
Submitted 21 May 2019
Accepted 10 October 2019
Published 11 November 2019

Corresponding author
Marco Capuccini,
marco.capuccini@farmbio.uu.se

Academic editor
Daniel Katz

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.232

Copyright
2019 Capuccini et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

On-demand virtual research environments
using microservices
Marco Capuccini1,2, Anders Larsson3, Matteo Carone2, Jon Ander Novella3,
Noureddin Sadawi4, Jianliang Gao4, Salman Toor1 and Ola Spjuth2

1Department of Information Technology, Uppsala University, Uppsala, Sweden
2Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
3National Bioinformatics Infrastructure Sweden, Uppsala University, Uppsala, Sweden
4Department of Surgery and Cancer, Imperial College London, London, United Kingdom

ABSTRACT
The computational demands for scientific applications are continuously increasing. The
emergence of cloud computing has enabled on-demand resource allocation. However,
relying solely on infrastructure as a service does not achieve the degree of flexibility
required by the scientific community. Here we present a microservice-oriented
methodology, where scientific applications run in a distributed orchestration platform
as software containers, referred to as on-demand, virtual research environments. The
methodology is vendor agnostic and we provide an open source implementation
that supports the major cloud providers, offering scalable management of scientific
pipelines. We demonstrate applicability and scalability of our methodology in life
science applications, but the methodology is general and can be applied to other
scientific domains.

Subjects Bioinformatics, Computational Biology, Distributed and Parallel Computing, Scientific
Computing and Simulation, Software Engineering
Keywords Microservices, Cloud computing, Virtual research environments, Application
containers, Orchestration

INTRODUCTION
Modern science is increasingly driven by compute and data-intensive processing. Datasets
are increasing in size and are not seldom in the range of gigabytes, terabytes or even
petabytes and at the same time large-scale computations may require thousands of
cores (Laure & Edlund, 2012). Accessing adequate e-infrastructure therefore represents
a major challenge in science. Further, the need for computing power can vary a lot during
the course of a research project and large resources are generally needed only when
large-scale computations are being executed (Lampa et al., 2013; Dahlö et al., 2018). To
this extent, moving analyses to cloud resources represents an interesting opportunity
from an investment perspective. Indeed, cloud resources come as a configurable virtual
infrastructure that can be allocated and released as needed with a pay-per-use pricing
model (Armbrust et al., 2009). However, this way of procuring resources introduces a layer
of complexity that researchers may find hard to cope with; configuring virtual resources
requires substantial technical skills (Weerasiri et al., 2017) and it is generally a tedious and
repetitive task when it is done on demand. Therefore, when running scientific applications

How to cite this article Capuccini M, Larsson A, Carone M, Novella JA, Sadawi N, Gao J, Toor S, Spjuth O. 2019. On-demand virtual re-
search environments using microservices. PeerJ Comput. Sci. 5:e232 http://doi.org/10.7717/peerj-cs.232

https://peerj.com/computer-science
mailto:marco.capuccini@farmbio.uu.se
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.232
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.232


on cloud, there is a need for a methodology to aid this process. In addition, to promote
sustainability, this methodology should be generally applicable over multiple research
domains, hence allowing to compose working environments from established scientific
software components.

The idea of allocating composable, on-demand working environments on a ‘‘global
virtual infrastructure’’ was envisioned by Candela, Castelli & Pagano (2013). These
working environments, which comprehensively serve the needs of a community of
practice, are commonly referred to as Virtual Research Environments (VREs). Roth et
al. (2011) and Assante et al. (2019) identify cloud resources as the underlying ‘‘global
virtual infrastructure’’ for these systems and provide two similar implementations that
offer on-demand allocation of VREs. Both implementations enable to dynamically compose
VREs from a collection of scientific applications, which are nevertheless installed directly
on VirtualMachines (VMs). Following this approach, due to the remarkably heterogeneous
landscape of scientific software packages, one will almost inevitably encounter conflicting
dependencies (Williams et al., 2016). The technology that has been recently introduced
under the umbrella of microservice-oriented architecture (see ‘Microservice-oriented
architecture and technology’) has cleared the way for a remedy to this problem, providing
an improved mechanism for isolating scientific software (Williams et al., 2016). The idea
consists of introducing an engine that leverages on kernel namespaces to isolate applications
at runtime. The resulting software environments are lightweight, easy and fast to instantiate,
and they are commonly referred to as containers. Noticeable efforts in leveraging this
technology to deliver improved VREs were made by the PhenoMeNal project (in medical
metabolomics) (Peters et al., 2018), by the EXTraS project (in astrophysics) (D’Agostino
et al., 2017) and by the Square Kilometer Array (SKA) project (in radio astronomy) (Wu
et al., 2017). However, despite of microservice-oriented applications being consider the
gold standard of cloud-native systems, EXTraS and SKA run their VREs on dedicated
servers. Here we introduce a general methodology to allocate VREs on demand using cloud
resources—which we have also implemented in PhenoMeNal.

The methodology that we introduce in this paper addresses a number of research
questions that arise when designing on-demand VREs using microservices. Firstly,
allocating virtual infrastructure and setting up the required middleware is hard for non-IT
experts. Thus, we face the question of how to provide a seamless allocation procedure for
scientists while still enabling a good level of configurability for a specific set up. Secondly,
scientists should be able to run VREs on multiple clouds while operating with the same
immutable infrastructure and tooling ecosystem. When using public cloud resources, this
is challenging due to the heterogeneity of vendor-specific features and tools. Further, it is
common in academic settings to leverage commodity clouds that run on premises. While
it is important to support these systems as regulations may forbid certain datasets to be
handled in public settings, commodity clouds offer a reduced set of features; we face the
question of how to enable immutable VREs in commercial and commodity settings. Lastly,
we face the question of how to provide VREs that scale reasonably well. To this extent, there
are two main aspects that we cover in this paper: (1) scaling of scientific analyses and (2)
scaling of VRE instantiation. In connection to this second point, it is important to consider

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 2/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.232


that our methodology is designed around the idea of on-demand, short-lived deployments;
high availability is not crucial while instantiation speed is of great importance.

Based on our methodology, we implemented KubeNow: a comprehensive open-source
platform for the instantiation of on-demand VREs. Please notice that we use the term
platform as opposed to Platform as a Service (PaaS), because KubeNow comes with a
Command-Line Interface (CLI) that operates from the user’s workstation—rather than
providing a publicly available Application Programming Interface (API). The platform is
currently in production as part of the PhenoMeNal project and we employ such use case
to demonstrate the applicability of the proposed methodology.

In summary, our key contributions are as follows.

• We introduce a general methodology for on-demand VREs with microservices (‘On-
Demand VREs with Microservices’). The methodology enables: (1) simplicity in VRE
instantiation, (2) VRE allocation over commercial and commodity clouds and (3)
scalable execution of scientific pipelines on cloud resources.
• We provide an open source implementation, named KubeNow, that enables
instantiating on-demand VREs on the major cloud providers (‘Implementation’).
• We demonstrate the applicability and the scalability of our methodology by showing
use cases and performance metrics from the PhenoMeNal project (‘Evaluation’). In
connection to our first research question, concerning simplicity, this also contributes
in showing how researchers with little IT expertise were able to autonomously allocate
multi-node VREs using KubeNow.
• We evaluate the scalability of KubeNow in terms of deployment speed and compare
it with a broadly adopted microservice architecture installer (‘Deployment automation
scalability’).

MICROSERVICE-ORIENTED ARCHITECTURE AND
TECHNOLOGY
The microservice architecture is a design pattern where complex service-oriented
applications are composed of a set of smaller, minimal and complete services (referred
to as microservices) (Thönes, 2015). Microservices are independently deployable and
compatible with one another through language-agnostic APIs, like building blocks. Hence,
these blocks can be used in different combinations, according to the use case at hand. This
software design promotes interoperability, isolation and separation of concerns, enabling
an improved agile process where developers can autonomously develop, test and deliver
services.

Software container engines and container orchestration platforms constitute the cutting-
edge enabling technology for microservices. This technology enables the encapsulation
of software components such that any compliant runtime can execute them with no
additional dependencies on any underlying infrastructure (Open Container Initiative,
2016). Such software components are referred to as software containers, application
containers, or simply containers. Among the open source projects, Docker emerged as the
de-facto standard software container engine (Shimel, 2016). Along with Docker, Singularity

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 3/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.232


has also seen considerable adoption by the scientific community as it improves security
on high-performance computing systems (Kurtzer, Sochat & Bauer, 2017). Even though
container engines like Docker and Singularity serve similar purposes as hypervisors, they
are substantially different in the way they function. When running a VM, an hypervisor
holds both a full copy of an Operating System (OS) and a virtual copy of the required
hardware, taking up a considerable amount of system resources (Vaughan-Nichols, 2016).
In contrast, software container engines leverage on kernel namespaces to provide isolation,
thus running containers directly on the host system. This makes containers considerably
lighter and faster to instantiate, when compared to VMs. Nevertheless, containers have a
stronger coupling with the OS, thus if they get compromised an attacker could get complete
access to the host system (Manu et al., 2016). Hence, in real-world scenarios a combination
of both VMs and containers is probably what most organizations should strive towards.

In current best practices, application containers are used to package and deliver
microservices. These containers are then deployed on cloud-based clusters in a highly-
available, resilient and possibly geographically disperse manner (Khan, 2017). This is
where container orchestration frameworks are important as they provide cluster-wide
scheduling, continuous deployment, high availability, fault tolerance, overlay networking,
service discovery, monitoring and security assurance. Being based on over a decade of
Google’s experience on container workloads, Kubernetes is the orchestration platform
that has collected the largest open source community (Asay, 2016). Other notable open
source orchestration platforms include Marathon (2018), which is built on top of the
Mesos resource manager (Hindman et al., 2011), and Swarm which was introduced by
Docker (Naik, 2016).

ON-DEMAND VRES WITH MICROSERVICES
In this section we introduce the methodology that enables on-demand VREs. The
methodology is built around the microservice-oriented architecture, and its companion
technology. Here we explain our solution on a high level, thus not in connection to any
specific software product or vendor. Later in this paper (‘Implementation’) we also show
an implementation of this methodology that builds on top of widely adopted open source
tools and cloud providers.

Architecture
Figure 1 shows a general architecture for on-demand VREs. The architecture is organized
in three layers: Cloud Provider, Orchestrator and Microservices. In describing each layer we
follow a bottom-up approach.

Cloud Provider
At the lowest level, the Cloud Provider layer manages virtual resources at infrastructure
level. In our methodology this layer enables to dynamically procure infrastructure when a
VRE is instantiated. Physical resources can be outsourced (public cloud), in house (private
cloud) or anywhere in between (hybrid cloud).

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 4/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.232


Figure 1 Microservice-oriented architecture for on-demand VREs. The architecture is organized in
three layers: Cloud Provider, Orchestrator andMicroservices. The two lowest layers offer necessary services
to the above layer. In particular the Cloud Provider manages virtual resources at infrastructure level, and
the Orchestrator manages microservices that run as application containers. The uppermost layer run a set
of container-based microsrvices for a certain community of practice. The VRE is instantiated through a
deployment automation, which may also configure a Content Delivery Network (CDN ) and a Dynamic
Domain Name System (DynDNS) to serve the User Interfaces.

Full-size DOI: 10.7717/peerjcs.232/fig-1

There are a few necessary services that a cloud system should offer to serve the purpose of
a VRE. First, a Compute service should enable for booting and managing the VMs that will
provide computing power. Second, aNetwork service should providemanagement for VMs
interconnection, routing, security rules and other networking-related concerns. Third, a
Block Storage service should provide volumes management for VMs. Finally, an API should
provide programmatic access to the all of the other services (to enable automation).

Apart from these basic requirements, VREs need a few other services that may not be
offered by commodity providers (such asmoderately sized university installations). Luckily,
their implementation as microservices is relatively easy as we describe in ‘Microservices’—
and it is crucial in commodity settings. First, it is important to point out that the main
purpose of VREs is to run computations through scientific tools. These tools can be run
dispersively in the virtual cluster, thus needing a shared file space for synchronization
and concurrent dataset handling. This cannot be provided via block storage, as usually
it does not allow for concurrent access. Concurrent access may be achieved via Object
Storage, a well-established storage service that is capable of providing shared file spaces
(Karakoyunlu et al., 2013). As the name suggests the service manages files as objects, thus
being substantially different from POSIX storage systems. This may represent a challenge
in the context of VREs, as scientific tools can usually only operate on a locally-mounted
POSIX space. However, this challenge can be tackled by third party products (such as

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 5/26

https://peerj.com
https://doi.org/10.7717/peerjcs.232/fig-1
http://dx.doi.org/10.7717/peerj-cs.232


Cloudfuse (2019), that can abstract and mount the object storage as a POSIX file system.
As an alternative to object storage, some cloud providers recently started to offer Shared
POSIX Storage, which enables concurrent access on POSIX file spaces. Some examples
include Amazon Elastic File System (2019), Google Cloud Filestore, (2019), Azure NetApp
Files (2019) and OpenStack Manila (2019). Nevertheless, in contrast to object storage, this
solution did not yet reach a consensus in terms of implementation and functionalities
across different providers.

Finally, a cloud provider may offer a Load Balance service. As the name suggests,
this service can be used to load balance incoming traffic from a certain public IP to a
configurable set of VMs or microservices. In the context of VREs, this can be useful to
expose many services under a single public IP (as related quotas may be limited).

Orchestrator
Aswementioned in the introduction, ourmethodologymakes use of application containers
to improve the isolation of scientific software environments. A few cloud providers offer
native management for container instances (Amazon Elastic Container Service, 2019;Google
Cloud Run, 2019; Azure Container Instances, 2019; OpenStack Zun, 2019), nevertheless
these solution are strongly coupled with vendor-specific tooling and they are seldom
supported by commodity cloud systems. Hence, to promote portability of VREs, it is
preferable to not rely on container-native cloud environments. However, when leveraging
solely on VMs there is no straightforward way to manage disperse containers. This is
where the Orchestrator is important, as it abstracts VM-based clusters so that containers
can be seamlessly scheduled on the underlying resources. There are a few orchestration
platforms available in the open source ecosystem (as we discussed in ‘Microservice-oriented
architecture and technology’), and ourmethodology is not tied to any of these in particular.
However, there are a few services that an Orchestrator should offer to support on-demand
VREs.

First, a Scheduling service should support cluster-wide resource management and
scheduling for application containers. This service should alsomanage container replication
across the cluster, and reschedule failed container (possibly to different nodes in case of
VM failure). Since containers can be scheduled across many VMs, an Overlay Network
should provide interconnection among them. In addition, a Service Discovery mechanism
should provide the means to retrieve container addresses in the overlay network. This
usually comes as a DNS service that should only be available inside the cluster.

In order to provide data persistency and synchronization between replicas, a Volume
Management service should offer container volumes operations across the cluster. This
means that containers should be able to access a shared volume, possibly concurrently,
from any host. Since this represents a major challenge, on this layer volume management
should only represent an abstraction of an underlying storage system, such as a Block
Storage or a Shared POSIX Storage. Apart from file spaces, the Orchestrator should be able
to manage and mount secrets, such as encryption keys and passwords, in the containers
through a Secret Management service.

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 6/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.232


Cloud Integrationsmay be optionally offered by the orchestrator, and be beneficial in the
context of VREs. This service enables to dynamically provision resources on the underlying
layer. For instance, on-demand VREs with Cloud Integrations may dynamically procure
load balancers and cloud volumes for the managed containers. Finally, the Orchestrator
should provide an API to allow programmatic access to its services (enabling automation).

Microservices
The set of services for a certain community of practice run as container-basedmicroservices,
on top of the orchestration platform. While we envision the previous layers to be
exchangeable between communities of practice, this layer may offer substantially different
functionalities, according to the application domain. Luckily, microservices-oriented
systems for different scientific domains (e.g., PhenoMeNal, EXTraS and SKA) are very
similar in their design, allowing us to give a general overview of this layer.

First, we make a distinction between jobs and deployments. Jobs are mainly application
containers that run scientific tools, to perform some analyses. The idea consists of
instantiating each processing tool, execute a part of the analysis, and allowing it to exit as
soon as the computation is done. In this way the analysis can be divided into smaller blocks
and distributed over the cluster.

Deployments should include a Workflow System, a Monitoring Platform and User
Interfaces.Workflow Systems (or similar analytics services) enable to define and orchestrate
distributed pipelines of containerized tools. For the containerized tools scheduling to
work, it is crucial that the selected workflow system is compatible with the underlying
Orchestrator. Monitoring Systems collect cluster-wide performance metrics, logs and audit
trails, possibly aggregating them in visual dashboards. User Interfaces provide graphical
access to the workflow and monitoring systems, and possibly enable interactive analysis
through the execution of live code. An important remark is that as interfaces are typically
stateless, their implementation as functions (Baldini et al., 2017) should also be considered
when the integration with the workflow systems and the monitoring platform is feasible.

Finally, on this layer Shared POSIX Storage, Object Storage and Load Balance may
be implemented as container-based microservices, if not provided by the underlying
commodity cloud service. Many available open source projects provide these services and
support the major orchestration platforms, thus making the implementation relatively
simple (see ‘Implementation’).

Content delivery network and dynamic domain name system
Content Delivery Networks (CDNs) are geographically disperse networks of proxy servers
(Pathan & Buyya, 2007). The main goal of a CDN is to improve the quality of web services
by caching contents close to the end user. Even though this is not particularly beneficial for
short-lived systems,modernCDNsoffer additional benefits that are relevant for on-demand
VREs. In fact, when proxying web traffic, CDNs can provide seamless HTTPS encryption,
along with some protection against common attacks (e.g., distributed denial of service).
Since modern CDNs can be configured programmatically via APIs, this provides an easy
way to setup encryption on-demand. When comparing with Let’s Encrypt (Manousis et al.,
2016), this system has the advantage of seamlessly issuing and storing a single certificate.

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 7/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.232


This is relevant for on-demand systems, as they may need to be instantiated multiple times
in a relatively short period of time, thus making important to reuse existing certificates. In
contrast, Let’s Encrypt only enables to issue new certificates leaving their management up
to the users.

Dynamic Domain Name System (DynDNS) is a method that enables automatic DNS
records update (Vixie et al., 1997). Since on-demand VREs are instantiated dynamically,
each instance can potentially expose endpoints on different IP addresses. DynDNS enables
to automatically configure DNS servers, so that endpoints will always be served on a
configurable domain name.

Even though we recommend adoption for user friendliness, CDNs and DynDNS are
optional components. Secure Shell (SSH) tunnelling and virtual private network gateways
are valid alternatives to securely access the endpoints. In addition, it is relatively simple to
discover dynamically allocated IP addresses by using the cloud API.

Deployment automation
Setting up the presented architecture requires substantial knowledge of the technology, and
it may represent a challenge even for a skilled user. Furthermore, for on-demand VREs this
time-consuming task needs to be performed for each instantiation. Therefore, on-demand
VREs should include a Deployment Automation. The automation should operate over
multiple layers in the architecture, by setting up the infrastructure through the cloud
API and by setting up the microservices through the orchestrator API. In addition, the
automation should also configure the CDN and DynDNS when required. The deployment
automation should be based on broadly adopted contextualization tools. These can be
cloud-agnostic, thus supporting many cloud providers, or cloud specific. Cloud-agnostic
tools are usually open source, while cloud-specific tools may be licensed. The former has
the advantage of generalizing operations over many providers, while the latter might offer
commercial support.

No matter which set of contextualization tools is chosen, the deployment automation
should offer a common toolbox that operates across all of the supported cloud providers.
To this extent, contextualizing the system automatically across multiple commercial
and commodity clouds is going to be challenging. For the Orchestrator layer one could in
principle rely onmanaged setup automations. However, this approach has the disadvantage
of tailoring the orchestration layer to vendor-specific tooling. The same stands when
relying on managed storage and load balance. Further, these services are seldom provided
by commodity clouds. Therefore, our recommendation is to automate the setup of the
orchestration layer without relying on managed services—which also has the advantage
of making this layer immutable across providers. Along the same lines, we recommend to
automate the setup of storage and load balancing as microservices. This not only gives the
user the possibility of deploying this services when not offered by the commodity cloud of
choice, but also enables for not tailoring the analyses to any vendor-specific storage system.

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 8/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.232


IMPLEMENTATION
We provide an open source implementation of our methodology, named KubeNow
(KubeNow GitHub organization, 2019). KubeNow is generally applicable by design, as it
does not explicitly define the uppermost layer in Fig. 1. Instead, KubeNow provides a
general mechanism to define the microservices layer, so that communities of practice can
build on-demand VREs according to their use cases.

KubeNow is cloud-agnostic, and it supports Amazon Web Services (AWS), Google
Cloud Platform (GCP) and Microsoft Azure, which are the biggest public cloud providers
in the market (Bayramusta & Nasir, 2016), as well as OpenStack (the dominating in-house
solution (Elia et al., 2017)). This is of great importance in science as it allows to take
advantage of pricing options and research grants from different providers, while operating
with the same immutable infrastructure. Furthermore, supporting in-house providers
enables to process sensitive data, that may not be allowed to leave research centers.

KubeNow implements Object Storage, Shared POSIX Storage and Load Balance in the
microservices layer. This is a straightforward solution to maximize the portability of
on-demand VREs. In fact, these services may not be available in certain private cloud
installations, and their APIs tend to differ substantially across providers (requiring
orchestrators and microservices to be aware of the current host cloud). On the other
hand, leveraging on cloud-native services may be beneficial in some cases. As an example,
using cloud-native storage enables to persist the data on the cloud, even when the on-
demand VRE is not running. Thus, KubeNow gives the possibility to skip the provisioning
of Object Storage, Shared POSIX Storage and Load Balance, leaving their handling to the
communities of practice in such case.

Finally, KubeNow is built as a thin layer on top of broadly-adopted software products.
Below follows a summarizing list.

• Docker (Shimel, 2016): the open source de facto standard container engine.
• Kubernetes (Asay, 2016): the orchestration platform that has collected the largest open
source community.
• GlusterFS (GlusterFS, 2019): an open-source distributed file system that provides both
shared POSIX file spaces and object storage.
• Traefik (Traefik, 2019): an open-source HTTP reverse proxy and load balancer.
• Cloudflare (Cloudflare, 2019): a service that provides CDN and DynDNS.
• Terraform (Terraform, 2019): an open-source IaC tool that enables provisioning at
infrastructure level.
• Ansible (Ansible, 2019): an open-source automation tool that enables provisioning of
VMs and Kubernetes.
• Packer (Packer, 2019): an open-source packaging tool that enables packaging of
immutable VM images.

Configurability
Figure 2 shows a sample KubeNow configuration. In a KubeNow cluster there are four
main node entities that can be configured: master, service, storage and edge. Apart from

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 9/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.232


Figure 2 KubeNow sample configuration. There are four main node entities in a KubeNow cluster
which are managed via Kubernetes. Apart from the master node, which runs the Kubernetes API, the user
can chose how many instances of each node entities to deploy. Service nodes run the user application
containers. Storage nodes run GlusterFS, and they attach a block storage volume to provide more capacity.
Edge nodes run Traefik to load balance Internet traffic to the application containers, and each of them is
associated to a public IP. Further, Cloudflare manages DNS records for the edge nodes IP, and optionally
proxies Internet traffic to provide encryption.

Full-size DOI: 10.7717/peerjcs.232/fig-2

the master node, the user can chose how many instances of each node entity to deploy. By
default, each node shares the same private network that allows incoming traffic only on
SSH,HTTP andHTTPS ports. Themaster nodemanages various aspects of the other nodes,
retaining the cluster status and running the Kubernetes API. The current implementation
of KubeNow does not support multiple master nodes. This is because the purpose of
KubeNow is to enable on-demand processing on cloud resources. Under this assumption,
deployments are supposed to be short lived, hence high availability is not crucial. Service
nodes are general-purpose servers that typically run user containers. Storage nodes run
GlusterFS, and they are attached to a block storage volume to provide additional capacity.
Finally, edge nodes are service nodes with an associated public IP address, and they act
as reverse proxies and load balancers, for the services that are exposed to the Internet. In
order to resolve domain names for the exposed services, a wildcard record is configured
in the Cloudflare dynamic DNS service (Cloudflare, 2019), such that a configurable base
domain name will resolve to the edge nodes. In addition, the traffic can be proxied through
the Cloudflare servers, using a fully encrypted connection. When operating in this mode
Cloudflare provides HTTPS connections to the end user, and it protects against distributed
denial of service, customer data breach and malicious bot abuse.

Apart from the typical setting that we show in Fig. 2, some other configurations can
be used. Excluding the master node, each node entity is optional and it can be set to any

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 10/26

https://peerj.com
https://doi.org/10.7717/peerjcs.232/fig-2
http://dx.doi.org/10.7717/peerj-cs.232


$ kn init <provider> <dir>

$ cd <dir>

$ kn apply

$ kn helm install <package>

(a) Manual configuration

$ kn init --preset <preset> \

$ <provider> <dir>

$ cd <dir>

$ kn apply

(b) Preset system

Listing 1: KubeNow CLI user interaction. The init subcommand sets up a deployment
directory for a certain cloud provider. When choosing to configure KubeNow manually
the user does not specify any preset and moves to the deployment directory, where some
configuration files need to be edited (see Listing 1b). Alternatively, one can chose to ini-
tialize the deployment with a preset made available by the community of practice (see
Listing 1b). The apply subcommand then deploys KubeNow as specified in the config-
uration files. Lastly, the helm subcommand is used to install the application-specific re-
search environment. When using the preset system this last step is not necessary, as the
Helm packages that compose the VRE are installed automatically as specified in preset.

replication factor. For instance, when IP addresses are particularly scarce, it is possible to
not deploy any edge node, and to use the master node as reverse proxy instead (this may
often be the case for commodity cloud settings). The same stands for the storage nodes,
that can be removed when an external filesystem is available. In addition, for single-server
setups, it is possible to deploy the master node only, and to enable it for service scheduling.
Finally, since for entry-level users it can be difficult to reserve a domain name and set it
up with Cloudflare, it is possible to use NIP.IO (NIP.IO, 2019) instead. NIP.IO provides
for an easy mechanism to resolve domain names without needing any configuration (e.g.,
foo.10.0.0.1.nip.io maps to bar.10.0.0.2.nip.io maps to 10.0.0.2, etc.).

Command-line interface
The KubeNow deployment automation is available as a CLI, namely kn, that has the goal
of making cloud operations transparent. Indeed, we envision researchers to autonomously
set up cloud resources, without performing complex tasks outside their area of expertise.
The kn CLI wraps around a Docker image that encapsulates Terraform, Ansible and a few
other dependencies, hence Docker is the only client-side requirement. Listing 1a shows a
typical user interaction. The user starts by initializing a deployment directory for a certain
cloud provider with the kn init command. The deployment directory contains some
template files that need to be filled in. These files can be used to configure how many of
each of the available node entities to deploy (see ‘Configurability’), as well as low level
parameters such as node flavors, networking and credentials. This way of configuring
the deployment hides complex Kubernetes operations that would otherwise be needed
to specialize the nodes. Once the user is done with the configurations, the deployment is
started by moving into the deployment directory and by running the kn apply command.
This command sets up Kubernetes as well as the KubeNow infrastrucuture (Fig. 2). Finally,
the application-specific research environment is installed on top of KubeNow, by running
Helm (2019) (the Kubernetes package manager). Even if preparing Kubernetes packages

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 11/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.232


requires substantial expertise, ready-to-use applications can be made available through
Helm repositories.

Listing 1b shows an easier way of deploying a VRE, which trades off configurability.
Indeed, configuring the deployment can be hard for inexperienced users. Using the preset
system, the user can specify a preset provided by the VRE’s community of practice which
populates the configuration files with a common setup for the cloud provider of choice.
In this way the user only needs to fill in the cloud credentials and optionally make some
configuration adjustment. Following this approach, the configuration files also include the
Helm packages that need to be installed, thus the kn apply command can bring up the
complete setup automatically.

Enabling scalable deployments
Enabling fast and scalable deployments is crucial when leveraging cloud infrastructure
on-demand. In fact, if the deployment time grows considerably when increasing the
number of nodes, the VRE instantiation time likely dominates over the analysis time,
making less appealing to invest in large-scale resources.

In order to achieve fast and scalable deployments, there are two main ideas that we
introduced in our automation. First, the instances are booted from a preprovisioned image
(collaboratively developed via Travis CI, 2019). When the image is not present in the
cloud user space, the deployment automation imports it, making all of the consecutive
deployments considerably faster. Using this approach, all of the required dependencies are
already installed in the instances at boot time, without paying for any time-consuming
download. The second idea consists in pushing the virtual machines contextualization
through Cloud-init (2019), by including a custom script in the instances bootstrap. In
this way, the machines configure themselves independently at boot time leading to a
better deployment time scaling, when compared to systems where a single workstation
coordinates the whole setup process (as we show in ‘Evaluation’). This latter approach is
even more inefficient when the deployment automation runs outside of the cloud network,
which is a quite common scenario.

EVALUATION
We evaluate our methodology using KubeNow as implementation. Being based on
Kubernetes, our system benefits from the resilience characteristics provided by the
orchestration platform. Resilience in Kubernetes was previously discussed and studied
(Vayghan et al., 2018; Netto et al., 2017; Javed et al., 2018) and it is trusted by several
organizations (Neal, 2018); thus, we do not show a resiliency evaluation here. Instead, we
show how the adoption of our methodology enable scientific analysis at scale (‘Full analysis
scaling’). In particular, we show that running POSIX and object storage as microservices,
through KubeNow, offer a scalable synchronization space for parallel scientific pipelines
while enabling VREs on commodity clouds—thus validating the design that we show in
Fig. 1. Further, we show how KubeNow scales in terms of deployment speed on each cloud
provider, also in comparison with a broadly adopted Kubernetes installer (‘Deployment
automation scalability’). Regarding this last point, it is not our intention to compare the

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 12/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.232


cloud providers in terms of speed or functionalities, but to show that the deployment scales
well on each of them.

Execution of scientific analysis
KubeNow has been adopted by the PhenoMeNal project to enable the instantiation of on-
demand VREs (Peters et al., 2018). The PhenoMeNal project aims at facilitating large-scale
computing for metabolomics, a research field focusing on studying the chemical processes
involving metabolites, which constitute the end products of processes that take place in
biological cells. Setting up the required middleware manually, when running PhenoMeNal
on demand, was originally a complex and repetitive task which made the whole process
often infeasible. The adoption of KubeNow has helped the PhenoMeNal community to
automate on-demand deployments that now boil down to running a few commands in the
resercher’s workstation.

On top of KubeNow, the PhenoMeNal VREs run a variety of containerized processing
tools as well as three workflow systems, a monitoring platform and various user interfaces.
More in detail, the VREs provide Luigi (Luigi, 2018), Galaxy (Goecks et al., 2010) and
Pachyderm (Pachyderm, 2019) as workflow systems and the Elasticsearch Fluentd Kibana
stack (Cyvoct, 2018) as monitoring platform, all of which come with their built-in user
interfaces. In addition, PhenoMeNal VREs also provide Jupyter (Jupyter, 2019) to enable
interactive analysis through a web-based interface.

PhenoMeNal VREs have seen applications in mass spectrometry, nuclear magnetic
resonance analyses as well as in fluxomics (Emami Khoonsari et al., 2018). Even though
these three use cases come from metabolomics studies, they are substantially different and
require different tools and pipelining techniques. This suggests that our methodology is
generally applicable and supports applications in other research fields.

Parallelization of individual tools
Gao et al. (2019) and Novella et al. (2018) used the PhenoMeNal VREs to parallelize
three individual metabolomics tools: Batman (Hao et al., 2012), FeatureFinderMetabo
(FeatureFinderMetabo, 2018) and CSI:FingerID (Duhrkop et al., 2015). In these two studies
different choices were made in terms of infrastructure setup, utilized workflow system
and cloud provider. However, in both cases the parallelization was performed by splitting
the data into N partitions, where N was also the number of utilized vCPUs, and by
assigning each partition to a containerized tool replica. Gao et al. ran their analysis on
2000 1dimensional spectra of blood serum from the MESA consortium (Bild et al., 2002;
Karaman et al., 2016), while Novella et al. processed a large-scale dataset containing 138
mass spectrometry runs from 37 cerebrospinal fluid samples (Herman et al., 2018).

In both studies the performance is evaluated in terms of measured speedup when
increasing the number of utilized vCPUs. The speedup was computed as TN /T1 where TN

is the running time of the parallel implementation on N cores and T1 is the running time
of the containerized tool on single core (measured on the same cloud provider). Gao et
al. used the Luigi workflow system to parallelize Batman on Azure and on the EMBL-EBI
OpenStack EMBL-EBI Cloud (2019) installation. When running on Azure they used 10

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 13/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.232


81

158

340
413 420

17

31

41
50

38

73

150 158

19

36

48
63

16

32

64

128

256

512

vCPUs

Sp
ee
du

p

Batman	(EMBL-EBI	OpenStack)

FeatureFinderMetabo	(AWS)

Batman	(Azure)

CSI:FingerID	(AWS)

Linear	(ideal)

Figure 3 Speedup plot for three containerized tools. The plot shows speedups for three containerized
tools that were parallelized using the PhenoMeNal on-demand VRE on different cloud providers. Please
notice the logarithmic scale (in base 2) on both axes.

Full-size DOI: 10.7717/peerjcs.232/fig-3

service nodes with 32 vCPUs and 128GB of RAM each, and 1 storage node with 8 vCPUs
and 32GB of RAM. On the EMBL-EBI OpenStack they used 55 worker nodes with 22
vCPUs and 36GB of RAM each, and 5 storage nodes with 8 vCPUs and 16GB of RAM each.
Under these settings they run on 50, 60, 100, 250 and 300 vCPUs on Azure, and on 100,
200, 500, 800 and 1000 vCPUs on the EMBL-EBI OpenStack.

Novella et al. used the Pachyderm workflow system to parallelize FeatureFinderMetabo
and CSI:FingerID on AWS. They run their experiments on AWS, using the t2.2xlarge
instance flavor (eight vCPUs and 32GB of RAM) for each node in their clusters. They used
five service nodes and three storage nodes when running on 20 vCPUs, eight service nodes
and four storage nodes when running on 40 vCPUs, 11 service nodes and six storage nodes
when running on 60 vCPUs, and 14 service nodes and seven storage nodes when running
on 80 vCPUs.

Figure 3 shows the measured speedup for each tool in the referenced studies. Even
though these tools differ in terms of CPU and I/O demands, their speedup has a close to
linear growth up to 500 vCPUs. For the Batman use case, the speedup starts to level out at
300 vCPUs when running on Azure and at 800 vCPUs when running on the EMBL-EBI
OpenStack. However, we point out that Gao et al. used only one storage node when running
on Azure, meaning that in such case more I/O contention occurred.

Full analysis scaling
Emami Khoonsari et al. (2018) used the PhenoMeNal VRE to scale the preprocessing
pipeline of MTBLS233, one of the largest metabolomics studies available on the
Metabolights repository (Haug et al., 2012). The dataset consists of 528 mass spectrometry
samples from whole cell lysates of human renal proximal tubule cells. This use case is
substantially different from the previous benchmarks, as the analysis was composed by
several tools chained into a single pipeline, and because the scalability was evaluated over

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 14/26

https://peerj.com
https://doi.org/10.7717/peerjcs.232/fig-3
http://dx.doi.org/10.7717/peerj-cs.232


10 20 30 40
0

0.2

0.4

0.6

0.8

1

vCPUs

W
SE

Figure 4 WSE plot for the MTBLS233 pipeline. The plot shows the Weak Scaling Efficiency (WSE)
for the MTBLS233 pipeline, executed using the PhenoMeNal on-demand VRE on an OpenStack-based
provider.

Full-size DOI: 10.7717/peerjcs.232/fig-4

the full workflow. However, the parallelization was again implemented by assigning a
roughly equal split of the data to each container replica. The scalability of the pipeline was
evaluated by computing the Weak Scaling Efficiency (WSE) when increasing the number
of utilized vCPUs.

The pipeline was implemented using the Luigi workflow system on the SNIC Science
Cloud (SSC) (Toor et al., 2017), an OpenStack-based provider, using the same instance
flavor with 8 vCPUs and 16GB of RAM for each node in the cluster. To compute the
WSE, the analysis was repeatedly run on 1/4 of the dataset (10 vCPUs), 2/4 of the dataset
(20 vCPUs), 3/4 of the dataset (30 vCPUs) and on the full dataset (40 vCPUs). Then, for
N = 10,20,30,40 the WSE was computed as T10/TN where T10 was the measured running
time on 10 vCPUs and TN was the measured running time on N vCPUs. Figure 4 shows
the WSE measures. There was a slight loss in terms of WSE when increasing the vCPUs,
however at full regimen the Khoonsari et al. measured a WSE of 0.83 indicating good
scalability. The loss in WSE is due to growing network contention when increasing the
dataset size. This problem can be mitigated by implementing locality-aware scheduling for
containers (Zhao, Mohamed & Ludwig, 2018), and we leave this as future work.

Deployment automation scalability
In order to evaluate how KubeNow deployment automation scales over different cluster
sizes, we measured and analyzed its deployment time for each of the supported cloud
providers: AWS (Frankfurt region), Azure (Netherlands region), GCP (Belgium region)
andOpenStack (provided by EMBL-EBI Cloud (2019) and located in the United Kingdom).
Then, where applicable, we repeated the measurements using Kubespray (2019), a broadly-
adopted Kubernetes cloud installer, to make a comparison. The experiments were carried
out from a local laptop, thus envisioning the common scenario where a researcher needs
to set up a one-off cluster, in a remote cloud project. More specifically, the laptop was

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 15/26

https://peerj.com
https://doi.org/10.7717/peerjcs.232/fig-4
http://dx.doi.org/10.7717/peerj-cs.232


an Apple MacBook Pro (model A1706 EMC 3071) running on the Uppsala University
network (Sweden). We measured time for multiple instantiations on the supported cloud
providers, doubling the size for each cluster instance. Apart from the size, each cluster had
the same topology: one master node (configured to act as edge), and a 5-to-3 ratio between
service nodes and storage nodes. This service-to-storage ratio was shown to provide good
performance, in terms of distributed data processing, in our previous study (Emami
Khoonsari et al., 2018). Hence, we started with a cluster setup that included one master
node, five service nodes and three storage nodes (eight nodes in total, excluding master)
and, by doubling size on each run, we scaled up to 1 master node, 40 service nodes and 24
storage nodes (64 nodes in total, excluding master). For each of these setups we repeated
themeasurement five times, to consider deployment time fluctuations for identical clusters.
Finally, the flavors used for the nodes were: t2.medium on AWS, Standard_DS2_v2 on
Microsoft Azure, n1-standard-2 on GCP, and s1.modest on EMBL-EBI OpenStack.

Comparison between KubeNow and Kubespray
Tomake the comparison as fair as possible, we used the Kubespray deployment automation
that is based on Ansible and Terraform (the same tools that are used in KubeNow), which
uses a bastion node to enable the provisioning with a single IP address. It is worth
repeating that public address scarcity is a common issue when dealing with commodity
cloud installations, hence we tried to minimize their usage in our experiments. For
large deployments, the Kubespray documentation recommends to increase the default
maximum parallelism in Ansible and Terraform. Since in our experiments we planned
to provision up to 64 nodes, we set the maximum parallelism to this value for both
KubeNow and Kubespray. To the best of our knowledge, Kubespray makes storage nodes
available only for OpenStack deployments, hence the comparison was possible only on the
EMBL-EBI OpenStack provider. Figure 5 shows the results for KubeNow and Kubespray
in comparison.

Deployment time fluctuations for repeated runs, with the same cluster size, were not
significant. However, there is a significant difference in terms of scalability between the
two systems. In fact, we observe that Kubespray deployments scale poorly, as they increase
in time by a large factor when the cluster size doubles. On the other hand, when doubling
the number of nodes, KubeNow time increases by a considerably smaller factor, thus
providing better scalability. The gap between the two systems becomes of bigger impact as
the deployments increase in size. In fact, for the biggest deployment (64 nodes) KubeNow
is ∼12 times faster than Kubespray.

To understand why such a big difference occurs, it is important to highlight how the
deployment automation differs in the two systems. Kubespray initiates deployments from
vanilla images, and it orchestrates the installation from a single Ansible script that runs in
the user workstation (outside of the cloud network). Provisioning vanilla images is not only
more time consuming, but it also causesmore andmoremachines to pull packages from the
same network as the deployments increase in size, impacting scalability. In the same way,
the central Ansible provisioner that orchestrates Kubespray’s deployments becomes slower
and slower in pushing configurations as the number of nodes increases. As we mentioned

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 16/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.232


0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500

8 16 32 64

D
ep

lo
ym

en
t	
ti
m
e	
(s
)

Number	of	nodes

KubeNow	(EMBL-EBI	OpenStack) Kubespray	(EMBL-EBI	OpenStack)

Figure 5 KubeNow and Kubespray deployment time comparison. The plot shows the deployment time,
for different cluster sizes (number of nodes), when using KubeNow and when using Kubespray. The ex-
periments were performed on the EMBL-EBI OpenStack. Error bars for KubeNow can be seen on Fig. 6.

Full-size DOI: 10.7717/peerjcs.232/fig-5

Figure 6 KubeNow deployment time by cloud provider. The plot shows the deployment time for differ-
ent cluster sizes (number of nodes) on each of the supported cloud providers.

Full-size DOI: 10.7717/peerjcs.232/fig-6

earlier, KubeNow solves these problems by starting deployments from a preprovisioned
image, and by decentralizing the dynamic configuration through cloud-init.

Evaluation on multiple cloud providers
Figure 6 aims to highlight interesting differences in KubeNow’s deployment scaling over
different cloud providers. Again, deployment time fluctuations for repeated runs, with the
same cluster size, were not significant. We got the best scaling on GCP and EMBL-EBI
OpenStack, where every time we doubled the number of provisioned nodes we measured
a considerably small increase in deployment time. When deploying on Azure, we always
measured a slightly longer time than on the other providers, which increased by a relatively

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 17/26

https://peerj.com
https://doi.org/10.7717/peerjcs.232/fig-5
https://doi.org/10.7717/peerjcs.232/fig-6
http://dx.doi.org/10.7717/peerj-cs.232


small constant up to 32 nodes. However, when we increased the number of nodes to 64,
the deployment time on Azure almost doubled. Finally, on AWS deployment time was
better than on the other providers for small clusters (8 and 16 nodes). However, when
provisioning 32 and 64 nodes, AWS time increased by a larger factor, and it almost doubled
when we scaled from 16 to 32 nodes.

When provisioning on different cloud providers, KubeNow uses the same deployment
strategy, which consists in creating the infrastructure with Terraform, and in waiting
for the decentralized dynamic configuration to be completed on each node. The same
Ansible contextualization is then applied to make small adjustments in the deployment,
on every cloud provider. Since the deployment strategy is not cloud-specific, differences
in deployment time among clouds are due to the infrastructure layer, which is managed
independently by the providers. Finally, it is important to point out that cloud providers
can make changes in the infrastructure layer, impacting the results that we show in this
study.

DISCUSSION
The presented methodology differs from the state of the art, as it makes use of the
microservice-oriented architecture to deliver on-demand VREs to scientists. This
improves isolation of VREs components, and enables to assemble workflows of highly-
compartmentalized software components through the adoption of application containers.
Achieving scalability by using VMs as isolation mechanism would otherwise be unfeasible,
due to the overhead introduced by the guest operating systems.

The implementation for our methodology, namely KubeNow, has been adopted by
PhenoMeNal: a live European collaboration in medical metabolomics. Various partners
in PhenoMeNal successfully deployed and leveraged KubeNow-based VREs on the major
public cloud providers as well as on national-scale OpenStack installations, including those
provided by EMBL-EBI (EMBL-EBI Cloud, 2019), de.NBI (de.NBI cloud, 2019), SNIC
(Toor et al., 2017), CSC (CSC cloud, 2019) and CityCloud (CityCloud, 2019). By referring
to use cases in PhenoMeNal, we have shown the ability of our methodology to scale
scientific data processing, both in terms of individual tool parallelization (‘Parallelization
of individual tools’) and complete analysis scaling (‘Full analysis scaling’). It is important
to point out that since the analyses are fully defined via workflow languages, the pipelines
are intrinsically well documented and, by using KubeNow and PhenoMeNal-provided
container images, any scientist can reproduce the results on any of the supported cloud
providers.

When comparing KubeNow with other available platforms provided by the IT industry,
such as Kubespray, it is important to point out that our methodology is conceived for
analytics, rather than for highly-available service hosting. This design choice reflects a use
case that we envision to become predominant in science. In fact, while the IT industry is
embracing application containers to build resilient services at scale, scientists are making
use of the technology to run reproducible and standardized analytics. When it comes to
long-running service hosting, long deployment time and complex installation procedures

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 18/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.232


are a reasonable price to pay, as they occur only initially. In contrast, we focus on a use case
where researchers need to allocate cloud resources as needed.Under these assumptions there
is a need for adopting simple, fast and scalable deployment procedures. KubeNow meets
these requirements by providing: (1) an uncomplicated user interaction (see ‘Enabling
scalable deployments’) and (2) fast and scalable deployments (see ‘Deployment automation
scalability’).

Microservices and application containers are increasingly gaining momentum in
scientific applications (Peters et al., 2018; D’Agostino et al., 2017; Wu et al., 2017; Williams
et al., 2016). When it comes to on-demand VREs the technology presents some important
advantages over current systems. Our methodology is based on publicly available
information by three research initiatives in substantially different scientific domains
(PhenoMeNal, EXTraS and SKA). It is important to point out that EXTraS and SKA
provide microservices-oriented VREs primarly as long running platforms, and they do not
cover on-demand instantiation, while ourmethodologymade this possible in PhenoMeNal.
The requirements in terms of VRE infrastructure are similar across domains, which allowed
us to design our methodology as generally applicable. Hence, we envision our work and
the presented benchmarks as valuable guidelines for communities of practice that need to
build on-demand VRE systems.

CONCLUSION
Here, we introduced a microservice-oriented methodology where scientific applications
run in a distributed orchestration platform as light-weight software containers, referred to
as on-demand VREs. Our methodology makes use of application containers to improve
isolation of VRE components, and it uses cloud computing to dynamically procure
infrastructure. The methodology builds on publicly available information by three research
initiatives, and it is generally applicable over multiple research domains. The applicability
of the methodology was tested through an open source implementation, showing good
scaling for data analysis in metabolomics and in terms of deployment speed. We envision
communities of practice to use our work as a guideline and blueprint to build on-demand
VREs.

ETHICAL APPROVAL AND INFORMED CONSENT
Human-derived samples in the datasets are consented for analysis, publication and
distribution, and they were processed according to the ELSI guidelines (Sariyar et al.,
2015). Ethics and consents are extensively explained in the referenced publications (Gao et
al., 2019; Herman et al., 2018; Ranninger et al., 2016).

ACKNOWLEDGEMENTS
We kindly acknowledge contributions to cloud resources by SNIC, EMBL-EBI, CityCloud,
CSC, AWS and Azure.

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 19/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.232


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was supported by The European Commission’s Horizon 2020 programme
under grant agreement number 654241 (PhenoMeNal) and the Nordic e-Infrastructure
Collaboration (NeIC) via the Glenna2 and Tryggve2 projects. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The European Commission’s Horizon 2020 programme: 654241.
Nordic e-Infrastructure Collaboration (NeIC).

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• MarcoCapuccini conceived anddesigned the experiments, analyzed the data, contributed
reagents/materials/analysis tools, prepared figures and/or tables, performed the
computation work, authored or reviewed drafts of the paper, approved the final draft.
• Anders Larsson conceived and designed the experiments, contributed reagents/materi-
als/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
• Matteo Carone performed the experiments, analyzed the data, prepared figures and/or
tables, performed the computation work, approved the final draft.
• Jon Ander Novella, Noureddin Sadawi and Jianliang Gao performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, performed the
computation work, approved the final draft.
• Salman Toor and Ola Spjuth conceived and designed the experiments, authored or
reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data in the study by Gao et al. is publicly available: Available at https://doi.org/10.
6084/m9.figshare.c.4204022. Detailed instructions for reporoducing the analysis can be
found at https://github.com/csmsoftware/phnmnl-scalability.

Novella et al. and Khoonsari et al. used public data from the Methabolights
repository, and in particular datasets: MTBLS558 and MTBLS233. Detailed instructions
for reporoducing the analyses can be found at https://github.com/pharmbio/LC-MS-
Pachyderm and at https://github.com/phnmnl/MTBLS233-Jupyter, respectively.

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 20/26

https://peerj.com
https://doi.org/10.6084/m9.figshare.c.4204022
https://doi.org/10.6084/m9.figshare.c.4204022
https://github.com/csmsoftware/phnmnl-scalability
https://github.com/pharmbio/LC-MS-Pachyderm
https://github.com/pharmbio/LC-MS-Pachyderm
https://github.com/phnmnl/MTBLS233-Jupyter
http://dx.doi.org/10.7717/peerj-cs.232


KubeNow is publicly available as open-source software: https://github.com/kubenow/
KubeNow Detailed instruction for deploying KubeNow and reproducing the experiments
in ‘Deployment automation scalability’ can be found at https://kubenow.readthedocs.io.

PhenoMeNal is publicly available as open-source software: https://github.com/phnmnl/
phenomenal-h2020/wiki.

REFERENCES
Amazon Elastic Container Service. 2019. Available at https://docs.aws.amazon.com/

AmazonECS/ latest/developerguide/ECS_instances.html (accessed on 16 May 2019).
Amazon Elastic File System. 2019. Available at https:// aws.amazon.com/efs (accessed on

16 May 2019).
Ansible. 2019. Available at https://www.ansible.com (accessed on 16 May 2019).
Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson

DA, Rabkin A, Stoica I, Zaharia M. 2009. Above the clouds: a berkeley view of cloud
computing. Technical report UCB/EECS-2009-28. EECS Department, University of
California, Berkeley.

AsayM. 2016.Why Kubernetes is winning the container war. Available at http://www.
infoworld.com/article/ 3118345/ cloud-computing/why-kubernetes-is-winning-the-
container-war.html (accessed on 16 May 2019).

Assante M, Candela L, Castelli D, Cirillo R, Coro G, Frosini L, Lelii L, Mangiacrapa F,
Marioli V, Pagano P, Panichi G, Perciante C, Sinibaldi F. 2019. The gCube system:
delivering virtual research environments as-a-service. Future Generation Computer
Systems 95:445–453 DOI 10.1016/j.future.2018.10.035.

Azure Container Instances. 2019. Available at https:// azure.microsoft.com/en-us/ services/
container-instances (accessed on 16 May 2019).

Azure NetApp Files. 2019. Available at https:// azure.microsoft.com/en-us/ services/
storage/netapp (accessed on 16 May 2019).

Baldini I, Castro P, Chang K, Cheng P, Fink S, Ishakian V, Mitchell N, Muthusamy
V, Rabbah R, Slominski A, Suter P. 2017. Serverless computing: current trends
and open problems. In: Research advances in cloud computing. Springer, 1–20
DOI 10.1007/978-981-10-5026-8_1.

Bayramusta M, Nasir VA. 2016. A fad or future of IT?: a comprehensive literature review
on the cloud computing research. International Journal of Information Management
36(4):635–644 DOI 10.1016/j.ijinfomgt.2016.04.006.

Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland
P, Jacobs Jr DR, Kronmal R, Liu K, Nelson JC, O’Leary D, SaadMF, Shea S, Szklo
M, Tracy RP. 2002.Multi-ethnic study of atherosclerosis: objectives and design.
American Journal of Epidemiology 156(9):871–881 DOI 10.1093/aje/kwf113.

Candela L, Castelli D, Pagano P. 2013. Virtual research environments: an overview and a
research agenda. Data Science Journal 12:GRDI75–GRDI81.

CityCloud. 2019. Available at http:// citycloud.com (accessed on 16 May 2019).
Cloud-init. 2019. Available at https:// cloud-init.io (accessed on 16 May 2019).

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 21/26

https://peerj.com
https://github.com/kubenow/KubeNow
https://github.com/kubenow/KubeNow
https://kubenow.readthedocs.io
https://github.com/phnmnl/phenomenal-h2020/wiki
https://github.com/phnmnl/phenomenal-h2020/wiki
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_instances.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_instances.html
https://aws.amazon.com/efs
https://www.ansible.com
http://www.infoworld.com/article/3118345/cloud-computing/why-kubernetes-is-winning-the-container-war.html
http://www.infoworld.com/article/3118345/cloud-computing/why-kubernetes-is-winning-the-container-war.html
http://www.infoworld.com/article/3118345/cloud-computing/why-kubernetes-is-winning-the-container-war.html
http://dx.doi.org/10.1016/j.future.2018.10.035
https://azure.microsoft.com/en-us/services/container-instances
https://azure.microsoft.com/en-us/services/container-instances
https://azure.microsoft.com/en-us/services/storage/netapp
https://azure.microsoft.com/en-us/services/storage/netapp
http://dx.doi.org/10.1007/978-981-10-5026-8_1
http://dx.doi.org/10.1016/j.ijinfomgt.2016.04.006
http://dx.doi.org/10.1093/aje/kwf113
http://citycloud.com
https://cloud-init.io
http://dx.doi.org/10.7717/peerj-cs.232


Cloudflare. 2019. Available at https://www.cloudflare.com (accessed on 16 May 2019).
Cloudfuse. 2019. Available at https:// github.com/redbo/ cloudfuse (accessed on 16 May

2019).
CSC cloud. 2019. Available at https:// research.csc.fi/ cloud-computing (accessed on 16 May

2019).
Cyvoct P. 2018.How to deploy an EFK stack to Kubernetes. Available at https:// blog.ptrk.

io/how-to-deploy-an-efk-stack-to-kubernetes (accessed on 23 August 2018).
D’Agostino D, Roverelli L, Zereik G, Luca AD, Salvaterra R, Belfiore A, Lisini G,

Novara G, Tiengo A. 2017. A microservice-based portal for X-ray transient and
variable sources. PeerJ PrePrints 5:e2519.

DahlöM, Scofield DG, SchaalW, Spjuth O. 2018. Tracking the NGS revolution:
managing life science research on shared high-performance computing clusters.
GigaScience 7(5):Article giy028.

de.NBI cloud. 2019. Available at https://www.denbi.de/ cloud (accessed on 16 May 2019).
Duhrkop K, Shen H, Meusel M, Rousu J, Bocker S. 2015. Searching molecular struc-

ture databases with tandem mass spectra using CSI:FingerID. Proceedings of the
National Academy of Sciences of the United States of America 112:12580–12585
DOI 10.1073/pnas.1509788112.

Elia IA, Antunes N, Laranjeiro N, Vieira M. 2017. An analysis of OpenStack vulnerabili-
ties. In: 2017 13th European Dependable Computing Conference (EDCC). 129–134.

Emami Khoonsari P, Moreno P, Bergmann S, Burman J, Capuccini M, CaroneM,
Cascante M, De Atauri P, Foguet C, Gonzalez-Beltran AN, Hankemeier T, Haug
K, He S, Herman S, Johnson D, Kale N, Larsson A, Neumann S, Peters K, Pireddu
L, Rocca-Serra P, Roger P, Rueedi R, Ruttkies C, Sadawi N, Salek RM, Sansone
S-A, Schober D, Selivanov V, Thévenot EA, Van Vliet M, Zanetti G, Steinbeck
C, Kultima K, Spjuth O. 2018. Interoperable and scalable data analysis with
microservices: applications in metabolomics. Bioinformatics 35(19):3752–3760
DOI 10.1093/bioinformatics/btz160.

EMBL-EBI Cloud. 2019. Available at http://www.embassycloud.org (accessed on 16 May
2019).

FeatureFinderMetabo. 2018. Available at https:// abibuilder.informatik.uni-tuebingen.de/
archive/openms/Documentation/RC/2.3.0/html/TOPP_FeatureFinderMetabo.html
(accessed on 06 April 2018).

Gao J, Sadawi N, Karaman I, Pearce J, Mereno P, Larsson A, Capuccini M, Elliott
P, Nicholson JK, Ebbels T, Glen RC. 2019.Metabolomics in the cloud: scaling
computational tools to big data. ArXiv preprint. arXiv:1904.02288.

GlusterFS. 2019. Available at https://www.gluster.org (accessed on 16 May 2019).
Goecks J, Nekrutenko A, Taylor J, Galaxy Team. 2010. Galaxy: a comprehen-

sive approach for supporting accessible, reproducible, and transparent com-
putational research in the life sciences. Genome Biology 11(8):Article R86
DOI 10.1186/gb-2010-11-8-r86.

Google Cloud Filestore. 2019. Available at https:// cloud.google.com/ filestore (accessed on
16 May 2019).

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 22/26

https://peerj.com
https://www.cloudflare.com
https://github.com/redbo/cloudfuse
https://research.csc.fi/cloud-computing
https://blog.ptrk.io/how-to-deploy-an-efk-stack-to-kubernetes
https://blog.ptrk.io/how-to-deploy-an-efk-stack-to-kubernetes
https://www.denbi.de/cloud
http://dx.doi.org/10.1073/pnas.1509788112
http://dx.doi.org/10.1093/bioinformatics/btz160
http://www.embassycloud.org
https://abibuilder.informatik.uni-tuebingen.de/archive/openms/Documentation/RC/2.3.0/html/TOPP_FeatureFinderMetabo.html
https://abibuilder.informatik.uni-tuebingen.de/archive/openms/Documentation/RC/2.3.0/html/TOPP_FeatureFinderMetabo.html
http://arXiv.org/abs/1904.02288
https://www.gluster.org
http://dx.doi.org/10.1186/gb-2010-11-8-r86
https://cloud.google.com/filestore
http://dx.doi.org/10.7717/peerj-cs.232


Google Cloud Run. 2019. Available at https:// cloud.google.com/ run (accessed on 16 May
2019).

Hao J, AstleW, De Iorio M, Ebbels TMD. 2012. BATMAN—an R package for
the automated quantification of metabolites from nuclear magnetic reso-
nance spectra using a Bayesian model. Bioinformatics 28(15):2088–2090
DOI 10.1093/bioinformatics/bts308.

Haug K, Salek R, Conesa Mingo P, Hastings J, Matos P, RijnbeekM,Mahendraker T,
WilliamsM, Neumann S, Rocca-Serra P, Maguire E, Gonzlez-Beltrán A, Sansone
S-A, Griffin J, Steinbeck C. 2012.MetaboLights—an open-access general-purpose
repository for metabolomics studies and associated meta-data. Nucleic Acids Research
41(D1):D781–D786.

Helm. 2019. Available at https:// github.com/kubernetes/helm (accessed on 16 May 2019).
Herman S, Khoonsari P, Tolf A, Steinmetz J, Zetterberg H, Akerfeldt T, Jakobsson

P-J, Larsson A, Spjuth O, Burman J, Kultima K. 2018. Integration of magnetic
resonance imaging and protein and metabolite CSF measurements to enable early
diagnosis of secondary progressive multiple sclerosis. Theranostics 8(16):4477–4490
DOI 10.7150/thno.26249.

Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz RH, Shenker S,
Stoica I. 2011.Mesos: a platform for fine-grained resource sharing in the data
center. In: NSDI, vol. 11. NSDI’11 Proceedings of the 8th USENIX conference on
Networked systems design and implementation, 22–22. Available at https://www.
usenix.org/ legacy/ events/nsdi11/ tech/ full_papers/Hindman.pdf .

Javed A, Heljanko K, Buda A, Främling K. 2018. CEFIoT: a fault-tolerant IoT architec-
ture for edge and cloud. In: 2018 IEEE 4th world forum on internet of things (WF-
IoT). IEEE, 813–818.

Jupyter. 2019. Available at https:// jupyter.org (accessed on 16 May 2019).
Karakoyunlu C, Kimpe D, Carns P, Harms K, Ross R,Ward L. 2013. Toward a unified

object storage foundation for scalable storage systems. In: Cluster computing
(CLUSTER), 2013 IEEE international conference on. IEEE, 1–8.

Karaman I, Ferreira DLS, Boulangé CL, Kaluarachchi MR, Herrington D, Dona
AC, Castagné R, Moayyeri A, Lehne B, LohM, De Vries PS, Dehghan A, Franco
OH, Hofman A, Evangelou E, Tzoulaki I, Elliott P, Lindon JC, Ebbels TMD.
2016.Workflow for integrated processing of multicohort untargeted 1H NMR
metabolomics data in large-scale metabolic epidemiology. Journal of Proteome
Research 15(12):4188–4194 DOI 10.1021/acs.jproteome.6b00125.

Khan A. 2017. Key characteristics of a container orchestration platform to enable a mod-
ern application. IEEE Cloud Computing 4(5):42–48 DOI 10.1109/MCC.2017.4250933.

KubeNowGitHub organization. 2019. Available at https:// github.com/kubenow
(accessed on 16 May 2019).

Kubespray. 2019. Available at https:// github.com/kubernetes-incubator/ kubespray
(accessed on 16 May 2019).

Kurtzer GM, Sochat V, Bauer MW. 2017. Singularity: scientific containers for mobility of
compute. PLOS ONE 12(5):e0177459 DOI 10.1371/journal.pone.0177459.

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 23/26

https://peerj.com
https://cloud.google.com/run
http://dx.doi.org/10.1093/bioinformatics/bts308
https://github.com/kubernetes/helm
http://dx.doi.org/10.7150/thno.26249
https://www.usenix.org/legacy/events/nsdi11/tech/full_papers/Hindman.pdf
https://www.usenix.org/legacy/events/nsdi11/tech/full_papers/Hindman.pdf
https://jupyter.org
http://dx.doi.org/10.1021/acs.jproteome.6b00125
http://dx.doi.org/10.1109/MCC.2017.4250933
https://github.com/kubenow
https://github.com/kubernetes-incubator/kubespray
http://dx.doi.org/10.1371/journal.pone.0177459
http://dx.doi.org/10.7717/peerj-cs.232


Lampa S, DahlöM, Olason PI, Hagberg J, Spjuth O. 2013. Lessons learned from
implementing a national infrastructure in Sweden for storage and analysis
of next-generation sequencing data. Gigascience 2(1):Article 2047-217X-2-9
DOI 10.1186/2047-217X-2-9.

Laure E, Edlund Å. 2012. The e-infrastructure ecosystem: providing local support to
global science. Large-Scale Computing Techniques for Complex System Simulations
80:19–34.

Luigi. 2018. Available at https:// github.com/ spotify/ luigi (accessed on 07 January 2018).
Manousis A, Ragsdale R, Draffin B, Agrawal A, Sekar V. 2016. Shedding light on the

adoption of Let’s Encrypt. ArXiv preprint. arXiv:1611.00469.
Manu AR, Patel JK, Akhtar S, Agrawal VK, Murthy KNBS. 2016. A study, analysis and

deep dive on cloud PaaS security in terms of Docker container security. In: 2016
international conference on circuit, power and computing technologies (ICCPCT). 1–13.

Marathon. 2018. Available at https://mesosphere.github.io/marathon (accessed on 06
April 2018).

Naik N. 2016. Building a virtual system of systems using Docker Swarm in multiple
clouds. In: Systems Engineering (ISSE), 2016 IEEE International Symposium on.
Piscataway: IEEE, 1–3.

Neal F. 2018. The state of microservices maturity. O’Reilly Media, Inc.
Netto HV, Lung LC, Correia M, Luiz AF, De Souza LMS. 2017. State machine replication

in containers managed by Kubernetes. Journal of Systems Architecture 73:53–59
DOI 10.1016/j.sysarc.2016.12.007.

NIP.IO. 2019. Available at http://nip.io (accessed on 16 May 2019).
Novella JA, Emami Khoonsari P, Herman S,Whitenack D, Capuccini M, Burman

J, Kultima K, Spjuth O. 2018. Container-based bioinformatics with Pachyderm.
Bioinformatics 35(5):839–846.

Open Container Initiative. 2016. The 5 principles of standard containers. Available at
https:// github.com/opencontainers/ runtime-spec/blob/master/principles.md (accessed
on 16 May 2019).

OpenStackManila. 2019. Available at https://wiki.openstack.org/wiki/Manila (accessed
on 16 May 2019).

OpenStack Zun. 2019. Available at https://docs.openstack.org/ zun (accessed on 16 May
2019).

Pachyderm. 2019. Available at https:// pachyderm.io (accessed on 16 May 2019).
Packer. 2019. Available at https://www.packer.io (accessed on 16 May 2019).
Pathan A-MK, Buyya R. 2007. A taxonomy and survey of content delivery networks.

Technical Report, 4. Grid Computing and Distributed Systems Laboratory, Univer-
sity of Melbourne.

Peters K, Bradbury J, Bergmann S, Capuccini M, Cascante M, De Atauri P, Ebbels
TMD, Foguet C, Glen R, Gonzalez-Beltran A, Günther UL, Handakas E, Hanke-
meier T, Haug K, Herman S, Holub P, IzzoM, Jacob D, Johnson D, Jourdan F,
Kale N, Karaman I, Khalili B, EmamiKhonsari P, Kultima K, Lampa S, Larsson
A, Ludwig C, Moreno P, Neumann S, Novella JA, O’Donovan C, Pearce JTM,

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 24/26

https://peerj.com
http://dx.doi.org/10.1186/2047-217X-2-9
https://github.com/spotify/luigi
http://arXiv.org/abs/1611.00469
https://mesosphere.github.io/marathon
http://dx.doi.org/10.1016/j.sysarc.2016.12.007
http://nip.io
https://github.com/opencontainers/runtime-spec/blob/master/principles.md
https://wiki.openstack.org/wiki/Manila
https://docs.openstack.org/zun
https://pachyderm.io
https://www.packer.io
http://dx.doi.org/10.7717/peerj-cs.232


Peluso A, Piras ME, Pireddu L, ReedMAC, Rocca-Serra P, Roger P, Rosato A,
Rueedi R, Ruttkies C, Sadawi N, Salek RM, Sansone S-A, Selivanov V, Spjuth O,
Schober D, Thévenot EA, Tomasoni M, VanRijswijk M, VanVliet M, Viant MR,
Weber RJM, Zanetti G, Steinbeck C. 2018. PhenoMeNal: processing and analysis of
metabolomics data in the cloud. GigaScience 8(2):Article giy149.

Ranninger C, Schmidt LE, Rurik M, Limonciel A, Jennings P, Kohlbacher O, Huber
CG. 2016. Improving global feature detectabilities through scan range splitting for
untargeted metabolomics by high-performance liquid chromatography-Orbitrap
mass spectrometry. Analytica Chimica Acta 930:13–22 DOI 10.1016/j.aca.2016.05.017.

Roth B, Hecht R, Volz B, Jablonski S. 2011. Towards a generic cloud-based virtual
research environment. In: Computer software and applications conference workshops
(COMPSACW), 2011 IEEE 35th annual. Piscataway: IEEE, 267–272.

Sariyar M, Schluender I, Smee C, Suhr S. 2015. Sharing and reuse of sensitive data
and samples: supporting researchers in identifying ethical and legal requirements.
Biopreservation and Biobanking 13(4):263–270 DOI 10.1089/bio.2015.0014.

Shimel A. 2016. Docker becomes de facto Linux standard. Available at http://www.
networkworld.com/article/ 2226751/opensource-subnet/docker-becomes-de-facto-
linux-standard.html (accessed on 16 May 2019).

Terraform. 2019. Available at https:// terraform.io (accessed on 16 May 2019).
Traefik. 2019. Available at https:// traefik.io (accessed on 16 May 2019).
Travis CI. 2019. Available at https:// travis-ci.org (accessed on 16 May 2019).
Thönes J. 2015.Microservices. IEEE Software 32(1):116–116.
Toor S, LindbergM, Falman I, Vallin A, Mohill O, Freyhult P, Nilsson L, AgbackM,

Viklund L, Zazzik H, Spjuth O, Capuccini M, Möller J, Murtagh D, Hellander A.
2017. SNIC science cloud (SSC): a national-scale cloud infrastructure for Swedish
Academia. In: 2017 IEEE 13th international conference on e-science (e-Science).
Piscataway: IEEE, 219–227.

Vaughan-Nichols SJ. 2016. Containers vs. virtual machines: how to tell which is the
right choice for your enterprise. Available at https://www.networkworld.com/article/
3068392/ cloud-storage/ containers-vs-virtual-machines-how-to-tell-which-is-the-
right-choice-for-your-enterprise.html (accessed on 29 June 2018).

Vayghan LA, SaiedMA, ToeroeM, Khendek F. 2018. Deploying microservice based
applications with Kubernetes: experiments and lessons learned. In: 2018 IEEE 11th
international conference on cloud computing (CLOUD). IEEE, 970–973.

Vixie P, Thomson S, Rekhter Y, Bound J. 1997. Dynamic updates in the domain name
system (DNS UPDATE). Technical report, RFC 2136.

Weerasiri D, BarukhMC, Benatallah B, Sheng QZ, Ranjan R. 2017. A taxonomy and
survey of cloud resource orchestration techniques. ACM Computing Surveys (CSUR)
50(2):Article 26.

Williams CL, Sica JC, Killen RT, Balis UG. 2016. The growing need for microservices in
bioinformatics. Journal of Pathology Informatics 7:Article 45
DOI 10.4103/2153-3539.194835.

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 25/26

https://peerj.com
http://dx.doi.org/10.1016/j.aca.2016.05.017
http://dx.doi.org/10.1089/bio.2015.0014
http://www.networkworld.com/article/2226751/opensource-subnet/docker-becomes-de-facto-linux-standard.html
http://www.networkworld.com/article/2226751/opensource-subnet/docker-becomes-de-facto-linux-standard.html
http://www.networkworld.com/article/2226751/opensource-subnet/docker-becomes-de-facto-linux-standard.html
https://terraform.io
https://traefik.io
https://travis-ci.org
https://www.networkworld.com/article/3068392/cloud-storage/containers-vs-virtual-machines-how-to-tell-which-is-the-right-choice-for-your-enterprise.html
https://www.networkworld.com/article/3068392/cloud-storage/containers-vs-virtual-machines-how-to-tell-which-is-the-right-choice-for-your-enterprise.html
https://www.networkworld.com/article/3068392/cloud-storage/containers-vs-virtual-machines-how-to-tell-which-is-the-right-choice-for-your-enterprise.html
http://dx.doi.org/10.4103/2153-3539.194835
http://dx.doi.org/10.7717/peerj-cs.232


WuC, Tobar R, Vinsen K,Wicenec A, Pallot D, Lao B,Wang R, An T, BoultonM,
Cooper I, Dodson R, DolenskyM,Mei Y,Wang F. 2017. DALiuGE: a graph
execution framework for harnessing the astronomical data deluge. Astronomy and
Computing 20:1–15 DOI 10.1016/j.ascom.2017.03.007.

Zhao D, MohamedM, Ludwig H. 2018. Locality-aware scheduling for containers in
cloud computing. IEEE Transactions on Cloud Computing Epub ahead of print Jan
16 2018 DOI 10.1109/TCC.2018.2794344.

Capuccini et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.232 26/26

https://peerj.com
http://dx.doi.org/10.1016/j.ascom.2017.03.007
http://dx.doi.org/10.1109/TCC.2018.2794344
http://dx.doi.org/10.7717/peerj-cs.232

