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ABSTRACT
The rise of high-throughput technologies in the domain of molecular and cell biology,
as well as medicine, has generated an unprecedented amount of quantitative high-
dimensional data. Public databases at present make a wealth of this data available,
but appropriate normalization is critical for meaningful analyses integrating different
experiments and technologies. Without such normalization, meta-analyses can be
difficult to perform and the potential to address shortcomings in experimental designs,
such as inadequate replicates or controls with public data, is limited. Because of a lack
of quantitative standards and insufficient annotation, large scale normalization across
entire databases is currently limited to approaches that demand ad hoc assumptions
about noise sources and the biological signal. By leveraging detectable redundancies in
public databases, such as related samples and features, we show that blind normalization
without constraints on noise sources and the biological signal is possible. The inherent
recovery of confounding factors is formulated in the theoretical framework of com-
pressed sensing and employs efficient optimization on manifolds. As public databases
increase in size and offer more detectable redundancies, the proposed approach is able
to scale to more complex confounding factors. In addition, the approach accounts for
missing values and can incorporate spike-in controls. Our work presents a systematic
approach to the blind normalization of public high-throughput databases.

Subjects Bioinformatics, Data mining and Machine learning
Keywords Blind normalization, High-throughput data, Compressed sensing, Confounding
factors

INTRODUCTION
In the current age of biological science an unprecedented amount of quantitative
high-dimensional data has been acquired and needs to be analyzed. In particular,
high-throughput technologies in the domain of molecular and cell biology, as well as
medicine, have led to a rise in the quantification of biological molecules that underlie
fundamental cellular processes, such as gene expression, metabolic flux and protein
signaling (see Fig. 1A). These fundamental processes as a whole orchestrate and underpin
the dynamics of the cell (Joyce & Palsson, 2006). Most of the acquired high-throughput data
and particularly transcriptome data is submitted to public databases for re-analysis and
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A B

Figure 1 The rise of high-throughput technologies and associated normalization methods. (A) Sub-
missions of RNA are based on NCBI’s Gene Expression Omnibus (Barrett et al., 2013), protein on EBI’s
PRIDE database (Vizcaíno et al., 2016) and metabolite on EBI’s MetaboLights database (Haug et al., 2012).
Notably, actual samples available are approximately an order of magnitude larger than the number of sub-
missions. (B) Overview of common normalization methods from unsupervised to supervised learning.

Full-size DOI: 10.7717/peerjcs.231/fig-1

reuse in research. Hence, researchers increasingly rely on samples from public databases to
address shortcomings in experimental design, such as insufficient randomization ormissing
replicates. In addition, high-throughput data based meta-analyses are best performed with
a large number of samples, such as across entire databases and different measurement
technologies, in order to obtain insights applicable beyond a specific experimental setting.
Thus, the development of data integration techniques is increasingly important. However,
significant challenges remain.

The overarching problem for data integration is that of normalization, which is becoming
more apparent and limiting as the need for reuse and re-analysis of high-throughput data
increases. Normalization involves the attenuation of bias resulting from confounding
factors affecting the measurement process. Technical bias of an instrument or sample
preparation procedure can be addressed by measuring identically processed quantitative
standards. Use of such standards is widespread in serial technologies. The further up-
stream in the measurement process quantitative standards are introduced, the more
potential sources of bias can be accounted for. Biological bias due to non-identical
cells or organisms is often addressed instead by randomization (Montgomery, 2008).
This later approach presupposes that the contrast of interest and potential bias sources
are known. An overview of potential bias sources with a focus on high-throughput
technologies is given by Lazar et al. (2012). High-throughput technologies are challenging
to normalize especially because the bias of biological molecules measured in parallel
is not independent. Such non-independent bias stems from molecular interactions
throughout the measurement process, including sample preparation procedures and
instrument settings that are dependent on the measured sample itself and its biological

Ohse et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.231 2/16

https://peerj.com
https://doi.org/10.7717/peerjcs.231/fig-1
http://dx.doi.org/10.7717/peerj-cs.231


signal. Quantitative measurement standards must therefore effectively cover a vast number
of possible combinations of potential signal measured. In addition, measurement process
or instrument components are sometimes one-time-use, such as in the case of microarray
technologies, making appropriate normalization with measurement standards unfeasible.
In part for these reasons, high-throughput technologies have been designed with a focus
on relative comparisons, such as fold changes, rather than absolute quantification. While
a limited number of spike-in standards can account for some technical bias (Lovén et al.,
2012) sample preparation procedures that are important sources of bias, such as library
preparation, protein extraction or metabolic labeling, generally happen up-stream of
spike-in addition. Bias attenuation by randomization is not generally possible, as contrasts
of interest are not initially known in the exploratory analyses typically performed with
high-throughput technologies.

The initial experimental design establishes how quantitative measurement standards
or randomization are employed in a particular experiment. However, in the case of
experiments that draw on samples from public databases, the attenuation of bias must be
done post hoc. Attempts at such normalization have produced different methods across the
spectrum of unsupervised to supervised learning (see Fig. 1B).

Unsupervised approaches generally make use of ad hoc assumptions about noise
sources or the biological signal, which are then leveraged in an attempt to average out bias.
While early methods were concerned with simple centering and scaling (Cheadle et al.,
2003), more recent approaches assume that an appropriate scaling is obtained by scaling
across features, such as through variance stabilization (Huber et al., 2002), or by scaling
across samples, such as through quantile normalization (Bolstad et al., 2003; Irizarry et
al., 2003). The later approach is widely used but requires the assumption that the overall
biological signal does not vary significantly between samples. Another major drawback is
that unsupervised approaches fail to exploit the wealth of information available in public
high-throughput databases.

Semi-supervised approaches implicitly or explicitly exploit additional data to learn
parameters that can then be transferred to the dataset at hand. In particular, frozen SVA
(Parker, Corrada Bravo & Leek, 2014), frozen RMA (McCall et al., 2011) and the Gene
Expression Commons (Seita et al., 2012) take such an approach. The later methods aim
to adjust the weight and scale parameters of the measured features based on global
distributions obtained by the use of additional data. However, the frozen SVA method
requires prior knowledge of the contrast of interest for the additional data to be of use and
is therefore impractical in the case of exploratory analyses. The frozen RMA approach is
based on quantile normalization and thus makes equally restrictive assumptions about the
biological signal.

Supervised approaches make use of replicate samples or prior knowledge of potential
confounding factors and contrasts of interest. If the contrast of interest has replicate
samples overlapping with known confounding factors, these replicates can subsequently
be used to remove bias; for example, through simple centering (Li & Wong, 2001) or more
complex non-linear adjustments (Benito et al., 2004). In the case of small sample sizes, the
popular empirical Bayes method ComBat (Johnson, Li & Rabinovic, 2007) can be applied.
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However, any supervised methods is unable to detect and remove bias outside of a setting
that includes replicate samples specifically designed to limit known confounding factors, or
alternatively, prior knowledge of the contrast of interest. Unfortunately, as annotation of
high-throughput data with respect to sample information and the experimental protocol
used is often insufficient and too incoherent formachine processing, supervised approaches
to normalization are generally unfeasible for public databases.

The blind compressive normalization algorithm developed here makes use of the
sparsity assumption combined with the identification and use of detectable redundancies
in high-throughput databases to normalize for unknown confounding factors. The sparsity
assumption is the well motivated assumption that signals of interest generally lie on
low dimensional manifolds (Hastie, Tibshirani & Wainwright, 2015). In the framework
of compressed sensing it enables blind recovery of bias and subsequent normalization
of high-throughput databases from merely estimated redundancies, such as correlations
in that data. Compressed sensing is a recent field that studies the ability to accurately
reconstruct signals of interested based on very few measurements (below the Nyquist
sampling rate) (Candès & Wakin, 2008). We sidestep more restrictive assumptions on the
biological signal or noise sources common in unsupervised normalization approaches and
do not require prior knowledge of the contrast of interest or appropriate sample annotation
as required for supervised normalization approaches.

For the biological or medical researcher working with high-throughput data this means
that when blind compressive normalization can be successfully applied to a database that
includes their samples of interest, these samples are subsequently more comparable to
each other and overall to other samples in the database, as bias stemming from unknown
confounding factors is attenuated.

METHODS
The challenge of normalizing large high-throughput databases is distinct from the
traditional p � n problem (Friedman, Hastie & Tibshirani, 2001) often encountered in
high-throughput data normalization. The number of features (p) and the number of
samples (n) in public high-throughput databases is currently large and on the same
order of magnitude (p ≈ n). Therefore, computational scalability becomes an important
consideration. Recent advances in the field of machine learning, based on the sparsity
assumption, have shown that limited sampling of high-dimensional data is often sufficient
for efficient signal recovery. For example, in the area of collaborative filtering, large low-rank
matrices are routinely recovered froma small number of sampled entries (Mazumder, Hastie
& Tibshirani, 2010; Jain, Netrapalli & Sanghavi, 2013; Vandereycken, 2013). If confounding
factors in high-throughput databases are equally amenable to the sparsity assumption,
bias due to the measurement process may be recoverable from a relatively small number
of measured quantitative standards. Since such standards are not available or feasible to
obtain post hoc, we propose instead to utilize database wide redundancies to obtain the
necessary constraints that enable bias recovery and subsequent normalization.

Our approach begins with the assumption that there are a limited number of
confounding factors that markedly affect the measurement process. Thus, the bias is
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Figure 2 Blind recovery of bias. A database consisting of features, such as measurements of RNA, pro-
tein or metabolite and samples, such as different cell types under various stimuli, is observed. Recovery of
the underlying bias (purple) is feasible if some redundant underlying signal (orange) exists that is incoher-
ent to the bias and partially detectable by observation (red). Redundancies can be categorized as detectable
and as weak or strong based on the correlation strength between features or samples. The more redundant
a signal is the closer it falls on the perfect correlation line.

Full-size DOI: 10.7717/peerjcs.231/fig-2

modeled as a low-dimensional manifold that takes the form of low-rank matrix (see
Fig. 2) denoted as X. This is a flexible model which can approximate arbitrarily close any
underlying bias. Opposed to traditional signal recovery approaches, we specifically model
the bias (systematic noise) instead of the potentially complex signal. In the framework of
compressed sensing the respective matrix recovery problem resulting in the recovery of X,
is defined as follows (Tan et al., 2014).
Definition 1 Given a linear operator A :Rn×m

→Rp, let y=A(X)+ ε be a set of p
measurements of an unknown rank r̂ matrix X∈Rn×m and noise ε. Matrix recovery solves
the problem of minX

∥∥y−A(X)
∥∥2
2 subject to rank(X)≤ r , where p� nm and r ≥ r̂ .
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The specific type of linear operator used depends on the context and is commonly defined
as the Frobenius inner product of X and sensing matrices {Ai ∈Rn×m

}i=1,...,p such that
yi=

∑n
j=1
∑m

k=1(Ai)jkXjk . In the general case of dense sensing, for which various recovery
guarantees have been established (Candes & Plan, 2011), sensing matrices Ai are defined
∀j ∈ {1,...,n} and ∀k ∈ {1,...,m} as (Ai)jk ∼N . However, this approach at bias recovery
presupposes a measurement setup that provides constraints (e.g., prior information) about
Ai and yi to recover X according to Definition 1. Such prior information is typically not
available, but we show that it can be indirectly obtained from an approximation of the
redundancies that commonly exists in high-throughput databases (see ‘Blind recovery’).
But first, before focusing on the case of blind recovery, we introduce the intermediate case
of k-sparse recovery of which blind recovery is an extension.

K-sparse recovery
Several modifications to the traditional approach of matrix recovery through dense sensing
exist, including row and column only or rank-1 based sensing matrices (Wagner & Zuk,
2015; Cai & Zhang, 2015; Zhong, Jain & Dhillon, 2015). The common case of entry sensing
can be seen as a special case of dense sensing (Candes & Plan, 2010) that requires additional
assumptions for guaranteed recovery and knowledge of specific entries of X. It is the
simplest form of k-sparse recovery, where each sensing matrix is 1-sparse (contains only
one nonzero entry). If sufficient quantitative standards or spike-ins were available to obtain
estimates at specific nonzero entries�(s1,t1) ofX from high-throughput databases, then post
hoc bias recovery through entry sensing would be possible, with s1∼Uniform({1,...,n}),
t1∼Uniform({1,...,m}) and yi=Xs1t1 . In this case the 1-sparse sensing matrices Ai are
defined as:

(Ai)jk

{
∼ 1 if(j,k)= (s1,t1)
= 0 otherwise

(1)

The next level of complexity of k-sparse recovery is a 2-sparse sensing matrix
based approach, with entries �(s1,t1)(s2,t2) chosen uniformly at random as before and
(s1,t1) 6= (s2,t2). In this case the 2-sparse sensing matrices Ai are defined as:

(Ai)jk

{
∼N if(j,k)∈ {(s1,t1),(s2,t2)}
= 0 otherwise

(2)

Analogously as for the dense sensing approach, k-sparse recovery presupposes a
measurement setup that provides prior information about Ai and yi to recover X. It
differs from dense sensing by the random sparsification of measurement operators (see
Eq. (2)). We use k-sparse recovery as an intermediate step to blind recovery, where
inaccuracies due to the additional estimation step of blind recovery are controlled for in
order to allow simple evaluation (see ‘Results’).

Blind recovery
In blind recovery we show how to estimate the necessary constraints (e.g., prior
information) about Ai and yi from the observed signal O (see Fig. 2). The 2-sparse
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Figure 3 Measurement inference process from detected redundancies to bias constraints required for
recovery. In feature space a redundancy is detected. A sample B allows the characterization of d and slope
σ1
σ2
. The corresponding bias constraint based on B is denoted in this new feature space, where d character-

izes the offset from the origin. All bias estimates are constrained by the given curve (purple).
Full-size DOI: 10.7717/peerjcs.231/fig-3

sensing matrices Ai and respective measurements yi are defined as:

(Ai)jk


= σ̂ (Os1∗) if(j,k)= (s1,x)
= σ̂ (Os2∗) if(j,k)= (s2,x)
= 0 otherwise

(3)

yi= σ̂ (Os2∗)ds2− σ̂ (Os1∗)ds1 (4)

where σ̂ (Os1∗) and σ̂ (Os2∗) are estimates of the standard deviation of the corresponding
rows Os1∗ and Os2∗ of the observed signal, respectively. Specifically, the values for entries
�(s1,x)(s2,x) of 2-sparse sensing matrices Ai are determined by redundancy information,
such as correlations between features and samples, which must be estimated from O.
Furthermore, [ds1,ds2] is the orthogonal vector from point (Os1x ,Os2x) to the line crossing
the origin with slope σ̂ (Os1∗)/σ̂ (Os2∗) in the space of rows Os1∗ and Os2∗ (see Fig. 3).
Thus, yi can be reconstructed from relative constraints encoded in the correlations of O.
Without specifying an absolute value for a specific entry, but by specifying a correlation
between two particular features, the bias is constrained by the line which goes through
point (Os1x ,Os2x), given that the observed matrix is centered. Since redundancies not
only exist for features but also samples, the transpose of the observed signal OT and its
corresponding matrix entries�T

(sA,v)(sB,v) are used equivalently. Thus, while s1/sA and s2/sB
specify a correlated pair of rows/columns, x/v specifies a particular observation in the
space of that correlated pair (see Fig. 3). With linear operator A, bias X and measurements
y defined accordingly, the standard matrix recovery problem given in Definition 1 is then
solved by Riemannian optimization (Vandereycken, 2013), specifically with the Pymanopt
implementation (Townsend, Koep & Weichwald, 2016).
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Simulation
We conduct a series of simulations to empirically evaluate the performance and robustness
of the k-sparse recovery and blind recovery approaches. To this end a synthetic high-
throughput database is generated (see Data Availability) by combining an underlying
redundant signal S with a known low-rank bias X to be recovered. We generate the
redundant signal S from a matrix normal distribution. This is a common model for high-
throughput data (Allen & Tibshirani, 2012). Specifically, S∼MN n×p(M,AAT ,BTB),
where M denotes the mean matrix and both AAT and BTB denote the covariance
matrices describing the redundancies in feature and sample space, respectively. Sampling
is performed by drawing from a multivariate normal distribution N∼MN n×p(0,I,I) and
transforming according to S=M+ANB. Importantly, different features and samples have
different standard deviations, which are used in the construction of the covariance matrices
(in combination with random binary block structured correlation matrices). Ideally, the
standard deviations follow a sub-gaussian distribution (Candès & Wakin, 2008). Missing
values are modeled according to missing at random (MAR) or missing not at random
(MNAR) scenarios. The bias to be recovered is modeled as a random low-rank matrix
X=U6VT with 6 generated from diag(σ1,...,σm). Eigenvalues are denoted as σ and
are sampled from Uniform(0,1). Matrix rank is denoted by m. Eigenvectors U and V are
obtained from Stiefel manifolds generated by the QR decomposition of a random normal
matrix (Townsend, Koep & Weichwald, 2016). Both redundant signal S and low-rank biasX
are combined additively to yield the observed signal matrix O=X+S. The signal-to-noise
ratio is kept approximately constant across bias matrices of different rank by scaling the
eigenvalues of X to an appropriate noise amplitude.

RESULTS
Recovery performance
Our performance evaluation starts with the case of k-sparse recovery shown in Figs. 4A–4C
and derived in ‘K-sparse Recovery’. In our setup, the difference in measurement operator
construction between sparse and dense sensing has little effect on the performance.
Initial differences levels off rapidly as shown in Fig. 4A. Notably, in Fig. 4A we observe
no significant difference in performance between a 4-sparse and 8-sparse measurement
operator. The storage requirements for the dense sensing variant become prohibitive quickly
(Cai & Zhang, 2015) and therefore we do not simulate above 8-sparse measurement
operators. In Fig. 4B we highlight the advantageous scaling behavior of the 2-sparse
approach. This allows reconstruction of bias from a small percentage of potential
measurements of large high-throughput databases. Therefore, for databases on the order
of tens of thousands of features and samples, only a small fraction of correlations need
to be considered in order to reconstruct the low-dimensional model of the bias X. Thus,
when estimating correlations and corresponding standard deviations from the data in
the case of blind recovery, high-specificity and low-sensitivity estimators can be used; as
high-sensitivity is not required with an overabundance of measurements and the focus
can be placed on high-specificity instead. The non-perfect recovery in the top right of
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Figure 4 Performance of 2-sparse and blind recovery. (A) Decreasing the sparsity of the measurement
operator from 2 to 10-sparse shows a leveling-off effect (rank-2, 50 × 50). (B) Scalability of 2-sparse re-
covery overlaid with model O(c0r(n + m)) (Wei et al., 2016) (white dashed line). The larger the high-
throughput database the more likely is reconstruction of more complex noise structures from a small per-
centage of measurements (rank-2). (C, D) Evaluation of the proof-of-concept for the 2-sparse case and
blind recovery of bias with increasing noise complexity (50×50).

Full-size DOI: 10.7717/peerjcs.231/fig-4

Fig. 4B is likely due to convergence failure of the conjugate gradient optimizer, because
of a heavily overdetermined recovery setting. It can can be ameliorated by decreasing the
number of considered measurements. In Fig. 4C the performance is shown for increasingly
complex bias from rank-1 to rank-20. The necessary measurements required for improved
recovery in the case of a worst-case correlation structure (e.g., maximally 2,500 possible
measurements) are feasible to obtain up to a noise complexity of rank-9. In the best-case
scenario (e.g., maximally 60,000 possible measurements) measurements are feasible to
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obtain up to at least rank-20. Notably, recovery is performed for matrix dimensions of
50× 50 and thus the scaling behavior observed in Fig. 4B may improve performance
depending on the size of the database considered. In Fig. 4D we evaluate blind recovery
performance, where as opposed to k-sparse recovery with 2-sparse sensing matrices, entries
are not sampled from a Gaussian distribution, but constructed post hoc from known or
estimated correlations. For purposes of comparison with the k-sparse recovery based on
2-sparse sensing matrices, we force accurate estimation of correlations and corresponding
standard deviations. No significant difference in performance between blind and 2-sparse
recovery are observed for this setup, as shown in Figs. 4C–4D. Thus, recovery is feasible
when the redundancies obtained in feature and sample space are estimated accurately and
are sufficiently incoherent with the low-rank bias X. Discrepancies in perfect recovery
between the bottom left of Figs. 4D and 4C are likely due to constraints in the construction
of the measurement operator; only full rows and columns are considered for blind recovery
in Fig. 4D, which for matrix dimensions of 50×50 create measurement increments of step
size 50. Notably, these do not overlap exactly with the more fine grained scale of k-sparse
recovery.

Recovery robustness
We continue our evaluation of blind recovery in Figs. 5A and 5D with a focus on recovery
robustness. In particular, we observe that for the case of non-ideal redundancies, blind bias
recovery is still feasible, as shown in Fig. 5A. Accordingly, as the redundant signal increases
from weak redundancies (ρ= 0.7) to strong redundancies (ρ= 1.0) fewer measurements
are necessary to blindly recover an unknown bias matrix (see Fig. 5A). Thus, blind recovery
is somewhat robust to imperfect redundancies likely found in actual high-throughput
databases. In Fig. 5C we observe that lower accuracy in the form of falsely estimated
redundancies (e.g., wrong pairs of correlated features or samples) are recoverable up to a
certain degree. In addition, we provide a comparison with k-sparse recovery for an identical
setup, where redundancy and estimation accuracy are modeled as additive noise in Y (see
Fig. 5B) and shuffled measurement operator A (see Fig. 5D). Both approaches perform
well in the robustness evaluation, but it is difficult to align their scales for quantitative
comparison.

Benchmarking
In order to benchmark the developed blind recovery approachwemimic a standard research
problem involving high-throughput data and compare to a widely used unsupervised
normalization approach. The aim is to identify differentially expressed genes under different
noise conditions at a given significance level (p= 0.05). For this purpose a high-throughput
database is simulated as in ‘Simulation’ (see Data Availability). It contains 30 samples with
40 measured genes (features) each and two groups of replicates that are used to determine
differential expression by a standard t -test. We force accurate estimation of correlations
and corresponding standard deviations, as the small database size yields poor estimates
that cause the recovery to be unstable for the limited number of available measurements
(see Figs. 5A, 5C). The benchmark is performed across different noise conditions: random
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Figure 5 Robustness of blind and 2-sparse recovery. (A, B) As redundancy increases from weak (ρ =
0.7) to strong (ρ = 1.0) less measurements are required to blindly recover the low-rank bias (rank-2, 50×
50). (C, D) As the accuracy of estimating signal redundancies from the confounded observations increases,
the measurements required to blindly recover the low-rank bias (rank-2, 50× 50) are reduced. The cor-
responding 2-sparse recovery is simulated for additive noise in y or shuffling in A to mimic the effect of
varying redundancy and estimation accuracy for the non-blind case.

Full-size DOI: 10.7717/peerjcs.231/fig-5

noise derived from N (0,1), systematic noise with rank-2 as outlined in ‘Simulation’ and
no noise (see Table 1).

In the case of random noise, both approaches perform similarly and are unable to reverse
the effect of the corruption through normalization. Thus, no differentially expressed genes
are detected at the given significance level (p= 0.05), which is expected. In the case of
systematic noise, the blind compressive normalization (BCN) approach outperforms
quantile normalization (QN) and is able to detect differential expression given the accurate
estimation of correlations and corresponding standard deviations. In the case of no
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Table 1 Comparison of blind compressive normalization (BCN) with quantile normalization (QN)
and no correction (NC) of the corrupted data.Data was corrupted with random, systematic and no noise.
A t -test is performed between two groups of replicates (five each) for all genes (40 in total) and the result-
ing p-values are averaged. Plus (+) and minus (−) denote if the avg. p-value falls below the significance
level of 0.05, where the expected avg. p-value for no noise and no correction is 2.04E–42.

BCN (avg. p-value) QN (avg. p-value) NC (avg. p-value)

Random Noise − 3.42E–01 − 4.17E–01 − 3.89E–01
Systematic Noise + 3.16E–02 − 1.66E–01 − 1.67E–01
No Noise + 3.01E–03 + 3.64E–26 + 2.04E–42

noise, no correction (NC) performs best, followed by the QN and BCN approach. Both
approaches are able to detect differentially expressed genes for the case of no noise. Overall,
this benchmark shows that the developed approach can outperform existing approaches
on a standard research problem under idealized conditions.

DISCUSSION
A key aspect of the proposed algorithm for blind normalization of high-throughput
databases is the sparsity assumption (see Introduction). By assuming that bias has a sparse
structure, due to a limited number of confounding factors, the recovery problem becomes
manageable and efficient optimization on manifolds can be used for recovery. The larger
a high-throughput database is in size, the more effectively we can leverage the associated
redundancies, since we can focus on correlations estimated with high-specificity and
low-sensitivity. This is critical, as blind recovery requires a sufficient number of accurately
estimated correlations. In addition, spike-in controls can provide further constraints on
the bias to be recovered. These can be important sources of additional information to
be leveraged by our approach, as integration through additional measurements via entry
sensing is straight forward (see ‘K-sparse recovery’). But, it remains an open question how
such absolute and relative constraints interact when solving the bias recovery problem (see
Definition 1).

For the sparsity assumption to be of use for blind normalization, two further assumptions
must be satisfied. Sufficient redundancies are needed in the form of correlations found
in the high-throughput database at hand. This assumption is generally satisfied, since
complex systems under study, such as the cell, generally display a number of strong
correlations that are detectable despite the effect of confounding factors. In addition,
high-throughput databases of a certain size are likely to contain redundancies in the form
of similar biological samples that can be leveraged. Finally, blind normalization is only
possible if the detected correlations are sufficiently incoherent with the low-dimensional
bias model. The likelihood of such incoherence is maximized if correlated features and
samples exhibit standard deviations similar to those drawn from a normal distribution,
such as in the presented case of k-sparse recovery (see ‘K-sparse recovery’). In the setting
of blind recovery, this assumption may only be satisfied for features and not for samples, as
correlated samples have generally similar standard deviations. However, when evaluating
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recovery performance in simulation this does not appear to play a major role (see Figs. 4–
5). A theoretical investigation of worst case performance and recovery guarantees is still
outstanding, but recent work in the field of blind deconvolution and compressed sensing
is in active pursuing this question (Stöger, Jung & Krahmer, 2016).

To scale the developed algorithm to current public high-throughput databases with
features and samples on the order of hundred thousands respectively, the memory
consumption of the underlying manifold optimization routines needs to be optimized
to be efficient on the scale of gigabytes. However, the manifold optimization routines
leveraged in our proof-of-concept implementation are not able to exploit the advantages
that come with sparse measurement operators, e.g., a low-memory footprint. This is due to
the use of conjugate gradient methods that rely on automatic differentiation (Maclaurin,
Duvenaud & Adams, 2015) and require the use of memory inefficient dense matrices. The
current implementation is thus only able to handle databases on the order of hundreds
of features and samples respectively. Hence, an application outside of the scope of the
conducted simulations is currently not feasible and should be addressed in future work.
However, there appears to be no theoretical limitation that would preclude the development
of a memory efficient implementation. This is important, since the proposed approach
increases in effectiveness as database size grows and thereby allows the leveraging of more
redundancies (see Fig. 4B).

An additional challenge exists when using fixed rank constraints in matrix recovery
problems, as is the case for the employed manifold optimization routines. The fixed rank
of the to be recovered low-rank matrix is generally not known a priori. Thus, optimization
routines need to be run multiple times for different rank parameters in order to determine
the optimal rank. This is an inefficient scheme when contrasted to recovery methods based
on nuclear norm regularization (Mazumder, Hastie & Tibshirani, 2010). Furthermore,
inappropriate choices of the rank parameter can result in ill-conditioned matrices for
which manifold optimization routines may converge slowly. To address these challenges,
a pursuit type scheme has been developed recently that can be understood as a warm start
technique (Tan et al., 2014).

CONCLUSION
Blind compressive normalization is a systematic approach to the blind normalization
of unknown confounding factors in public high-throughput databases. The presented
proof-of-concept shows that such an approach is possible under reasonable assumptions.
Further work in this direction has the potential to address long standing challenges in
high-throughput data integration that are becoming increasingly important.
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