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ABSTRACT
In various fields, including medical science, datasets characterized by uncertainty are
generated. Conventional clustering algorithms, designed for deterministic data, often
prove inadequate when applied to uncertain data, posing significant challenges.
Recent advancements have introduced clustering algorithms based on a possible
world model, specifically designed to handle uncertainty, showing promising
outcomes. However, these algorithms face two primary issues. First, they treat all
possible worlds equally, neglecting the relative importance of each world. Second,
they employ time-consuming and inefficient post-processing techniques for world
selection. This research aims to create clusters of observed symptoms in patients,
enabling the exploration of intricate relationships between symptoms. However, the
symptoms dataset presents unique challenges, as it entails uncertainty and exhibits
overlapping symptoms across multiple diseases, rendering the formation of mutually
exclusive clusters impractical. Conventional similarity measures, assuming mutually
exclusive clusters, fail to address these challenges effectively. Furthermore, the
categorical nature of the symptoms dataset further complicates the analysis, as most
similarity measures are optimized for numerical datasets. To overcome these
scientific obstacles, this research proposes an innovative clustering algorithm that
considers the precise weight of each symptom in every disease, facilitating the
generation of overlapping clusters that accurately depict the associations between
symptoms in the context of various diseases.
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INTRODUCTION
Advancements in technology have led to a significant increase in data generation across
various fields, including medical science, wireless sensor networks (WSN), data
integration, and information extraction (Sharma & Seal, 2021a). Clustering techniques
have found widespread application in diverse domains such as economics, healthcare, and
science, enabling the extraction of actionable knowledge (Saxena et al., 2017). However,
the effectiveness of conventional clustering algorithms is hindered when faced with
uncertain data, which is characterized by its inherently random nature (Liu et al., 2021).
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While different modeling and querying techniques have been developed to handle
uncertain data, clustering techniques have yet to reach their full potential in effectively
addressing uncertainty (Liu et al., 2019). Among the clustering algorithms proposed for
uncertain data, those based on the possible world model have shown promising outcomes.
However, two key challenges persist with these algorithms. Firstly, they assign equal weight
to all possible worlds, including the marginal worlds, resulting in the equal treatment of
less important records. Secondly, the selection of true worlds necessitates the use of post-
heuristic techniques, which can be time-consuming and inefficient (Liu et al., 2019;
Sharma & Seal, 2021a).

In addition, clustering techniques have proven valuable in uncovering structural
patterns within medical datasets. Notably, researchers have focused on clustering
symptoms, as demonstrated by Baden et al. (2020) who investigated the clustering of
symptoms such as pain, fatigue, and depression in survivors of prostate cancer. Similarly,
other studies have examined symptom clustering in the context of depression (Maglanoc
et al., 2019). Clustering symptoms into specific groups reveals strong relationships between
them, offering valuable insights into diseases and assisting in the development of treatment
strategies (Yifan et al., 2020). However, many medical datasets inherently contain
overlapping information (Khanmohammadi, Adibeig & Shanehbandy, 2017). For instance,
certain symptoms, such as poor muscle tone, may be shared among different diseases like
hypothyroidism and Pompe disease. Additionally, patients may experience multiple
coexisting conditions, such as diabetes and hypertension, further complicating the
clustering process (Brancati et al., 2019). Consequently, there has been a growing interest
in developing overlapping clustering techniques. Nonetheless, the presence of overlapping
symptoms across multiple diseases introduces uncertainty. Moreover, traditional similarity
measures, such as geometric distances used in clustering algorithms, struggle to effectively
capture and cluster overlapping information (Sharma & Seal, 2021a). Geometric distance-
based similarity measures are unable to fully capture the relationship between uncertain
data and their distribution when extensive overlaps occur (Sharma & Seal, 2021b).
Furthermore, the primary objective of similarity measures is to group points with the
highest similarity into mutually exclusive clusters. However, when symptoms overlap
across multiple diseases, they cannot be unequivocally assigned to a specific disease cluster.
As a result, the existing clustering algorithms for uncertain data fail to generate
overlapping clusters (Gates et al., 2019).

Categorical symptom datasets pose unique challenges in clustering analysis. Effective
clustering techniques heavily rely on suitable proximity measures for computing (dis)
similarity between data objects. However, applying similarity measures designed for
numerical data to categorical datasets often results in suboptimal outcomes. Studies have
underscored the limitations of traditional measures and emphasized the importance of
tailored similarity metrics to address the specific challenges of clustering categorical data. It
is evident that traditional similarity measures, predominantly designed for numerical
datasets, may inadequately capture the underlying relationships and similarities within
categorical symptom data.
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This research addresses the challenges of clustering uncertain data, particularly in the
context of medical datasets. Traditional clustering algorithms designed for certain data
struggle to handle uncertainty effectively. Existing techniques for uncertain data show
limited efficiency in producing optimal results. Overlapping symptoms in medical datasets
further complicate the clustering process, as traditional similarity measures fail to capture
and cluster this overlapping information accurately. This research aims to advance the
understanding of clustering uncertain data and improve the accuracy of clustering results
in medical datasets.

PRELIMINARIES
Possible world model
Machine learning algorithms like PwAdaBoost handle uncertain data using the possible
world model (Liu, Zhang & Zhang, 2019), employed in various algorithms such as RPC
and outlier-robust multi-view clustering (Liu et al., 2021; Sharma & Seal, 2021a). These
algorithms assign weights to probability values to manage uncertain data complexities.
Further research is needed to enhance this modeling approach.

To understand the possible world model, consider UD as an uncertain dataset with m
attributes. Each attribute, denoted as Aij, represents an uncertain numerical or categorical
value for the j-th object. Uncertain numerical attributes are modeled using a probability
density function f ðxÞ in the interval ½Al

ij;A
r
ij�, satisfying conditions (Liu, Zhang & Zhang,

2019):

f ðxÞ � 0 8x 2 ½Al
ij;A

r
ij�;Z Ar

ij

Al
ij

f ðxÞ; dx ¼ 1: (1)

For uncertain categorical datasets, Aij is modeled as a random variable in the discrete
domain using a probability mass function p, with possible values dom ¼ fm1; m2; . . . ; mng,
satisfying (Liu, Zhang & Zhang, 2019):

PðAij ¼ mkÞ ¼ pk; 1 � k � n;Xn
k¼1

Pk ¼ 1 for 1 � k � n: (2)

The uncertain dataset UD ¼ fx1; x2; . . . ; xng generates a possible world set
pw ¼ fx01; x02; x03; . . . ; x0Ng, composed of all possible instances from UD. The sum of

probability values of all possible worlds is 1 (Liu, Zhang & Zhang, 2019):

XN
v¼1

pðwvÞ ¼ 1: (3)

The possible world set is generated based on a uniform probability distribution (Liu,
Zhang & Zhang, 2019).
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A MayBMS repair key
The MayBMS Probabilistic database management system incorporates the Repair Key
operator to generate possible worlds within the probabilistic framework (Bekkers, 2022).
This operator assigns a probability value to each record based on a uniform probability
distribution if weights are not provided. For n records with the same identifier, the
operator assigns a probability of 1=n to each record (Bekkers, 2022).

In the context of the disease migraine, three symptoms are considered, each with equal
probability values indicating the weight of each symptom in the disease. Each record,
denoted as Si, is associated with a probability value pðSiÞ. The disease-symptoms
information is represented by a discrete set S1; S2; . . . ; Si, consisting of m 2 N possible
worlds. It is crucial to ensure that the sum of probability values assigned to all records is at
most one, aligning with the probabilistic framework’s requirements (Züfle, 2021).

Xm
i¼1

pðsiÞ � 1: (4)

The probability distribution of symptoms for migraine, calculated using the MayBMS
Repair Key operator, is presented in Table 1.

LITERATURE REVIEW
Researchers are developing novel clustering algorithms, specifically partition-based,
density-based, and possible world-based, to effectively handle the challenges posed by
uncertain data (Liu et al., 2021). In the realm of partition-based algorithms, the K-means
algorithm has been extended to introduce UK-means, specifically designed to handle
uncertain data (Chau et al., 2006; Li et al., 2020). While UK-means generates spherical
clusters, it lacks the ability to produce clusters of arbitrary shapes (Liao & Liu, 2016). To
address this limitation, researchers optimized UK-means by introducing CK-means, which
utilizes the moment of inertia of rigid bodies (Lee, Kao & Cheng, 2007). Additionally, a
modification called DUK-means was developed to enable UK-means to operate in
distributed network environments (Zhou et al., 2018). Another extension, UK-medoids,
incorporates uncertain distances into the K-medoids algorithm (Gullo, Ponti & Tagarelli,
2008).

Density-based clustering algorithms offer an alternative approach. Notably, the
FDBSCAN algorithm modifies the traditional density-based clustering method, DBSCAN
(Kriegel & Pfeifle, 2005a). In FDBSCAN, the distance distribution function serves as a
similarity measure. Similarly, the FOPTICS algorithm extends clustering for uncertain

Table 1 Probability distribution of symptoms for migraine.

Symptom Probability

Nausea pðS1Þ ¼ 0:333

Severe pain around the left eye pðS2Þ ¼ 0:333

Headache pðS3Þ ¼ 0:333
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data by leveraging the OPTICS algorithm and a probabilistic definition (Kriegel & Pfeifle,
2005b). However, Zhang, Liu & Zhang (2017) identified drawbacks in both FDBSCAN and
FOPTICS, including the loss of uncertain information, high time complexity, and non-
adaptive thresholds. To overcome the limitations arising from the unrealistic independent
distance assumption, researchers have explored possible world model-based algorithms as
an alternative to partition-based and density-based approaches. In a study by Volk et al.
(2009), an algorithm conducts clustering independently on each possible world and
subsequently integrates the clustering results into a final outcome. Similarly, Züfle et al.
(2014) adopts a similar strategy, performing clustering on individual possible worlds and
selecting the representative clustering result as the final outcome. In a different work, Liu,
Zhang & Zhang (2018) introduced an algorithm that learns a consensus affinity matrix for
clustering uncertain data by constructing independent affinity matrices for each possible
world. By leveraging the consistency principle, the authors aim to maximize the benefits of
clustering uncertain data. However, this approach lacks support for updating the affinity
matrix of each possible world, resulting in a diminished capacity for consistency learning
(Liu et al., 2019). Consequently, the efficiency of the consistency principle is compromised.
Furthermore, the marginal possible worlds pose challenges as they violate the learning
principle and detrimentally impact the results by being treated equally. To mitigate this
issue, the authors in Liu et al. (2019) propose a post-processing heuristic technique that
selectively retains true worlds while filtering out marginal possible worlds due to their
limited representational capability. Nevertheless, criticisms from research articles (Sharma
& Seal, 2021a; Li et al., 2021) highlight concerns regarding the time-consuming and
inefficient nature of the proposed post-processing heuristic technique, which could
compromise the effectiveness of the consistency principle and the overall performance of
the clustering process.

Furthermore, traditional clustering techniques like K-means have limitations due to
their exclusive assignment of objects to single clusters. Overlapping clustering algorithms
have been proposed as alternatives. One key algorithm is the Overlapping K-means
(OKM) algorithm, which extends the conventional K-means algorithm (Cleuziou, 2007).
Numerous OKM extensions tackle various facets of overlapping clustering, including
OKMED, WOKM, KOKM/KOKMf, and parametrized OKM methods
(Khanmohammadi, Adibeig & Shanehbandy, 2017). However, KHM-OKM can struggle
with complex overlapping patterns and may perform poorly if initialization fails to identify
representative cluster centers. The Fuzzy C-Means (FCM) algorithm assigns objects to
clusters based on membership values between 0 and 1 (Bezdek, Ehrlich & Full, 1984).
However, FCM is unsuitable for clustering overlapping symptoms in our dataset because it
assumes continuous data, struggles with categorical data, and relies on Euclidean distance.
It fails to account for uncertainties and interactions in overlapping symptoms, making it
inadequate for capturing complex relationships across multiple diseases. The algorithm
discussed in Askari (2021) revises the traditional FCM algorithm by using adaptive
exponential functions to mitigate noise and outliers and modifies constraints to prevent
large clusters from attracting the centers of smaller clusters. However, it is not suitable for
clustering overlapping symptoms as it does not address the complexities of overlapping
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symptoms and inherent uncertainty in medical diagnosis. Similarly, the method proposed
by Yu et al. (2020), “An active three-way clustering method via low-rank matrices for
multi-view data,” enhances clustering accuracy through low-rank matrix representations
and active learning to refine clusters iteratively. Despite its advancements, this approach is
also not suitable for clustering overlapping symptoms in medical diagnosis because it
focuses on high-dimensional multi-view data and does not adequately address the inherent
uncertainties and categorical nature of overlapping symptoms.

Clustering algorithms have evolved to meet specific domain needs. While many
similarity measures exist for numeric data (Chai et al., 2021;Oyewole & Thopil, 2023; Amer
& Abdalla, 2020), few cater to categorical data (Kar, Mishra & Mohanty, 2023), posing a
challenge for datasets containing symptom names (Šulc & Řezanková, 2019; Dinh &
Huynh, 2020). Traditional measures, grouping data by proximity, are unsuitable for
overlapping symptom clusters (Berbague et al., 2021). Numeric similarity measures like
Euclidean and Manhattan distances are inadequate for nominal categorical data (Kar,
Mishra & Mohanty, 2023; Šulc & Řezanková, 2019; Dinh & Huynh, 2020), and may fail to
capture correlations among data objects with the same probability distribution (Sharma &
Seal, 2021a). Hamming distance is a common similarity measure for categorical data
(Esposito et al., 2000), but measures like Jaccard, Sokal–Michener, and Grower–Legendre
are limited for nominal data without inherent ordering (Mumtaz & Giese, 2020).
Frequency-based measures utilize attribute frequency distributions to overcome these
limitations but may perform less efficiently on complex datasets with domain
dependencies (Mumtaz & Giese, 2020). Categorical data similarity measurement is more
complex than numeric data due to its qualitative nature (Han, Pei & Kamber, 2012). New
probability-based measures are needed for handling uncertain probabilistic data.
Traditional numeric data distance functions are unsuitable for categorical data,
highlighting the necessity for specialized approaches. This need is addressed in the work of
Bekkers, which discusses leveraging probabilistic databases for modeling and simulating
infectious diseases (Bekkers, 2022).

In conclusion, while significant advancements have been made in clustering algorithms
to handle uncertain data, challenges remain in effectively clustering overlapping
symptoms, particularly in medical diagnosis. The proposed approach in this research aims
to fill this gap by introducing a novel clustering algorithm that considers the precise weight
of each symptom in every disease, facilitating the generation of overlapping clusters that
accurately represent symptom associations within the context of different diseases. This
innovative approach not only addresses the limitations of existing clustering algorithms
but also enhances the accuracy and reliability of disease diagnosis, ultimately contributing
to better patient outcomes and more effective treatment strategies.

MATERIALS AND METHODS
First, the raw dataset is pre-processed to ensure its suitability for analysis, as machine
learning algorithms typically require properly formatted data. Various pre-processing
techniques are employed to transform the raw data into the appropriate format. Next,
probability values are calculated to determine the significance of each symptom in relation
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to diseases. Bayesian network and naïve Bayes classifier are utilized to cluster the
symptoms by generating possible worlds based on the calculated probabilities. This
approach allows for a detailed analysis of the probabilistic relationships between
symptoms and diseases, identifying patterns and associations that can improve the
accuracy of disease diagnosis. The probability values calculated by our proposed technique
are compared with the probability values calculated by sampling algorithms through
absolute and relative errors. The quality of the clusters generated by the proposed
technique is compared to those generated by Fuzzy C-Means. This methodology is visually
represented in Fig. 1.

Figure 1 The proposed methodology for clustering uncertain overlapping symptoms of multiple diseases. The process includes data collection,
pre-processing, symptom probability calculation, and clustering using Bayesian Network and Naïve Bayes Classifier. Comparative analysis of the
clusters generated by the proposed technique and Fuzzy C-Means is performed, utilizing absolute and relative error metrics for evaluation. Fig-
ure Components Sources: Methodology diagram template: Created using Draw.io. The pages and computer in “Pre-processing” shapes: Draw.io. The
graph in “Symptom Probability Calculation”: Draw.io. Relational database in “Bayesian Network”: Created using MS Paint. Absolute error, Relative
error chart: IconFinder. Magnifying glass over data points: Flaticon. Clusters Generation Based on Fuzzy C-Means: Flaticon. Icon source credits:
Flaticon.com. Full-size DOI: 10.7717/peerj-cs.2315/fig-1
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Dataset
We processed a dataset using preprocessing techniques to prepare raw data for our
algorithm, aiming to identify symptom relationships through symptom clusters. We
utilized a Kaggle dataset (Kaushil, 2020) consisting of two CSV files for training and testing
purposes. This dataset comprises 133 columns, mapping symptoms to 42 diseases with
binary associations.

Algorithm 1 Calculate probability of symptoms.

Require: Database with patient, disease, and symptom information

Ensure: Probability of Symptoms for each disease

1: function CalculateProbability Database

2: D Database

3: DdiseaseIDs  fd:DiseaseID j d 2 D:Diseaseg 8 Fetch disease IDs

4: DpatientIDs  fp:PatientID j p 2 D:Patient ^ 9d 2 D:Disease : d:DiseaseID 2 DdiseaseIDs^
p.DiseaseID ¼ d.DiseaseID} 8 Group patients by disease

5: DsymptomIDs  fs:SymptomID j s 2 D:Symptom ^ 9p 2 D:Patient : p:PatientID 2 DpatientIDs^
s.PatientID ¼ p.PatientID} 8 Fetch symptoms for each disease group

6: DsymptomCounts  fg 8 Count occurrence of each symptom in a disease

7: n lengthðDsymptomIDsÞ
8: N  n

9: DsymptomProbability  fg 8 Probability of each symptom in a disease

10: for i ¼ 1 to n do

11: c 1

12: for j ¼ iþ 1 to n do

13: if DsymptomIDs½i� ¼ DsymptomIDs½j� then
14: c cþ 1

15: DsymptomIDs½j�  �1
16: end if

17: end for

18: if DsymptomIDs½i� 6¼ �1 then

19: DsymptomCounts½DsymptomIDs½i��  c

20: end if

21: end for

22: for i ¼ 1 to N do

23: if DsymptomCounts½i� 6¼ �1 then

24: DsymptomProbability½i�  DsymptomCounts½i�
N

25: end if

26: end for

27: return DsymptomProbability

28: end function
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Calculating probability values
We employed the relative frequency approach to analyze symptom datasets, facilitating the
creation of overlapping clusters. This method calculates probability values of symptoms,
informing a clustering technique for identifying overlapping clusters (Fazzolari et al.,
2021). By applying this technique, we unveil meaningful relationships between symptoms.
To address data uncertainty, we propose an algorithm outlined in Algorithm 1. This
algorithm employs the relative frequency formula:

Sk;j ¼
nSk;j
Nd;j

: (5)

Here, Sk;j represents the relative frequency of the kth symptom in disease Dj, calculated
by dividing the number of occurrences of that symptom within the disease nSk;j by the total
number of symptoms Nd;j observed in patients diagnosed with disease Dj. This statistical
approach ensures robust estimation of symptom weights.

The integration of the relative frequency approach and the proposed algorithm enables
comprehensive analysis, yielding insights crucial for disease characterization, diagnosis,
and treatment strategies in medical research and clinical practice.

Conditional probability matrix
The conditional probability matrix (CPM) is a structured matrix that represents the
conditional probabilities between two discrete random variables, X and Y. Let P be the
probability function on the space D, where X takes values in f1; 2;…;mg and Y takes
values in f1; 2;…; ng.

The CPM, given in Eq. (6), is defined as follows (Staic, 2022):

b ¼ ðbtu;vÞ: (6)

Here, b ¼ ðbtu;vÞ represents the conditional probability. Each entry in the CPM
represents the conditional probability of Y being equal to t given that X is between u and v,
i.e.,

btu;v ¼ PðY ¼ tju<X � vÞ: (7)

The calculation of the conditional probability is given by the formula:

PðY ¼ tju <X � vÞ ¼ PðY ¼ t; u <X � vÞ
Pðu <X � vÞ (8)

where 1 � u< v � m and 1 � t � n.
Columns in the matrix correspond to the variable (X), while rows represent specific

states of the conditioning variable (Y). Each entry in the matrix reflects the conditional
probability of an event (X) occurring given that another event (Y) has already happened.
This organization allows for the analysis and understanding of the relationships between
variables. For instance, in the case of a symptom (S) conditioned by a disease (D), the CPM
will store the conditional probabilities, providing insights into the relationship between the
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disease and the symptom. Overall, the CPM serves as a valuable tool for quantifying and
investigating the conditional probabilities, facilitating the analysis and interpretation of the
relationships between variables.

CPM ¼
PðS1jD1Þ PðS2jD1Þ PðS3jD1Þ
PðS1jD2Þ PðS2jD2Þ PðS3jD2Þ
PðS1jD3Þ PðS2jD3Þ PðS3jD3Þ

2
4

3
5:

Example 1: The problem at hand involves determining the weights of different symptoms
in different diseases. To address this, we utilize the conditional probability
PðY ¼ tju � X � vÞ, where X represents symptoms (S) and Y represents diseases (D). In our
scenario, the set of all symptoms stored in the database is denoted as X : S! f1; 2; 3; 4; 5g.
Here, if X ¼ 1, it corresponds to the symptom headache, X ¼ 2 represents fever, and so on.
Similarly, the set of all diseases stored in the database is denoted as Y : D! f1; 2g, with the
convention that Y ¼ 1 corresponds to Dengue, and Y ¼ 2 corresponds to Typhoid. By
utilizing conditional probability, we can analyze the relationships between symptoms (X)
and diseases (Y) and estimate the weights of symptoms in different diseases as given in the
Table 2.

Bayesian network
A Bayesian network (BN) is a graphical model where nodes represent random variables,
and edges depict their relationships (Kyrimi et al., 2020). Each BN child node is associated
with a conditional probability table (CPT) specifying its distribution. For instance, in the
BN depicted in Fig. 2, the disease node serves as the parent node of the symptom node,
indicating a direct impact of disease on the symptom. Probabilistic reasoning is performed
by considering all the nodes, edges, and CPTs. The initial given probability values are
known as prior probabilities.

Inference within the BN is conducted using Eq. (10), which involves calculating
probabilities of diseases given specific symptoms, such as
Pðdisease ¼ Hepatitis B jHepatitis Cðsymptoms ¼ “itching”ÞÞ.

Table 2 Conditional probabilities of symptoms given diseases.

ðu; vÞ Probability

1 PðY ¼ 1ju � X � vÞ ¼ 0:4

2 PðY ¼ 1ju � X � vÞ ¼ 0:75

3 PðY ¼ 1ju � X � vÞ ¼ 0:9

4 PðY ¼ 1ju � X � vÞ ¼ 0:3

5 PðY ¼ 1ju � X � vÞ ¼ 0:9

1 PðY ¼ 2ju � X � vÞ ¼ 0:6

2 PðY ¼ 2ju � X � vÞ ¼ 0:25

3 PðY ¼ 2ju � X � vÞ ¼ 0:1

4 PðY ¼ 2ju � X � vÞ ¼ 0:7

5 PðY ¼ 2ju � X � vÞ ¼ 0:1
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The BN topology is represented as a set of vertices (V) and edges (E) (Trösser, de Givry
& Katsirelos, 2021).

BN ¼ hV ; Ei: (9)

Here, V represents the collection of all nodes, and E represents the set of directed edges
that indicate the logical relationships between nodes. For example, a directed edge hnj; nii
signifies that ni is the child node and nj is the parent node of ni, denoted as xðniÞ (Kitson
et al., 2023).

The joint probability distribution in the BN, considering a set of discrete nodes
V ¼ fn1; n2; . . . ; npg, is given by Eq. (10):

Pðni; . . . ; njÞ ¼
Yj
i¼1

PðnijxðniÞÞ: (10)

While Bayesian Networks are effective in managing uncertainty, determining the
conditional probability tables can be challenging and computationally demanding.
Furthermore, the size of the CPT grows exponentially as the number of parent nodes
increases (Bibartiu et al., 2024).

Figure 2 Bayesian network (BN). The “Disease” node acts as the parent node to the “Symptoms” node,
which contains all symptoms and their conditional probability tables (CPTs). The directed edge repre-
sents the influence of the disease on the symptoms. Figure components sources: Relational database in
“Bayesian Network”: Created using MS Paint. Full-size DOI: 10.7717/peerj-cs.2315/fig-2
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Probabilistic inferences
Probabilistic inference in a Bayesian network determines the posterior probability
distribution for nodes based on evidence from other nodes, allowing for belief updating
(Rouigueb et al., 2023). There are two main classes of algorithms: exact and approximate
methods (Spallitta et al., 2024).

Inference in simple tree structures can use local computations and message passing
(Wang, AmrilJaharadak & Xiao, 2020). However, when nodes are connected by multiple
paths, inference becomes more complex. Exact inference may become computationally
infeasible, requiring approximate inference algorithms. Both methods are NP-hard
(Behjati & Beigy, 2020).

Exact inference in chains in two node network
Suppose we aim to determine the causal effect of yellowing of eyes on hepatitis B. Given a
prior probability of yellowing of eyes, PðYellowing of Eyes ¼ TÞ ¼ 0:110145, and
conditional probabilities for hepatitis B based on the presence or absence of yellowing,
PðHepatitis B ¼ TjYellowing of Eyes ¼ TÞ ¼ 0:53 and PðHepatitis B ¼ Tj
Yellowing of Eyes ¼ FÞ ¼ 0:47, we proceed with the following reasoning diagnostic:

BelðYellowing of Eyes ¼ TÞ ¼ b� 0:05837685

BelðYellowing of Eyes ¼ FÞ ¼ b� 0:05176815

where b ¼ 1
0:05837685þ0:05176815, derived from the constraint that the sum of beliefs equals 1.

Thus, we update the beliefs as:

BelðYellowing of Eyes ¼ TÞ ¼ 0:05837685
0:05837685þ 0:05176815

¼ 0:53

BelðYellowing of Eyes ¼ FÞ ¼ 0:05176815
0:05837685þ 0:05176815

¼ 0:47

Proposed technique based on Bayesian network and naive Bayes
algorithm
In real-time medical scenarios, patients often experience multiple symptoms rather than
just a single symptom during their illness. Furthermore, diseases can cause multiple
symptoms, and many diseases share overlapping symptoms. Hence, it becomes crucial to
develop methods for obtaining probabilistic inferences of diseases based on symptoms. To
address this, we can utilize the Bayes theorem in a modified form (Korb & Nicholson,
2010):

PðDjSÞ ¼ PðSjDÞPðDÞ
PðSÞ : (11)

Here, the variable D represents the cluster variable, which corresponds to diseases,
while the variable S represents the symptom parameters or features, denoted as
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S ¼ S1; S2; S3; . . . ; Sn. By substituting S and expanding Eq. (11) using the Chain Rule, we
obtain (Chen et al., 2020):

PðDjS1; S2; S3; . . . ; SnÞ ¼ PðS1jDÞPðS2jDÞPðS3jDÞ . . . PðSnjDÞPðDÞ
PðS1ÞPðS2ÞPðS3Þ . . . PðSnÞ : (12)

For all diseases, the denominator remains the same. Therefore, the denominator can be
removed, and we can introduce proportionality (Hosein & Baboolal, 2022):

PðDjS1; S2; S3; . . . ; SnÞ � PðDÞ
Yn
i¼1
ðSijDÞ: (13)

In Eq. (13), the disease variable is multivariate, representing different disease clusters
with distinct sets of symptoms. To determine the maximum probability for a specific
disease cluster, we can calculate (Chen et al., 2020; Hosein & Baboolal, 2022):

argmax
D

PðDÞ
Yn
i¼1
ðSijDÞ

 !
: (14)

By employing Eq. (13), we can estimate the probabilities of different disease clusters
based on observed symptoms, enabling effective disease diagnosis and treatment decisions.

Example: 2 Consider the probability calculation for Hepatitis B and Hepatitis C. We
denote the diseases as D ¼ d1; d2, with d1 as Hepatitis B and d2 as Hepatitis C. Probability
values are Pðd1Þ ¼ 0:672464 and Pðd2Þ ¼ 0:327536. Symptom set: S ¼ s1; s2; s3; s4; s5,
where s1 (abdominal pain), s2 (dark urine), s3 (itching), s4 (fever), and s5 (fatigue).
Conditional probabilities are given as follows: Pðs1jd1Þ ¼ 0:116, Pðs2jd1Þ ¼ 0:880,
Pðs3jd1Þ ¼ 0:144, Pðs4jd1Þ ¼ 0:708, Pðs5jd1Þ ¼ 0:555, Pðs1jd2Þ ¼ 0:884, Pðs2jd2Þ ¼ 0:120,
Pðs3jd2Þ ¼ 0:856, Pðs4jd2Þ ¼ 0:292, Pðs5jd2Þ ¼ 0:445. Using the Naïve Bayes classifier, we
assume that the symptoms are conditionally independent given the disease.

Therefore, we can calculate the probabilities using the following formula given in Eq.
(13):

PðDjS1; S2; S3; . . . ; SnÞ � PðDÞ
Yn
i¼1
ðSijDÞ:

Now, let us recalculate the probabilities for Hepatitis B and Hepatitis C based on the
given symptoms:

PðD ¼ Hepatitis BjSabdominal pain; Sdark urine; Sitching; Sfever; SfatigueÞ
� ð0:672464Þ ð0:116� 0:880� 0:144� 0:708� 0:555Þ½ �
� 0:00388417182691

PðD ¼ Hepatitis CjSabdominal pain; Sdark urine; Sitching; Sfever; SfatigueÞ
� ð0:327536Þ ð0:884� 0:120� 0:856� 0:292� 0:445Þ½ �
� 0:003864641196796723
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Normalization
Normalization is crucial in probability theory to confine probabilities within the range of 0
to 1, representing event likelihood. This ensures that probabilities sum up to 1, forming a
valid probability distribution.

Normalization involves dividing each probability by the sum of all probabilities,
yielding the Eq. (15) (Li et al., 2022):

Normalized Probability ¼ ProbabilityP
Probabilities

: (15)

Here, Normalized Probability represents the normalized probability, and Probability is
the original probability of an event. The denominator,

P
Probabilities, signifies the sum of

all probability values.
Normalization is a fundamental technique for creating valid probability distributions,

enhancing result reliability, and facilitating interpretation across diverse fields, including
probability theory, machine learning, and statistics.

As an example, let us consider the normalization of probabilities for two diseases,
Hepatitis B and Hepatitis C:

Now, let us calculate the normalized probabilities for Hepatitis B and Hepatitis C:

Normalized Probability for Hepatitis B ¼ 0:00388417182691
0:00388417182691þ 0:003864641196796723

� 0:5013

Normalized Probability for Hepatitis C ¼ 0:003864641196796723
0:003864641196796723þ 0:00388417182691

� 0:4987

Output of the proposed technique
Following normalization, we observe that the probability for Hepatitis B is now
approximately 0.5013, while the probability for Hepatitis C is also around 0.4987. This
outcome aligns with expectations and ensures that the probabilities sum up to 1, reflecting
a valid and reliable probability distribution suitable for disease clustering or classification
tasks.

Using naive Bayes algorithms, the clusters will be created as shown in Fig. 3.
Figure 4 illustrates how different symptoms group together for multiple diseases. Each

color represents a different cluster of symptoms, indicating their association with specific
diseases.

Inference techniques for Bayesian networks
Rejection sampling
Rejection sampling is a fundamental technique used for computing conditional
probabilities in Bayesian networks by generating samples and rejecting those that do not
align with the given evidence (Kwisthout, 2018). A Bayesian network comprises a set of
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nodes fn1; n2; . . . ; njg, where each node ni is associated with a Conditional Probability
Table (CPT) denoted as PðnijxðniÞÞ, where xðniÞ represents the parents of ni.

During probabilistic inference, our primary goal is to determine the conditional
probability Pr½NqjNe� for specific random variables, where q represents the query variable
and e represents the evidence, with q 6¼ e. To achieve this, we generate X samples from the
joint distribution of the Bayesian Network, denoted as Pr½N1; . . . ;Nj�, represented by

fðnðiÞ1 ; . . . ; nðiÞj ÞgXi¼1. The probability is calculated using the following Eq. (10):

Pðni; . . . ; njÞ ¼
Yj
i¼1

PðnijxðniÞÞ:

To compute the probability for the query based on the given evidence, we utilize the
CPT as follows:

hðnq; neÞ ¼
PX
i¼1

1½nðiÞq ¼ nq� � 1½nðiÞe ¼ ne�
PX
i¼1
½nðiÞe ¼ ne�

: (16)

Figure 3 Symptom clusters for Hepatitis B and Hepatitis C using a naive Bayes algorithm, showing
the overlap and associations between symptoms based on conditional probabilities.

Full-size DOI: 10.7717/peerj-cs.2315/fig-3
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Here, ðnq; neÞ represent the possible outcomes for the random variables ðNq;NeÞ, where
nq and ne 2 f0; 1g for binary nodes. An approximation of the conditional probability is

given by:

Pr½Nq ¼ nqjNe ¼ ne� � hðnq; neÞ: (17)

When X is large, the above equation can be rewritten as:

lim
X!1

hðnq; neÞ ¼ Pr½Nq ¼ nqjNe ¼ ne�: (18)

Figure 4 Results of a clustering algorithm applied to a dataset of symptoms. Full-size DOI: 10.7717/peerj-cs.2315/fig-4
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Furthermore, the relationship between hðnq; neÞ and the number of samples can be
defined as:

hðnq; neÞ ¼ Jðnq; neÞ
JðneÞ : (19)

Here, Jðnq; neÞ represents the number of samples in which the random variables Nq and
Ne take the values nq and ne, respectively. JðneÞ denotes the number of samples in which

the random variable Ne takes the value ne. This relationship can be further expanded as:

hðnq; neÞ ¼ Jðnq; neÞ
X � X=JðneÞ : (20)

It is important to note the following relationship between conditional probabilities and
joint probabilities:

Pr½Nq ¼ nqjNe ¼ ne� ¼ Pr½Nq ¼ Nq;Ne ¼ ne�
Pr½Ne ¼ ne� : (21)

As X becomes sufficiently large, we approximate:

Pr½Nq ¼ Nq;Ne ¼ ne� � Jðnq; neÞ
X

(22)

and,

Pr½Ne ¼ ne� ¼ JðneÞ
X

: (23)

Consequently, we obtain:

Pr½Nq ¼ nqjNe ¼ ne� ¼ hðnq; neÞ: (24)

Samples that do not satisfy the condition nðiÞe 6¼ ne are rejected as they do not contribute
to either the numerator or the denominator of h. This rejection of samples that do not align
with the evidence is a key characteristic of rejection sampling.

Likelihood weighting
Let Nð�eÞ represent the set of all variables in the network except for Ne, given by

Nð�eÞ ¼ N1; . . . ;Nðe�1Þ;Nðeþ1Þ; . . . ;Nj. Similarly, let nðiÞð�eÞ represent the values of the

variables in Nð�eÞ for the ith sample, denoted as nðiÞð�eÞ ¼ ðnðiÞ1 ; . . . ; nðiÞðe�1Þ; n
ðiÞ
ðeþ1Þ; . . . ; n

ðiÞ
j Þ.

To perform likelihood weighting, we generate X samples from the Bayesian Network
BN. For each sample, we assign values to the nodes Ni based on their respective
Conditional Probability Tables (CPTs) (Yuan & Druzdzel, 2006). For example, if N1 is the
root node, we sample n1 from Pr½N1�, and then sample n2 from Pr½N2jN1 ¼ n1�, and so on.
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The probability is calculated using the following formula:

hðnq; neÞ ¼
PX
i¼1

1½nðiÞq ¼ nq� � Pr½Ne ¼ nejðxðNeÞÞðiÞ�
PX
i¼1

Pr½Ne ¼ nejðxðNeÞÞðiÞ�
: (25)

In this equation, ðnq; neÞ represents the possible outcomes for the random variables
ðNq;NeÞ. The numerator involves summing over the X samples, considering only the

samples where the value of nðiÞq matches with nq. The indicator function, denoted as

1½nðiÞq ¼ nq�, is a binary function that evaluates to 1 if Nq in the ith sample matches nq, and

0 otherwise. This ensures that we only consider the samples that are consistent with the
desired value of Nq.

For each sample, the numerator multiplies the indicator function by the conditional
probability Pr½Ne ¼ nejðxðNeÞÞðiÞ�. This conditional probability represents the likelihood
of the evidence variable Ne being equal to ne, given the values of its parents ðxðNeÞÞ in the
ith sample. This product captures the contribution of each sample that satisfies both the
value of Nq and Ne.

The denominator sums over all X samples and considers the conditional probabilities

Pr½Ne ¼ nejðxðNeÞÞðiÞ� for each sample. This sums up the likelihood of the evidence
variable Ne being equal to ne, given the values of its parents, across all samples.

Gibbs sampling
In a Bayesian network, Gibbs sampling is employed to generate X samples. The samples
are denoted as fðnðiÞ1 ; . . . ; nðiÞðe�1Þ; n

ðiÞ
ðeþ1Þ; . . . ; n

ðiÞ
j ÞgX . Each sample represents a

configuration where nðiÞj corresponds to the value of variable Nj in the ith sample. Gibbs
sampling proceeds by iteratively generating a new sample. To generate a new sample, we
assign a new value nðiþ1Þj to each variable Nj. This assignment is based on the conditional
probability distribution, conditioned on the remaining variables and evidence, which is
expressed as:

nðiþ1Þj  P njjnðiÞð�jÞ; e
� �

(26)

Here, nð�jÞ represents all variables except nj. The conditional probability PðnjjnðiÞð�jÞ; eÞ is
used to determine the probability of the new value nðiþ1Þj for variable Nj, given the values of
the other variables in nðiÞð�jÞ and any observed evidence e.

The probability distribution for each variable Nj, conditioned on the evidence e, can be
calculated using the equation (Bidyuk & Dechter, 2002):

PðnjjeÞ ¼ 1
X

XX
i¼1

Pðnjjnð�jÞÞ: (27)

In this Eq. (27), the probability Pðnjjnð�jÞÞ represents the probability of variable Nj

taking the value nj, given the values of the other variables in nð�jÞ. The sum over X samples
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ensures that we consider the distribution of variable Nj across all the generated samples,
with each sample contributing equally (1=X).

By iteratively updating the values of variables using conditional probabilities and
generating new samples, Gibbs sampling provides an approximation of the joint
probability distribution of the variables in the Bayesian network, allowing for probabilistic
inference.

Experimental setup
We implemented our clustering algorithm using Python 3.8 with libraries such as pandas,
numpy, matplotlib, networkx, pgmpy, and pyvis. Experiments were conducted on a
Windows 10 Pro system with an Intel Core i7-8550U CPU @ 1.80 GHz and 20 GB of
RAM.

The BayesianEstimator used a “BDeu” prior with an equivalent sample size of 10 on
normalized symptom data. Likelihood Weighting, Rejection Sampling, and Gibbs
Sampling were employed with sample sizes from 102:5 to 105 across 10 experiments per
size, typically converging within 300 iterations.

Evaluation metrics included absolute and relative error, and sampling time. Clustering
quality was assessed using completeness, homogeneity, v-measure, and purity, compared
with Fuzzy C-means clustering. Results were averaged over 1,000 random combinations of
symptoms.

The dataset from Kaggle (“Disease Prediction Using Machine Learning” by Kaushil268)
includes two CSV files for training and testing, each with 133 columns (132 symptoms and
1 prognosis), mapping symptoms to 42 diseases.

We visualized symptom clusters and their relationships to diseases using NetworkX and
Pyvis, with graph layout optimized by spring_layout.

RESULTS
Evaluation metrics
We aim to assess the accuracy of the calculated probability values obtained from the naive
Bayes method by employing two evaluation metrics: absolute and relative errors.

Absolute approximation error is a measure that quantifies the discrepancy between the
approximate probability values and the ones obtained using the naive Bayes method. It is
calculated as the absolute value of the difference between these two probabilities. For our
purposes, let us denote the naive Bayes-calculated probability as PðXjEÞ and the
approximate probability obtained through sampling algorithms as P̂ðXjEÞ. In an ideal
scenario, we expect the two calculated probability values to be closely approximated, which
can be expressed by the Eq. (28) (Dagum & Luby, 1997):

P̂ðXjEÞ � PðXjEÞ: (28)

Absolute error
To determine the accuracy of the naive Bayes-calculated probability, we consider the
absolute error, which ensures that the approximate probability falls within a certain
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tolerance level �. Specifically, if the absolute error jPðXjEÞ � P̂ðXjEÞj is less than or equal
to �, we can conclude that P̂ðXjEÞ lies within the interval ½PðXjEÞ � �; PðXjEÞ þ ��:

For PðXjEÞ; P̂ðXjEÞ 2 ½0; 1�: P̂ðXjEÞ is an approximation for PðXjEÞ with an absolute
error � �, if

jPðXjEÞ � P̂ðXjEÞj � � i:e:; P̂ðXjEÞ 2 ½PðXjEÞ � �; PðXjEÞ þ ��: (29)

Relative error
Moving on to the relative error, it measures the difference between the approximate
probability and the naive Bayes-calculated probability, divided by the naive Bayes-
calculated probability (Gogate & Dechter, 2012). By taking the absolute value of this
difference, we can assess the relative error. Similar to the absolute error, we aim to ensure

that the relative error is within a given threshold �. Consequently, if 1� P̂ XjEð Þ
PðXjEÞ

��� ��� is less than
or equal to �, we can infer that P̂ðXjEÞ falls within the range
½PðXjEÞð1� �Þ; PðXjEÞð1þ �Þ�:

P̂ðXjEÞ is an approximation for PðXjEÞ with a relative error � �, if

1� P̂ðXjEÞ
P XjEð Þ

����
���� � � i:e:; P̂ðXjEÞ 2 ½PðXjEÞð1� �Þ;P XjEð Þð1þ �Þ�: (30)

By utilizing these evaluation metrics, we can effectively assess the quality and accuracy
of the probability values obtained through the Naïve Bayes algorithm in comparison to
those derived from the sampling algorithms.

Results of evaluation metrics

The tabular data in Table 3 contains a comprehensive analysis of three prominent
sampling algorithms: Rejection Sampling (RS), Likelihood Weighting (LW), and Gibbs
Sampling (GS). These algorithms were utilized to measure the accuracy of probability

Table 3 Evaluation metrics for different sampling algorithms.

Sample
no.

Sample
size

Approx
prob (RS)

Abs
error
(RS)

Rel
error
(RS)

Time
(RS)

Approx
prob (LW)

Abs
error
(LW)

Rel error
(LW)

Time
(LW)

Approx
prob (GS)

Abs
error
(GS)

Rel
error
(GS)

Time
(GS)

0 316 0.532 0.032 0.060 10.142 0.510 0.010 0.020 5.348 1.000 0.500 0.500 66.977

1 599 0.494 0.006 0.012 10.136 0.500 0.000 0.000 5.189 1.000 0.500 0.500 67.288

2 1,136 0.495 0.005 0.011 10.249 0.460 0.040 0.087 5.038 1.000 0.500 0.500 66.912

3 2,154 0.501 0.001 0.002 10.375 0.490 0.010 0.020 5.279 1.000 0.500 0.500 73.071

4 4,084 0.503 0.003 0.006 10.366 0.490 0.010 0.020 5.304 1.000 0.500 0.500 72.065

5 7,742 0.500 0.000 0.001 10.538 0.495 0.005 0.011 5.546 1.000 0.500 0.500 76.089

6 14,677 0.499 0.001 0.002 10.263 0.505 0.005 0.010 5.364 1.000 0.500 0.500 79.412

7 27,825 0.500 0.000 0.001 10.612 0.495 0.005 0.010 5.489 1.000 0.500 0.500 85.376

8 52,749 0.499 0.001 0.002 10.962 0.500 0.000 0.000 5.578 1.000 0.500 0.500 91.602

9 100,000 0.497 0.003 0.006 11.151 0.495 0.005 0.010 5.663 1.000 0.500 0.500 98.376
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values calculated using the naive Bayes theorem. The evaluation involved comparing the
probability values obtained from the Naïve Bayes theorem with those generated by the
sampling algorithms, namely rejection sampling, likelihood weighting, and Gibbs
sampling. This comparison allowed us to assess how well the naive Bayes algorithm
estimates the true probabilities. The analysis was conducted using 10 different samples of
varying sizes, providing valuable insights into the effectiveness and reliability of the Naïve
Bayes theorem in estimating probabilities for the given dataset.

The pattern of calculated approximate probability values of 10 samples is shown in
Fig. 5. Delving into the assessment of absolute errors (Abs Error), the probability values
calculated using the Naïve Bayes algorithm exhibited varying degrees of absolute error
when compared to sampling methods, with both Rejection Sampling and Likelihood
Weighting demonstrating significantly lower errors compared to Gibbs Sampling.
Rejection Sampling consistently achieved absolute errors ranging from 0.001 to 0.032,
showcasing its ability to closely approximate the true probabilities. Similarly, Likelihood
Weighting displayed impressive accuracy, with absolute errors ranging from 0.000 to
0.040. In contrast, Gibbs Sampling consistently produced remarkably higher absolute
errors, all fixed at 0.500, indicating limitations in its ability to accurately approximate the
true probabilities. You can observe the absolute errors generated by the sampling
algorithms in Fig. 6.

Figure 5 Approximate probability values for different sampling algorithms. This figure shows the approximate probability values for Rejection
Sampling, LikelihoodWeighting, and Gibbs Sampling compared to the reference value across varying sample sizes. Descriptions: Rejection Sampling
(RS): Represented by blue squares with a dashed line. Likelihood Weighting (LW): Represented by green circles with a dotted line. Gibbs Sampling
(GS): Represented by cyan triangles with a dashed line. Reference value: Represented by a black dashed line.

Full-size DOI: 10.7717/peerj-cs.2315/fig-5
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Furthermore, analyzing the relative errors (Rel Error) in Fig. 7, we observe similar
trends to the absolute errors. Rejection Sampling and Likelihood Weighting consistently
exhibited notably lower relative errors, spanning from 0.001 to 0.060 and 0.000 to 0.087,
respectively. On the other hand, Gibbs Sampling persisted with higher relative errors fixed
at 0.500 across all sample sizes, indicating its limitations in accurately approximating the
true probabilities.

Considering computational efficiency, both Rejection Sampling and Likelihood
Weighting outperformed Gibbs Sampling in terms of time taken. Rejection Sampling
consistently displayed commendable efficiency, with an average execution time of
approximately 10 s. Likelihood Weighting demonstrated similar efficiency, requiring an
average execution time of approximately 5 s for all sample sizes. Conversely, Gibbs
Sampling exhibited significantly longer execution times, starting at approximately 67 s for
the smallest sample size and increasing to nearly 98 s for the largest sample size as shown
in Fig. 8.

Assessment of clustering quality
Completeness
Completeness checks if all data points of a class are grouped into a single cluster (Lu &
Uddin, 2024). It is considered complete when each class is entirely within one cluster. The
formula is:

Figure 6 Absolute errors for different sampling algorithms. This figure illustrates the absolute error values for Rejection Sampling, Likelihood
Weighting, and Gibbs Sampling across varying sample sizes. Descriptions: Rejection Sampling (RS): Represented by blue squares with a dashed line.
Likelihood Weighting (LW): Represented by green circles with a dotted line. Gibbs Sampling (GS): Represented by cyan triangles with a dashed line.

Full-size DOI: 10.7717/peerj-cs.2315/fig-6
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Completeness ¼ 1� HðCjKÞ
HðCÞ (31)

where HðCjKÞ is the conditional entropy of the class distribution given the cluster
assignments, and HðCÞ is the entropy of the class distribution.

Completeness measures how well clustering algorithms group all symptoms of each
disease into single clusters. A higher score indicates successful grouping of symptoms of
the same disease together, preserving the disease’s symptom profile.

Homogeneity
Homogeneity compares clustering outcomes to a ground truth, considering a cluster
homogeneous if it contains data points from a single class (Lu & Uddin, 2024). The
formula is:

Homogeneity ¼ 1� HðKjCÞ
HðKÞ (32)

where HðKjCÞ is the conditional entropy of cluster assignments given disease labels, and
HðKÞ is the entropy of cluster assignments.

Figure 7 Relative errors for different sampling algorithms. This figure displays the relative error values for Rejection Sampling, Likelihood
Weighting, and Gibbs Sampling across varying sample sizes. Descriptions: Rejection Sampling (RS): Represented by blue squares with a dashed line.
Likelihood Weighting (LW): Represented by green circles with a dotted line. Gibbs Sampling (GS): Represented by cyan triangles with a dashed line.

Full-size DOI: 10.7717/peerj-cs.2315/fig-7
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Homogeneity measures if clusters contain symptoms predominantly from one disease.
High homogeneity indicates clusters mostly composed of symptoms from a single disease,
though this may be challenging due to overlapping symptoms across diseases.

V-measure
V-measure is the harmonic mean of homogeneity and completeness (Lu & Uddin, 2024).
V-measure provides a balanced evaluation by considering both the purity of the clusters
and the extent to which all symptoms of a disease are grouped together. This score helps us
compare the overall performance of the Proposed Algorithm and Fuzzy C-means
clustering algorithms in capturing the underlying disease structure in the data.

V�measure ¼ 2�Homogeneity � Completeness
Homogeneity þ Completeness

: (33)

Purity
Purity measures how well clusters contain data points from a single class. High purity
indicates that clusters are mostly composed of data points from the same class (Dong et al.,
2024). The formula is:

Figure 8 Trend of sampling time for different sampling algorithms. This figure shows the computational efficiency of Rejection Sampling,
Likelihood Weighting, and Gibbs Sampling across varying sample sizes. Descriptions: Rejection Sampling (RS): Represented by blue squares with a
dashed line. Likelihood Weighting (LW): Represented by green circles with a dotted line. Gibbs Sampling (GS): Represented by cyan triangles with a
dashed line. Full-size DOI: 10.7717/peerj-cs.2315/fig-8
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Purity ¼ 1
N

X
k

max
j
jck \ tjj (34)

where N is the total number of data points, ck is the set of data points in cluster k, and tj is
the set of data points in class j.

Purity assesses how well each cluster contains data points primarily from one class. It
assigns each cluster to its most frequent class and counts the correctly assigned data points.
A high purity score means most data points in each cluster belong to the same class.
However, overlapping symptoms across multiple diseases might lower purity scores.

Comparative analysis
To validate our proposed algorithm, we computed the completeness, homogeneity,
V-measure, and purity for both the proposed algorithm and fuzzy C-means. This
comparison allows us to benchmark the performance of our algorithm against the state-of-
the-art Fuzzy C-means algorithm.

Figure 9 Comparison of average clustering evaluation metrics. This figure illustrates the average scores for completeness, homogeneity,
V-measure, and purity for the proposed technique and Fuzzy C-means. Full-size DOI: 10.7717/peerj-cs.2315/fig-9
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The bar graph visually compares the average evaluation metrics for the proposed
technique and fuzzy C-means (see Fig. 9).

The results in Table 4 indicate that the proposed technique achieves perfect
completeness (1.0), which suggests that it effectively groups all symptoms of the same
disease together. The homogeneity (0.681) and purity (0.778) scores for the proposed
technique are lower compared to Fuzzy C-means, which scores 0.804 for homogeneity and
0.907 for purity. This is expected because our main goal was to propose a technique that
generates clusters of overlapping symptoms. Therefore, the homogeneity and purity are
lower. The higher V-measure for the proposed technique (0.681) compared to Fuzzy
C-means (0.544) indicates that our algorithm achieves a better balance between
completeness and homogeneity, effectively capturing the underlying structure of the data
despite the complexity of overlapping symptoms.

DISCUSSION
This study analyzed the use of the naive Bayes algorithm for clustering uncertain
overlapping symptoms of multiple diseases in clinical diagnosis. Utilizing a conditional
probability matrix and a Bayesian network, the algorithm effectively estimated disease
cluster probabilities based on observed symptoms. Comparison with likelihood weighting,
rejection, and Gibbs sampling highlighted the superior accuracy and computational
efficiency of the naive Bayes algorithm. Gibbs sampling produced larger errors due to its
calculation based on neighboring nodes, unlike the naive Bayes theorem, which considers
only the disease and symptom nodes.

The assessment of clustering quality provided valuable insights. The completeness score
of 1.0 demonstrated the algorithm’s effectiveness in grouping symptoms of the same
disease, capturing the underlying disease structure. While homogeneity and purity scores
were lower than those of the Fuzzy C-means algorithm, they remained within acceptable
ranges, reflecting the complexity and overlap of symptoms. The higher V-measure score
indicated a better balance between completeness and homogeneity.

The evaluation metrics—completeness, homogeneity, V-measure, and purity—offered a
balanced view of performance. Although Fuzzy C-means showed higher homogeneity and
purity, it struggled with completeness and V-measure, critical for understanding
overlapping symptoms. The proposed algorithm’s superior V-measure suggests its
robustness in managing symptom overlap and uncertainty, making it more suitable for
clinical diagnosis applications.

Table 4 Comparison of average clustering evaluation metrics for proposed technique and fuzzy
C-Means algorithms.

Metric Proposed technique Fuzzy C-Means

Completeness 1.0 0.654

Homogeneity 0.681 0.804

V-measure 0.681 0.544

Purity 0.778 0.907

Wagan et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2315 26/31

http://dx.doi.org/10.7717/peerj-cs.2315
https://peerj.com/computer-science/


CONCLUSION
This study highlights the promising application of the naive Bayes algorithm for clustering
uncertain overlapping symptoms in clinical diagnosis. Using a conditional probability
matrix and Bayesian network, the algorithm effectively estimated disease cluster
probabilities, offering valuable insights for clinical decision-making. Compared to
benchmark sampling algorithms, the naive Bayes approach demonstrated superior
accuracy and computational efficiency, suggesting its potential to enhance clinical
diagnosis processes and patient outcomes.

The high completeness and V-measure scores validated the algorithm’s effectiveness in
managing symptom overlap and uncertainty. Despite lower homogeneity and purity scores
compared to Fuzzy C-means, the proposed algorithm’s robust performance makes it
suitable for real-world clinical applications.

Future research could refine the algorithm and incorporate additional data sources to
expand its applicability across diverse clinical contexts. Enhancements might include more
sophisticated probabilistic models and alternative similarity measures for categorical data.
The algorithm’s adaptability also holds potential for applications in other fields, such as
clustering movies and shows based on hidden associations for personalized
recommendations.
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