
Submitted 28 March 2024
Accepted 21 August 2024
Published 26 September 2024

Corresponding authors
Zhibo Wang, zhbwang@ecut.edu.cn,
23076608@qq.com
Liu Guoming, 2339545214@qq.com,
2022110203@ecut.edu.cn

Academic editor
Silvia Bartolucci

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.2320

Copyright
2024 Wang et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Deep learning-based methodology
for vulnerability detection in smart
contracts
Zhibo Wang1, Liu Guoming2, Hongzhen Xu1, Shengyu You3, Han Ma2 and
Hongling Wang1

1College of Information Engineering, East China University of Technology, Nanchang, Jiangxi, China
2Department of Computer Science and Technology, East China University of Technology, Nanchang, Jiangxi,
China

3 School of Software, East China University of Technology, Nanchang, Jiangxi, China

ABSTRACT
Smart contracts play an essential role in the handling and management of digital
assets, where vulnerabilities can lead to severe security issues and financial losses.
Current detection techniques are largely limited to identifying single vulnerabilities
and lack comprehensive identification capabilities for multiple vulnerabilities that may
coexist in smart contracts. To address this challenge, we propose a novel multi-label
vulnerability detection model that integrates extractive summarization methods with
deep learning, referred to as Ext-ttg. The model begins by preprocessing the data
using an extractive summarization approach, followed by the deployment of a custom-
built deep learning model to detect vulnerabilities in smart contracts. Experimental
results demonstrate that our method achieves commendable performance across
various metrics, establishing the effectiveness of the proposed approach in the multi-
vulnerability detection tasks within smart contracts.

Subjects Artificial Intelligence, Neural Networks, Blockchain
Keywords Smart contracts, Vulnerability detection, Multi-label classification, Extractive sum-
marization

INTRODUCTION
The concept of ‘‘smart contracts’’ was first introduced by computer scientist Nick Szabo in
1994 (Szabo, 1997). In his seminal article, Szabo depicted contracts grounded in computer
protocols, or contract clauses that could be automatically executed through computer code.
However, for an extended period, the practical application and progress of smart contracts
encountered a bottleneck due to the absence of a trustworthy execution environment.
Fortunately, the emergence of blockchain technology has radically transformed this
situation. With its decentralized nature, immutability, and transparency, blockchain
technology has provided a reliable execution environment for smart contracts, facilitating
their effective application in technology. Presently, smart contracts have been successfully
implemented in various domains, including financial services, healthcare, the Internet
of Things (IoT), and education, emerging as one of the cornerstone technologies of
blockchain (Alfuhaid et al., 2023).
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Numerous blockchain platforms, such as Ethereum, EOS, and Fabric, have integrated
smart contracts as an indispensable component. Despite the widespread adoption of smart
contracts in blockchain, the ensuing security risks have become increasingly prominent.
Initially, smart contracts are written in languages like Solidity, where code-writing is
inherently prone to vulnerabilities that can lead to non-compliance with the contract’s
intended behavior. Moreover, given that smart contracts govern significant assets such
as digital currencies, malicious actors exploit these vulnerabilities to orchestrate attacks
and expropriate digital currencies, resulting in substantial economic losses. To date, there
have been several cases of major economic loss. For instance, the 2016 DAO incident
(Mehar et al., 2019), where attackers exploited a reentrancy vulnerability, inserting attack
code into the contract execution flow, and repeatedly calling the contract’s functions to
siphon nearly 60 million. On April 22, 2018, hackers capitalized on an integer overflow
vulnerability to attack the BEC’s Token contract (Etherscan, 2018), transferring a massive
number of Tokens to exchanges, which nearly plummeted BEC’s price to zero. In 2019,
the synthetic asset platform Lendf.me suffered a reentrancy attack, resulting in a theft of 25
million. Once deployed on a blockchain, a smart contract’s code and state are perpetually
stored across various blocks. If a smart contract is compromised, the attack is permanently
recorded on the blockchain and is irreversible. This immutable nature makes it challenging
for smart contracts to revert to a pre-attack state. To safeguard blockchain security, it is
crucial to perform vulnerability detection on smart contracts before deployment.

The application of deep learning in program analysis has increased notably in recent
years, offering high automation and speed while overcoming the limitations of rule-based
vulnerability detection methods. Deep learning approaches automatically learn and extract
latent features from raw data and offer excellent scalability, which has led to significant
achievements when combined with smart contract vulnerability detection. However,
existing deep learning-based methods for smart contract vulnerability detection still have
some drawbacks: (1) most can only distinguish between vulnerable and non-vulnerable
contracts (a binary classification problem) or detect a single type of vulnerability, ignoring
that many contracts contain multiple vulnerabilities. (2) Feeding overly long sequences of
smart contract opcodes directly into models not only incurs significant time costs but also
can result in decreased accuracy.

To address the aforementioned issues, this article introduces an enhanced multi-label
vulnerability detection method, Ext-ttg, which integrates an extractive summarization
technique with a custom-designed neural network (transformer + Bi-GRU). The method
begins by transforming smart contract source code into opcode sequences, as delineated in
the Ethereum yellow article. An extractive summarization approach is then employed to
distill key sequences from the opcodes, mitigating the impact of excessive opcode lengths on
feature extraction for the model. Subsequently, the opcode sequences are vectorized using
word2vec, which facilitates the extraction of semantic information through the bespoke
ttg model. Ultimately, a sigmoid classifier is utilized to perform multi-label classification
of vulnerabilities in smart contracts. The primary contributions of this article are as
follows: (1) An extractive summarization method is utilized to capture key sequences from
opcode sequences, enabling the representation of opcode sequences of varying lengths in
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a standardized form. This assists the model in better learning the critical features within
the opcode sequences, thus enhancing the model’s generalization capabilities. (2) Given
the complexity of the opcode sequences, the multi-head attention mechanism within
transformers is employed to focus on the positional and semantic information of opcodes
in the sequences. This aids in capturing both global and local semantic information.
To further enhance the capture of global features, a bi-directional gated recurrent unit
(Bi-GRU) network is integrated subsequent to the transformer layer. (3) Comparisons
with other deep learning networks are conducted, affirming the efficacy of the proposed
model.

RELATED WORK
The detection of vulnerabilities in smart contracts can be primarily categorized into
several methodological approaches: symbolic execution, fuzz testing, formal verification,
intermediate representation, and deep learning.

Existing smart contract vulnerability detection methods fall into three broad categories:
manual inspection, automated detection, and AI-based detection. Manual inspection relies
on the experience and skill level of the reviewer, which is subjective and inefficient, failing
to meet the demands of smart contract verification. Consequently, the development of
automated detection tools is crucial for research in smart contract vulnerability detection.
To date, automated detection methods mainly consist of four types: symbolic execution,
fuzz testing, formal verification, and intermediate representation.

Symbolic execution aims to identify potential vulnerable input conditions by simulating
program execution paths. It abstracts input values symbolically rather than using specific
predetermined inputs, enabling smart contract analysis. Representative tools include
Oyente (Luu et al., 2016), Securify (Tsankov et al., 2018), Mythril (Ethereum, 2017), and
Orisi (Torres, Schütte & State, 2018). Fuzz testing uncovers potential security issues by
monitoring for abnormal results in execution states using copious amounts of random
or semi-random test data. Key tools are ContractFuzzer (Jiang, Liu & Chan, 2018) and
ILF (He et al., 2019). Formal verification employs mathematical logic to ensure that code
meets certain properties under conditions described by specifications. It involves modeling
smart contracts in formal language, then using mathematical reasoning to identify security
vulnerabilities. Notable tools in this category are Zeus (Kalra et al., 2018) andVaaS (Beosin,
2019). Intermediate representation involves translating smart contract source code or
bytecode into an intermediary format that conveys its semantics, followed by compiler
analysis to identify security issues, with tools like Slither (Feist, Grieco & Groce, 2019),
Vandal (Brent et al., 2018), and Smartcheck (Tikhomirov et al., 2018) being prominent
examples.However, current automated detection methods still face challenges, including
low accuracy and poor scalability, and they struggle to address unknown vulnerabilities.

As artificial intelligence progresses, numerous researchers have made significant
achievements in the field of smart contract vulnerability detection using machine learning
and deep learning techniques. Wang et al. (2021) constructed an automatic detection
model for smart contracts named ContractWard, which extracts bigram features from
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smart contract opcodes using the n-gram algorithm, followed by the employment of five
machine learning algorithms to build a vulnerability detection model. Tann et al. (2018)
transformed smart contract source code into opcodes, treated them as textual sequences,
and utilized LSTM to extract features between opcode sequences, achieving results with
greater precision than the vulnerability detector Maian. Rossini, Zichichi & Ferretti (2023)
processed smart contract bytecode into RGB images and employed convolutional neural
networks (CNN) for image recognition, attaining commendable results on a dataset
with five categories of vulnerabilities. Furthermore, Zhuang et al. (2021) converted smart
contract source code into contract graphs, standardized these graphs through a node
elimination process, and then implemented a Degreeless Graph Convolutional Network
(DR-GCN) and a Temporal Message Propagation Network (TMP) to detect three different
types of vulnerabilities. Subsequently, Liu et al. (2021) refined their approach by integrating
expert rules with graph neural networks, further enhancing detection accuracy. Guo, Lu
& Li (2024) captured global and local information from smart contract source code
by employing transformers and CNNs, respectively, and ultimately used a Deep Residual
ShrinkageNetwork (DRSN) to detect three types of vulnerabilities, achieving commendable
results. Zhang et al. (2023) extracted global features from the token sequences of smart
contract source code and captured deep structural semantics from the abstract syntax
trees of smart contracts, ultimately classifying the combined features using TextCNN.
Sun et al. (2023) proposed a framework called ASSBert, which utilizes the active and
semi-supervised bidirectional encoder representations of Transformer, classifying smart
contract vulnerabilities using a small amount of labeled code data and a large volume
of unlabeled code data. However, most existing models are limited in the variety of
vulnerability categories they can detect, with some focusing exclusively on a single type of
vulnerability, unable to identify multiple categories within a smart contract. Therefore, in
this article, we use a extractive summarization method to truncate opcodes while retaining
significant segments, and develop a custom model based on transformer bi-directional
gated recurrent unit to extract semantic features from smart contracts and perform
multi-label classification of vulnerability types.

METHODS
To effectively identify smart contract vulnerabilities, this experiment utilizes a self-built
model that combines extractive summarization methods to detect vulnerabilities. The
methodology of this research is structured into two primary components: (1) Enhanced
Opcode Pruning Strategy Using Extraction-Based Summarization: In this stage, an
extractive summarization approach is applied to truncate the opcode sequences. This
step is crucial for maintaining consistent lengths across opcodes, which is imperative
for the uniformity of feature extraction and subsequent modeling. (2) Multi-label
Vulnerability Detection: The core analytical phase employs a composite model that
synergizes transformers with bi-GRU. This model framework is designed to extract
sequential patterns and semantic features from the opcode sequences. Following the feature
extraction, a multi-label classification process is conducted to identify and categorize the
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Figure 1 The complete structure of the model. The model employs a stacked Transformer Encoder and
Bi-GRU to classify vulnerabilities in opcode sequences trimmed by TextRank.

Full-size DOI: 10.7717/peerjcs.2320/fig-1

vulnerabilities present within the smart contracts. The overall model structure is illustrated
in Fig. 1.

Extractive summarization-driven opcode trimming strategy
Smart contract opcode sequences typically extend to a length of approximately eight
thousand characters, posing a significant challenge for deep learning networks to effectively
extract features from such extensive sequences. In contrast, extractive summarization (El-
Kassas et al., 2021) methods are techniques that directly extract essential sentences, phrases,
or words from the original text, encapsulating the core content into concise summaries.
Therefore, this article utilizes Textrank to extract and refine the opcode sequences. TextRank
(Mihalcea & Tarau, 2004), a graph-based ranking algorithm, evaluates the significance of
graph vertices through a holistic, recursive computation that encompasses both localized
vertex-specific information and holistic graph-wide intelligence. This article harnesses
TextRank to trim opcodes judiciously, maintaining vital opcode sequences with minimal
semantic loss.

Vectorization of opcode sequences: In the absence of pre-trained models tailored
to smart contract opcode texts, we vectorize opcode sequences utilizing the Word2Vec
scheme (Mikolov et al., 2013). Word2Vec, a model for word embedding, translates words
into vector representations, capturing their semantic relationships by considering the
words’ contextual usage within the corpus. This model features two primary architectures:
Continuous Bag of Words (CBOW) and Skip-gram. CBOW predicts target words based on
surrounding context, while Skip-gram anticipates the surrounding context from the target
words.After experimental analysis, we found that using skop-gram is more effective. So,
our experimental analysis favors the Skip-gram model for vectorizing opcode sequences.

Pruning of opcode sequences: The initial step in our analytical methodology involves
taking a sequence of opcodes, denoted as B, and transforming each opcode into a numerical
vector via the Word2Vec model, resulting in a vectorized sequence Bv . The experiment
generates opcode vectors with a dimension of 100 using word2vec, yielding a final
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Figure 2 Undirected graph representation of segmented opcode sequences. In the graph, a higher edge
weight indicates stronger relevance between two opcode sequences, enabling the model to recognize the
importance of key sequences.

Full-size DOI: 10.7717/peerjcs.2320/fig-2

Bv shape of [Bnum,100], where Bnum indicates the count of opcodes in the sequence.
Subsequently, Bv undergoes a segmentation procedure where every group of 128 opcode
vectors is averaged to form a segmented vector representation, denoted as Bvi, such that
Bvi={b1,b2,...,b100}. This segmentation effectively reduces the dimensionality of the data,
aiding in the subsequent analysis phase. The final step is the computation of a similarity
matrix, SimB, for the segmented vectors Bvi. This matrix captures the pairwise similarities
between segments of the opcode sequence. SimB is then converted into a graph structure,
G,which is input into the TextRank algorithm. TextRank processesG to identify and extract
the top 16 segments with the highest scores. These segments are sequentially concatenated
to form a coherent, condensed representation of the original opcode sequence. In the
graph G, each node corresponds to a Bvi, and the edges represent the similarity scores
SimBij between segments. This method allows for an efficient and structured analysis of
opcode sequences, facilitating the identification of patterns and characteristics pertinent to
smart contract vulnerabilities. Figure 2 illustrates the relationships between certain nodes.

SimBij =
Bvi •Bvj

max(‖Bvi‖2 •
∥∥Bvj∥∥2) where i 6= j (1)

‖Bvi‖=
√∑n

i=1
b2i where n is the vector dimension. (2)

Multi-label vulnerability detection
This research introduces a proprietary model architecture for feature extraction from
vectorized opcode sequences. The process commenceswith the summation of the vectorized
opcode sequence and its correspondingly position-encoded sequence. This step is critical as
it imbues the opcode sequence with positional context, which is paramount for capturing
the sequence’s order-dependent characteristics. Subsequently, the opcode sequence is
partitioned and fed in batches into the feature extraction layer. This layer is designed to
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distill segment-level information, capturing the nuances of each partitioned section of
the opcode sequence. Following this, segment position encoding is integrated before the
sequences are concatenated, which is then routed back into the feature extraction layer
to derive global context. This approach ensures that both localized and holistic features
are considered by the model, enhancing the overall representational capacity.The process
ends at the final classification layer, which interprets the extracted features to determine
the vulnerability type. This classification constitutes the final step in the model’s pipeline,
enabling the identification of specific vulnerabilities within the smart contract code based
on the learned opcode sequence features.

Positional embedding: In sequence data processing, models often handle multiple data
points concurrently. To preserve the sequential order information, it is common practice
to incorporate positional encoding vectors into word embedding vectors. This technique
allows the network to retain the position information of each word while extracting
semantic features. Our research utilizes positional encoding that employs sine and cosine
functions of different frequencies to encode positional information. Positional encoding
serves to provide context about the position of elements within a sequence, enhancing the
model’s ability to understand order-dependency and sequence relationships. This approach
to positional encoding capitalizes on the periodic properties of trigonometric functions
to differentiate positional embeddings. For position pos and dimension i, the encoding
functions are defined as follows:

PE(pos,2i)= sin(pos/100002i/d) (3)

PE(pos,2i+1)= cos(pos/100002i/d). (4)

In the context of positional embedding, pos represents the position of a word—or
an opcode in this case—within a sequence, while d denotes the dimensionality of the
Positional Embedding PE , which is identical to the dimensionality of the opcode sequence.
Furthermore, 2i and 2i+ 1 refer to even and odd dimensions within the embedding,
respectively.

Transformer Encoder: The Transformer model, introduced by Vaswani et al. (2017) in
2017, has revolutionized the field of neural networks with its attention-based mechanism.
This architecture distinguishes itself from its predecessors by assigning variable weights to
different positions within a sequence, thereby effectively capturing the interdependencies
among various positions. Comprising two core components, the encoder and the decoder,
the Transformer facilitates a nuanced understanding of sequential data.

The encoder’s primary function is to convert the input sequence into a context-aware
representation, enriching the model’s comprehension of the semantic and structural
nuances within the input sequence. It does so through a series of self-attention and feed-
forward operations, which allow themodel to process all sequence positions simultaneously
and weigh them based on their relevance to each other.

In contrast, the decoder is principally tasked with transforming this context-aware
representation into a target sequence. However, in the context of this work, our focus is on
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the encoder component of the Transformer architecture. We harness the encoder to extract
and contextualize information from opcode sequences. By deploying the Transformer
Encoder, we can obtain a rich, nuanced understanding of the opcode sequence, which is
vital for subsequent tasks such as vulnerability detection or feature extraction in smart
contracts. The structure of a single Transformer Encoder unit is depicted in Fig. 3.

Given a vectorized opcode sequence denoted as E l
= {e l1,e

l
2,...,e

l
n}, where E

l signifies
the output of the l− th opcode in the sequence. Each Transformer Encoder is composed of
multiple encoder blocks that function sequentially to refine the representation of the input
sequence.

As the sequence progresses through the multi-head attention layer of the l-th encoder,
the model generates a set of queries Q, keys K , and values V for each attention head within
the layer. These elements are essential components of the attention mechanism, serving to
guide the model in identifying which parts of the sequence are relevant to each other. The
computation of the attention outputs can be represented as follows:

Ql
i = EW q

i (5)

K l
i = EW k

i (6)

V l
i = EW v

i (7)

attention output for each attention block,

Z l
i = softmax

QlK
i il T
√
dk

V l
i (8)

where dk represents the number of columns of the Q,K matrices, that is, the vector
dimension. In a multi-head attention framework, each head computes its attention output
independently, focusing on different parts of the sequence. The outputs of all heads are
then concatenated to form a comprehensive representation, and finally the spliced outputs
are passed through a linear layer to obtain the final representation Z l :

Z l
= concat (Z l

1,Z
l
2,...,Z

l
n)W

l
z (9)

where W l
z is the weight parameter generated by the linear layer, and n is the number of

attention blocks. This output Z l is then added to the input E l in a residual-like manner,
akin to the residual connections found in ResNet (He et al., 2016) architectures. The
combined output is normalized through a layer normalization process, after which the
resultant vector is passed through a fully connected layer with a Relu (Rectified Linear
Unit) activation function. Finally, the process concludes with another residual connection
and a subsequent layer normalization to ensure the preservation and enhancement of
information throughout the encoding layers.

U
l
= LayerNorm(E l

+Z l) (10)
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Figure 3 Transformer Encoder single encoder model.
Full-size DOI: 10.7717/peerjcs.2320/fig-3

Wang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2320 9/22

https://peerj.com
https://doi.org/10.7717/peerjcs.2320/fig-3
http://dx.doi.org/10.7717/peerj-cs.2320


Figure 4 LSTM cell structure.
Full-size DOI: 10.7717/peerjcs.2320/fig-4

O
l
= LayerNorm(ReluU

l
(W l

U )+U
l) (11)

where W l
U is the weight parameter of the fully connected layer, and then the output of

the previous encoder is used as the input of the next encoder, that is E l+1
=Ol . The

Transformer encoder adeptly captures salient information within opcode sequences,
providing a foundation for subsequent network layers to extract features.

Bi-GRU: Recurrent neural network (RNN) (Zaremba, Sutskever & Vinyals, 2014) are
inherently designed for sequence processing, adept at capturing temporal dependencies by
fusing the output from a previous timestepwith the current input to form a continuous loop
of information flow. Traditional RNN architectures, however, face significant challenges
when dealing with long sequences due to the propensity for gradients to either explode or
vanish—an issue that impedes the learning of long-distance dependencies.

To surmount this challenge, long short-term memory (LSTM) (Hochreiter &
Schmidhuber, 1997) networks were developed with a sophisticated gating mechanism
that governs the retention and omission of information across long sequences. This
mechanism enables LSTM to selectively maintain or discard information through a series
of gates—namely, the input, forget, and output gates—complemented by a cell state that
carries long-term information through the network. The LSTM unit structure is shown in
the Fig. 4.

The gated recurrent unit (GRU) (Chung et al., 2014), on the other hand, is an iteration
on the LSTM design, streamlining the architecture by combining the cell and hidden
states, and reducing the gating system to two gates: the update gate and the reset gate. This
simplification leads to fewer parameters, potentially easing the computational load and
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expediting the training process. Despite this simplification, GRU maintain a competitive
edge in capturing relevant features from long sequences, similar to LSTM.

Figure 5 can be represented by the formula as:

ht = (1−zt )�ht−1+zt � h̃t . (12)

In the realm of GRU, the hidden state at any given time, denoted as ht , is a critical
component that encapsulates the learned information up to that point in the sequence.
Concurrently, h̃t signifies the candidate hidden state, which represents a possible new value
for ht . In a bi-GRU, the sequence processing is further enhanced by incorporating two
separate GRU: one processes the sequence from start to end, while the other processes it
in reverse, from end to start. This bidirectional approach allows the network to capture
dependencies from both future and past contexts, providing a more robust representation
of the sequence.

zt = σ (Wz · [ht−1,xt ]). (13)

The update gate, represented by zt , plays a pivotal role in mediating the flow of information
between the past and the current state. It operates by determining the degree to which the
previous hidden state, ht−1, should be retained and how much the candidate hidden state,
h̃t , should be incorporated into the current hidden state, ht . The update gate effectively
decides the balance of preserving historical information against admitting new insights.
where the symbol ([]) represents a matrix concatenation operation. When the weight
matrixWz is multiplied by the concatenation matrix formed by the previously hidden state
ht−1 and the current input xt , it is transformed by the sigmoid function to obtain the value
of the update gate zt . The magnitude of zt governs the degree to which information from
the past is preserved: a larger zt implies a higher retention of past information, whereas
a smaller zt indicates a greater allowance for the assimilation of new information. This
mechanism is pivotal for GRU in managing long-term dependencies, enabling them to
adeptly capture information across extended sequences.

The candidate hidden state, which represents the new information that can be passed
to the next time step in the context of GRU networks, can be expressed by the following
equation:

h̃t = tanh(Wh · [rt �ht−1,xt ]). (14)

Here, Wh is the weight matrix associated with the candidate hidden state, represents the
concatenation of the previous hidden state ht−1 and the current input xt , and tanh denotes
the hyperbolic tangent activation function that helps to regulate the values of the candidate
hidden state, ensuring they are within the range of −1 to 1.

rt = σ (Wr · [ht−1,xt ]). (15)

Here, the value of rt influences the degree of retention or forgetting of past information:
a higher rt signifies that more past information is conserved, whereas a lower rt leads
to more forgetting. Further, the preserved information from the past, modulated by the
reset gate, is then combined with current input via concatenation, and this composite
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Figure 5 GRU cell structure.
Full-size DOI: 10.7717/peerjcs.2320/fig-5

is subsequently multiplied by a weight matrix. Afterward, this product passes through
the tanh activation function to produce the candidate hidden state h̃t . The candidate
hidden state h̃t serves as a provisional state, encapsulating a fusion of past information
and current input. Subsequently, contingent upon the function of the update gate, it is
determined whether to employ this candidate state to refresh the ultimate hidden state at
the current moment. The gating mechanisms within the GRU not only enable the learning
of information over long sequences but also address the issues of gradient vanishing and
explosion that are common in traditional recurrent neural network (RNN) architectures.

However, the standard unidirectional GRU processes the input sequence in temporal
order, with each hidden state depending on past information alone. In contrast, the bi-GRU
takes into account both past and future information by introducing two separate processing
directions: forward and backward. This bidirectional approach ensures that the hidden
state at each time step encompasses the contextual information of the entire sequence, as
shown in Fig. 6 of the bi-GRU structure. The bi-GRU is capable of discerning intricate
patterns and regularities within opcode sequences, enabling the acquisition of the holistic
structure and semantics of the opcode sequences.

The Transformer encoder, with its multi-head attention mechanism, demonstrates
exceptional feature extraction capabilities at a deep level. Simultaneously, the bi-GRU
offers comprehensive insights into opcode sequences through its bidirectional processing
mechanism. This combined deep and broad strategy significantly enhances the model’s
efficiency and accuracy in extracting features from opcode sequences.
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Figure 6 Bi-GRU structure.
Full-size DOI: 10.7717/peerjcs.2320/fig-6

EXPERIMENT
Dataset processing
Our study employs a dataset meticulously curated by Rossini (2022), which was constructed
starting from a list of verified smart contracts provided by Smart Contract Sanctuary, with
reference to Smart Bugs (Durieux et al., 2020). Among these tools, Slither was used to detect
four types of vulnerabilities in smart contracts, which include access-control, arithmetic,
other, reentrancy, safe, unchecked-calls.

In this research, opcode is chosen as the focus for vulnerability analysis for several
compelling reasons: (1) Source code is written by developers, leading to instances where
different function names can perform identical operations, and the presence of extensive
comments and whitespace may introduce significant noise, potentially impeding the
model’s capacity to extract meaningful information. (2) Smart contract bytecode tends to
be unreadable, given its hexadecimal representation, making the extraction of sequential
information using existing methods quite challenging. (3) There exists a one-to-one
correspondence between opcodes and bytecodewithin smart contracts, effectively capturing
the contract’s logic. Therefore, leveraging opcodes is deemed more appropriate for this
analysis. The relationship between source code, bytecode, and opcode is illustrated in the
Fig. 7.

In our preprocessing phase, the source code within the dataset has been compiled into
bytecode. This bytecode is subsequently mapped to smart contract opcodes following the
guidelines provided by the Ethereum Yellow Paper (Wood et al., 2014), as shown in Table 1.
The smart contract opcodes comprise 142 distinct operation instructions, categorized into
10 functionalities: arithmetic operations, block information operations, comparisons, stack
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Figure 7 The interrelationship between source code, bytecode, and opcode.
Full-size DOI: 10.7717/peerjcs.2320/fig-7

Table 1 Partial bytecode to opcode correspondence.

Bytecode Opcode

0×00 STOP
0×01 ADD
0×02 MUL
0×03 SUB
0×60 PUSH1
0×80 DUP1
0×90 SWAP1
0×a0 LOG0

instructions, memory access, storage handling, and jump instructions, among others. To
circumvent the potential decline in model performance due to the extensive variety of
instructions, which could hamper the model’s ability to discern sequential information
effectively, we adopted a simplification methodology inspired by Huang et al. (2022). This
approach involves streamlining the opcodes to facilitate more efficient model processing
and improved interpretability. The simplified opcodes reduce the complexity of the opcode
sequences, alleviate the model’s burden, and allow the model to focus on a broader scope
rather than specific instruction sequences. This helps the model perform better on unseen
data, enhancing its generalizability. The simplification process and its outcome are detailed
in Table 2.

To ascertain the efficacy of our model, we conducted comparative analyses against other
deep learning-based vulnerability detection models within this research, incorporating
ablation experiments as well. Each dataset utilized in the experiments was partitioned in a
9:1 ratio to create distinct sets for training and validation.

Experimental environment and experimental parameter settings
The experimental environment settings are delineated in Tables 3 and 4. In the
parameterization of the experiments, we employ Dropout as a regularization technique
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Table 2 Simplified opcode correspondence table.

Simplified Opcode Original Opcode

PUSH PUSH1-PUSH32
DUP DUP1-DUP16
SWAP SWAP1-SWAP16
LOG LOG0-LOG4

Table 3 Experiment environment settings.

Software and Hardware Allocation

Operating system Ubuntu
GPU NVIDIA GeForece RTX4070ti
Memory 32GB
Disk 1T
CUDA 12.2
Pytorch 2.1.1+cu121
Python 3.10.10

Table 4 Experimental parameter settings.

Parameter Setting

Learning rate 1e−5
Dropout rate 0.5
Optimizer Adam
Loss function Asymmetric Loss
Epoch 20

to mitigate the risk of overfitting and enhance the generalization capability of the model.
During each training iteration, Dropout randomly selects a subset of neurons, setting their
outputs to zero, which prompts the remaining neurons to partake in forward and backward
propagation. This method helps prevent the network from becoming overly reliant on any
particular set of neurons, thereby reducing the potential for overfitting.

There are various optimizers available, such as the commonly used Stochastic Gradient
Descent (SGD) and Adaptive Moment Estimation (Adam). Our research utilizes the Adam
optimizer, principally due to its incorporation of both momentum and adaptive learning
rate properties. Adam is capable of estimating the first and secondmoments of the gradient,
applying these estimates to the parameter update process, which can often lead to more
efficient convergence. For loss function selection, we adopt the asymmetric loss proposed
by Ridnik et al. (2021) to address data imbalance in multi-label classification.

Evaluation metrics
Given that the present research addresses a multi-label classification problem, the
conventional accuracy metric is not an optimal measure for evaluating multi-label
classifications. Therefore, this research employs HammingLoss, micro−P , micro−R,
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and the micro−F1 to assess the performance of the multi-label vulnerability detection
model. The calculations for each metric are as follows:

micro−R=
∑n

i=1TPi∑n
i=1TPi+

∑n
i=1FNi

(16)

micro−P =
∑n

i=1TPi∑n
i=1TPi+

∑n
i=1FPi

(17)

micro−F1=
2× (micro−R)× (micro−P)
(micro−R)+ (micro−P)

(18)

where n represents the total number of label predictions made, which is equal to the sample
count multiplied by the number of label categories. TP (true positive) refers to a correctly
predicted positive instance where the model has accurately identified the presence of a
label. FN (false negative) is when the model incorrectly predicts the actual absence of a
label. FP (false positive) is a situation where the model incorrectly predicts the presence
of a label that doesn’t actually exist. TN (true negative) refers to the correctly predicted
negative instances, where the model has accurately identified the absence of a label.

The HammingLoss is a performance metric that is particularly well-suited to the
evaluation of multi-label classification problems. In such problems, each sample can
be associated with multiple labels rather than a single label. The HammingLoss focuses on
assessing the level of disagreement between the predicted label set and the true label set
for each sample. HammingLoss is calculated by determining the proportion of incorrectly
predicted labels over all labels and is represented as the average fraction of labels that are not
correctly predicted. If a model’s predicted label set for a sample is nearly identical to the true
label set, the HammingLoss will be low, indicating good model performance. Conversely,
if there is a large disparity between the predicted and true labels, the HammingLoss will be
high, indicating poor model performance. The formula for HammingLoss is given by:

HammingLoss=
1

N ×L

N∑
i=1

L∑
j=1

[yij⊕ ŷij]. (19)

Here, N is the number of samples, L is the number of labels, y represents the true value,
and ŷ represents the predicted value. The result is 1 if and only if the predicted value and
the true value are consistent; otherwise, the result is 0. As shown in Table 5.

Experimental results
Experiment 1: In this experiment, we aim to verify the effectiveness of the proposed
model. To this end, we compared the proposed Ext-ttg model with several popular deep
learning models, including LSTM, Bi-LSTM, LSTM-ATT, and TextCNN. These models
were evaluated on the same dataset in the comparative experiment.

The comparison results, as shown in Table 6, clearly demonstrate the superior
performance of the Ext-ttg model across multiple performance evaluation metrics.
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Table 5 Confusionmatrix.

Predicted value Actual value

0 1

0 TN FP
1 FN TP

Table 6 Model evaluation results.

Model Micro-R(%) Micro-P(%) Micro-F1(%) HammingLoss

LSTM 73.81 82.53 77.92 0.125
Bi-LSTM 74.60 84.11 79.11 0.118
Bi-LSTM-ATT 74.98 85.32 79.81 0.114
TextCNN 72.13 86.35 78.60 0.119
Ext-ttg 79.61 85.57 82.48 0.107

Specifically, the Ext-ttg model achieved a micro-recall (Micro-R) of 79.61%, a micro-
precision (Micro-P) of 85.57%, and a micro-F1 score (Micro-F1) of 82.48%, which are
significantly better than the other models compared. These results indicate that our model
can more balancedly recognize and classify samples in the experimental dataset while
considering both recall and precision. In addition, the Ext-ttg model also excelled in the
HammingLoss metric, recording a low rate of 0.107, which is far below the loss values
of other models, suggesting that the model has a lower frequency of misclassification
during the labeling process. TextCNN outperforms other models in terms of the MAR-P
(micro-averaged recall at precision) metric, but it has the lowest recall rate. Upon analysis,
it was found that the TextCNNmodel tends to produce more false positives, which explains
the relatively low recall rate of the TextCNN model.

Overall, the Ext-ttg model outperforms the other models in the control group across all
evaluation metrics. These findings validate our hypothesis regarding the effectiveness of the
Ext-ttg model in processing this dataset. Its exceptional performance can be attributed to
the design of the model architecture, which likely incorporates more effective mechanisms
for capturing and processing information, such as an attention mechanism or specific
architectural optimizations that enhance the recognition of textual features. These results
provide a valuable reference for subsequent research and indicate that the Ext-ttg model
has broad application prospects in similar tasks.

Experiment 2:To analyze the role of extractive summarization within our Ext-ttgmodel,
we conducted a second experiment—an ablation research. In this ablation research, we
designed one variant: the ttg (crop 2048) model, which trims the opcode sequence to a
length of 2048, padding the sequence where necessary. The method removed the step of
extractive summarization to observe its impact on model performance. According to the
experimental results, as shown in Table 7, we observed the following:

In the absence of extractive summarization, the ttg (crop 2048) model’s corresponding
performances were 77.22%, 84.75%, and 80.81%. Compared to the models without
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Table 7 Ablation research results.

Model Micro-R(%) Micro-P(%) Micro-F1(%) HammingLoss

ttg (crop 2048) 77.22 84.75 80.81 0.110
Ext-ttg 79.61 85.57 82.48 0.107

extractive summarization, our Ext-ttg model showed a significant improvement in these
metrics, achieving 79.61%, 85.57%, and 82.48%.

Regarding theHammingLossmetric, models without extractive summarization exhibited
a higher loss value of 0.110. In contrast, the Ext-ttg model performed significantly better,
at only 0.107, indicating a higher frequency of classification errors when extractive
summarization was removed from the process.

The results underscore the crucial role of extractive summarization in the Ext-ttg model,
notably enhancing performance acrossmetrics and reducing classification errors. Extractive
summarization refines input data, aiding focused learning and key feature extraction, thus
boosting model efficiency. In summary, the ablation research validates our hypothesis on
the significance of extractive summarization in the Ext-ttg model’s superior performance.

CONCLUSION AND FUTURE WORK
Multi-vulnerability identification in smart contracts has long been a challenging issue,
with previous models typically focusing on detecting single vulnerabilities. In our work,
we propose a smart contract vulnerability detection model that combines extractive
summarization methods with deep learning to identify multiple vulnerabilities in smart
contracts. By employing extractive summarization methods to truncate opcode sequences,
we reduce their length while preserving crucial sequences. Subsequently, we use a stacked
transformer encoder and Bi-GRU for block-level and global feature extraction. Compared
to existing methods, our approach captures more opcode information while retaining
important opcode details, ensuring good model detection accuracy. This indicates the
effectiveness and superiority of our proposed model in handling multi-label vulnerability
detection tasks in smart contracts.

While this research has achieved certain results in the detection of vulnerabilities in smart
contracts, there are still challenges that must be faced. Identifying the complex relationship
between smart contract code and potential vulnerabilities remains a core difficulty in the
field and warrants further exploration. In the future, we plan to focus on the following
areas to further optimize our method: (1) We will attempt to incorporate expert rules to
enable the model to extract richer semantic information. (2) We will explore more efficient
model structures to detect vulnerabilities in smart contracts. We are confident that the
methods proposed by us will provide valuable insights and references for research in the
field of smart contract vulnerability detection.
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