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ABSTRACT
Especially if artificial intelligence (AI)-supported decisions affect the society, the
fairness of such AI-based methodologies constitutes an important area of research. In
this contribution, we investigate the applications of AI to the socioeconomically
relevant infrastructure of water distribution systems (WDSs). We propose an
appropriate definition of protected groups in WDSs and generalized definitions of
group fairness, applicable even to multiple non-binary sensitive features, that
provably coincide with existing definitions for a single binary sensitive feature. We
demonstrate that typical methods for the detection of leakages in WDSs are unfair in
this sense. Further, we thus propose a general fairness-enhancing framework as an
extension of the specific leakage detection pipeline, but also for an arbitrary learning
scheme, to increase the fairness of the AI-based algorithm. Finally, we evaluate and
compare several specific instantiations of this framework on a toy and on a realistic
WDS to show their utility.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Spatial and Geographic Information Systems, Neural Networks
Keywords Fairness,Machine learning, Fairmachine learning, Disparate impact, Equal opportunity,
Leakage detection, Water distribution systems

INTRODUCTION
Due to the increasing usage of artificial intelligence (AI)-based decision making systems in
socially relevant fields of application, the question of fair decision making gained much
importance in recent years (cf. Angwin et al., 2016; European Union, 2019). Fairness is
hereby related to the several (protected) groups or individuals, which are affected by the
algorithmic decision making and characterized by sensitive features such as gender or
ethnicity. Most algorithms on which these tools are based rely on data which can be biased
with respect to questions of fairness without intention, resulting in skewed models. Also,
the algorithm itself can discriminate against protected groups or individuals without
explicitly aiming to do so due to an undesirable algorithmic bias (cf. Mehrabi et al., 2021;
Pessach & Shmueli, 2022). This gives rise to the question of how to define fairness and how
to mitigate unfairness in case it occurs in the context of machine learning (ML), i.e., in the
context of data-driven algorithms.
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Background: Fairness definitions Several definitions of fairness as well as approaches
to achieve these fairness standards have been theoretically discussed and tested in practice
(cf. Barocas, Hardt & Narayanan, 2019; Castelnovo et al., 2022;Dwork et al., 2012;Mehrabi
et al., 2021; Pessach & Shmueli, 2022). From a legal perspective, one distinguishes between
disparate treatment and disparate impact (DI) (cf. Barocas, Hardt & Narayanan, 2019).
While disparate treatment occurs whenever a group or an individual is intentionally
treated differently because of their membership in a protected group, disparate impact is a
consequence of indirect discrimination happening despite “seemingly neutral policy” (cf.
Pessach & Shmueli, 2022).

From a scientific viewpoint, the variety of fairness notions is much larger where many
popular approaches focus mainly on (binary) classification tasks (cf. Castelnovo et al.,
2022;Mehrabi et al., 2021; Pessach & Shmueli, 2022). Different definitions can be grouped
into the concepts of group fairness, individual fairness, causal fairness and dynamic
fairness: Group fairness aims at treating different groups equally while individual fairness
aims at treating similar individuals similarly. Causal fairness examines the extent to which
the sensitive feature, such as gender or ethnicity, influences the prediction of a model and
dynamic fairness examines the long-term effects of (supposedly) fair decisions (cf.
Strotherm et al., 2023).

The fairness notions that we will discuss in this work belong to the former concept of
group fairness. Here, most works focus on fairness definitions with respect to a single
binary sensitive feature that splits the underlying population into a discriminated and a
privileged group (cf. Feldman et al., 2015; Hardt, Price & Srebro, 2016; Kamiran & Calders,
2009, 2010; Mehrabi et al., 2021; Pessach & Shmueli, 2022; Ruf & Detyniecki, 2021; Zafar
et al., 2017a, 2017b). There is some work on fairness definitions based on the independence
assumption of the model’s prediction and a single non-binary sensitive feature; however,
there is no rigorous theory on how this assumption translates to generalized fairness
notions as necessary and sufficient conditions of this independence assumption and their
relation to the binary case (cf. Agarwal et al., 2018; Castelnovo et al., 2022). We will build
on this point.

Background: Fairness methods Besides the definition of fairness, the problem arises as
to how to enhance fairness in well-known ML methods while maintaining a reasonable
overall performance of the model. Approaches can hereby be grouped into three
categories: Depending on when in the training pipeline the model is enhanced with respect
to fairness, we speak about pre-, in- or post-processing techniques (cf. Barocas, Hardt &
Narayanan, 2019; Mehrabi et al., 2021; Pessach & Shmueli, 2022).

Pre-processing methods usually modify the training data which is fed to the training
algorithm. For example, Kamiran & Calders (2010) use a resampling technique by
removing unpreferred samples, i.e., positive outcomes in the privileged group and
negative outcomes in the discriminated group, and duplicating preferred samples, i.e.,
positive outcomes in the discriminated group and negative outcomes in the privileged
group, that lie close to the decision boundary of a binary classifier. In another work,
they modify the training data by changing the labels of training samples that lie close to
the decision boundary of a binary classifier such that negative outcomes in the
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privileged group and positive outcomes in the discriminated group appear more often
(cf. Kamiran & Calders, 2009). While these methods aim at putting more emphasis on the
discriminated group and less emphasis on the privileged group, Feldman et al. (2015)
modify the non-sensitive features of training samples such that it is not able to predict the
sensitive feature from the non-sensitives. This reduces the chance that the model’s
predictions, which are based on the non-sensitive features, are correlated with the sensitive
feature.

In contrast, post-processing methods modify the model after the training. For example,
Pleiss et al. (2017) modify a pre-trained model by randomly changing some outputs of a
binary classifier on the group on which the classifier performs better to ensure equal
performance over all groups. As another example, Hardt, Price & Srebro (2016) retrain a
pre-trained model by optimizing a loss between the new and the pre-trained binary
classifier while satisfying fairness-constraints. Another simple approach is to use group-
specific thresholds for a threshold-based classifier (cf. Corbett-Davies et al., 2017).

Finally, in-process methods modify the (original) training algorithm. A common way to
do so is by adding fairness-constraints (cf. Agarwal et al., 2018; Agarwal, Dudík & Wu,
2019; Calders et al., 2013; Komiyama et al., 2018; Narasimhan et al., 2020; Zafar et al.,
2017a, 2017b) or a fairness-regularization-term (cf. Aghaei, Azizi & Vayanos, 2019; Berk
et al., 2017; Pessach & Shmueli, 2022) to the loss function that is to be optimized. Next to
classification, also regression tasks usually fall into this category (cf. Agarwal, Dudík &Wu,
2019; Aghaei, Azizi & Vayanos, 2019; Berk et al., 2017; Calders et al., 2013; Komiyama
et al., 2018; Narasimhan et al., 2020). The methods presented in this work are also in-
process methods and are extensions of our work, Strotherm & Hammer (2023), published
in Springer’s Lecture Notes in Computer Science. Both of these works are based on the
methods of Zafar et al. (2017b), but adapted to more generalized settings, as we will
elaborate in the contributions paragraph.

Background: Fairness in water distribution systems (WDSs) The question of fairness
becomes especially relevant when the decisions of an ML model impact socioeconomic
infrastructure, such as WDSs. To the best of our knowledge, our previous work, Strotherm
& Hammer (2023), has been the first approach to introduce fairness within this domain. In
that work, Strotherm & Hammer (2023), we address the important problem of leakage
detection in WDSs and investigate how far typical models treat different groups of
consumers of the WDS (in)equally, and we will extend these considerations in this work as
outlined in the next paragraph. As an extended version, portions of this work were
previously published as part of the previous version (cf. Strotherm & Hammer, 2023).

Contributions Our approaches to improve group fairness in such a domain of high
social and ethical relevance are based on the idea of considering the locality in the WDS as
a sensitive feature. Considering the empirical covariance between the sensitive feature(s)
and the model’s prediction as a proxy for the fairness measure, similar to Zafar et al.
(2017b), but also the generalized fairness notions directly, are the base of all our proposed
methods. The advantage of our fairness-enhancing algorithms is that they can handle even
multiple non-binary sensitive features and satisfy both the concept of disparate treatment
and disparate impact simultaneously, which is an asset towards most fairness-enhancing
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algorithms (cf. Pessach & Shmueli, 2022; Zafar et al., 2017b). In more detail, our
contributions—also in view of what this extension offers compared to our previous work,
Strotherm & Hammer (2023)—are as follows:

. We propose group fairness definitions even for multiple non-binary sensitive features,
which are generalizations of well-known corresponding fairness notions in the common
setting of a binary classifier and a single binary sensitive feature.

. As an extension to our previous work, we provide details on the mathematical
concept of independence, derive easy-to-test independence criteria, and leverage
these in order to derive those generalized group fairness definitions. Moreover, we
prove that those coincide with the aforementioned well-known corresponding
fairness notions.

. We introduce a common leakage detection pipeline and propose a suitable definition of
sensitive features and group fairness in the context of leakage detection in WDSs, with
more detail in this work compared to our previous work. Consecutively, we present
specific and already existing instantiations of this pipeline and show that common
leakage detection methods do not obey these fairness criteria, with one more specific
instantiation (based on the more powerful graph convolutional network (GCN) based
virtual sensors instead of linear regression based virtual sensors) and with more detail in
this work compared to our previous work.

. We introduce a fairness-enhancing leakage detection framework as an extension of the
common leakage detection pipeline, with more detail in this work compared to our
previous work. Consecutively, we present specific instantiations of this framework,
among others by modifying the ideas of Zafar et al. (2017b) to any (ensemble)
classification model instead of a convex margin-based binary classifier, to propose
several fairness-enhancing methods, with more specific instantiations, among others
based on the ideas in our previous work made on possible modifications of our
methodologies.

. We provide an empirical evaluation of our proposed methods. As an extension to our
previous work, next to the application of these methods to the toy WDS Hanoi, we
investigate the application to the more complex and realistic WDS L-Town.

Structure of the work The rest of this work is structured as follows: In section “Group
fairness in machine learning”, we introduce definitions of group fairness for multiple non-
binary sensitive features, giving the mathematical background for the derivation of such
generalized definitions and how they are connected to already existing definitions.
Afterwards, in section “Leakage detection in water distribution systems”, we present a
standard methodology to detect leakages in WDSs, introduce the meaning of sensitive
features in this context and investigate whether the resulting model makes fair decisions
with respect to the previously defined notions of fairness. Consecutively, in section
“Fairness-enhancing leakage detection in water distribution networks”, we propose and
evaluate several adaptations of this methodology that enhance fairness and provide
empirical evidence for our theoretical findings regarding the equivalence of different
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fairness notions in this specific domain of application. Finally, our findings are
summarized and discussed in section “Conclusion”.

GROUP FAIRNESS IN MACHINE LEARNING
On an abstract level, the concept of group fairness is based on the mathematical concept of
(conditional) independence of two random variables (cf. Barocas, Hardt & Narayanan,
2019; Castelnovo et al., 2022). Therefore, in this section, we will first investigate this
concept of independence in general (subsection “Independence of two random variables”).
Consecutively, we will introduce the mathematical notation required to define an ML task
and its group fairness based on this general concept of independence (subsection
“Mathematical notation for machine learning”) to be able to derive group fairness
definitions in generalized ML tasks, which coincide with well-known definitions in more
specific settings (subsection “Generalized notions of group fairness in machine learning”).

Independence of two random variables
As it is the main mathematical concept to characterize different notions of group fairness,
for the sake of convenience, we recapitulate the concept of independence of two random
variables in this subsection. Moreover, we target an easy, necessary and sufficient condition
for this concept, which is particularly simple to apply and test in the context of fairness of
ML models. Hence, we derive an equivalent formulation, lemma 2.2, which can be tested
on canonical subsets of the full r-fields.

For the rest of this subsection, let ð�;F ;PÞ be a probability space, ðX ;FXÞ, ðY;FYÞ
measurable spaces and X : � ! X , Y : � ! Y random variables1.
Definition 2.1 (Independence of two random variables (cf. Bauer, 1996)). X and Y are
independent with respect to the probability measure P, if the r-fields2

rðXÞ :¼ fX�1ðAÞ j A 2 FXg � F and rðYÞ :¼ fY�1ðBÞ j B 2 FYg � F generated by
these random variables are independent with respect to P.

Based on that, in Appendix A.2, we derive general necessary and sufficient conditions
for independence of two random variables. In the context of fairness of ML models, we are
usually interested in a more specific setting, namely the independence of two discrete
random variables.
Lemma 2.2 (Independence of two discrete random variables). Assume that X and Y are
discrete, i.e., that X ¼ fx1;…; xKxg and Y ¼ fy1;…; yKyg holds. Then X and Y are
independent with respect to P if and only if (iff)

PðX ¼ x j Y ¼ yk1Þ ¼ PðX ¼ x j Y ¼ yk2Þ (2.1)

holds for all x 2 X and yk1 ; yk2 2 Y for which PðY ¼ yk1Þ;PðY ¼ yk2Þ > 0 holds.
Proof. EX ¼ fØ; fx1g;…; fxKxgg and EY ¼ fØ; fy1g;…; fyKygg are \-stable

generators of the r-fields FX ¼ PðXÞ ¼ rðEXÞ and FY ¼ PðYÞ ¼ rðEYÞ, respectively.
Therefore, by remark A.9 and lemma A.12 (we can replace the r-fields FX and FY in
lemma A.12 by their generators EX and EY , respectively), X and Y are independent iff

PðX 2 fxg j Y 2 fyk1gÞ ¼ PðX 2 fxg j Y 2 fyk2gÞ

1 The statements in this subsection do not
only hold for random variables (i.e.,
X � R, Y � R), but also for random
vectors (i.e., X � R

dx ;Y � R
dy ) and

even for random elements (i.e., X and Y
are arbitrary sets). We just use the term
random variable as this is the more
familiar term.

2 Of course, it requires a proof to show that
these set systems are r-fields. We give
more information on this topic in
Appendix A.1 and especially, lemma A.4.

Strotherm et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2317 5/41

http://dx.doi.org/10.7717/peerj-cs.2317/supp-1
http://dx.doi.org/10.7717/peerj-cs.2317/supp-1
http://dx.doi.org/10.7717/peerj-cs.2317
https://peerj.com/computer-science/


holds for all x 2 X ¼ fx1;…; xKxg and all yk1 ; yk2 2 Y ¼ fy1;…; yKyg for which
PðY 2 fyk1gÞ;PðY 2 fyk2gÞ > 0 holds. Note that we can omit the cases X 2 Ø and Y 2 Ø,
as these are trivially fulfilled.

Lemma 2.2 guarantees independence of two discrete random variables by only testing
one-elementary events. As the r-fieldsFX ¼ PðXÞ andFY ¼ PðYÞ, given by all subsets of
X and Y, respectively, consist of many more non-trivial events, lemma 2.2 gives us a
valuable necessary and sufficient condition for independence of two discrete random
variables, which we will make use of in the setting of ML.

Mathematical notation for machine learning
Our next goal is the mathematical definition of group fairness as a formalization of equal
treatment of an ML model independent of sensitive attributes. Such attributes, also called
sensitive features, provide information about the membership or non-membership of a
protected group, such as gender or ethnicity, to which the model should not exhibit any
prejudice (cf.Mehrabi et al., 2021; Pessach & Shmueli, 2022). A later goal of this work will
be to find a reasonable meaning of sensitive information in the context of WDS.

To formalize this independence and derive easy-to-test notions of group fairness based
on the previous subsection “Independence of two random variables” in the next subsection
“Generalized notions of group fairness in machine learning”, we need to introduce
mathematical notation that allows us to consider independence of two random variables in
the context of ML. In such context, probabilities such as in subsection “Independence of
two random variables” appear for random variables such as the model’s output

Ŷ : � ! Y, the labels Y : � ! Y, the features X : � ! X or, in case of fair ML, the
sensitive features S : � ! S with target space Y, feature space X and sensitive feature
space S.

In this work, we will consider a one-dimensional binary classification task and a single
discrete but possibly non-binary sensitive feature3, i.e., the target space equals
Y ¼ f0; 1g � N0 and the (finite) sensitive feature space equals S ¼ fs1;…; sKg � N0.
Equipping each with the power set makes them a measurable space.
Example 2.3 (Getting an intuition on fair ML). The domain� could consist of criminals in
the US and the model Ŷ could predict whether (ŶðxÞ ¼ 1) or whether not (ŶðxÞ ¼ 0) a
criminalx 2 � will be criminal again in the future. This prediction should be independent
of their ethnicity SðxÞ 2 N0 (cf. Angwin et al., 2016).

The typical goal of ML is to learn the relation between the features X and the labels Y,
i.e., either the distribution PðX;YÞ�1 ¼ PððX;YÞ 2 �Þ of ðX;YÞ (generative ML) or more
often, the distributionPðY 2 � j X ¼ xÞ of Y, given X, (discriminative ML) for any x 2 X .4

However, as these distributions are usually unknown, we use training data, i.e., samples5

D ¼ fðxi; yiÞ 2 X � Y j i ¼ 1;…; ng ¼ fðX;YÞðxiÞ 2 X � Y j i ¼ 1;…; ng
to estimate PX�1 by bPX�1 :¼ 1

n

Pn
i¼1 dxi , etc. When it comes to fairness, we extend the

training data by the sensitive attribute:

D ¼ fðxi; si; yiÞ 2 X � S � Y j i ¼ 1;…; ng:

3 Generalizations to multi-dimensional
non-binary classification or regression
tasks and multiple non-binary or con-
tinuous sensitive features are possible.
While we will not go into detail regarding
continuous labels or sensitive features,
we will provide information on general-
izability for the other cases.

4 An arbitrary random variable
X : � ! X as given in subsection
“Independence of two random variables”
induces a measure PX�1 on FX by
PX�1ðAÞ :¼ PðX 2 AÞ for all A 2 FX .

5 Samples or statistical units can be both
the elements x 2 � from the population
space as well as the realisations
ðx; yÞ ¼ ðX;YÞðxÞ 2 X � Y of the ran-
dom vector ðX;YÞ.
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Next to these distributions, often, a functional relation between the features X and the
labels Y is the object of interest. This is done by learning the overall model Ŷ , composed of
a learnable model (or model function) f : X ! Y, applied to the features X : � ! X . In
such a case, we consider a hypothesis spaceH ¼ ff : X ! Y j f 2 Hg, i.e., a (sub-) space
of functions mapping from the feature space X to the target space Y. Consecutively, we
want to learn the relation between X and Y by finding the optimal function f 2 H, such
that Ŷ :¼ f ðXÞ � Y holds. In most cases, the hypothesis space is a set of functions

H ¼ ff� : X ! Y; x 7!f�ðxÞ j � 2 R
dpg parameterized by a parameter � 2 R

dp .
Finally, learning the functional relation between the features X and the labels Y by

learning the optimal model Ŷ � Y is done by comparing the results ŷi ¼ f�ðxiÞ of the
model Ŷ ¼ f�ðXÞ to the desirable results yi for all i ¼ 1;…; n from the training data D.
The comparisons are done by using a suitable loss function which is applied to these
magnitudes and optimized with respect to the parameter(s) that characterize(s) f�.
Remark 2.4. Note that often, in ML-related literature, the introduction of � is omitted.
Instead, random variables X on X , Y on Y, etc., are introduced. We introduce � to
guarantee a well-defined usage of probabilities such as PðX ¼ xÞ for some x 2 X , etc.

Generalized notions of group fairness in machine learning
Motivation

Reflecting that there is no unique definition of fairness in real life, there is an enormous
amount of different definitions of fairness in ML. While focusing on group fairness, even
this category can be further grouped into three subcategories: Independence6, separation
and sufficiency. In this context, group fairness can be characterized by some independence
connected to the (binary) classification model Ŷ : � ! Y, the true label Y : � ! Y, and
the sensitive feature S : � ! S. Barocas, Hardt & Narayanan (2019) define these concepts
as follows: Independence requires (mathematical) independence between the model’s
prediction Ŷ and the sensitive feature S. Separation requires independence between the
model’s prediction Ŷ and the sensitive feature S, conditioned on events based on the label
Y. Sufficiency requires independence between the label Y and the sensitive feature S,
conditioned on events based on the model’s prediction Ŷ . In this work, we will focus on the
usually harder to achieve concepts of independence and separation.

However, there are also other definitions that fall under the broad umbrella of group
fairness, but which can also be sorted in one of these subcategories (cf. Ruf & Detyniecki,
2021). They are usually defined for a one-dimensional binary classification task and for a
single binary sensitive feature only, i.e., in settings where Y ¼ S ¼ f0; 1g holds (cf.
Mehrabi et al., 2021; Pessach & Shmueli, 2022; Ruf & Detyniecki, 2021). For example, one
well-known fairness definition is called disparate impact. In most literature, it is assumed
that fY ¼ 1g is the class of interest and fS ¼ 0g is the discriminated group, and therefore,

PðŶ ¼ 1 j S ¼ 0Þ < PðŶ ¼ 1 j S ¼ 1Þ holds. In this case, the disparate impact score is
defined as the proportion of the passing rate of the discriminated group from the privileged
group

6 Mind the difference between the mathe-
matical concept of independence and the
fairness concept of independence. It is
usually clear from the context what of
both concepts is meant.
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DI :¼ PðŶ ¼ 1 j S ¼ 0Þ
PðŶ ¼ 1 j S ¼ 1Þ (2.2)

and should satisfy DI � 1� � or DI � p
100 for some � 2 ½0; 1� or p 2 ½0; 100� (cf. Pessach &

Shmueli, 2022). The latter rule is also known as the p%-rule, and p ¼ 80 (or � ¼ 0:2Þ is a
desirable choice (cf. Pessach & Shmueli, 2022; Zafar et al., 2017b). At the same time, the
80%-rule is also a popular legal term and the reason that the disparate impact score
received its importance: It is “designed to mathematically represent the legal notion of
disparate impact” (cf. Pessach & Shmueli, 2022), which requires to avoid that “one group’s
passing rate is less than 80% of the group with the highest rate” (cf. Biddle, 2006).

The goal of the rest of this subsection is on the one hand to connect these different
group fairness notions and on the other hand to introduce generalized notions for more
general settings. More precisely, our contribution to this existing research is as follows:

. Starting from the definitions of Barocas, Hardt & Narayanan (2019) for independence
(subsection “Independence”) and separation (subsection “Separation”) each, we will
make use of the particularly easy necessary and sufficient condition for the independence
of two random variables (lemma 2.2), which we derived in subsection “Independence of
two random variables” to derive easy-to-test and generalized notions of group fairness in
the context of subsection “Mathematical notation for machine learning”. In detail, these
notions are applicable for more general settings, i.e., not only for a one-dimensional
binary classification task and a single binary sensitive feature, which is the setting on
which the majority of the literature focuses (cf. Feldman et al., 2015; Hardt, Price &
Srebro, 2016; Kamiran & Calders, 2009; Kamiran & Calders, 2010; Mehrabi et al., 2021;
Pessach & Shmueli, 2022; Ruf & Detyniecki, 2021; Zafar et al., 2017a, 2017b).

. Based on these notions, we will derive generalized empirical notions of the most
common group fairness definitions…

. … and prove that these coincide with the corresponding definitions in the setting of a
one-dimensional binary classification task and a single binary sensitive feature.

While the generalized empirical group fairness definitions will appear to be intrinsic
compared to already existing definitions, our theoretical work in subsection
“Independence of two random variables” shows that these generalizations display not only
a necessary but a sufficient condition for the desired independence criterion on which they
are based. As a summary, an overview of already existing definitions and how we extend
these is displayed in Tables 1 and 2 (subsection “Summary of generalized notions of group
fairness”).

For technical reasons, we assume that all of the following conditional probabilities exist.

Independence
An easy-to-test notion of group fairness
Definition 2.5 (Fairness according to the independence criterion (cf. Barocas, Hardt &
Narayanan, 2019)).
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The classification model Ŷ is fair with respect to the sensitive feature S in the sense of the
independence criterion if and only if (iff) Ŷ and S are mathematically independent with
respect to P.

Based on this definition of Barocas, Hardt & Narayanan (2019), lemma 2.2 induces the
following easy-to-test independence criterion in the context of fair ML:
Corollary 2.6 (Fairness according to the independence criterion).

The classification model Ŷ is fair with respect to the sensitive feature S in the sense of the
independence criterion iff

PðŶ ¼ y j S ¼ sk1Þ ¼ PðŶ ¼ y j S ¼ sk2Þ

holds for all y 2 Y ¼ f0; 1g � N0 and all sk1 ; sk2 2 S ¼ fs1;…; sKg � N0.

Table 1 Overview of exact fairness definitions. Overview of our exact derived necessary, sufficient and
easy-to-test fairness conditions (corollary 2.6 and 2.13) based on the corresponding definitions of
Barocas, Hardt & Narayanan (2019) (definition 2.5 and 2.12).

Definition according to Barocas et al. Derived necessary and sufficient condition

Independence Ŷ?? S PðŶ ¼ y j S ¼ sk1Þ
=

PðŶ ¼ y j S ¼ sk2Þ
8y 2 Y; sk1 ; sk2 2 S

Separation Ŷ?? S j Y PðŶ ¼ ŷ j S ¼ sk1 ;Y ¼ yÞ
=

PðŶ ¼ ŷ j S ¼ sk2 ;Y ¼ yÞ
8y; ŷ 2 Y; sk1 ; sk2 2 S

Table 2 Overview of empirical fairness definitions. Comparison of our generalized empirical fairness definitions (definition 2.7, 2.8, 2.14 and 2.15)
and the corresponding existing definitions (e.g., Pessach & Shmueli, 2022).

Derived generalized empirical definitions (multi cases) Existing empirical definitions (binary cases)

Independence: Y ¼ f0; 1g, S arbitrary: Y ¼ S ¼ f0; 1g:
DI minsk1 ;sk22S

PðŶ¼1 j S¼sk1 Þ
PðŶ¼1 j S¼sk2 Þ

PðŶ¼1 j S¼0Þ
PðŶ¼1 j S¼1Þ

Independence: Y;S arbitrary: Y ¼ S ¼ f0; 1g:
DP maxy2Y;sk1;sk22S

PðŶ ¼ y j S ¼ sk1Þ � PðŶ ¼ y j S ¼ sk2Þ
�� �� PðŶ ¼ 1 j S ¼ 0Þ � PðŶ ¼ 1 j S ¼ 1Þ�� ��

Separation: Y ¼ f0; 1g, S arbitrary: Y ¼ S ¼ f0; 1g:
EO maxsk1;sk22S

PðŶ ¼ 1 j S ¼ sk1 ;Y ¼ 1Þ � PðŶ ¼ 1 j S ¼ sk2 ;Y ¼ 1Þ�� �� PðŶ ¼ 1 j S ¼ 0;Y ¼ 1Þ � PðŶ ¼ 1 j S ¼ 1;Y ¼ 1Þ�� ��
Separation: Y;S arbitrary, 8y 2 Y: Y ¼ S ¼ f0; 1g:
EOs maxsk1;sk22S

PðŶ ¼ y j S ¼ sk1 ;Y ¼ yÞ � PðŶ ¼ y j S ¼ sk2 ;Y ¼ yÞ�� �� PðŶ ¼ 1 j S ¼ 0;Y ¼ 1Þ � PðŶ ¼ 1 j S ¼ 1;Y ¼ 1Þ�� ��
PðŶ ¼ 1 j S ¼ 0;Y ¼ 0Þ � PðŶ ¼ 1 j S ¼ 1;Y ¼ 0Þ�� ��
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Generalized empirical notions of group fairness In practice, exact equality according
to corollary 2.6 is usually not achieved. This motivates keeping the difference between both
sides of the equation(s) as small as possible, which translates to the following two
generalized definitions of disparate impact and demographic parity (DP).

More precisely, while for group fairness, the majority of the literature focuses on a
binary classification model Ŷ and a single binary sensitive feature S (cf. Feldman et al.,
2015; Hardt, Price & Srebro, 2016; Kamiran & Calders, 2009; Kamiran & Calders, 2010;
Mehrabi et al., 2021; Pessach & Shmueli, 2022; Ruf & Detyniecki, 2021; Zafar et al., 2017a,
2017b), in this work’s definitions, we generalize the understanding of group fairness to a
non-binary sensitive feature S, but which can also be used to model even multiple non-
binary sensitive features (remark 2.9).

While disparate impact is specifically designed for a binary classification task, i.e., for a
setting where Y ¼ f0; 1g holds, and where the class fY ¼ 1g is the preferred one (remark
2.11), the demographic parity score additionally allows generalization to a one- or
multidimensional non-binary classifier Ŷ by definition and based on the theoretical
background in subsection “Independence of two random variables”7:
Definition 2.7 (Disparate impact).

Let � 2 ½0; 1�. The disparate impact score

DI :¼ min
sk1 ;sk22S

PðŶ ¼ 1 j S ¼ sk1Þ
PðŶ ¼ 1 j S ¼ sk2Þ

measures the (un-)fairness of the classification model Ŷ with respect to the sensitive
feature S in the sense of the independence criterion. For the model Ŷ , disparate impact is
limited to � iff DI � 1� � holds.
Definition 2.8 (Demographic parity).

Let � 2 ½0; 1�. The demographic parity score

DP :¼ max
y2Y; sk1 ;sk22S

PðŶ ¼ y j S ¼ sk1Þ � PðŶ ¼ y j S ¼ sk2Þ
�� ��

measures the (un-)fairness of the classification model Ŷ with respect to the sensitive
feature S in the sense of the independence criterion. For the model Ŷ , demographic parity
holds with respect to � iff DP 	 � holds.
Remark 2.9 In our previous work (cf. Strotherm & Hammer, 2023), we consider K ¼ jSj
different binary random variables S1;…; SK : � ! f0; 1g when defining disparate impact.
Encoding the single non-binary random variable S from this work to K such binary
random variables S1;…; SK for all k ¼ 1;…;K yields the same definition of disparate
impact as given in Strotherm & Hammer (2023). We change the notation in this work
because it is more intuitive compared to common fairness definitions (e.g., cf. Eq. (2.2) and
proof of lemma 2.10) and easily shows how these fairness definitions can be extended even
to multiple non-binary sensitive features: In this case, the random vector

S ¼ ðS1;…; SdsÞ : � ! S with S ¼ S1 �…� Sds � N
ds
0 and ds > 1 encodes all ds

possibly non-binary single sensitive features Sl for l ¼ 1;…; ds.

7 If Y 6¼ f0; 1g is discrete, testing for the
canonical one-elementary events y 2 Y
is still a necessary and sufficient condi-
tion for independence according to
lemma 2.2.
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Accordance of empirical notions of group fairness in the binary case In case of a
binary classification task and a single binary sensitive feature, our definitions coincide with
the according definitions known from the before-mentioned literature:
Lemma 2.10 If Y ¼ S ¼ f0; 1g holds, the disparate impact score DI and the demographic
parity score DP according to definition 2.7 and 2.8, respectively, coincide with the
corresponding definitions known from the literature.

Proof. If Y ¼ S ¼ f0; 1g holds, the fact that fŶ ¼ 0g _[fŶ ¼ 1g ¼ � holds implies that
the probability measure PðŶ 2 � j S ¼ sÞ is uniquely determined by the probability

PðŶ ¼ 1 j S ¼ sÞ for all s 2 S. Therefore, the independence criterion (corollary 2.6)
becomes

PðŶ ¼ 1 j S ¼ 0Þ ¼ PðŶ ¼ 1 j S ¼ 1Þ:
By the same fact,

jPðŶ ¼ 0 j S ¼ 0Þ � PðŶ ¼ 0 j S ¼ 1Þj
¼ j1� PðŶ ¼ 1 j S ¼ 0Þ � ð1� PðŶ ¼ 1 j S ¼ 1ÞÞj
¼ jPðŶ ¼ 1 j S ¼ 0Þ � PðŶ ¼ 1 j S ¼ 1Þj
holds. Therefore, the demographic parity score (definition 2.8) becomes

DP ¼ PðŶ ¼ 1 j S ¼ 0Þ � PðŶ ¼ 1 j S ¼ 1Þ�� ��:
Moreover, the disparate impact score (definition 2.7) becomes

DI ¼ min
PðŶ ¼ 1 j S ¼ 0Þ
PðŶ ¼ 1 j S ¼ 1Þ ;

PðŶ ¼ 1 j S ¼ 1Þ
PðŶ ¼ 1 j S ¼ 0Þ

� �
:

In most literature, where fS ¼ 0g is assumed to be the discriminated group, and therefore,
where PðŶ ¼ 1 j S ¼ 0Þ < PðŶ ¼ 1 j S ¼ 1Þ holds, this simplifies to

DI ¼ PðŶ ¼ 1 j S ¼ 0Þ
PðŶ ¼ 1 j S ¼ 1Þ

(cf. Eq. (2.2)). These are the definitions of the disparate impact and the demographic parity
score usually found in the literature (cf.Mehrabi et al., 2021; Pessach & Shmueli, 2022; Ruf
& Detyniecki, 2021; Zafar et al., 2017b).

As already briefly touched on in the subsection “Motivation”, the disparate impact
criterion assures that the relative amount of positive predictions within the discriminated
group fS ¼ 0g – or in our generalized case of non-binary sensitive features, within the
most discriminated group—deviates at most ð100� pÞ% ¼ 100�% from the relative
amount of positive predictions within the privileged group fS ¼ 1g—or in our generalized
case, within the most privileged group (definition 2.7). For short and in either way: It aims
at obtaining similar or equal success or passing rates among groups.

Similarly, in a binary classification task, the demographic parity criterion assures that
the relative amount of positive predictions deviates at most 100�% among groups (cf. proof
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of lemma 2.10 or Table 2). In contrast, in a non-binary classification task, the demographic
parity criterion assures that the relative amount of any predictions deviates at most 100�%
among groups (definition 2.8).

By that, while both criteria assure similar or equal passing rates among groups in the
setting of a binary classification task, they assure different things in the setting of a non-
binary classification task due to the consideration of all labels in the demographic parity
criterion (Table 2).
Remark 2.11 (Generalizability of the disparate impact score). Similar to the demographic
parity score DP (definition 2.8), one could ask whether it makes sense to generalize the
disparate impact score DI to arbitrary discrete target spaces Y by

DI
 :¼ min
y2Y; sk1 ;sk22S

PðŶ ¼ y j S ¼ sk1Þ
PðŶ ¼ y j S ¼ sk2Þ

: (2.3)

However, this generalized definition would not coincide with the common one from
Eq. (2.2) in the setting of lemma 2.10: For example, consider the case

PðŶ ¼ 1 j S ¼ 0Þ ¼ 0:8; PðŶ ¼ 1 j S ¼ 1Þ ¼ 0:9;

PðŶ ¼ 0 j S ¼ 0Þ ¼ 0:2; PðŶ ¼ 0 j S ¼ 1Þ ¼ 0:1:

In this case, the disparate impact score according to definition 2.7 is equal to

DI ¼ minf0:80:9 ; 0:90:8g ¼ 0:8
0:9 � 0:88, which usually is a score considered to be fair. In

contrast, the disparate impact score according to Eq. (2.3) is equal to DI
 ¼
minfDI; 0:20:1 ;

0:1
0:2g ¼ 0:1

0:2 ¼ 0:5, which usually is a score considered to be unfair. The reason is
that the idea of disparate impact relies on the fact that the class fY ¼ 1g is the desired one
and only the relative amount of positive predictions among groups is of interest (cf.
Pessach & Shmueli, 2022). Therefore, it does only make sense to define disparate impact
score as we do in definition 2.7.

Separation
An easy-to-test notion of group fairness Depending on the application, one disadvantage
of fairness notions that belong to the fairness concept independence could be the missing
dependence on the true label Y. In such case, even if the model Ŷ was perfect, i.e., if Ŷ ¼ Y
held, it would be denoted as unfair if the relative amount of positive training labels differed
significantly among groups (cf. Hardt, Price & Srebro, 2016).

The solution to that yields the fairness concept separation, which in contrast to the
fairness concept independence requires (mathematical) independence between the
model’s prediction Ŷ and the sensitive feature S, conditioned on Y:
Definition 2.12 (Fairness according to the separation criterion (cf. Barocas, Hardt &
Narayanan, 2019)).

The classification model Ŷ is fair with respect to the sensitive feature S in the sense of the
separation criterion iff Ŷ and S are mathematically independent with respect to
Pð� j Y ¼ yÞ for all y 2 Y.
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Using the modified probability measure Pð� j Y ¼ yÞ for y 2 Y, lemma 2.2 again
induces the following easy-to-test separation criterion in the context of fair ML:
Corollary 2.13 (Fairness according to the separation criterion).

The classification model Ŷ is fair with respect to the sensitive feature S in the sense of the
separation criterion iff

PðŶ ¼ ŷ j S ¼ sk1 ;Y ¼ yÞ ¼ PðŶ ¼ ŷ j S ¼ sk2 ;Y ¼ yÞ
holds for all y; ŷ 2 Y ¼ f0; 1g � N0 and all sk1 ; sk2 2 S ¼ fs1;…; sKg � N0.

Generalized empirical notions of group fairness Again, in practice, exact equality
according to corollary 2.13 is usually not achieved. Therefore, again, keeping the difference
between both sides of the equation as small as possible motivates the following generalized
definitions, where similar to the previous subsection “Independence”, the second one is
specifically designed for a binary classification task, i.e., for settings where Y ¼ f0; 1g
holds, and where the class fY ¼ 1g is the preferred one.
Definition 2.14 (Equalized odds).

Let � 2 ½0; 1�. The equalized odds scores

EOsðyÞ :¼ max
sk1 ;sk22S

PðŶ ¼ y j S ¼ sk1 ;Y ¼ yÞ � PðŶ ¼ y j S ¼ sk2 ;Y ¼ yÞ�� ��
measure the (un-)fairness of the classification model Ŷ with respect to the sensitive feature
S in the sense of the separation criterion for all y 2 Y. For the model Ŷ , equalized odds
hold with respect to � iff EOsðyÞ 	 � holds for all y 2 Y.8
Definition 2.15 (Equal opportunity).

Let � 2 ½0; 1�. The equal opportunity (EO) score

EO :¼ max
sk1 ;sk22S

PðŶ ¼ 1 j S ¼ sk1 ;Y ¼ 1Þ � PðŶ ¼ 1 j S ¼ sk2 ;Y ¼ 1Þ�� ��
measures the (un-)fairness of the classification model Ŷ with respect to the sensitive
feature S in the sense of the separation criterion. For the model Ŷ , equal opportunity holds
with respect to � iff EO 	 � holds.

Similar arguments as compared to subsection “Independence” also show how these
definition(s) allow a generalized understanding of group fairness for non-binary and even
multiple non-binary sensitive features S, and for a one- or multi-dimensional non-binary
classifier Ŷ .

Accordance of empirical notions of group fairness in the binary case In case of a
binary classification task and a single binary sensitive feature, our definitions coincide with
the according definitions known from other literature:
Lemma 2.16. If Y ¼ S ¼ f0; 1g holds, the equalized odds scores EOsðyÞ for y 2 Y and the
equal opportunity score EO according to definition 2.14 and 2.15, respectively, coincide with
the corresponding definitions known from the literature.

Proof. If Y ¼ S ¼ f0; 1g holds, similar to the proof of lemma 2.10, the separation
criterion (definition 2.13) becomes

8 Instead of the requirement “for all
y 2 Y”, we could also take the maximum
over y 2 Y and sk1 ; sk2 2 S and consider
a single equalized odds score as done in
definition 2.8.
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PðŶ ¼ 1 j S ¼ 0;Y ¼ yÞ ¼ PðŶ ¼ 1 j S ¼ 1;Y ¼ yÞ
for y ¼ 0; 1, and

jPðŶ ¼ 0 j S ¼ 0;Y ¼ 0Þ � PðŶ ¼ 0 j S ¼ 1;Y ¼ 0Þj
¼ j1� PðŶ ¼ 1 j S ¼ 0;Y ¼ 0Þ � ð1� PðŶ ¼ 1 j S ¼ 1;Y ¼ 0ÞÞj
¼ jPðŶ ¼ 1 j S ¼ 0;Y ¼ 0Þ � PðŶ ¼ 1 j S ¼ 1;Y ¼ 0Þj
holds.9 Therefore, the equalized odds scores (definition 2.14) become

EOsð1Þ ¼ PðŶ ¼ 1 j S ¼ 0;Y ¼ 1Þ � PðŶ ¼ 1 j S ¼ 1;Y ¼ 1Þ�� �� and
EOsð0Þ ¼ PðŶ ¼ 1 j S ¼ 0;Y ¼ 0Þ � PðŶ ¼ 1 j S ¼ 1;Y ¼ 0Þ�� ��
(comparison of true positive rates (TPRs) and false positive rates (FPRs) among groups)
and the equal opportunity score (definition 2.15) becomes

EO ¼ PðŶ ¼ 1 j S ¼ 0;Y ¼ 1Þ � PðŶ ¼ 1 j S ¼ 1;Y ¼ 1Þ�� ��
(comparison of TPRs among groups). These are the definitions of the equalized odds and
the equal opportunity score(s) usually found in the literature (cf. Mehrabi et al., 2021;
Pessach & Shmueli, 2022; Ruf & Detyniecki, 2021; Zafar et al., 2017a).

While equalized odds ensure that the true positive rates (TPRs) and true negative rates
(TNRs) (or equivalently, false positive rates (FPRs)) among groups differ at most 100�% in
a binary classification task, equal opportunity only concentrates on TPRs among groups.
In contrast, in a non-binary classification task where the TPRs and FPRs are not well-
defined, equalized odds refer to similar or equal correct classification rates per label among
groups (cf. definition 2.14) and display a natural generalization of equal opportunity in this
setting (cf. definition 2.15).
Remark 2.17. Nevertheless, we will not make use of equalized odds in this work, as the
TNRs and FPRs given by PðŶ ¼ 0 j S ¼ s;Y ¼ 0Þ and PðŶ ¼ 1 j S ¼ s;Y ¼ 0Þ for any
s 2 S, respectively, do not exist in our domain of application although being in the setting
of a binary classification task, as we will see in subsection “Fairness in leakage detection”.

Summary of generalized notions of group fairness
To conclude, in this section, we derived generalized exact and empirical notions of group
fairness based on the mathematical concept of independence and suitable for a single, but
also multiple non-binary sensitive feature(s). All exact and some empirical notions are
suitable for not only one-, but also multi-dimensional non-binary classification models.
We additionally showed that the notions coincide with common group fairness definitions
in the case of a binary classification task and a single binary sensitive feature.

A summary of such already existing definitions and our contributions are summarized
in Tables 1 and 2.
Remark 2.18 (Computation of group fairness scores in practice). In practice, the true
distributions PðS; ŶÞ�1 and PðS;Y ; ŶÞ�1, on which the probabilities displayed in Tables 1
and 2 are based, are unknown. Therefore, as elaborated in subsection “Mathematical

9 More precisely, comparing the TNRs is
equivalent to comparing the FPRs.
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notation for machine learning”, the fairness scores are computed using the empirical
approximations bPðS; ŶÞ�1 ¼ 1

n

Pn
i¼1 dðsi;ŷiÞ and

bPðS;Y ; ŶÞ�1 ¼ 1
n

Pn
i¼1 dðsi;yi;ŷiÞ based on

the training data D, respectively, yielding the required approximated probabilities

bPðŶ ¼ y j S ¼ sÞ ¼
Pn
i¼1

1fŷi¼y;si¼sg

Pn
i¼1

1fsi¼sg
and

PðŶ ¼ ŷ j S ¼ s;Y ¼ yÞ ¼
Pn
i¼1

1fŷi¼ŷ;si¼s;yi¼yg

Pn
i¼1

1fsi¼s;yi¼yg
for all y; ŷ 2 Y; s 2 S:

LEAKAGE DETECTION IN WATER DISTRIBUTION SYSTEMS
In view of the AI Act, by being part of the critical infrastructure, WDSs belong to high-risk
systems (cf. Veale & Borgesius, 2021). In this context, “(m)uch attention has been paid to
the potential for AI systems to facilitate indirect discrimination, (which is) in principle
illegal under EU law” (cf. Veale & Borgesius, 2021). One requirement of such systems is
therefore to check the system for bias and to document the system’s performance for
different demographic groups (cf. Strotherm et al., 2023). While this could suggest the use
of group fairness definitions implicitly, the guidelines for trustworthy AI explicitly name
fairness as one of the seven essential requirements for such systems (cf. European Union,
2019).

A key challenge in the domain of WDSs where AI, or more precisely, ML, is used, is to
detect leakages (cf. Artelt et al., 2022; Guo et al., 2021; Li et al., 2022; Romero-Ben et al.,
2022; Steffelbauer et al., 2022; Vrachimis et al., 2022). The main components of a WDS
relevant for this work are nodes and pipes, through which water can be supplied to end
users such as private households, hospitals or schools located at the nodes of the network,
but which are also vulnerable to leakages. To detect these is therefore crucial to guarantee
consistent water supply, but can also affect other important tasks such as short-term
decision making and long-term planning of WDSs.

Therefore, as requested by the AI Act and the guidelines for trustworthy AI, in this
section, we present a common ML-based pipeline and concrete instantiations of how to
detect leakages in WDSs (subsection “Methodology of leakage detection”). Consecutively,
we investigate what fairness can mean (subsection “Fairness in leakage detection”) and
whether it is satisfied (subsections “Application domain and data set and experimental
results” and “Analysis: Residual-based ensemble leakage detection does not obey fairness”)
in this context according to common group fairness notions as introduced in subsection
“Generalized notions of group fairness in machine learning”.

Methodology of leakage detection
In the task of leakage detection, the domain � (cf. subsection “Mathematical notation
for machine learning”) corresponds to possible states of a WDS, determined by
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time-dependent demands of the end users located at the D 2 N nodes in the system and
which may be affected by leakages. We assume that among these nodes, d 2 N nodes are
provided with sensors (usually, D � d), which deliver pressure measurements pðtÞ 2 R

d

at different times t 2 R and which can be used for the task at hand. As the sensors usually
measure pressure values within fixed time intervals d 2 Rþ, we introduce the notation
ti :¼ t0 þ id, where t0 is some fixed reference point with respect to time.

There are several methodologies that make use of such pressure measurements to
approach the problem of leakage detection using ML. Using the notation from subsection
“Mathematical notation for machine learning”, the goal is to train a binary classifier

Ŷ ¼ f ðXÞ : � ! X ! Y with Y ¼ f0; 1g that predicts the true state Y : � ! Y of the
WDS with respect to the question whether a leakage is active (fY ¼ 1g) or not (fY ¼ 0g).
Hereby, the feature space X depends on the specific method but is related to the before-
mentioned pressure measurements.

One standard approach comes in three steps (cf. Isermann, 2006): First of all, so called
virtual sensors are trained, i.e., regression models that are able to predict the pressure at
some time ti 2 R and at a node j 2 f1;…; dg (or even j 2 f1;…;Dg), based on the
pressure measurements observed at that (or earlier) time(s) and at (a choice of) the sensor
nodes j 2 f1;…; dg. Subsequently, these virtual sensors are used to compute pressure
residuals of measured and predicted pressure. Finally, these pressure residuals are fed into
a leakage detector Ŷ that is able to predict whether a leakage is present in the WDS at the
time of the used residual (cf. Isermann, 2006). An overview of this pipeline is displayed in
Fig. 1.

The approach can differ depending on the concrete instantiation of virtual sensors and
the leakage detector. In this subsection, we first formalize the idea of the general leakage
detection pipeline described above in more detail (subsection “Leakage detection
pipeline”). Consecutively, we present two concrete instantiations of such (subsection
“Leakage detection instantiations”), which we will investigate with respect to the question
of fairness in the rest of this section.

Leakage detection pipeline
Virtual sensors Based on vector inputs ~pjðtiÞ 2 R

dr that are based on the pressure
measurements pðtiÞ ¼ ðpjðtiÞÞj¼1;…;d 2 R

d observed at (multiple) times ti 2 R and at the
sensor nodes j ¼ 1;…; d in the WDS, so called virtual sensors, i.e., regression models

f rj : Rdr ! R

~pjðtiÞ 7! f rj ð~pjðtiÞÞ
that predict the pressure at times ti 2 R and at the sensor node j are trained for each sensor
node j ¼ 1;…; d. Hereby, the dimension dr 2 N and the inputs ~pjðtiÞ 2 R

dr depend on the
specific model architecture used (cf. subsection “Leakage detection instantiations” and
Artelt et al., 2022; Ashraf et al., 2023; Isermann, 2006).

Pressure residuals Independent of what specific instantiations of virtual sensors f rj for
j ¼ 1;…; d are used, standard leakage detection methods rely on the pressure residuals
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rjðtiÞ :¼ jpjðtiÞ � f rj ð~pjðtiÞÞj 2 Rþ

we obtain from the pressure measurements pjðtiÞ 2 R and the pressure predictions

f rj ð~pjðtiÞÞ 2 R at (possibly unseen) times ti 2 R and at the sensor node j for all j ¼ 1;…; d

(cf. Artelt et al., 2022; Isermann, 2006).
Leakage detection Based on pressure residuals rðtiÞ ¼ ðrjðtiÞÞj¼1;…;d 2 X :¼ R

dc ¼ R
d

(i.e., dc ¼ d) at times ti 2 R and at the sensor nodes j ¼ 1;…; d in the WDS, a
classification model Ŷ—or more precisely, the learnable model f c which is applied to the
feature pressure residuals X : � ! X (cf. subsection “Mathematical notation for machine
learning”).

f c :¼ f c� :¼ f cð�;�Þ : X ! Y
that predicts whether (fŶ ¼ f cðXÞ ¼ 1g) or not (fŶ ¼ f cðXÞ ¼ 0g) a leakage is present in
the WDS is defined or trained. Hereby,� 2 R

dp indicates a choosable or trainable (hyper-)
parameter and the hypothesis space H depends on the specific model architecture used
(subsections “Leakage detection instantiations”, “Fairness-enhancing leakage detection in
water distribution networks” and Artelt et al., 2022; Isermann, 2006).

Leakage detection instantiations
The previous subsection gives a general pipeline on how to detect leakages in a WDS based
on pressure measurements, pressure predictions based on virtual sensors, resulting
pressure residuals and finally, the leakage detection itself (cf. Fig. 1). In this subsection, we
present specific instantiations of this approach.

Linear virtual sensors The first approach is based on the work of Artelt et al. (2022): In
this case, each virtual sensor f rj : Rdr ! R at each sensor node j 2 f1;…; dg corresponds

Figure 1 Standard leakage detection pipeline. Full-size DOI: 10.7717/peerj-cs.2317/fig-1
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to a linear regression model. The inputs ~pjðtiÞ 2 R
dr at times ti 2 R consist of rolling

means

~pjðtiÞ :¼ �p6¼jðtiÞ :¼ 1
Tr þ 1

XTr

i¼0
p 6¼jðti � idÞ 2 R

d�1

at all sensor nodes except the node j and with a to be chosen time window Tr þ 1 2 N. By
that, each regression model’s input dimension equals dr :¼ d � 1.

Based on that, the d virtual sensors f rj for each sensor node j 2 f1;…; dg are trained on
leakage free training data Dr

j ¼ fð�p 6¼jðtiÞ; pjðtiÞÞ 2 R
dr � R j i ¼ 0;…; nrg. More

precisely, yðtiÞ ¼ 0 2 Y holds for all realisations i ¼ 0;…; nr of the label Y.
GCN virtual sensors In contrast, the second approach is based on the work of Ashraf

et al. (2023): In this case, each virtual sensor f rj : Rdr ! R at each sensor node
j 2 f1;…; dg is obtained by training a single GCN model.

The GCN model is trained on leakage free training data

Dr ¼ fððpjðtiÞÞj¼1;…;d; ðpjðtiÞÞj¼1;…;DÞ 2 R
d � R

d j i ¼ 0;…; nrg:
More precisely, the GCN model inputs the sparse pressure measurements at the sensor
nodes j ¼ 1;…; d and outputs the pressure predictions at each node j ¼ 1;…;D of the
WDS. However, for this work, the pressure predictions at the sensor nodes j ¼ 1;…; d are
enough: The d virtual sensors f rj at each sensor node j 2 f1;…; dg can be considered as the
entry-wise output of the overall GCN model f r :¼ ðf rj Þj¼1;…;D.

By that, the inputs ~pjðtiÞ 2 R
dr at times ti 2 R are given by the node-independent

pressure measurements ~pðtiÞ ¼ ~pjðtiÞ :¼ ðp|̂ðtiÞÞ|̂¼1;…;d 2 R
d themselves for all sensor

nodes j ¼ 1;…d, and each regression model’s input dimension equals dr :¼ d.
Ensemble leakage detection: The H-method Independent on the choice of virtual

sensor, based on the pressure residuals rðtiÞ ¼ ðrjðtiÞÞj¼1;…;d 2 X ¼ R
dcþ ¼ R

d
þ at times

ti 2 R we obtain from these, a simple leakage detection method performing good on
standard benchmarks, is the threshold-based ensemble classification introduced by Artelt
et al. (2022): Without any further training, we can choose a node-dependent
hyperparameter hj 2 Rþ to define a (local) classifier f cj : Rþ ! Y for each sensor node
j 2 f1;…dg by

f cj ðrjðtiÞÞ ¼ f cj ðrjðtiÞ; hjÞ :¼ 1frjðtiÞ > hjg:

We then obtain an ensemble classifier f c : X ! Y with feature space X ¼ R
dcþ ¼ R

d
þ and

hyperparameter � :¼ ðhjÞj¼1;…;dc
2 X (i.e., dp ¼ dc ¼ d) that predicts whether there is a

leakage present in the WDS at time ti 2 R or not, defined by

f cðrðtiÞÞ ¼ f cðrðtiÞ;�Þ :¼ 1 Pdc

j¼1
f cj ðrjðtiÞÞ�1

n o: (3.4)

Simply put into words, a node-dependent classifier f cj detects a leakage when the node-
dependent pressure-residual rjðtiÞ 2 Rþ at time ti 2 R exceeds the node-dependent
threshold hj 2 Rþ and the ensemble classifier f c detects a leakage when one of the node-
dependent classifiers f cj for any j 2 f1;…; dg does.
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We call this overall instantiation of the standard leakage detection pipeline (cf. Fig. 1)
independent of the instantiation of the virtual sensors and characterized by choosing the
Hyperparameter � 2 X the H-method. Note that the H-method does not need further
training once it has access to feature pressure residuals X ¼ R

d
þ. How to introduce a

trainable structure to this last component of the pipeline will be part of subsection
“Fairness-enhancing leakage detection in water distribution networks”.

Fairness in leakage detection
After having introduced a pipeline to define a leakage detection model Ŷ ¼ f cðXÞ and
possible concrete instantiations of such in the previous subsection, the question arises as to
how leakage detection is related to fairness in the sense of subsection “Generalized notions
of group fairness in machine learning”. One key contribution of this work is to answer this
question, i.e., to introduce the notion of fairness in the application domain of WDSs by
defining suitable sensitive features in the context of leakage detection or other ML-based
services in WDSs.

Sensitive features in ML-based services in WDS Knowing that each node of the WDS
corresponds to a group of consumers, a natural question is whether these local groups
benefit from the WDS and its related services, such as leakage detection, in equal degree.
To ensure that the methods that will be presented in subsection “Methodology of fairness-
enhancing leakage detection” scale to larger WDSs, we do not consider single nodes but
K 2 N groups of nodes in the WDS as protected groups in terms of fairness. Then, given
that a leakage is active in the WDS, i.e., that Y ¼ 1 holds, we define the sensitive feature
S 2 S :¼ fs1;…; sKg :¼ f1;…;Kg to answer the question where, i.e., in which protected
group k 2 f1;…;Kg, this leakage is active.10 In terms of equal service, one would expect
an equally good detection of leakages independent on the leakage location, i.e., the
protected group. This understanding of sensitive features, protected groups and
consecutively, fairness in WDS, can of course be adapted to other ML-based services in
WDS, for example, to contamination detection.

Fairness notions in ML-based services in WDS In this work, we will focus on the
evaluation of fairness by choosing one fairness notion each from the fairness concepts
independence and separation (subsections “Independence” and “Separation”): Disparate
impact for independence (definition 2.7) due to its importance also in the legal context
(cf. subsection “Motivation”), and equal opportunity for separation (definition 2.15).
Regarding the latter concept, considering that our sensitive feature S is defined on the event
fY ¼ 1g, this shows why using equalized odds is not possible in this setting, as already
mentioned in remark 2.17 and as shown in the proof of the next lemma 3.1.

Fairness properties in ML-based services in WDS Given this definition of a non-
binary sensitive feature S in the WDS, we obtain the following important results with
regard to the notions of fairness chosen.
Lemma 3.1 (Equivalence of disparate impact and equal opportunity in WDSs). Let
S : fY ¼ 1g ! f1;…;Kg be the sensitive feature describing where a leakage in one of the
protected groups k 2 f1;…;Kg of the WDS is active. Moreover, let �; ~� 2 ½0; 1� and define

maxk :¼ maxk2f1;…;KgPðŶ ¼ 1 j S ¼ kÞ.

10 Note that in contrast to common set-
tings, where the random variables Y; Ŷ
and S share the same domain, with
respect to this fairness question, for the
sensitive feature S, we change the
domain from the population space � of
all possible states to those, in which a
leakage is present, i.e., to fY ¼ 1g � �.

Strotherm et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2317 19/41

http://dx.doi.org/10.7717/peerj-cs.2317
https://peerj.com/computer-science/


1. If disparate impact is limited to �, equal opportunity holds with respect to ~� ¼ �maxk.
2. If equal opportunity holds with respect to ~�, disparate impact is limited to

� ¼ ~�ðmaxkÞ�1.
Proof. First of all, note that for any x 2 � for which there exists a k 2 f1;…;Kg such

that SðxÞ ¼ sk ¼ k holds, YðxÞ ¼ 1 must hold by definition of the sensitive feature S (this
is why it only makes sense to define S on fY ¼ 1g � �). Therefore, fS ¼ k;Y ¼ 0g is
empty for all k ¼ 1;…;K . Subsequently, we obtain

fS ¼ k;Y ¼ 1g ¼ fS ¼ k;Y ¼ 1g [ fS ¼ k;Y ¼ 0g
¼ fS ¼ kg \ ðfY ¼ 1g [ fY ¼ 0gÞ
¼ fS ¼ kg \ �

¼ fS ¼ kg
and thus, PðŶ ¼ 1 j S ¼ k;Y ¼ 1Þ ¼ PðŶ ¼ 1 j S ¼ kÞ for all k ¼ 1;…;K .

Secondly, we also define mink :¼ mink2f1;…;KgPðŶ ¼ 1 j S ¼ kÞ. Then, we easily find
that DI ¼ mink

maxk
and, together with the first observation, EO ¼ maxk �mink holds (cf.

definition 2.7 and 2.15).
Now the rest follows by simple equivalent transformations: In setting 1, we find that

mink
maxk

� 1� � , min
k

� ð1� �Þmax
k

, max
k

�min
k

	 � max
k

(3.5)

holds. In setting 2, we obtain

max
k

�min
k

	 ~� , 1� mink
maxk

	 ~�

maxk
, mink

maxk
� 1� ~�

maxk
: (3.6)

Corollary 3.2. Given the setting of lemma 3.1,

1. EO ¼ fEO for fEO :¼ ð1� DIÞ �maxk and

2. DI ¼ fDI for fDI :¼ 1� EO
maxk

holds.

Proof. This is a direct consequence of lemma 3.1, where we choose � :¼ 1� DI in
setting 1 and ~� :¼ EO in setting 2, and where we can work with equalities instead of
estimations in Eqs. (3.5) and (3.6), respectively.

Application domain and data set
After having introduced an appropriate definition of a sensitive feature and protected
groups in WDSs in the previous subsection “Fairness in leakage detection”, in order to test
whether the concrete instantiations of leakage detection methods presented in subsection
“Leakage detection instantiations” are fair in this sense, we need to generate suitable data
based on given WDS structures.

The WDSs considered are Hanoi (cf. Santos-Ruiz et al., 2022; Vrachimis et al., 2018)
and L-Town (cf. Vrachimis et al., 2022; Vrachimis et al., 2020) displayed in Figs. 2 and 3,
respectively. While Hanoi consists of 32 nodes, among which three are provided with
sensors, and 34 links, L-Town displays a more realistic WDS consisting of 785 nodes,
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among which 33 are provided with sensors, and 909 links. The latter is constructed in a
way to mimic a trueWDS while satisfying security defaults and displays one of the state-of-
the-art WDSs in the water domain.

Pressure measurement simulation For security reasons, only a limited number of
real-world data sets based on such systems are available. Therefore, to evaluate methods

Figure 2 The Hanoi WDS, its sensor nodes (IDs 3, 10 and 25) and the protected groups, each
highlighted in another color (group 1 on the left side in light shade, group 2 in the middle in
dark shade, group 3 on the right side in middle shade). The sensor nodes are colored in the same
color as the protected group to which they belong and highlighted with a grey circle.

Full-size DOI: 10.7717/peerj-cs.2317/fig-2

Figure 3 The L-Town WDS, its sensor nodes and the protected groups, each highlighted in another
color (group 1, also called area C, on the top left in middle shade; group 2, also called area A, in light
shade; group 3, also called area B, on the bottom in the middle in dark shade). The sensor nodes are
colored in the same color as the protected group to which they belong and highlighted with a grey circle.

Full-size DOI: 10.7717/peerj-cs.2317/fig-3
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such as the H-method presented in subsection “Leakage detection instantiations”, data has
to be simulated.

For Hanoi, we generate pressure measurements with a time window of d ¼ 10 min.
using the atmn toolbox (cf. Vaquet et al., 2023). The pressure is simulated at the sensor
nodes displayed in Fig. 2 and for different leakage scenarios, which differ in the leakage
location and size. As the WDS is relatively small, we are able to simulate a leakage at each
node in the system and for three different diameters d 2 f5; 10; 15gcm. In total, the data
set is balanced with respect to the label, i.e., the fact whether (fY ¼ 1g) or not (fY ¼ 0g) a
leakage present at the time of the considered sample.

For L-Town, we generate pressure measurements with a time window of d ¼ 5 min. as
used in the work of Ashraf et al. (2023). The pressure is simulated at the sensor nodes
displayed in Fig. 3 and for different leakage scenarios. Due to the larger system size, we are
only able to simulate a leakage at some nodes in the system and for three different
diameters d 2 f1:9; 2:3; 2:7gcm11.

Pressure residual computation Consecutively, in order to obtain the pressure residuals
required for the H- or other method(s), virtual sensor predictions have to be generated
(Fig. 1). For Hanoi, we train and use linear virtual sensors with a preprocessing
hyperparameter of Tr ¼ 2 as done by Artelt et al. (2022). For L-Town, we train and use
GCN virtual sensors, (cf. subsection “Leakage detection instantiations”).

Protected groups Finally, the protected groups as introduced in subsection “Fairness in
leakage detection” are displayed in Figs. 2 and 3 as well. Here, we work with K ¼ 3
different groups for both the Hanoi and the L-Town WDS.

Experimental results and analysis: Residual-based ensemble leakage
detection does not obey fairness
In Table 3, the results of the H-method presented in subsection “Leakage detection
instantiations” are shown. The hyperparameter � 2 X ¼ R

d
þ is chosen manually per

diameter d such that the test accuracy is close to maximal. On the one hand, we see that
independent of the WDS and the virtual sensors used, in general, the larger the leakage

Table 3 Results of the H-method. Results of the H-method with maxk and mink according to (the proof
of) lemma 3.1. Moreover, the disparate impact and equal opportunity score DI and EO as well as fDI andfEO according to definition 2.7, 2.15, corollary 3.2.2 and 3.2.1, respectively.

d ACC maxk mink DI EO fDI fEO
5 0.6223 0.8468 0.4880 0.5763 0.3558 0.5763 0.3588

10 0.7998 0.9983 0.6372 0.6383 0.3611 0.6383 0.3611

15 0.8837 1.0000 0.6402 0.6402 0.3598 0.6402 0.3598

(a) Hanoi WDS and linear virtual sensors.

1.9 0.7034 0.8935 0.4828 0.5404 0.4107 0.5404 0.4107

2.3 0.8346 1.0000 0.6652 0.6652 0.3348 0.6652 0.3348

2.7 0.8476 1.0000 0.4254 0.4254 0.5746 0.4254 0.5746

(b) L-Town WDS and GCN virtual sensors.

11 The different leakage sizes for the two
WDSs Hanoi and L-Town can be
explained based on some physical
background onto which we can not
comment in full detail. However,
roughly speaking, the size of the chosen
leakage diameters depend on the water
supply and demand dynamics of a
WDS. For Hanoi, the number of con-
sumers is small, however, water
demands are high since the water source
has sufficient water pressure. Hence,
larger leakage diameters (proportional
to demands) are required to simulate a
significant leak. For L-Town, the num-
ber of consumers is much larger that has
smaller individual demands since the
water pressure at the reservoirs is the
same as Hanoi. Hence, smaller leakage
diameters are sufficient to simulate sig-
nificant leakages.
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size, the better the method performs in terms of accuracy ðACCÞ, as larger leakages are
associated with larger pressure drops. Moreover, the method is capable of detecting even
small leakages with high(er) accuracy in larger (and therefore, more realistic) WDSs (cf.
footnote 11 for details).

On the other hand, and more importantly, we see that independent of the WDS and the
virtual sensors used, the method is unfair in terms of disparate impact score DI, where a
value of 0.8 or larger is desirable (cf. Zafar et al., 2017b), and equal opportunity score EO.
However, the experimental evaluation confirms the mathematical findings of corollary 3.2
by comparing the column of the disparate impact score calculated according to definition
2.7 (DI) to the one according to corollary 3.2.2 (fDI), and the column of the equal
opportunity score calculated according to definition 2.15 (EO) to the one according to
corollary 3.2.1 (fEO). This also justifies that in our setting, the usage of one of the two scores
is sufficient. Therefore, from now on, we mostly work with the disparate impact score DI
only.

FAIRNESS-ENHANCING LEAKAGE DETECTION IN WATER
DISTRIBUTION NETWORKS
Motivated by the result that the standard leakage detection method presented in subsection
“Leakage detection instantiations” does not satisfy the notions of fairness, as another main
contribution of this work, we modify this H-method to enhance fairness as introduced in
subsection “Generalized notions of group fairness in machine learning”. The main idea is
based on the fact that in the H-method the only models trained are the virtual sensors f rj
for all j ¼ 1;…; d (cf. subsection “Leakage detection instantiations”). However, given these
virtual sensors and resulting residuals rðtiÞ 2 X ¼ R

d
þ, as well as labels yðtiÞ 2 Y ¼ f0; 1g

for times ti 2 R, we can turn the choice of the hyperparameter� :¼ ðhjÞj¼1;…;d 2 X of the
ensemble classifier f c ¼ f cð�;�Þ (cf. Eq. (3.4)) into an optimization problem (OP),
where � 2 X now acts as a parameter. The corresponding hypothesis space is
H :¼ ff c : X ! Y; r 7!f cðr;�Þ j � 2 Xg (cf. subsection “Mathematical notation for
machine learning”).

In the following section, we therefore propose (subsection “Methodology of fairness-
enhancing leakage detection”) and evaluate (subsection “Experimental results and
analysis”) different, in contrast to the H-method optimization-based, methods that aim at
optimizing the parameter � 2 X in order to obtain an optimal ensemble classifier
f cð�;�opt:Þ 2 H. Optimality hereby depends on the OP at hand: These methods on the one

hand are further baselines, where treating the modeling problem as an OP enables us to
optimize the result of the H-method itself without fairness considerations. On the other
hand, we consider fairness-enhancing methods, where the parameter � 2 X needs to be
optimized such that the resulting ensemble classifier is simultaneously as accurate and fair
on the given training data as possible.

Methodology of fairness-enhancing leakage detection
The following methods define training algorithms to find an optimal ensemble classifier
f cð�;�opt:Þ 2 H. The scores considered in these algorithms rely on labeled training data
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Dc ¼ fðrðtiÞ; yðtiÞÞ 2 X � Y j i ¼ 1;…; ncg12, which also holds samples based on leaky
states fY ¼ 1g of the WDS. For simplicity, we omit the dependence of all considered
functions on the training data Dc.

Fair leakage detection framework
In general, a learning problem such as the training of an optimal ensemble classifier
f cð�;�opt:Þ 2 H can be phrased as an OP, where the objective is to minimize some suitable

loss function L ¼ Lð�Þ :¼ Lðf cð�;�Þ; �Þ : X � Y ! R over the hypothesis space H, or
more precisely, with respect to the parameter � 2 X , based on its evaluations on the
training data Dc � X � Y:
min�2X Lð�Þ: (4.7)

The advantage of redefining the choice of hyperparameters� 2 X (which is what we do in
the H-method) as an OP is that we can now extend this OP by side constraints
Ck ¼ Ckð�Þ :¼ Ckðf cð�;�Þ; �Þ : X � Y ! R:

min�2X Lð�Þ;
s:t: Ckð�Þ � 0 8k ¼ 1;…; K̂:

�
(4.8)

A typical way of optimizing a constrained OP is to integrate the side constraints in the
objective in order to apply unconstrained optimization algorithms. This can be done using
a barrier- or penalty function p : R ! ½�1;1� (cf. Nocedal & Wright, 2006). Using such
functions, the constrained OP Eq. (4.8)13 can be transformed to

min�2X Lð�Þ þ l
PK̂

k¼1 pðCkð�ÞÞ:
n

(4.9)

Hereby, the hyperparameter l 2 ½0;1Þ regulates the importance of the constraints Ck for
all k ¼ 1;…; K̂ compared to the loss function L.

Fair leakage detection instantiations
Equation (4.9) gives a general framework on how to train a (fair) leakage detection model
based on the general leakage detection pipeline presented in subsection “Leakage detection
pipeline”. While the H-method presented in subsection “Leakage detection instantiations”
is an instantiation of this pipeline that only requires the training of the virtual sensors, i.e.,
the first component of the pipeline, the following methods also require the training of the
leakage detection model itself, i.e., the third component of the pipeline (cf. Fig. 1).

More precisely, the following methods are instantiations of this third component using
the framework proposed in the previous subsection “Fair leakage detection framework”.
Hereby, the ensemble classifier f cð�;�Þ 2 H on which the loss function L and the side
constraints Ck for k ¼ 1;…; K̂ rely is of the same structure as in the H-method (cf. Eq.
(3.4)); the resulting optimal models Ŷ ¼ f cðX;�opt:Þ only differ in their optimal parameter

�opt: 2 X ¼ R
d
þ.

We obtain such different optimal parameters by choosing different loss functions L,
different side constraints Ck for k ¼ 1;…; K̂ and different algorithmic choices. In the
following, we propose such possible choices. The indices (loss index, constraint index,

12 In practice, we train and test the
(ensemble) classifier(s) on unseen data
for times i � nr þ 1. However, for the
sake of readability, we choose the indi-
ces i ¼ 1;…; nc instead of
i ¼ nr þ 1;…; nc.

13 Note that the requirement

� ¼ ðhjÞj¼1;…;dc
2 X ¼ R

d
þ actually

also contains the constraint hj � 0 for
all j ¼ 1;…; d. Nevertheless, also the
residuals rðtiÞ 2 X ¼ R

d
þ are non-

negative for all i ¼ 1;…; n. Therefore, if
for any j 2 f1;…; dg, hj < 0 holds, the
ensemble classifier Ŷ ¼ f cðX;�Þ (Eq.
(3.4)) is equal to Ŷ � 1, i.e., it only
predicts leakages. As our datasets are
balanced with respect to the labels, this
will lead to an accuracy of approxi-
mately 0.5 and to a TPR, but also an FPR
of 1. Thus, such choices are no (local)
optima of the OPs as they either do not
deliver a(n) (locally) optimal loss or as
they harm the side constraint(s). In
other words, the solution of the OPs will
automatically be feasible with respect to
the constraint hj � 0 for all j ¼ 1;…; d.
Therefore, for simplicity, we do not
include this constraint as a regulariza-
tion term in the objective and can
optimize � over Rd instead of X ¼ R

d
þ

anyways.
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optimization index and barrier or penalty function index) introduced along the way will
later be used for the names of the resulting explicit methods as combinations of such
choices. A general scheme of this overall idea as an extension of Fig. 1 is displayed in Fig. 4.

Optimizing performance as baseline methods By choosing a typical evaluation score
as the loss function L and not using any further (fairness) constraints (i.e., l ¼ 0 or

K̂ ¼ 0), we obtain further baseline methods which output optimized parameters
�opt: ¼ argmin�2X Lð�Þ compared to the H-method and by that, with respect to the

performance of the leakage detection model Ŷ ¼ f cðX;�opt:Þ, but not with respect to its
fairness.

Typical such evaluation scores for a binary classification task are:

. The negative accuracy, i.e. Lð�Þ ¼ �ACCð�Þ (loss index “ACC”),

. the negative difference Lð�Þ ¼ �TPRð�Þ þ FPRð�Þ between the TPR and the FPR
(loss index “TFPR”).

Optimizing Performance under Fairness Constraints For the following approaches,
the loss function L controls the performance while the constraints Ck control the fairness
for all k ¼ 1;…; K̂ .

Choice of performance loss functions: When optimizing the performance under fairness
constraints, we choose the same loss functions as when optimizing the performance
without fairness constraints as introduced in the previous paragraph.

choice of hyperparameter 

Leakage detection

Proposed explicit method(s)

choice of  and optimization algorithm

Local leakage detection

at times  and
at nodes 

Ensemble leakage detection

at times 
(eq. (3.4))

H - method

training of parameter 

Proposed fair leakage detection framework

with  and

 for 

Figure 4 Fair leakage detection framework as an extension of Fig. 1.
Full-size DOI: 10.7717/peerj-cs.2317/fig-4
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Choice of fairness constraints: As done in our previous work (cf. Strotherm & Hammer,
2023), in terms of fairness constraints, we make use of the covariance between the sensitive
feature(s) and the prediction of the ensemble classifier. For technical reasons14, we have to
transform the non-binary sensitive feature S : fY ¼ 1g ! f1;…;Kg to K binary sensitive
features Sk : � ! f0; 1g, which gives answer to the question of whether (fSk ¼ 1g) or not
(fSk ¼ 0g) a leakage is active in group k for all k ¼ 1;…;K .15 Using that
ŷðtiÞ ¼ f cðrðtiÞ;�Þ holds for all realisations i ¼ 1;…; nc, for all binary sensitive features Sk
for k ¼ 1;…;K , the empirical covariance between a single sensitive feature Sk and the
model Ŷ ¼ f cðX;�Þ is given by

Covemp:ðSk; ŶÞ ¼ n�1
c

Xnc
i¼1

ðskðtiÞ � skÞ � f cðrðtiÞ;�Þ: (4.10)

The usage of the (empirical) covariance as a proxy for fairness is based on the idea that
group fairness of a model Ŷ , or more precisely, a high disparate impact score on which we
focus in this work, relies on the assumption of Ŷ being independent of the sensitive feature
S (cf. subsection “Independence”), or in our case, each of the sensitive features Sk for
k ¼ 1;…;K . As the independence of two random variables implies their covariance being
equal to zero, the latter can be interpreted as a necessary condition for fairness. For more
information on this intuition, but also on how our contributions are generalizations of the
work of Zafar et al. (2017b), we refer to our previous work Strotherm & Hammer (2023).

Motivated by that, we require Covemp:ðSk; ŶÞ 	 c and Covemp:ðSk; ŶÞ � �c to hold, or,
equivalently formulated in standard form:

. We require Ckð�Þ :¼ c� Covemp:ðSk; ŶÞ � 0 and Ckð�Þ :¼ cþ Covemp:ðSk; ŶÞ � 0 to
hold for all k ¼ 1;…;K (i.e., K̂ ¼ 2K in Eq. (4.8)). Hereby, the hyperparameter
c 2 ½0;1Þ regulates howmuch the covariance’s absolute value is bounded and therefore,
the desired fairness (constraint index “COV”).

Optimizing Fairness under Performance Constraints For the following approaches,
the loss function L controls the fairness while the constraints Ck control the performance
for all k ¼ 1;…; K̂ .

Choice of fairness loss functions: As done in our previous work Strotherm & Hammer
(2023), we choose the disparate impact score DI as a loss function. Moreover, as elaborated
in the conclusion of our previous work Strotherm & Hammer (2023) and similar to Zafar
et al. (2017b), we additionally change the role of the empirical covariance by optimizing a
fairness proxy similar to the one introduced in Eq. (4.10) directly. Therefore, taking into
account that we have multiple sensitive values, two reasonable loss functions are:

. The sum Lð�Þ :¼ PK
k¼1 jCovðSk; ŶÞj of absolute values of the empirical covariance

between a single sensitive feature Sk and the model Ŷ ¼ f cðX;�Þ for all k ¼ 1;…;K
(loss index “Cov”),

14 As discussed in subsection “Application
domain and data set”, while the model Ŷ
is defined on the population space �,
the sensitive feature S is defined on
fY ¼ 1g � �. Moreover, the empirical
covariance is only well-defined for
variables that are metric scaled or binary
nominal scaled.

15 More precisely, fS ¼ kg ¼ fSk ¼ 1g
holds, with the advantage that the model

Ŷ and the binary sensitive features Sk for
all k ¼ 1;…;K are defined on the same
domain; on the population space �.
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. the negative disparate impact score Lð�Þ :¼ �DIð�Þ (definition 2.7) (loss index “DI”).

Choice of performance constraints: In terms of performance constraints, we stick to the
choice of the accuracy ACC, which is only allowed to differ by some percentage of the
optimal accuracy ACCopt: obtained when training without fairness constraints (cf.
Strotherm & Hammer, 2023; Zafar et al., 2017b). More precisely, we require
ACCð�Þ � ð1� kÞACCopt: or, equivalently formulated in standard form:

. We require C1ð�Þ :¼ ACCð�Þ � ð1� kÞACCopt: � 0 to hold (i.e., K̂ ¼ 1 in Eq. (4.8)).
Hereby, the hyperparameter k 2 ½0; 1� regulates how much the accuracy ACCð�Þ is
allowed to differ from the optimal accuracy ACCopt: received, e.g., by another baseline
method (constraint index “ACC”).

By that, it indirectly regulates the fairness as well, as the more the accuracy is allowed to
differ from the optimal accuracy, the larger the feasible subspace of X gets and by that, the
more the fairness as the loss in the objective can be optimized.

Algorithmic choices Next to the choices of loss function and constraints, the
final methods also differ in dependence of what algorithmic choices are made, e.g.,
what optimization algorithm as well as what barrier or penalty function p is used (cf.
Eq. (4.9)).

One question to answer when choosing an optimization algorithm is whether the
considered objective of the OP is (continuously) differentiable. In the setting of ML, the
objective clearly depends on the model’s prediction Ŷ ¼ f cðX;�Þ or more precisely, on
yðtiÞ ¼ f cðrðtiÞ;�Þ for all i ¼ 1;…; nc. However, in view of the ensemble classifier’s
definition (cf. Eq. (3.4)), f c is not differentiable with respect to �.

Therefore, in dependence on the fact whether we chose a differentiable (db) or non-
differentiable (ndb) optimization algorithm, we need to approximate the model:

. If we want to use a gradient-based optimization technique, we make Ŷ ¼ f cðX; �Þ
differentiable by approximating each indicator function 1fv>0g by the sigmoid function

sgdbðvÞ ¼ ð1þ exp�bvÞ�1 with hyperparameter b 2 ½0;1Þ (optimization index “db”).
Replacing the ensemble classifier’s prediction f cðrðtiÞ;�Þ (cf. Eq. (3.4)) by

f̂ cðrðtiÞ;�Þ :¼ sgdb
Xdc

j¼1
sgdbðrjðtiÞ � hjÞ � T

� �
for all i ¼ 1;…; nc yields a differentiable approximation of the model Ŷ . Hereby, we
replace the threshold 1 of the exact ensemble classifier f c with a hyperparameter
T 2 ½0; 1� to handle the insecurity of the sigmoid function around zero.

. If we want to use a non gradient-based optimization technique, we do not make any
changes (optimization index “ndb”).

For more details on that, we refer to our previous work Strotherm & Hammer (2023).
Depending on what optimization algorithm is used, different (differentiable or non-
differentiable) barrier or penalty functions p can be used. In this work, we make use of
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. the barrier function pðtÞ :¼ � logðtÞ (barrier function index “log”) and

. the penalty function pðtÞ :¼ maxf0;�tg (penalty function index “max”).

Explicit methods Finally, after having presented all possible choices, we obtain the
following explicit methods using the following nomenclature:

loss index+[constraint index–optimization index–barrier/penalty function index].
Each resulting fairness-enhancing method comes with a corresponding baseline method to
which it will be compared in the evaluation:

. the fairness-enhancing TFPR+COV-db-log-method with corresponding baseline
TFPR-db-method,

. the fairness-enhancing TFPR+COV-ndb-log- and TFPR+COV-ndb-max-method with
corresponding baseline TFPR-ndb-method,

. the fairness-enhancing ACC+COV-db-log-method with corresponding baseline ACC-
db-method,

. the fairness-enhancing ACC+COV-ndb-log- and ACC+COV-ndb-max-method with
corresponding baseline ACC-ndb-method,

. the fairness-enhancing COV+ACC-ndb-log- and COV+ACC-ndb-max-method also
with corresponding baseline ACC-ndb-method and

. the fairness-enhancing DI+ACC-ndb-log- and DI+ACC-ndb-max-method also with
corresponding baseline ACC-ndb-method.

The first two notes refer to the fairness-enhancing methods where performance is
optimized under fairness constraints and the last four notes refer to the fairness-enhancing
methods where fairness is optimized under performance constraints.

Experimental results and analysis
Based on the pressure measurements in the Hanoi WDS and the pressure residuals we
obtain from these measurements by making use of the virtual sensors (cf. subsection
“Application domain and data set”), we test all methods introduced in subsections
“Leakage detection instantiations” (H-method) and “Fair leakage detection instantiations
in practice”. Afterwards, we will test the best performing method on the data associated
with the more complex and more realistic L-Town WDS.

Training and testing setup: To test the considered methods, a model Ŷ is trained
per method and per leakage diameter d on training data (40% of the overall data)
and evaluated on test data (60% of the overall data).16 For the training, the different
OPs presented in subsection “Methodology of fairness-enhancing leakage detection” are
solved using the BFGS algorithm (cf. Nocedal & Wright, 2006) in case of a differentiable
OP and the Downhill-Simplex-Search algorithm, also known as the Nelder-Mead
algorithm, (cf. Gao & Han, 2012) in case of a non-differentiable OP in order to find the
optimal parameter �opt: 2 X of the leakage detection model Ŷ ¼ f cðX;�opt:Þ.

The implementation of all methods and all our results can be found on GitHub (https://
github.com/jstrotherm/FairnessInWDSs_extended).

16 Note that since for the fairness evalua-
tion, enough data from all different
groups is required, we choose a com-
parably high percentage of the data for
testing.
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Hanoi
Initial parameters Optimization algorithms require an initial start parameter. For the
experiments on the Hanoi WDS, we use the hyperparameter �opt: 2 X found for the
H-method (cf. subsection “Methodology of leakage detection”) as an initial parameter
�0 2 X for the remaining optimization-based methods (cf. subsection “Methodology of
fairness-enhancing leakage detection”).

Hyperparameters While the parameters �opt: 2 X are now outputs of these optimiza-
tion-based methods, these are subordinate to other hyperparameters. In Table 4, an
overview of these hyperparameters are displayed per method (and if required, per diameter
d). We choose suitable hyperparameters l; b 2 ½0;1Þ and T 2 ½0; 1� and keep them fixed
afterwards. In contrast, the fairness-hyperparameters c 2 ½0;1Þ or k 2 ½0; 1�, i.e., the
hyperparameters that regulate the fairness directly or indirectly, respectively, are changed
to obtain different score combinations of performance, measured by the accuracy score
ACC, and fairness, measured by the disparate impact or equal opportunity score DI or EO,
respectively. We do so by starting with a hyperparameter c or k that causes perfect fairness,
i.e., a disparate impact score of 1.0, whenever possible and in- or decrease the
hyperparameter by 0.01 until the disparate impact score of the resulting fairness-enhanced
model achieves an equal or worse disparate impact score than its corresponding baseline
method, respectively (cf. paragraph “Explicit methods” in subsection “Fair leakage
detection instantiations” or Table 4 for the corresponding baseline method per fairness-
enhancing method).

Results With these settings in mind, we obtain the following results. As we in total test
five baseline methods (the H-method and the ones proposed in subsection “Fair leakage
detection instantiations”) and 10 fairness-enhancing methods (cf. subsection “Fair leakage
detection instantiations”), and by that, many methods, we only present the key findings in
this section and further detailed findings regarding the comparison of all these methods in
Appendix B.

Moreover, for a better overview of the results, we divide the ten fairness-enhancing
methods into four subcategories: The TFPR-methods including all methods with loss
index “TFPR”, and analogously the ACC-methods, the COV-methods and the DI-
methods.

In some of the results, these methods are represented together with their corresponding
baseline methods. Note that two methods from the same subcategory can have different
baseline methods as corresponding baseline methods (cf. paragraph “Explicit methods” in
subsection “Fair leakage detection instantiations” or Table 4).

Increasing fairness: In Fig. 5, we see the performance and fairness of some exemplary
trained ensemble classifiers measured in accuracy and disparate impact score, respectively.
For the fairness-enhancing methods, testing different hyperparameters c or k cause error
bars for these methods. The height of the bars with error bars corresponds to the mean
accuracy and disparate impact score achieved by each method over all hyperparameter
values tested. The error bars themselves reach from the lowest to the largest score of the
two scores considered.
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We see that the fairness-enhancing methods on average increase fairness while on
average decrease accuracy compared to their corresponding baseline methods. However,
the average increase in fairness is larger than the average decrease in accuracy. For details
regarding different diameters d, the score ranges and the other methods, we refer to
Appendix B. Based on these, one can say that fairness and overall performance are
mutually dependent to about the same extent.

In addition to that, Fig. 6 shows the performance and indirectly, also the fairness of
some exemplary trained ensemble classifiers measured by the TPR per group. The height
of the bars and the range of the error bars behave analogously to Fig. 5.

In view of the definition of the equal opportunity score (cf. definition 2.15) and due to
the fact that this score is equivalent to the disparat impact score in our domain of

Table 4 Overview of the used hyperparameters per method and possibly per diameter d. The “b”
indicates baseline methods that aim at optimizing general performance without fairness considerations.
For more details on these hyperparameters, see subsection “Fair leakage detection instations”.

Method c 2 ½0;1Þ k 2 ½0; 1� l (d ¼5, 10, 15) b T

TFPR-db (b) – – – 100 0.8

TFPR+COV-db-log ✓ – 0.10 0.20 0.20 100 0.8

TFPR-ndb (b) – – – – –

TFPR+COV-ndb-log ✓ – 0.20 0.25 0.25 – –

TFPR+COV-ndb-max ✓ – 100 – –

ACC-db (b) – – – 100 0.8

ACC+COV-db-log ✓ – 0.15 0.05 0.05 100 0.8

ACC-ndb (b) – – – – –

ACC+COV-ndb-log ✓ – 0.2 0.3 0.05 – –

ACC+COV-ndb-max ✓ – 100 – –

COV+ACC-ndb-log – ✓ 0.01 0.01 0.01 – –

COV+ACC-ndb-max – ✓ 100 – –

DI+ACC-ndb-log – ✓ 0.05 0.025 0.04 – –

DI+ACC-ndb-max – ✓ 100 – –

Figure 5 Accuracy and disparate impact score per method and leakage diameter in the Hanoi-WDS as well as for different hyperparameters c
or k. Full-size DOI: 10.7717/peerj-cs.2317/fig-5
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application (cf. lemma 3.1 and corollary 3.2), in our context, the more similar the TPRs per
group are, the fairer a method is. This is what we observe in Fig. 6 (and Fig. B.2) when
comparing the TPRs among groups for the fairness-enhancing methods to the TPRs
among groups for their corresponding baseline methods. Even more, Fig. 6 (and Fig. B.2)
show(s) that the increase in fairness that we observe in Fig. 5 (and Fig. B.1) on average is
not only obtained by decreasing the performance of the (in the corresponding baseline
method) best-performing group but also by increasing the performance of the (in the
corresponding baseline method) worst-performing group. By some methods, even all
TPRs per group are increased on average.

The coherence of fairness and overall performance, and non-optimality:While Figs. 5 and
6 only hint at the relationship between fairness and overall performance, measured in
disparate impact and accuracy score, respectively, a more detailed visualization of how
fairness is related to the overall performance of a model can be found in Fig. 7. For each
tested hyperparameter c or k, respectively, depending on what fairness-enhancing method
was used, the obtained score combinations, i.e., the accuracy and the disparate impact
score, are visualized for some exemplary trained ensemble classifiers.

The characteristic curve that can be observed in most of all sub-images is called the
pareto-front, visualizing that the increase in fairness is accompanied by the reduction in
accuracy score and vice versa. Note that the non-optimal solutions apart from the pareto-
front in Fig. 7 and also later on, the local jumps recognized in Fig. 8, can be explained by
the non-convexity of the objective functions. Because of that, the found solutions
�opt: 2 X strongly depend on the initialized parameter�0 2 X and might not correspond

to the global optimum.
Nevertheless, by most fairness-enhancing methods, a desired disparate impact score of

about 0.8 can be achieved by a decrease of accuracy by approximately 0.03–0.06 points
below the optimal accuracy obtained by the corresponding baseline methods (depending
on the specific method used). Hereby, both fairness and overall performance can be
influenced by the fairness-hyperparameters c or k, respectively. Deciding which choice of
fairness-hyperparameter is optimal and by that, deciding on the trade-off between fairness
and overall performance, is a difficult task that depends on the extent of the decisions of

Figure 6 TPR per method, group and leakage diameter in the Hanoi-WDS as well as for different hyperparameters c or k.
Full-size DOI: 10.7717/peerj-cs.2317/fig-6

Strotherm et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2317 31/41

http://dx.doi.org/10.7717/peerj-cs.2317/supp-1
http://dx.doi.org/10.7717/peerj-cs.2317/supp-1
http://dx.doi.org/10.7717/peerj-cs.2317/supp-1
http://dx.doi.org/10.7717/peerj-cs.2317/fig-6
http://dx.doi.org/10.7717/peerj-cs.2317
https://peerj.com/computer-science/


the underlying model as well as legal requirements. Regarding legal requirements, by not
using the sensitive features for the decision making of the algorithms, the methods
presented can satisfy the legal definition of disparate treatment and disparate impact
(depending on the hyperparameter chosen) simultaneously.

Another observation is that the largest accuracies of the fairness-enhancing methods are
usually approximately as good as the accuracy of their corresponding baseline methods
while achieving equal or better fairness results. In the opposite direction, perfect fairness of
DI ¼ 1:0 can be achieved at a cost of the worst possible accuracy of ACC ¼ 0:5.
Depending on the method, the jump in disparate impact and accuracy score is rather
abrupt or more fine-grained when reaching this extreme of ðDI;ACCÞ ¼ ð1:0; 0:5Þ:
Especially the COV- and the DI-methods relying on the optimization of fairness while
constraining the accuracy using the hyperparameter k allow the latter, because the
accuracy constraint is less sensitive than the covariance constraints, controlled by the
hyperparameter c.17

However, also some of the TFPR- and the ACC-methods relying on the optimization of
performance while constraining the fairness using the hyperparameter c allow fine-grained
variations in both scores. This motivates us to investigate the different methods also within
the chosen subcategories. We do so in Appendix B.

Here, we find that the DI+ACC-ndb-max-method provides the best results while also
providing the benefit of only requiring a few hyperparameters which are easy to choose.
This finding makes the DI+ACC-ndb-max-method the best candidate to be tested on a
more complicated and by that, more realistic, WDS, as we will do in subsection “L-town”.
However, before we do so, we investigate more the relation between the performance and
fairness scores and the fairness-hyperparameters c and k.

The influence of the fairness-hyperparameters on fairness and overall performance: In
Fig. 8, for the best-performing method of the TFPR-methods and the DI-methods—the
results for the ACC-methods look similar to the ones of the TFPR-methods and the results
for the COV-methods look similar to the ones of the DI-methods –, we show how the
hyperparameters are related to disparate impact and accuracy, but this time, also equal
opportunity score. Each of the three scores is plotted against the used hyperparameter of
the corresponding fairness-enhancing method tested.

For the TFPR+COV-ndb-log-method (and the ACC+COV-ndb-log-method), the
decrease of the hyperparameter c is accompanied by the improvement of the fairness
measures as well as the decrease of the performance measure. This can be explained as
follows: A high empirical covariance between a sensitive feature and the prediction of the
ensemble classifier means that the relative number of positive predictions within the
related group differs significantly from the relative number of positive predictions within a
group with small covariance. Thus, the more the covariance is constrained by the
hyperparameter c, the less such extreme differences in the relative number of positive
predictions across groups occur, leading to a better fairness score. In the case of disparate
impact, therefore, a (better) higher score at the expense of a (worse) lower overall
performance–compared to the overall performance that occurs in the unconstrained case
or for a looser constraint, that is a larger bound by c,–appears. In the case of equal

17 This is because too small choices of c
cause possible solutions with penalty or
barrier function(s) of infinity. In such
case, the trivial solution of only pre-
dicting leakages remains left, as in this
case, the covariance becomes zero (Eq.
(4.10) for f cðrðtiÞ;�Þ ¼ 1 for all
i ¼ 1;…; n) and by that, the penalty or
the barrier function(s) are not infinity.
Even more, in this case, all TPRs per
group and by that, the disparate impact
score, are equal to DI ¼ 1. Moreover, in
this case, the accuracy score is approxi-
mately ACC ¼ 0:5 as the data set used is
balanced with respect to the labels
(Application Domain and Data Set).
Therefore, in such cases, we end up with
the trivial combination of
ðDI;ACCÞ ¼ ð1:0; 0:5Þ. In contrast,
starting with a hyperparameter k that
causes the trivial solution and then
decreasing this hyperparameter to
enforce a larger accuracy until the
optimal accuracy is achieved (k ¼ 0)
easily allows optimizing fairness without
harming the accuracy constraint as it is
measured in units of the optimal accu-
racy, that - as proven by the corre-
sponding baseline method—exists.
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opportunity, however, a (better) lower score at the expense of a (worse) lower overall
performance appears.

In contrast, for the DI+ACC-ndb-max-method (and the COV+ACC-ndb-log-method),
the increase of the hyperparameter k is accompanied by the improvement of the fairness
measures as well as the decrease of the performance measure due to the fact that a higher
hyperparameter k allows a larger deviation of the optimal accuracy score. Thus, the feasible
search space is extended and a worse accuracy is penalized less or not at all, so that the
fairness score in the objective can be optimized to a larger extent.

Equivalence of disparate impact and equal opportunity:Moreover, especially to mention
is the observation of our theoretical results from lemma 3.1 and corollary 3.2 in practice:
For the coherence of equal opportunity score and the hyperparameters, the results in Fig. 8
equal the ones for disparate impact score in the same figure, but reflected along the
horizontal axis through the point (0, 0.5). This proves the equivalence of both fairness
measures as theoretically proven in lemma 3.1 and corollary 3.2. Nevertheless, note that
this is an application specific result and does not hold in general.

Finally, as another new contribution compared to our previous work Strotherm &
Hammer (2023), we will test the best-performing DI+ACC-ndb-max-method on a more

Figure 7 Coherence of accuracy and disparate impact score for the different fairness-enhancing methods and different leakage sizes in the
Hanoi-WDS, based on different hyperparameters c or k. The cross data points visualize the accuracy and disparate impact score of the corre-
sponding baselines methods (cf. paragraph “Explicit methods” in subsection “Fair leakage detection instantiations” or Table 4).

Full-size DOI: 10.7717/peerj-cs.2317/fig-7
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complex and by that realistic WDS, L-Town, using the more powerful GCN-virtual sensors
incorporated into the leakage detection method.

L-Town
Initial parameters While the dimension of the search space X ¼ R

d
þ is equal to d ¼ 3

(with d the number of sensors) in Hanoi, it extends to d ¼ 33 in L-Town (cf. subsection
“Application domain and data set”). By that, chances are high that the graph of the
objective function that needs to be optimized in each of the presented optimization-based
methods (cf. subsection “Methodology of fairness-enhancing leakage detection”) gets more
complex and exhibits more saddle points and local minima. This intuition turns out to be
true in practice, where the choice of the initial start parameters �0 2 X are crucial to the
success of the methods tested. Therefore, for the experiments on the L-TownWDS, we use
the hyperparameter �opt: 2 X found for the H-method (cf. subsection “Methodology of
leakage detection”) only as an initial parameter �0 2 X for the ACC-ndb-method, which
is the corresponding baseline method for the DI+ACC-ndb-max-method (paragraph
“Explicit methods” in subsection “Fair leakage detection instantiations” or Table 4) that

Figure 8 Coherence of accuracy, disparate impact, equal opportunity and the training hyperparameter for different fairness-enhancing
methods and different leakage sizes in the Hanoi-WDS. Full-size DOI: 10.7717/peerj-cs.2317/fig-8

Strotherm et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2317 34/41

http://dx.doi.org/10.7717/peerj-cs.2317/fig-8
http://dx.doi.org/10.7717/peerj-cs.2317
https://peerj.com/computer-science/


turned out to work best in the previous subsection “Hanoi”. Using the same initial
parameter for the DI+ACC-ndb-max-method itself did not provide optimal results (–the
pareto-front obtained here did not end up in the score combination of the corresponding
baseline method). Therefore, consecutively, we use the hyperparameter �opt: 2 X found
by the ACC-ndb-method as an initial parameter �0 2 X for the DI+ACC-ndb-max-
method.

Hyperparameters In view of Table 4, the ACC-ndb-method does not require the choice
of any hyperparameters. For the DI+ACC-ndb-max-method, we vary the fairness-
hyperparameter k 2 ½0; 1� and also choose l ¼ 100 as discussed in subsection “Hanoi”.

Results Similar to Fig. 7 for Hanoi, Fig. 9 shows the relation between the fairness and
the overall performance of the trained model applied to L-Town.

The observations for L-Town are similarly well compared to those on Hanoi. Although
while at first, it seems that there are less score combinations apart from, or more precisely,
below, the pareto-front compared to the results of the same method applied to Hanoi, some
score combinations above the seemingly optimal pareto-front may give rise to the
existence of an even better pareto-front, which is not observed completely due to non-
convexity of the OP.

Nevertheless, a desired disparate impact score of about 0.8 can be achieved by a decrease
of accuracy by approximately 0.1 points for d ¼ 1:9 and 0.01 points for d ¼ 2:3 below the
optimal accuracy obtained. For d ¼ 2:7, the leakages are already almost detected perfectly
and fair by the corresponding baseline ACC-ndb-method. Anyways, the fairness-
enhancing DI-ACC-ndb-max-method is better by approximately 0.015 points in disparate
impact score with barely no loss in accuracy.

Finally, similar to Fig. 8 for Hanoi, Fig. 10 shows how the hyperparameters are related to
accuracy, disparate impact and equal opportunity score in the setting of L-Town. The
results go hand in hand with the observations found for Hanoi, and also the equivalence
between the two fairness scores can be observed again.

Figure 9 Coherence of accuracy and disparate impact score for the DI+ACC-ndb-max-method and different leakage sizes in the L-Town-
WDS. The cross data points visualize the accuracy and disparate impact score of the corresponding baseline, the ACC-method.

Full-size DOI: 10.7717/peerj-cs.2317/fig-9
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Additionally, we see by the position of the accuracy curves and the slope of the fairness
curves that on the one hand, the better the model performs in general, measured by the
accuracy score, the fairer the model is initially, and on the other hand, the harder it is to
make the model even fairer.

CONCLUSION
In this work, we introduced the notion of group fairness in an application domain of high
social and ethical relevance, namely in the field of water distribution systems (WDSs). This
required the generalization of common group fairness definitions to a single or possibly
multiple non-binary sensitive feature(s). To do so, we gave a detailed introduction on the
concept of group fairness based on the mathematical concept of independence, derived
these generalized definitions from this concept and proved that they coincide with
common group fairness definitions in the case of a binary sensitive feature and a binary
classification task. We then investigated on the fairness issue in the area of leakage
detection within WDSs. We showed that standard approaches are not fair in the context of
different groups related to the locality within the network. As a remedy, we presented
multiple methods that increase fairness of the leakage detection model with respect to the
introduced fairness notion while satisfying the legal notions of disparate treatment and
disparate impact simultaneously. We tested these methods not only on the Hanoi WDS,
but also on the more complex and by that more realistic L-Town WDS. We empirically
demonstrated that fairness and overall performance of the model are interdependent and
the use of hyperparameters provides the ability to trade off fairness and overall
performance. However, this trade-off lies in the responsibility of the policy maker.

From a practical perspective, this trade-off can be achieved by testing different
hyperparameters during training, which requires multiple runs of training. Hereby, one
limitation of the proposed methods is their non-convexity and scalability to larger

Figure 10 Coherence of accuracy, disparate impact, equal opportunity and the training hyperparameter for the DI+ACC-ndb-max-method
and different leakage sizes in the L-Town-WDS. Full-size DOI: 10.7717/peerj-cs.2317/fig-10
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networks, which affects the training time. Future work could investigate this issue.
Moreover, the fact that increasing the fairness of a model comes with a loss in accuracy
leads to the question of whether this loss can be granted. While in leakage detection, in
practice, detecting as many leakages as possible without observing false positives is a
priority, there are further applications in the domain of WDS even more relevant for
fairness. So far, tackling these use-cases has failed due to the lack of necessary data, which
remains for future work. To conclude, the notion of fairness within the water domain is
still at its beginning and further work on other cases of application within this domain is
crucial.

LIST OF ABBREVIATIONS
ACC Accuracy

AI artificial intelligence

DI disparate impact

DP demographic parity

EO equal opportunity

EOs equalized odds

EU European Union

FPR false positive rate

GCN graph convolutional network

iff if and only if

ML machine learning

OP optimization problem

TNR true negative rate

TPR true positive rate

WDS water distribution system
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