAP
plots, shedding light on the significance of various features in the model’s decision-making
process. Simultaneously, the CRITIC-CoCoSo approach integrated approaches yield
scores for each country, offering valuable insights into their performance. These scores are
generated based on positive and negative criteria, where higher scores indicate better
performance in terms of spread for positive criteria, and conversely, lower scores denote
efficiency in curbing spread for negative criteria. Consequently, a lower value signifies a
superior performance index for each country.

Table 2 categorizes criteria into positive and negative factors influencing COVID-19
spread. Positive criteria, such as high population density, median age, and positive rate, are
indicative of conditions that may contribute to the rapid spread of COVID-19. These
factors suggest increased human interaction, an older population susceptible to severe
outcomes, and elevated infection rates, respectively, fostering an environment conducive
to transmission. Conversely, negative criteria, including high GDP per capita, HDI, and life
expectancy, reflect socio-economic and health indicators associated with lower COVID-19
spread. Countries with stronger economies, higher human development, and longer life
expectancy often possess better healthcare infrastructures, healthcare practices, and
societal well-being, contributing to more effective containment and lower transmission
rates.

Moving to the Beta variant, the concept of transfer learning is applied, utilizing the
weights and biases derived from the Alpha model as initial parameters for the neural
network. Feature importance is represented through SHAP plots. After scoring viaMADM
methods, the RPI criterion is derived. Policymakers can strategically optimize their
approaches by integrating insights from the RPI, feature importance, and the forecast
model. This coherent approach is consistently applied across subsequent variants,
maintaining the interconnected relationships between datasets. Comprehensive neural
network parameter settings are succinctly outlined in Table 3, ensuring transparency and
reproducibility.

According to Table 3, The chosen hyperparameters for our neural network model were
carefully selected to balance performance and generalization. We set the learning rate to
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0.001 to ensure stable and efficient optimization using the Adam optimizer, known for its
adaptive learning rate capabilities. The model was trained for 300 epochs, with early
stopping patience set to 150 epochs, allowing the model to halt training when validation
performance ceased to improve, thus preventing overfitting. Our architecture consisted of
five hidden layers with a decreasing number of neurons (128, 64, 32, 16, and 1), using the

Table 2 MADM positive and negative criteria.

Positive criteria Negative criteria

Aged_65_older Gdp_per_capita

Aged_70_older Human_development_index

Diabetes_prevalence Life_expectancy

Excess_mortality New_tests

Extreme_poverty People_fully_vaccinated

Female_smokers People_vaccinated

Median_age Stringency_index

Population_density Total_vaccinations

Positive_rate

Weekly_hosp_admissions

Population

Weekly_icu_admissions

Cardiovasc_death_rate

Number_detections_variant

Hosp_patients

Male_smokers

ICU_patients

Reproduction_rate

Table 3 Parameter setting for the neural network model.

Parameter Value

Learning rate 0.001

Epochs 300

Hidden layers 5

Neurons per layer 128, 64, 32, 16, 1

Activation function ReLU

Dropout rate 0.6 (first two layers), 0.3 (remaining layers)

Regularizers L2 (0.0001)

Optimizer Adam

Loss function Mean Absolute Error (MAE)

Output classes 1

Validation split 0.3

Early stopping Yes (patience = 150)
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ReLU activation function to introduce non-linearity and improve the learning of complex
patterns. Dropout rates were set at 0.6 for the first two layers and 0.3 for the subsequent
layers to reduce overfitting by randomly deactivating neurons during training. L2
regularization with a coefficient of 0.0001 was applied to further prevent overfitting by
penalizing large weights. The Mean Absolute Error (MAE) was chosen as the loss function
due to its robustness in handling outliers. A validation split of 0.3 was used to allocate
sufficient data for validating the model’s performance during training. These settings were
designed to create a balanced model capable of generalizing well to unseen data.

Figure 3 illustrates the architecture of our neural network model, comprising an input
layer, five hidden layers with progressively fewer neurons, and an output layer. The ReLU
activation function was selected for the hidden layers due to its computational efficiency
and ability to mitigate the vanishing gradient problem, which is common with other
activation functions like sigmoid and tanh. ReLU enhances the model’s ability to learn
complex patterns and converges faster during training. Adjustments to each parameter in
the neural network can significantly impact the model’s performance and generalization
ability. The learning rate influences the speed and stability of optimization; altering it could
lead to faster convergence or instability. The number of epochs and early stopping patience
affect how long the model trains, potentially affecting underfitting or overfitting. Changes
in the number of neurons per layer impact the model’s capacity to learn complex features,
while adjustments to activation functions like ReLU alter how nonlinear relationships are
captured. Dropout rates and regularization coefficients manage overfitting; modifying
these can either enhance generalization or decrease model performance. The choice of loss
function and validation split influences how well the model handles data characteristics
and assesses its performance. Each parameter’s tuning is empirical, impacting the model’s
ability to generalize to unseen data, highlighting the delicate balance required in neural
network configuration.

Figure 3 Architecture of the neural network model. Full-size DOI: 10.7717/peerj-cs.2321/fig-3
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In Table 4, the comparison of MADM scores, growth percentages, and RPI percentages
among VOCs in different countries is presented. It is crucial to interpret these scores
contextually, recognizing that individual country scores gain significance when assessed
against past performance and other countries. Take Austria, for instance; despite a
−0.235% growth in the Beta variant compared to the Alpha variant, the 0.946% RPI
signifies a commendable performance, considering the intricate nature of each variant.
Similarly, Belgium’s 0.147% growth rate in the Gamma variant suggests improvement
compared to the Beta variant, yet the −0.127% RPI underscores that the growth pace,
relative to other countries, remains insufficient. By integrating both growth and RPI

Table 4 Comparison of the MADM scores, growth percentage, and RPI percentage among VOCs in different countries.

Country Score-
alpha

Score-
beta

G RPI Score-
gamma

G RPI Score-
delta

G RPI Score-
omicron

G RPI

Austria 1.605 1.601 −0.235% 0.946% 1.611 0.575% 0.291% 1.601 −0.596% −0.753% 1.579 −1.396% −0.513%

Belgium 1.672 1.650 −1.326% −0.113% 1.652 0.147% −0.127% 1.648 −0.292% −0.475% 1.613 −2.085% −1.220%

Bulgaria 1.896 1.873 −1.215% −0.006% 1.874 0.093% −0.185% 1.877 0.136% −0.064% 1.835 −2.241% −1.420%

Croatia 1.834 1.818 −0.916% 0.293% 1.820 0.123% −0.162% 1.826 0.341% 0.139% 1.783 −2.376% −1.608%

Cyprus 1.431 1.434 0.205% 1.425% 1.423 −0.781% −1.072% 1.431 0.596% 0.399% 1.438 0.512% 1.219%

Czechia 1.791 1.768 −1.249% 0.028% 1.771 0.180% −0.154% 1.753 −1.028% −1.209% 1.765 0.671% 1.427%

Denmark 1.582 1.563 −1.205% 0.074% 1.581 1.205% 0.864% 1.594 0.782% 0.551% 1.562 −2.014% −1.199%

Estonia 1.744 1.723 −1.177% 0.105% 1.729 0.350% 0.047% 1.733 0.201% −0.007% 1.737 0.230% 0.993%

Finland 1.645 1.623 −1.306% −0.020% 1.636 0.812% 0.511% 1.637 0.042% −0.166% 1.605 −1.922% −1.114%

France 1.701 1.684 −1.020% 0.265% 1.687 0.152% −0.125% 1.687 0.033% −0.183% 1.681 −0.388% 0.367%

Germany 1.687 1.678 −0.514% 0.785% 1.683 0.255% −0.028% 1.678 −0.278% −0.502% 1.670 −0.446% 0.328%

Greece 1.709 1.652 −3.349% −2.009% 1.699 2.875% 2.591% 1.654 −2.656% −2.907% 1.650 −0.211% 0.580%

Hungary 1.762 1.741 −1.218% 0.011% 1.740 −0.053% −0.193% 1.754 0.844% 0.431% 1.768 0.801% 1.624%

Iceland 1.270 1.290 1.536% 2.765% 1.277 −0.948% −1.100% 1.268 −0.705% −1.093% 1.264 −0.342% 0.577%

Ireland 1.434 1.413 −1.465% −0.063% 1.422 0.641% 0.421% 1.429 0.477% 0.021% 1.439 0.706% 1.660%

Italy 1.694 1.699 0.274% 1.672% 1.662 −2.191% −2.383% 1.684 1.357% 0.903% 1.680 −0.250% 0.816%

Latvia 1.819 1.797 −1.222% 0.295% 1.807 0.557% 0.194% 1.806 −0.030% −0.420% 1.809 0.149% 1.272%

Liechtenstein 1.549 1.529 −1.304% 0.235% 1.529 −0.001% −0.349% 1.530 0.055% −0.367% 1.490 −2.590% −1.369%

Lithuania 1.783 1.763 −1.088% 0.471% 1.764 0.020% −0.357% 1.771 0.387% −0.066% 1.764 −0.360% 0.747%

Luxembourg 1.423 1.402 −1.522% 0.080% 1.410 0.614% 0.205% 1.418 0.546% 0.087% 1.402 −1.116% 0.059%

Malta 1.622 1.587 −2.171% −0.560% 1.607 1.268% 0.879% 1.599 −0.521% −0.971% 1.612 0.832% 2.013%

Netherlands 1.682 1.660 −1.321% 0.227% 1.671 0.666% 0.375% 1.672 0.061% −0.497% 1.677 0.276% 1.681%

Norway 1.487 1.469 −1.222% 0.354% 1.481 0.810% 0.566% 1.488 0.491% −0.129% 1.495 0.441% 2.056%

Poland 1.698 1.678 −1.200% 0.427% 1.677 −0.022% −0.185% 1.683 0.333% −0.306% 1.638 −2.680% −0.771%

Portugal 1.725 1.704 −1.195% 0.504% 1.707 0.164% −0.030% 1.703 −0.197% −0.887% 1.672 −1.833% −0.053%

Romania 1.835 1.770 −3.575% −1.776% 1.773 0.209% 0.009% 1.820 2.653% 1.786% 1.732 −4.846% −3.077%

Slovakia 1.719 1.693 −1.515% −0.160% 1.706 0.729% 0.531% 1.712 0.356% −0.065% 1.709 −0.172% 0.828%

Slovenia 1.708 1.688 −1.222% 0.079% 1.692 0.258% 0.237% 1.696 0.251% −0.191% 1.693 −0.189% 1.087%

Spain 1.778 1.748 −1.689% −0.348% 1.735 −0.712% −0.615% 1.746 0.606% 0.069% 1.717 −1.632% 0.188%

Sweden 1.619 1.602 −0.993% 0.000% 1.611 0.517% 0.000% 1.618 0.469% 0.000% 1.586 −2.008% 0.000%
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metrics, a more comprehensive evaluation of a country’s performance emerges, offering a
nuanced understanding of its standing amid evolving variants.

The MAE results in Table 5 demonstrate a clear performance advantage for neural
network models employing transfer learning across various VOCs compared to those
without. The performance gains are evident across all VOCs, with significantly lower
MAE, Mean Squared Error (MSE) and Root Mean Square Error (RMSE) values observed
when transfer learning is applied. This suggests that leveraging knowledge from previous
VOC models enhances the predictive capabilities of the neural network. The ordered
sequence of VOCs allows for cumulative learning, where each subsequent VOC benefits
from the knowledge acquired in modeling the preceding ones. This implies that transfer
learning can be a potent strategy for effectively predicting upcoming VOCs, as the model
gradually accumulates insights from multiple VOCs, leading to more accurate predictions
for the last VOCs in the sequence.

According to Fig. 4, the feature importance in predicting COVID-19 cases varies across
different variants, highlighting the evolving nature of the pandemic and the corresponding
response measures. In the Alpha variant, “people fully vaccinated,” “Intensive Care Unit
(ICU) patients,” and “weekly hospital admissions” emerge as the top features. The high
importance of vaccination status indicates a significant impact on the spread of the Alpha
variant, with higher vaccination rates contributing to lower transmission and milder cases.
The number of ICU patients reflects case severity and healthcare system burden, providing
real-time indicators for managing healthcare capacities. Weekly hospital admissions
highlight the influx of severe cases requiring hospitalization, assisting in tracking the
variant’s spread and healthcare response effectiveness.

For the Beta variant, “weekly hospital admissions,” “total vaccinations,” and “new tests”
are the top features. Weekly hospital admissions remain crucial for understanding
healthcare burden and variant severity. Total vaccination efforts are essential in mitigating

Table 5 MAE, MSE and RMSE results for the neural network models predictions comparing
performance with and without transfer learning across VOCs.

Variant Metric With transfer learning Without transfer learning

Beta MAE 2,736,003.20 6,315,651.13

MSE 28,565,633,048,668.29 154,804,758,974,755.94

RMSE 3,912,237.48 9,368,524.90

Gamma MAE 5,135,502.21 12,279,910.28

MSE 86,162,363,661,281.53 574,019,783,996,581.88

RMSE 6,981,456.68 18,078,069.78

Delta MAE 3,992,971.00 9,111,414.52

MSE 63,241,661,533,989.48 325,626,436,466,515.31

RMSE 5,654,557.16 13,431,780.60

Omicron MAE 33,699,864.10 85,570,949.59

MSE 3,890,865,123,209,482.50 28,717,687,005,037,884.00

RMSE 46,367,353.26 125,918,857.70
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Figure 4 Mean SHAP values for the feature importance across VOCs: (A) Alpha, (B) Beta,
(C) Gamma, (D) Delta, and (E) Omicron. Full-size DOI: 10.7717/peerj-cs.2321/fig-4
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the Beta variant’s spread and impact, reflecting the population’s immunity level. The
importance of new tests indicates the need for robust testing infrastructure to identify and
isolate cases promptly, controlling the variant’s spread.

In the Gamma variant, “weekly hospital admissions,” “ICU patients,” and “people
vaccinated” are most important. Weekly hospital admissions continue to gauge the
pandemic’s severity. ICU patient numbers remain critical for indicating severe cases and
guiding healthcare resource allocation. The role of partial vaccination suggests that even
initial doses help control the variant’s spread and severity.

For the Delta variant, the top features are “weekly hospital admissions,” “ICU patients,”
and “total vaccinations.”Weekly hospital admissions highlight the importance of tracking
severe cases. The high number of ICU patients underscores the variant’s severity and
healthcare strain. Total vaccination efforts are crucial in controlling this highly
transmissible variant, reflecting the population’s immunity.

In the Omicron variant, “weekly hospital admissions,” “total vaccinations,” and “people
vaccinated” are top features. Despite Omicron being less severe in individual cases, the
high number of cases makes hospital admissions crucial. The importance of total
vaccinations continues, underscoring immunity’s role in managing the spread. The
inclusion of partially vaccinated individuals highlights the need for ongoing vaccination
campaigns, even for less severe variants.

In conclusion, the analysis of feature importance across different COVID-19 variants
reveals critical insights into the pandemic’s dynamics and response measures’
effectiveness. According to Fig. 3, the consistent importance of weekly hospital admissions
and ICU patients across all variants underscores the need for robust healthcare
infrastructure to manage severe cases and prevent healthcare system overload. The
evolving significance of vaccination-related features highlights the profound impact of
vaccination campaigns in mitigating the spread and severity of COVID-19. In earlier
variants like Alpha and Beta, the focus on ICU patients and weekly hospital admissions
reflects the immediate need to manage severe cases. As the pandemic progresses and
vaccination efforts intensify, the importance of total vaccinations and people vaccinated
becomes more pronounced, indicating the shifting focus towards achieving herd immunity
and reducing overall transmission. The consistent inclusion of testing metrics in the Beta
variant emphasizes the critical role of testing infrastructure in promptly identifying and
isolating cases, and curbing the spread. These dynamic shifts in feature importance offer
valuable insights for shaping and refining pandemic management policies based on
evolving scenarios and key determinants. Understanding the varying impact of different
features enables policymakers to allocate resources better and implement targeted
measures to effectively manage and control the pandemic across different variants.

MANAGERIAL INSIGHTS
In the aftermath of the COVID-19 pandemic, the global landscape faced unprecedented
challenges with the emergence of specific variants, known as VOCs, posing a significant
and ongoing threat to global health. The unique genetic changes within these VOCs,
influencing virus characteristics and exhibiting heightened transmissibility, triggered
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prioritized global scrutiny, extensive research endeavors, and adaptive responses.
Governments worldwide found themselves grappling with the unpredictable evolution of
VOCs, introducing uncertainties and volatility that hindered their efforts to safeguard their
nations.

This work introduces a VIDSS framework aimed at addressing the existing gaps in
dynamic decision-making amidst various VOCs. Particularly pertinent in the context of
pandemics like COVID-19, where variants and subvariants continuously emerge, these
variations often exhibit both differences and similarities. Leveraging insights from prior
experiences and VOCs becomes imperative in navigating such complexities. The
framework presented herein equips policymakers with indispensable tools, notably
forecast models leveraging deep learning techniques enhanced by transfer learning from
previous VOCs. These models discern significant features within each VOC, facilitating
precise policy formulation. Additionally, the framework incorporates a criterion for
evaluating a country’s performance relative to its historical trajectory and that of other
nations, offering a comprehensive assessment tool. This comprehensive approach enables
tailored policy responses to diverse challenges based on past experiences. The forecast
models serve multiple purposes, contributing to an early warning system, facilitating
resource allocation, optimizing vaccination campaigns, and aiding in economic planning,
among other applications. Moreover, the country’s performance assessment not only
enables benchmarking against peers but also aids in identifying best practices, learning
from mistakes, and adapting strategies. Furthermore, the identification of feature
importance within each VOC empowers policymakers in making informed decisions,
implementing targeted interventions, and evaluating policy effectiveness. By
amalgamating these components, the framework offers a robust foundation for navigating
the complex landscape of pandemics and other dynamic scenarios, fostering resilience and
adaptability in policymaking.

While the VIDSS framework offers a systematic and innovative approach to
understanding and managing the spread of VOCs, there are notable limitations to
consider. Firstly, the dataset’s reliance on reported cases and deaths may be influenced by
varying testing capabilities and reporting accuracy across different countries, potentially
impacting the model’s input quality. Secondly, the focus on major VOCs may overlook the
impact of other emerging subvariants, which could also play significant roles in the
pandemic’s progression. Lastly, the transfer learning approach, while effective, assumes
that patterns from previous VOCs are applicable to future ones, which may not always
hold true given the virus’s potential for significant genetic changes. Addressing these
limitations in future research could further refine and enhance the VIDSS framework,
providing even more accurate and actionable insights for managing COVID-19 and other
similar pandemics.

CONCLUSION AND FUTURE RESEARCH DIRECTIONS
The COVID-19 pandemic has presented an unprecedented global challenge, impacting
various facets of society, the economy, and the environment. The emergence of specific
variants designated as VOCs in 2020 intensified the global health threat, prompting the
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WHO to prioritize monitoring, research, and adaptive responses. The ever-evolving nature
of these VOCs created uncertainties for governments worldwide, hindering their efforts to
safeguard their nations effectively. In response to these challenges, this research proposed
the implementation of a VIDSS framework, which dynamically adapts to the unique
characteristics of each VOC.

This study makes significant theoretical contributions by integrating MADM
techniques with transfer learning to address the complex and dynamic nature of COVID-
19 VOCs. The introduction of the RPI as a novel criterion provides a comprehensive
assessment of a country’s performance in managing VOCs, considering both historical and
comparative data. This research enhances the understanding of how different factors
influence the spread and impact of VOCs, highlighting the importance of adaptable and
data-driven approaches in pandemic management.

The VIDSS framework contributes to the field by offering a systematic approach to
evaluating and responding to VOCs. It incorporates MADM techniques and transfer
learning, enabling the model to adapt and improve predictions based on historical data.
The proposed VIDSS framework consists of two main stages: analyzing and comparing
countries’ performance, and predicting the spread of VOCs. The first stage utilizes MADM
tools, specifically CRITIC and CoCoSo methods, to define the RPI. This stage allows for a
comprehensive comparison of countries, identifying benchmarks and indicators of
performance. This comparative analysis is crucial for understanding each country’s
strengths and weaknesses in managing VOCs, providing a valuable tool for policymakers
to optimize their strategies. The second stage involves predicting the spread of VOCs using
neural networks and transfer learning. By leveraging insights from past VOCs, this stage
improves the accuracy of forecasts for future variants. This predictive capability is essential
for proactive decision-making, enabling countries to prepare and respond effectively to
new threats. Additionally, the feature analysis provides valuable insights into the factors
influencing the pandemic’s progression, emphasizing the importance of vaccination rates,
healthcare infrastructure, and socio-economic conditions.

The most crucial insight from the VIDSS framework results is the consistently high
importance of vaccination rates and healthcare infrastructure indicators, such as weekly
hospital admissions and ICU patients, across all COVID-19 variants. This underscores the
significant role of robust vaccination campaigns and strong healthcare systems in
mitigating the spread and severity of the virus. For policymakers and countries, this
highlights the necessity of investing in comprehensive vaccination efforts and enhancing
healthcare capacities to manage severe cases, ensuring a proactive and resilient response to
evolving pandemic scenarios. This focus can aid in efficiently allocating resources and
implementing targeted measures, ultimately reducing the transmission and impact of
COVID-19.

The practical advantages of the VIDSS framework are evident in its ability to provide
nuanced policy comparisons among nations facing distinct VOC challenges. By leveraging
insights from past VOCs, the framework enhances forecasting accuracy, enabling more
informed and proactive decision-making. The VIDSS framework’s emphasis on real-time
data integration and adaptability ensures that it remains relevant and effective in
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addressing the evolving nature of COVID-19 variants. Policymakers can utilize this
framework to tailor their strategies to the specific characteristics of each VOC, improving
their response to the pandemic.

Despite the promising potential of VIDSS, certain limitations must be acknowledged.
The system heavily relies on the availability and accuracy of data related to VOCs, and any
limitations or inaccuracies in the data could compromise the system’s ability to provide
reliable support. The rapid evolution of VOCs poses a challenge in keeping the VIDSS
consistently updated and adaptable. Ensuring real-time adjustments to the system to
address new variants may be logistically challenging.

Future research should consider integrating additional features that could enhance the
reliability and accuracy of the VIDSS framework’s forecasting capabilities. This could
include more granular health data, socio-economic indicators, and mobility patterns.
Additionally, Improvements to the spatial and temporal dimensions of the VIDSS
framework could provide a more detailed understanding of the spread dynamics of
COVID-19 variants. This could involve the use of geospatial analysis and time-series
forecasting techniques. Moreover, developing mechanisms for the real-time integration of
emerging data on new variants and subvariants will be crucial for maintaining the VIDSS
framework’s relevance and effectiveness. This could involve partnerships with health
organizations and the use of advanced data-sharing technologies.
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