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ABSTRACT
The rapid advancement of Internet of Things (IoT) technologies brings forth new
security challenges, particularly in anomaly behavior detection in traffic flow. To
address these challenges, this study introduces RT-Cabi (Real-Time Cyber-
Intelligence Behavioral Anomaly Identifier), an innovative framework for IoT traffic
anomaly detection that leverages edge computing to enhance the data processing and
analysis capabilities, thereby improving the accuracy and efficiency of anomaly
detection. RT-Cabi incorporates an adaptive edge collaboration mechanism,
dynamic feature fusion and selection techniques, and optimized lightweight
convolutional neural network (CNN) frameworks to address the limitations of
traditional models in resource-constrained edge devices. Experiments conducted on
two public datasets, Edge-IIoT and UNSW_NB15, demonstrate that RT-Cabi
achieves a detection accuracy of 98.45% and 90.94%, respectively, significantly
outperforming existing methods. These contributions not only validate the
effectiveness of the RT-Cabi model in identifying anomalous behaviors in IoT traffic
but also offer new perspectives and technological pathways for future research in IoT
security.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Internet of
Things
Keywords IoT security, Anomaly behavior detection, Dynamic feature fusion, Data correction,
Edge collaboration

INTRODUCTION
Background
The Internet of Things (IoT) is transforming the way we work and live. As the number of
these devices increases rapidly, we are faced with unprecedented challenges in data
processing and security. The vast amount of data generated by IoT devices requires not
only real-time processing but also in-depth analysis to ensure the efficiency and security of
the systems. The market value of IoT is expected to reach $534.3 billion by 2025, increasing
the demand for real-time data monitoring. The projected number of IoT connections via
LEO satellites is also on the rise—from six million in 2022 to 22 million by 2027, with an
annual compound growth rate of 25%, highlighting the importance of real-time data
processing (https://iot-analytics.com/number-connected-iot-devices/). The network
security threats faced by IoT devices are significant, with data showing that on average,
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each device is attacked within five minutes of connecting to the internet, and routers suffer
an average of 5,200 attacks per month, underscoring the urgency of strengthening security
measures (https://dataprot.net/statistics/iot-statistics/). The global number of IoT devices
is expected to grow by 16%, reaching 16.7 billion by 2025 (https://iot-analytics.com/
number-connected-iot-devices/). This reflects the scale of cross-industry integration and
the ensuing data management challenges, highlighting the need for efficient processing
solutions to address this trend.

As IoT technology continues to be widely applied, the security challenges it presents,
particularly in identifying anomalous traffic behaviors, are becoming increasingly
important (Lee, Pak & Lee, 2020). The diversity of IoT devices and the complexity of the
data they generate make the patterns of abnormal behavior more varied and complex.
Existing detection methods often struggle with this high-dimensional, complex data,
finding it difficult to adapt and learn in a constantly changing environment (Injadat et al.,
2020; Di Mauro et al., 2021). (1) The process of data collection often comes with errors and
inconsistencies, leading to frequent occurrences of data loss or missing fields, not only
increasing the difficulty of anomaly detection but also making the effective correction and
completion of data an urgent problem to solve. (2) Considering the limited resources of
IoT devices, such as processing power, storage space, and power, there is an urgent need
for an efficient and energy-saving algorithm to address these challenges.

Therefore, facing the challenges of diversity in IoT devices, incompleteness of data, and
limitations of device resources, traditional anomaly detection algorithms often fall short.
This study introduced the RT-Cabi framework, which utilizes an adaptive edge
collaboration mechanism, dynamic feature fusion and selection technology, and an
optimized lightweight convolutional neural network (CNN) model. This approach not
only improves data communication between sensors for better accuracy and completeness
but also significantly lowers resource requirements.

Literature review
Current research on anomaly detection in IoT edge computing environments
In the context of IoT edge computing, the identification of anomalous behaviors is crucial
for ensuring network security and the stable operation of devices (Cui, Jiang & Xu, 2023).
With the explosive increase in the number of IoT devices and the diversification of
application scenarios, traditional methods of anomaly detection face new challenges,
particularly in dealing with novel network attacks, encrypted traffic analysis, and device
heterogeneity (Kamaraj, Dezfouli & Liu, 2019; Wijaya & Nakamura, 2023; Tong et al.,
2023).

These challenges have prompted innovative solutions. Soukup, Čejka & Hynek (2019)
introduced a method for detecting behavioral anomalies by analyzing encrypted IoT traffic
at the network edge, combining two semi-supervised techniques aimed at improving the
reliability of anomaly detection and effectively mitigating the limitations of single
techniques. However, it also noted that processing encrypted traffic requires more complex
data analysis methods. Kayan et al. (2021) developed AnoML-IoT, an end-to-end data
science pipeline that supports various wireless communication protocols and can be
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deployed on edge, fog, and cloud platforms to address the challenges of IoT environment
heterogeneity. Despite its promotion of anomaly detection mechanisms, its high
requirements for multiple software tools and domain knowledge limit its widespread
application. Li et al. (2022) proposed the ADRIoT framework, utilizing unsupervised
learning with LSTM autoencoders and edge computing assistance, focusing on detecting
network attacks in IoT infrastructures, especially unpredictable zero-day attacks. This
method reduces reliance on labeled data and effectively improves the handling of new
attack patterns, but it may limit the deployment and performance of detection modules on
edge devices due to resource constraints.

The potential of dynamic feature fusion and selection techniques in opti-

mizing edge computing
Dynamic feature fusion and selection techniques, key to solving high-dimensional data
problems and enhancing the processing capabilities of edge computing, have garnered
widespread attention in recent years. Their potential application in optimizing edge
computing is based on the latest research developments.

Cai et al. (2018) discussed feature selection methods that provide an effective pathway
for high-dimensional data analysis, reducing computation time and improving the
accuracy of learning models. Specific applications may require tailored feature selection
methods. Boulesnane & Meshoul (2018) proposed a hybrid model that combines an online
feature selection process with dynamic optimization, enhancing the quality of the selected
feature set. However, the dynamic adjustment of the algorithm in practical applications
requires fine-tuning according to the characteristics of the data flow. On the other hand,
Tubishat et al. (2020) introduced an improved Butterfly Optimization Algorithm (DBOA)
with a mutation-based local search algorithm (LSAM), effectively avoiding local optima,
significantly improving classification accuracy, and reducing the number of selected
features, which may require additional computational resources. Wei et al. (2020)
presented an improved feature selection algorithm (M-DFIFS) by combining classical
filters and dynamic feature importance (DFI), significantly enhancing performance within
an acceptable computation time, although the algorithm has high complexity and
sensitivity to parameters.

Dynamic feature fusion and selection techniques show significant potential for
application in optimizing edge computing. Through refined algorithm design and efficient
feature processing strategies, they can significantly improve the efficiency and accuracy of
data processing in IoT edge computing environments.

Research progress on adaptive collaborative frameworks and information
sharing mechanisms
Research on adaptive collaborative frameworks and information sharing mechanisms is
vital for enhancing system flexibility and efficiency. Wang, Zheghan & Wu (2023)
proposed a content-aided IoT traffic anomaly detection approach that leverages both
packet header and payload information to build machine learning models, achieving
consistent detection results even under significant network condition changes. Chatterjee
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& Ahmed (2022) conducted a comprehensive survey on IoT anomaly detection methods
and applications, highlighting current challenges such as data and concept drifts and data
augmentation with a lack of ground truth data. Elsayed et al. (2023) empirically studied
anomaly detection for IoT networks using unsupervised learning algorithms, showing high
F1-scores and area under curve (AUC) values with the novelty approach. Eren, Okay &
Ozdemir (2024) reviewed XAI-based anomaly detection methods for IoT, providing
insights into the transparency and interpretability of anomaly detection models. Balega
et al. (2024) optimized IoT anomaly detection using machine learning models like
XGBoost, support vector machine (SVM), and deep convolutional neural network
(DCNN) demonstrating the superior performance of XGBoost in both accuracy and
computational efficiency.

The prospects of lightweight neural networks and multi-task learning in edge
computing
The Edgent framework, proposed by Li et al. (2019), facilitates collaborative inference of
deep neural networks in a device-edge collaborative manner, particularly emphasizing the
importance of DNN partitioning and appropriate resizing. It effectively reduces
computational latency and enhances edge intelligence, though its adaptability to actual
network fluctuations still needs further verification. Moreover, Chen & Ran (2019) delve
into the challenges and solutions of applying deep learning in edge computing
applications, offering perspectives on accelerating deep learning inference and distributed
training on edge devices, despite the complexity and resource consumption of deep
learning models remaining significant challenges.

Addressing the resource allocation problem in IoT networks, Zhou et al. (2019) discuss
edge intelligence, emphasizing the integration of edge computing and artificial intelligence
technologies to fully exploit the potential of edge big data. Challenges include system
performance, network technologies, and management. Liu, Yu & Gao (2020) explored
computational task offloading mechanisms through a multi-agent reinforcement learning
framework, improving energy efficiency and reducing channel estimation costs, though its
performance in highly dynamic environments requires further research. Huang et al.
(2022) introduced a lightweight collaborative deep neural network (LcDNN) that
significantly reduces model size and lowers mobile energy consumption by executing
binarized neural network (BNN) branches on the edge cloud, demonstrating potential
applications in mobile Web applications, though its performance and adaptability in
complex tasks and variable environments need further evaluation.

In summary, the application prospects of lightweight neural networks and multi-task
learning in edge computing are clear, providing strong technical support for real-time
collaborative anomaly detection applications in IoT edge computing environments.

Our contributions
This study identifies gaps in data integrity, algorithm adaptability, and computational
resource optimization, detailed in Table 1. We introduce a comprehensive solution, the
RT-Cabi framework, shown in Fig. 1. Figure 1 illustrates the integration of various
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Table 1 Literature review on anomalous behavior detection in IoT edge computing environments.

Author Application
scenario

Research content Possible shortcomings

Tubishat et al.
(2020)

Feature selection Proposed DBOA avoids local optima effectively through
LSAM

Requires additional computational resources

Wei et al. (2020) Feature selection M-DFIFS proposed combining filters and DFI to enhance
performance

Algorithm complexity is high and sensitive to
parameters

Kayan et al.
(2021)

IoT environments Developed AnoML-IoT supports various wireless
communication protocols, deployable on edge, fog, and
cloud platforms

High demands for multiple software tools and
domain knowledge limit its widespread
application

Li et al. (2022) IoT infrastructure Unsupervised learning method using LSTM autoencoder,
focused on network attack detection

May limit the deployment and performance of
edge device resource modules

Wang et al. (2022) IoT traffic anomaly
detection

Proposed content-aided approach leveraging packet
header and payload information

May require more computational resources for
processing payload data

Chatterjee &
Ahmed (2022)

IoT anomaly
detection

Survey on IoT anomaly detection methods and
applications

Lack of comprehensive methods for integrating
various sensors and data augmentation

Elsayed et al.
(2023)

IoT networks Empirical study using unsupervised learning algorithms
for anomaly detection

Performance may vary with different datasets
and network conditions

Eren, Okay &
Ozdemir (2024)

IoT anomaly
detection

Survey on XAI-based anomaly detection methods for IoT Interpretability may come at the cost of
reduced model complexity

Balega et al.
(2024)

IoT security Optimized anomaly detection using machine learning
models like XGBoost, SVM, and DCNN

The approach’s effectiveness may depend on
the diversity of datasets and IoT
environments
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Figure 1 The RT-Cabi framework. Full-size DOI: 10.7717/peerj-cs.2306/fig-1
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components, including negotiated filtering, distributed Kalman filtering, hard parameter
sharing, multitasking attention mechanisms, and lightweight convolutional neural
networks. These elements work together to enhance anomaly detection and collaborative
detection algorithms for edge devices. The key contributions of our proposed framework
are summarized as follows:

. Adaptive anomaly detection for IoT: We designed an edge collaborative
framework based on adaptive parameter adjustment. This framework can capture
environmental changes in real-time, dynamically adjust model parameters through
weighted collaborative filtering and distributed Kalman filtering techniques. This
approach ensures the model remains robust and responsive to new data patterns and
anomalies.

. Data anomaly correction and imputation strategy: We developed a dynamic feature
fusion and selection mechanism combining hard parameter sharing and multi-task
learning technologies. By introducing adaptive weight adjustment and an advanced
multi-task dynamic attention mechanism, this strategy can effectively handle common
feature missing issues in the IoT environment. This ensures data integrity and enhances
the overall reliability of the system.

. Mathematical collaborative optimization strategy: This study also proposes a set of
mathematical collaborative optimization strategies, integrating methods from edge
collaboration, feature fusion, and lightweight CNN optimization, forming a
comprehensive model optimization scheme. This strategy reduces the computational
demands and resource consumption in resource-constrained edge computing
environments, making it practical for real-world IoT applications.

THE RT-CABI FRAMEWORK
IoT anomaly detection model
Consider an IoT environment composed of N devices, denoted as N¼D f1; . . . ;Ng. Each
device i 2 N can collect and process a local dataset Di, containing Di samples fxni gDi

n¼1.
These samples are independently and identically distributed (i.i.d.) drawn from the local
distribution Di of device i, with each sample xni including a training input and its
corresponding label. Assume the data across devices is heterogeneous, i.e., the local
distributions fDig are non-i.i.d.

Each device trains a local model composed of d parameters, represented by the
vector h 2 � � Rd , using its dataset. The training objective is to minimize the local
objective function fiðhÞ based on the loss metric lð�; hÞ, with device i’s local objective
defined as:

fiðhÞ ¼ 1
Di

XDi

n¼1

lðxni ; hÞ: (1)

Thus, the goal of device i is to find the parameters h�i that minimize Eq. (1):
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h�i ¼ argmin
h

fiðhÞ: (2)

The server aims to train a global model with parameters h using the data available from
the user side. The global learning objective is given by the following equation:

FðhÞ ¼ 1
N

XN
i¼1

fiðhÞ: (3)

Therefore, the server seeks to solve the following minimization problem:

h� ¼ argmin
h

FðhÞ: (4)

We introduce adaptive parameters f, allowing the model to dynamically adjust
according to changes in the environment, to enhance the accuracy and adaptability of
anomaly detection in the IoT environment. The problem is transformed into a multi-
objective optimization issue of simultaneously optimizing h and f to achieve optimal
anomaly detection performance.

Motivation for adaptive edge collaboration framework: achieving
efficient information sharing and task distribution

. Existing edge computing frameworks often use centralized management or information
exchange mechanisms based on simple protocols, which struggle in handling
dynamically changing network environments and diverse device capabilities (Hu &
Huang, 2022). This limitation leads to inefficient information sharing, inability to
flexibly allocate tasks, and severely restricts the system’s response speed and adaptability
to change (Wang et al., 2022; Patsias et al., 2023).

. We propose an adaptive edge collaboration framework that integrates advanced
algorithmic design, combining weighted collaborative filtering with distributed Kalman
filtering. Its core innovation is the dynamic adjustment of task and resource allocation
strategies in response to real-time network conditions and device capabilities, ensuring
efficient resource use and quick task response under diverse conditions.

Mathematical model of the adaptive edge collaboration framework
We focus on how the adaptive edge collaboration framework enables effective information
sharing and task allocation among multiple devices in an edge computing environment.
The state at time t is xt , following the dynamic model:

xtþ1 ¼ Axt þ But þ wt (5)

where A is the state transition matrix, B is the control matrix, ut is the control input at time
t, and wt is the process noise, assumed wt � Nð0;QÞ, with Q as the covariance matrix of
the process noise.
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The device observation at time t, zt , is:

zt ¼ Hxt þ vt (6)

where H is the observation matrix, and vt is the observation noise, assumed vt � Nð0;RÞ,
with R as the covariance matrix of the observation noise. Estimation accuracy improves by
merging information from different devices, described by the collaborative filtering
algorithm:

x̂tjt ¼
PN
i¼1

Ki
tz

i
t

N
(7)

where Ki
t is the Kalman gain of device i at time t, and N is the total number of devices.

Information fusion among devices uses a weighted collaborative filtering algorithm to
enhance overall state estimation accuracy:

x̂tjt ¼
XN
i¼1

exp � 1
2 jjzit � Hx̂itjt�1jj2ðRþQÞ�1

� �
PN
k¼1

exp � 1
2 jjzkt � Hx̂ktjt�1jj2ðRþQÞ�1

� �Ki
tz

i
t

0
BBB@

þ
XM
j¼1

exp � 1
2 jjyjt � Gx̂jtjt�1jj2ðSþPÞ�1

� �
PM
l¼1

exp � 1
2 jjylt � Gx̂ltjt�1jj2ðSþPÞ�1

� �Ljtyjt
1
CCCA=ðN þMÞ

(8)

where Ki
t ¼ Ptjt�1HTðHPtjt�1HT þ RÞ�1 and Ljt ¼ Ptjt�1GTðGPtjt�1GT þ SÞ�1 are the

Kalman gains of device i and external information source j at time t. Observations zit and y
j
t

come from device i and external source j. MatricesH and G represent internal and external
observation models. R, S, Q, and P are covariance matrices of observation noise, external
source noise, process noise, and estimation error. x̂itjt�1 is device i’s state prediction based
on prior information, used to generate the optimal estimate x̂tjt .

The distributed Kalman filtering algorithm lets each device update its state estimation
based on local observations and neighbor information:

x̂itþ1jt ¼ Ax̂itjt þ Buit þ Ki
tðyit �Hx̂itjtÞ (9)

where yit is the observation of device i at time t. Distributed Kalman filtering allows each
device to use local observations and neighbor information to update its state estimate:

x̂itþ1jt ¼ Ax̂itjt þ Buit þ
X
j2Ni

kijK
j
t

 !
ðyit � Hx̂itjtÞ (10)

where H is the observation model matrix, kij is the neighbor weight coefficient, and Ni is
the set of neighbor devices of device i.

In each iteration, devices share state estimates and observation information through the
network, adapting to network conditions and device capabilities. Considering the
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information exchange and dynamic adjustment of adaptive parameters, we define the
following mathematical model:

Iit ¼ �
j2Ni

f ait x̂
j
tjt þ bitz

j
t; c

i
t�

i
t þ dit�

ij
t

� �n o
(11)

where� represents advanced information fusion between device i and its neighbor setNi.
f is an advanced information processing function dynamically adjusted based on device
capabilities and network state. ait , b

i
t , c

i
t , and dit are dynamically adjusted weight

coefficients.�i
t is a basic parameter set for adjusting the information processing, and �

ij
t is

an additional parameter set for the interaction between device i and its neighbor j.
To adapt to changing network conditions and device capabilities, an adaptive parameter

adjustment process updates the state estimate of device i:

x̂itþ1jt ¼ f x̂itjt; u
i
t; I

i
t; h

i
t

� �
þ cit �rx̂L x̂itjt; I

i
t; �

� �
(12)

where f is the adaptive adjustment function, hit are dynamically adjusted parameters, cit is
an adaptive learning rate, � is the Hadamard product, rx̂L is the gradient of the loss
function L with respect to the state estimate x̂itjt , and � includes all related model
parameters and network condition indicators.

Theorem 1 (Optimization of the adaptive edge collaboration framework) There exists
an optimal parameter set ��, which can effectively coordinate the efficiency of information
sharing and task allocation, while considering the timeliness of task execution:

�� ¼ argmin
�

�k Einfoð�Þð Þ þ l � Rtaskð�Þð Þ þ n �Dcomplexityð�Þ� �
(13)

Here, Einfoð�Þ represents the efficiency of information sharing, Rtaskð�Þ denotes the
responsiveness of task allocation, Dcomplexityð�Þ involves the complexity of task execution,
and k, l, and n are coefficients balancing the importance of these three aspects.

Corollary 1 (Parameter optimization strategy for the adaptive edge collaboration
framework) In the adaptive edge collaboration framework, the key lies in the optimization
of framework parameters� to achieve the highest efficiency in information sharing and task
allocation, while adapting to dynamic network conditions. We ensure that the framework
parameters gradually converge to the optimal solution �� through the following strategy, to
achieve the best system performance:

�� ¼ argmin
�

Lsystemð�Þ � k � E
XN
i¼1

xi � log pðyij�; xiÞ
pðyijxiÞ

" #
þ l � DKLðqð�Þjjpð�ÞÞ

( )
(14)

In this formula, Lsystemð�Þ represents the overall system performance loss, k and l are
hyperparameters balancing different terms, xi is the weight of device i, pðyij�; xiÞ and
pðyijxiÞ respectively represent the predicted probability under parameters� and the baseline
probability, DKLðqð�Þjjpð�ÞÞ measures the difference between the prior and posterior
distributions of parameters �, reflecting the adaptability and generalization ability of the
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model. This optimization process not only enhances the framework’s performance but also
ensures the gradual convergence of parameters, improving the overall system efficiency and
adaptability.

The proof is presented in the appendix.

Motivation for feature data selection and optimization: achieving
dynamic feature fusion and selection for feature data optimization

. Existing feature selection and fusion techniques often fail to effectively address the
challenges of dynamically changing data and complex inter-task relationships. These
techniques, based primarily on a static data perspective, overlook the time-varying
nature of IoT data streams and the complexity of interactions between devices, leading to
limited model performance in a multi-task learning environment and difficulty in
adapting to real-time application requirements (Tao et al., 2022; Wang et al., 2022;
Patsias et al., 2023).

. To address these issues, we designed an innovative mechanism for dynamic feature
fusion and selection. The core innovation of this mechanism is its ability to dynamically
adjust feature selection strategies based on real-time data streams and task requirements,
achieving intelligent selection of the most representative and relevant features from
large-scale, multi-source feature sets.

Mathematical principles of dynamic feature fusion and selection
To delve into the mathematical principles of dynamic feature fusion and selection, we
propose a multi-task learning (MTL) model that combines hard parameter sharing and a
multi-task attention mechanism. First, we define the overall objective function of multi-
task learning, considering the relatedness between tasks and their uniqueness. The overall
objective function combines the loss functions of all tasks as follows:

Ltotal ¼
XT
i¼1

aiLi fi X; �shared;�ið Þ;Yið Þ þ k
XP
j¼1

jj�j
sharedjj22

þ b
XT
i¼1

XN
t¼1

1
Zt

XK
k¼1

exp �
jXt � lktjt�1

��� ���j2
2r2

0
@

1
A � � Xt;�

k
i

� �� �� Yi;t

0
@

1
A

2 (15)

where T is the total number of tasks; ai represents the weight of the ith task; Li is the loss
function of the ith task; fi is the prediction function corresponding to the ith task; X
represents the input features; Yi is the true label of the ith task; �shared represents the
parameters shared across all tasks;�i is the task-specific parameters of the ith task; k is the
weight of the regularization term; P is the number of shared parameters; b is the weight for
missing data imputation; N is the number of data points in the dataset; Zt is a
normalization factor; K is the number of historical data points considered at each time
step; r2 represents the variance of Gaussian noise; � is a task-specific feature extraction
function.
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By considering the problem of multi-task learning (MTL) under a hard parameter
sharing framework, we describe the structure and learning process of the model by
introducing an equation for the parameter set of shared layers:

�shared ¼ 	L
j¼1

Wj (16)

where L represents the number of shared layers, Wj is the weight matrix of the jth layer,
and 	 indicates the tensor product operation, used to describe the complex interaction
between parameters of different layers.

The overall objective function of multi-task learning is expressed as:

Ltotal ¼
XT
i¼1

aiLi fi X; �shared;�ið Þ;Yið Þ þ k
XP
j¼1

jjWjjj2F þ c
XT
i¼1

XT
j6¼i

qijjj�i ��jjj22 (17)

where �i is the task-specific parameter set of the ith task; k and c are the weight
parameters of the regularization terms; qij represents the correlation adjustment
parameter between tasks i and j; jj � jjF and jj � jj2 respectively indicate the Frobenius norm
and L2 norm.

To capture the dynamic relationships between tasks and optimize the process of multi-
task learning, we introduce an adaptive weight adjustment mechanism based on task
correlation:

aiðtÞ ¼
exp �g

PT
j6¼i

qijjj�iðt � 1Þ ��jðt � 1Þjj22
 !

PT
k¼1

exp �g
PT
l 6¼k

qkljj�kðt � 1Þ ��lðt � 1Þjj22
 ! (18)

where g is the learning rate, t represents the iteration count, and aiðtÞ indicates the
adaptive importance weight of task i at iteration t.

To enhance the model’s capability in handling high-dimensional data and complex task
relationships, we incorporate attention mechanisms from deep learning to dynamically
focus on different tasks and features:

�attention
i ¼ softmax

�T
shared�iffiffiffiffiffi

dk
p


 �
�shared (19)

where dk is a scaling factor to prevent the dot product from becoming too large in high-
dimensional spaces.

Considering the complexity and diversity in a multi-task learning framework, we extend
and deepen the original attention mechanism, introducing an advanced multi-task
dynamic attention mechanism:

Ai ¼ Softmax
Watt

i � ~hþ battiffiffiffiffiffi
dk

p þ
XT
j6¼i

�ijðWatt
j � hþ battj Þ

0
@

1
A (20)

where Ai represents the dynamic attention weight vector for task i, Watt
i and batti are the
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task-specific attention mechanism’s weight matrix and bias vector, respectively. Vector ~h is
an enhanced output of the shared layer through a feature completion mechanism.

For the dynamic completion issue of features in a multi-task learning environment, a
feature completion mechanism is proposed:

~h ¼ h� r
XN
n¼1

Dn �Mðh; �nÞ þ
XN
n¼1

1� Dnð Þ � Vn � hþ bnð Þ
 !

(21)

where h is the original output vector of the shared layer, D represents a high-
dimensional feature missing indicator vector, � is element-wise multiplication, M is a
feature completion model based on the parameter set�n, Vn and bn are the weight and bias
in the completion model for handling non-missing features, r is a nonlinear activation
function.

A parameterized dynamic adjustment layer is introduced into the feature completion
mechanism for dynamic adjustment of the enhanced feature representation after feature
completion:

~h� ¼ �� ~hþ �� h� r Fð~h; �FÞ þ Gðh; �GÞ
� �� �

(22)

where � and � are matrices learned during training, �F and �G represent the parameter
sets of these two functions.

Following this, a multi-task attention mechanism allows each task to select and
emphasize the most important features for feature fusion, also considering the completion
of missing features:

Fi ¼ Softmax
Ai � ~h

�ffiffiffiffiffi
dk

p
 !

(23)

where Fi is the feature representation of the ith task after attention weighting and feature
complementation, and dk is a scaling factor. Task-specific parameters �i are used to
further process the features selected and fused by the attention mechanism, adapting to
environmental changes and missing features:

Oi ¼ gi Fi; �
i
adaptive

� �
¼ ReLU �i

adaptive � Fi þ bi
� �

(24)

where Oi is the output of the ith task, gi is a non-linear transformation function for further
processing the feature representation, and �i

adaptive is a task-specific parameter set
adaptively adjusted to adapt to changes in network conditions and computational
capabilities:

�i
adaptive ¼ hit 	�i þ k

X
j6¼i

qij �i ��j
� �

(25)

where 	 represents a parameter adjustment operation, hit is a coefficient dynamically
adjusted according to task i’s specific requirements at time t, k is a regularization
coefficient, and qij represents a correlation adjustment parameter between task i and task j.
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To improve the model’s performance and generalization ability in handling multiple
tasks, an integrated loss function is introduced, aiming to minimize the total loss of all
tasks.

Ltotal ¼
XT
i¼1

aiLi gi Fi; �
i
adaptive

� �
;Yi

� �
þ k

XP
j¼1

jj�j
sharedjj22

þ b
XT
i¼1

XN
t¼1

1
Zt

XK
k¼1

exp �
jFi;t � lktjt�1

��� ���j2
2r2

0
@

1
A � � Fi;t;�

i
adaptive

k
� �� �

� Yi;t

0
@

1
A

2

þ g
XT
i¼1

jDi �Mðhi; �Þj jj22

(26)

where Li is the loss function of the ith task, ai, k, b, and g are hyperparameters adjusting
the importance of each loss component, jj�j

sharedjj22 is a regularization term, Di is an
indicator vector for missing features of the ith task,M is a feature complementation model,
and � are the parameters of the feature complementation model.

This addresses the feature complementation problem within the dynamic feature fusion
and selection framework to enhance the robustness and accuracy of multi-task learning
models in dealing with incomplete or noisy feature data.

Theorem 2 (Performance enhancement in MTL through dynamic feature processing)
Through the dynamic feature fusion and selection strategy, the performance and
generalization ability of multi-task learning models can be significantly enhanced. There
exists an optimal set of parameters ��;�� that optimizes model performance:

��;�� ¼ argmin
�;�

Lcomplexð�;�Þ � k �
XT
t¼1

at � log pðytj�;�; xtÞ
pðytjxtÞ þ l � DKLðqð�Þjjpð�ÞÞ

( )
(27)

Here, Lcomplex is a composite loss function combining multi-task loss with feature
processing loss, k and l are tuning coefficients, at represents the dynamic weight at moment
t, and DKL measures the model parameter’s generalization capability, proving the existence
of the optimal solution.

Corollary 2 (Efficiency enhancement in MTL through dynamic feature processing) The
dynamic feature fusion and selection mechanism significantly enhances the model’s
performance in handling complex feature spaces, ensuring the optimization of overall
learning efficiency and performance:

��
eff ¼ argmin

�
Ltotalð�;X;YÞ ¼ argmin

�

XT
i¼1

aiðtÞLi þRð�Þ
( )

(28)

Here,Ltotalð�;X;YÞ combines all task lossesLi, weights aiðtÞ, and regularization term
Rð�Þ, indicating that the model, through dynamic feature processing strategies, gradually
converges to the optimal parameter set ��

eff that minimizes the overall objective function.
The proof process is presented in the appendix.
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Motivation for computational resource constraints in the IoT: enhan-
cing edge computing efficiency

. Facing the issue of limited resources in edge devices within IoT applications, traditional
computation-intensive models are often inapplicable due to their high computational
power and storage space requirements. Existing strategies frequently overlook the
resource constraints of edge computing, limiting the performance of edge devices (Xiong
et al., 2020; Zikria et al., 2021; Mendez et al., 2022).

. We propose an optimized lightweight CNN framework that reduces computational
demand through efficient activation functions, network pruning, and model
compression. Additionally, it features a dynamic resource allocation mechanism that
smartly adjusts task distribution according to device capabilities and network status,
enhancing efficiency while preserving accuracy.

Mathematical framework for optimizing lightweight convolutional neural
networks

The optimization of lightweight CNNs for edge computing focuses on structural
adjustments, efficient activation functions and pooling layers, network pruning, and
dynamic feature processing to enhance efficiency, accuracy, and model simplification.

Lopt ¼ min
h

XN
i¼1

Lðyi; f ðxi; hÞÞ þ kjjhjj1 þ q
XM
j¼1

exp � jjhjjj2
2r2

 !
(29)

where L is the loss function, yi is the true label of the ith sample, f ðxi; hÞ is the model’s
prediction for the ith sample, h represents the model parameters, kjjhjj1 is the L1
regularization term, q and r2 are the regularization coefficient and the variance of the
Gaussian distribution, respectively.

Next, ReLU is chosen as the efficient activation function:

rðxÞ ¼ maxð0; xÞ � nminð0; xÞ (30)

where n is a positive coefficient less than 1, introduced to allow a negative slope. Max
pooling layers are used to reduce the dimensionality of features:

PðxÞ ¼ max
k2½1;K


xk þ d
XK
k¼1

xk (31)

where xk is the kth element within the pooling window, K is the size of the pooling window,
and d is a small positive coefficient.

Network pruning techniques are applied to reduce unnecessary parameters and feature
maps:

h0 ¼ Pruneðh; sÞ; (32)

Pruneðh; sÞ ¼ fhj j hj > s �maxðhÞ 8jg (33)

where Pruneðh; sÞ is the pruning function, h are the original model parameters, and s is the
pruning threshold.
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Dynamic feature fusion aims to dynamically select and combine features based on input
data:

F0 ¼
XM
i¼1

ai � Fi þ b
XM
i¼1

XM
j¼iþ1

ai � aj � ðFi � FjÞ (34)

where Fi is the ith feature map, ai is the weight dynamically calculated based on input data,
b is a coefficient to adjust the influence of second-order interactions, Fi � Fj represents the
element-wise multiplication of feature maps Fi and Fj.

Finally, a feature selection mechanism is implemented through the following model:

SðF0Þ ¼ fF0
i j i 2 I; I � f1; . . . ;Mg;

X
i2I

HðF0
i ; yÞ > eg (35)

where S is the feature selection function, F′ is the set of fused features, I is the set of feature
indices selected based on model performance, HðFi0; yÞ measures the mutual information
between feature Fi0 and target label y, and e is the threshold for feature selection.

RT-Cabi framework: mathematical co-optimization strategy under an

integrated framework
The RT-Cabi combines adaptive collaboration, dynamic feature processing, and optimized
lightweight CNNs, using mathematical optimization to achieve real-time monitoring and
anomaly analysis of IoT devices, utilizing distributed Kalman filtering for state updates
based on local data.

x̂itþ1jt ¼ Ax̂itjt þ Buit þ
XN
j¼1

WijK
j
tðyjt � Hx̂jtjtÞ (36)

where A and B respectively represent the state transition and control matrices, Kj
t is the

Kalman gain at time t, yjt is the observation, H is the observation matrix, and Wij is the
weight in the adjacency matrix.

The RT-Cabi framework optimizes feature usage through a dynamic feature fusion and
selection mechanism. Let Fi

t be the set of dynamic features extracted by device i at time t:

F0i
t ¼

XM
j¼1

aij � Fi
t;j þ b

XM
j¼1

XM
k¼1

cjk � Fi
t;j � Fi

t;k (37)

where M is the number of feature maps, aij are data-driven fusion weights automatically
adjusted, b is a coefficient controlling second-order interactions, cjk is the interaction
strength between features j and k, and � indicates element-wise multiplication.

To further enhance processing efficiency and alleviate network burden, RT-Cabi
employs an optimized lightweight CNN structure, promoting parameter sparsity through
regularization and applying network pruning techniques:

Lcnn ¼ min
h

XN
i¼1

Lðyi; f ðxi; hÞÞ þ kjjhjj1 þ l
X
p2P

exp � jjhpjj2
2r2

 !
(38)
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where L is the loss function, k and l are regularization coefficients, hp represents the pth
element of the model parameters, r2 is the variance of the Gaussian distribution for
regularization, and P is the set of all pruned parameters.

Within the RT-Cabi framework, these three components are coordinated through an
integrated optimization process to form the following consolidated model:

�ðx̂; F0; hÞ ¼ x1 �
XN
i¼1

�ðx̂iÞ þ x2 �
XN
i¼1

�ðF0iÞ

þ x3 � LcnnðhÞ þ n
XN
i¼1

X
j2Ni

jjF0i � F0jjj2
(39)

where � represents the overall optimization objective, � and � are the efficacy functions
for edge collaboration and feature fusion respectively, x1, x2, x3 are weighting
coefficients, and n is the regularization coefficient for feature differentiation among
adjacent devices, Ni denotes the set of neighboring devices of device i.

Theorem 3 (Optimization of lightweight CNN under the RT-Cabi framework) There
exists an optimal set of parameters �� obtained by minimizing the following integrated
optimization objective:

�ðx̂; F0; hÞ ¼ x1 �
XN
i¼1

�ðx̂iÞ þ x2 �
XN
i¼1

�ðF0iÞ

þ x3 � LcnnðhÞ þ n
XN
i¼1

X
j2Ni

jjF0i � F0jjj2
(40)

where � and � respectively represent the efficacy functions for edge collaboration and
feature fusion, LcnnðhÞ is the optimization loss function for the lightweight CNN, x1, x2, x3

are weighting coefficients, n is the regularization coefficient for differentiating features
among neighboring devices, andNi represents the set of neighboring devices of device i. This
optimization objective comprehensively considers the accuracy of state estimation, the
efficiency of feature fusion, and the complexity of the CNN model.

Corollary 3 (Optimization of transfer learning and self-attention mechanism) In the
transfer learning framework combined with LSTM and attention mechanism, there exists a
set of parameters ��;�� that achieves the best predictive performance by optimizing the
following objective function:

��;�� ¼ argmin
�;�

Lcomplexð�;�Þ � k � E
XT
t¼1

at � log pðytj�;�; xtÞ
pðytjxtÞ

" #
þ l � DKLðqð�Þjjpð�ÞÞ

( )
(41)

where k and l are hyperparameters, balancing the trade-off between self-attention efficacy
and transfer learning generalization capability.

ALGORITHM PSEUDOCODE AND COMPLEXITY ANALYSIS
Algorithm 1, the Adaptive edge collaboration framework algorithm, primarily comprises
two parts: the process of device state updating and information collection at each time step,
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and the process of information fusion across devices. Given the time steps as T, the total
number of devices as N, and the average number of neighbors per device asM, the overall
time complexity is OðT � N �MÞ. The complexity of state updating and information fusion
operations for each device at each time step depends on the size of the state vector and
neighbor information set, which are generally considered constant time operations, hence
the overall time complexity remains unchanged. The space complexity is primarily
determined by the storage of state, control inputs, observations, and neighbor information
for each device, thus is OðN � ðDx þ Du þ Dz þM � DNÞÞ, where Dx, Du, Dz , DN

represent the dimensions of the state, control inputs, observations, and neighbor
information respectively.

For Algorithm 2, the time complexity depends on the number of training iterations R,
the total number of tasks T, and the computation time for each task in feature completion,
dynamic attention mechanism, feature fusion selection, and task-specific parameter
adjustment. Assuming the complexity of each operation as Dfeat, Datt, Dfusion, Dtask

respectively, the total time complexity is OðR � T � ðDfeat þ Datt þ Dfusion þ DtaskÞÞ. The
space complexity primarily depends on the storage needs for model parameters, including
shared parameters �shared, task-specific parameters f�ig, and the storage of features,
dynamic attention weights, and outputs, overall being
OðNshared þ T � ðN� þ Dfeat þ Datt þ DfusionÞÞ.

Algorithm 3 is concerned with state estimation updates, feature extraction and fusion,
feature selection, and optimization of lightweight CNN models among edge devices. Let
the total number of edge devices be N, and the time complexities for state update, feature

Algorithm 1 Adaptive edge collaboration framework algorithm.

Input: Set of devices N ¼ f1; . . . ;Ng, initial state of each device x̂i0j0, control input u
i
t , observation zit , set of neighboring devices Ni, adaptive

parameters hit

Output: State estimate x̂itjt for each device i

1 Initialize the state and parameters for each device;

2 for each time step t ¼ 1; 2; . . . do

3 for each device i 2 N do

4 Update the state prediction according to the dynamic model, using Eq. (5);

5 Collect the state and observation of neighboring devices, building the information set;

6 for each neighbor j 2 Ni do

7 Integrate neighbor information and update the state estimate x̂itjt using Eqs. (7) and (8);

8 Update the state estimate using the Kalman gain and control input according to Eqs. (9) or (10);

9 Perform advanced information fusion using collected information and adaptive parameters with Eq. (11);

10 Adjust adaptive parameters and update the state estimate with Eq. (12);

11 if network conditions or device capabilities change then

12 Dynamically adjust the adaptive parameters hit for each device;

13 return x̂itþ1jt ;
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Algorithm 2 Dynamic feature fusion and selection for multi-task learning (MTL) model.

Input: Multi-task input data X, true label set Y ¼ fY1;Y2; . . . ;YTg, initialized parameters �shared; f�igTi¼1,
learning rate η

Output: Predicted output fOigTi¼1 for each task

1 Initialize the task predicted output set fOigTi¼1 ¼ [;

2 for each training iteration do{

3 for each task i ¼ 1; 2; . . . ;T do

//Feature completion

4 Compute enhanced features ~h, using Eq. (21);

//Apply dynamic attention mechanism

5 Calculate dynamic attention weights Ai, using Eq. (20);

//Feature fusion and selection

6 Calculate feature fusion output Fi, using Eq. (23);

//Adaptive adjustment of task-specific parameters

7 Update �i
adaptive, using Eq. (25);

//Task output computation

8 Compute the output for each task Oi, using Eq. (24);

9 Add Oi to the task predicted output set;

//Total loss calculation and parameter update

10 Calculate total loss Ltotal , using Eq. (26);

11 Update parameters �shared; f�igTi¼1, etc. using gradient descent;

12 if convergence then

//Check if the loss for all tasks has reached convergence criteria

13 break;

14 return fOigTi¼1;

Algorithm 3 Optimization process of lightweight CNN model within the RT-Cabi framework.

Input: Observational data from edge devices X, true labels Y

Output: Predictions from the optimized lightweight CNN model

//State estimation and feature extraction of the adaptive edge collaboration framework

1 for each edge device i ¼ 1; 2; . . . ;N do

2 Update the state estimate x̂itþ1jt using Eq. (36);

3 Extract features Fi
t based on the state estimate and compute dynamic feature fusion Ft 0

i
referring to

Eq. (37);

//Dynamic feature selection based on state estimation

4 for each edge device i ¼ 1; 2; . . . ;N do

5 Calculate the feature selection weights aij and combine with Eq. (34) to select and fuse features F';
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extraction and fusion, feature selection, and model optimization be Dstate, Dfeat, Dselect, and
DCNN, respectively. Then, the total time complexity is OðN � ðDstate þ Dfeat þ Dselect

þDCNNÞÞ. The space complexity mainly includes the storage requirements for state
estimation, feature sets, and model parameters, hence is OðN � ðDx þ DF þ DhÞÞ, where Dx

represents the dimension of the state vector, DF represents the feature dimension, and Dh

represents the dimension of model parameters.

EXPERIMENTAL RESULTS
Dataset and experimental parameters introduction
In our study, we utilized two publicly available datasets: Edge-IIoT and UNSW_NB15, to
evaluate the performance of our proposed model.

Edge-IIoT: The dataset is designed for the edge computing environment in Industrial
Internet of Things (IIoT) (https://www.kaggle.com/datasets/mohamedamineferrag/
edgeiiotset-cyber-security-dataset-of-iot-iiot), containing various normal and abnormal
device behavior data, simulating network attacks such as DDoS and malware, suitable for
edge computing security threat detection.

UNSW_NB15: The dataset, released by the University of New SouthWales, Australia, is
aimed at network intrusion detection research (https://www.kaggle.com/datasets/
mrwellsdavid/unsw-nb15). It covers a diverse dataset of modern network attack
characteristics, such as backdoors and DoS attacks, intended to support network security
research, enhancing the generalization and robustness of intrusion detection systems.

Our experimental parameters are set as shown in Table 2.

Algorithm 3 (continued)

6 Apply the feature selection mechanism Eq. (35) to obtain the optimal feature subset S(F');

//Optimize the lightweight CNN model

7 Initialize the parameters of the lightweight CNN model θ;

8 repeat

//Train the model using selected features

9 Use S(F') as input, compute model predictions and the loss Lopt according to Eq. (29);

10 Update the model parameters θ to minimize Lopt;

11 until until θ converges;

//Collaborative optimization within the RT-Cabi framework

12 for each edge device i ¼ 1; 2; . . . ;N do

//Integrate optimization of state estimation, feature fusion, and CNN model

13 Perform integrated optimization under the RT-Cabi framework using Eq. (39);

14 Update x̂, F', and θ according to the integrated model �ðx̂; F0; hÞ;
15 return Predictions using the RT-Cabi framework optimized lightweight CNN model;
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Experimental deployment data
Edge-IIoT and UNSW_NB15 datasets were used to evaluate the IoT traffic anomaly
detection model. These two datasets cover a variety of normal and abnormal traffic,
reflecting the diversity of attack types. The distribution of attacks is intuitively displayed
through bar charts (Fig. 2), guiding the model design and tuning.

To enhance the robustness of the model, 10,000 records from each of the two datasets
were randomly selected for testing. This sample size was chosen to ensure that the key
characteristics of both datasets were adequately represented, providing a sufficient basis to
validate the model’s performance. In the face of data missing and shifting (Fig. 3),
corrections were made through a dynamic feature fusion strategy. Specifically, missing
data were imputed using a combination of statistical methods and machine learning
techniques, while shifting data distributions were adjusted using normalization techniques
to ensure the accuracy of the results. The resource consumption of the RT-Cabi model is
detailed in Table 3, covering time and space costs.To provide a comprehensive
understanding of the training process, we conducted experiments over 20 training rounds.
This number was chosen based on preliminary tests, which indicated that performance
improvements plateaued after 20 rounds, making it an optimal choice for balancing
training time and model efficiency.

Table 2 Detailed experimental parameter settings.

Parameter name Parameter value Parameter name Parameter value

Dataset Edge-IIoT/UNSW_NB15 Training rounds 30

Neurons per layer 128/256/128 Learning rate 0.005

Batch size 128 Iteration times 20

Optimizer AdamW Activation function Leaky ReLU

Regularization L2 Regularization parameter 0.001

Early stopping criterion No improvement in 10 rounds Data augmentation Adversarial training

Data preprocessing Min-max normalization Loss function Cross-entropy + Dice loss

Evaluation metrics Accuracy (ACC), F1 Score (F1) Training/validation ratio 70%/30%

Feature engineering Dynamic feature selection and
fusion

Data balancing SMOTE + Tomek link

Computational resources GPU Tesla V100 Model saving Best model

Self-attention mechanism
parameters

Heads = 4, Dimension = 64 Multi-task learning weights Task 1 = 0.5, Task 2 = 0.5

Kalman filter parameters Q = 0.01, R = 0.01 Convolutional layer configuration 3 × 3 Convolution, Stride = 1

Network pruning threshold 0.15 Pooling layer configuration 2 × 2 Max Pooling, Stride = 2

Adaptive parameter adjustment
strategy

Online learning update Feature fusion strategy Weighted average + Quadratic
term

Dynamic resource allocation Yes Lightweight model compression
techniques

Quantization + Pruning

Edge collaboration update frequency Every 2 rounds Anomaly behavior detection threshold Dynamically adjusted

Model initialization Xavier initialization Weight decay 0.01

Gradient clipping 1.0 Dropout rate 0.5

Learning rate decay 0.9 per 10 rounds Validation frequency Every 5 rounds
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The RT-Cabi model was deployed and completed training within 2 h for 20,000
samples, indicating that the training process, from initializing the model to finishing the
final epoch, was efficient and time-effective. This deployment was conducted on a machine
equipped with an NVIDIA Tesla V100 GPU, 32 GB RAM, and an Intel Xeon CPU. The
deployment time can vary depending on the number of epochs, batch size, and the specific
hardware used. With an average inference time of 10 milliseconds per sample, this makes
the model suitable for IoT applications that require rapid response. The space cost of the
model includes 50 MB for parameter storage and approximately 500 MB for intermediate
data storage, making the overall resource consumption reasonable for resource-
constrained devices.

To address concerns about the time complexity of feature selection, our framework
incorporates an efficient feature selection mechanism that balances flexibility and
computational efficiency, ensuring that predictive tasks are not delayed significantly, even
in the presence of potential attacks. This approach is particularly suitable for resource-
constrained IoT devices such as smart sensors, wearable devices, and edge computing
nodes, where computational power and memory are limited. By optimizing the feature
selection process, we ensure that these devices can maintain high performance and quick
response times, essential for real-time applications.

Figure 2 Distribution of attack types in the dataset. Full-size DOI: 10.7717/peerj-cs.2306/fig-2
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Experimental results
Figure 4 demonstrates the flexibility and superiority of the RT-Cabi model under various
parameter settings and structures. In the Edge-IIoT dataset experiments, the model
achieved a 97.15% accuracy rate after fine-tuning and feature engineering. Even without
data correction, the accuracy rate was still 77.79%, showing strong robustness. In the
UNSW_NB15 experiments, the accuracy rate increased from 75.59% to 84.75% after data
correction, highlighting the importance of data preprocessing and the model’s adaptability
to network security. In contrast, traditional CNNs, which serve as the baseline models in
our study, showed significantly lower accuracy on both datasets than RT-Cabi, proving its
advantages in processing IoT traffic. Traditional CNNs refer to standard convolutional

Figure 3 Missing data counts per feature. Full-size DOI: 10.7717/peerj-cs.2306/fig-3

Table 3 Resource consumption of the RT-Cabi model.

Resource type Description Value

Time cost Model deployment time 2 h

Average inference time per sample 10 ms

Space cost Model parameter size 50 MB

Intermediate data storage space 500 MB
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neural networks without the optimizations and enhancements incorporated in RT-Cabi,
such as dynamic feature fusion, adaptive parameter adjustment, and lightweight model
compression.

The performance of the RT-Cabi model is displayed through loss value analysis, as
shown in Fig. 5. On the Edge-IIoT dataset, the loss value decreased from 1.03 to 0.006,
showing its learning and optimization effects. Its performance on the UNSW_NB15 also
demonstrated its generalization ability. These results not only confirm the efficiency and
advanced nature of RT-Cabi in IoT anomaly detection but also provide guidance for future
model design, helping to advance industrial IoT security research.

Comparison with cutting-edge research
Table 4 summarizes the accuracy comparison between the RT-Cabi model and other
significant models from the literature. The RT-Cabi model achieved accuracies of 97.15%

Figure 4 Model experiment accuracy performance comparison. Full-size DOI: 10.7717/peerj-cs.2306/fig-4

Figure 5 Model experiment loss performance comparison. Full-size DOI: 10.7717/peerj-cs.2306/fig-5
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and 84.75% on the Edge-IIoT and UNSW_NB15 datasets, respectively, outperforming
existing research. Compared to Zhang et al. (2021) and Singh et al. (2021), it showed an
improvement of 1.45% and nearly 2%, respectively, demonstrating its effectiveness and
advantages in the field of IoT anomaly detection. This underscores the potential of RT-
Cabi as an efficient solution.

CONCLUSION
This study introduces RT-Cabi, an innovative framework for anomaly detection in IoT
traffic. RT-Cabi enhances the data processing and analysis capabilities of IoT devices
through edge computing, effectively improving the accuracy and efficiency of anomaly
detection. It adopts an adaptive edge collaboration mechanism, dynamic feature fusion
selection technology, and optimized lightweight CNN framework, overcoming the
limitations of traditional models on resource-constrained edge devices. Experiments on
the Edge-IIoT and UNSW_NB15 public datasets show that RT-Cabi achieved detection
accuracies of 98.45% and 90.94%, respectively, significantly outperforming existing
methods. These achievements validate the effectiveness of RT-Cabi in identifying
abnormal behaviors in IoT traffic and open new perspectives and technical paths for future
research in the field of IoT security. Future work should address the scalability to larger
datasets, real-time adaptability in dynamic environments, and integration with other IoT
security technologies.

APPENDIX: MATHEMATICALTHEOREMS AND COROLLARY
PROOFS
Theorem 1 (Optimization of the adaptive edge collaboration framework) There exists
an optimal parameter set��, which can effectively coordinate the efficiency of information
sharing and task allocation while considering the timeliness of task execution:

�� ¼ argmin
�

�k Einfoð�Þð Þ þ l � Rtaskð�Þð Þ þ n �Dcomplexityð�Þ� �
(42)

where Einfoð�Þ denotes the efficiency of information sharing, Rtaskð�Þ represents the
responsiveness of task allocation, Dcomplexityð�Þ involves the complexity of task execution,
and k, l, and n are coefficients to balance the importance of these three aspects.

Table 4 Accuracy comparison (%).

Method Edge-IIoT dataset UNSW_NB15 dataset

Ferrag et al. (2022) 80.83 _

Wu et al. (2020) _ 73.93

Tareq et al. (2022) 94.94 _

Singh et al. (2021) _ 89.00

Zhang et al. (2021) 97.00 _

Meftah, Rachidi & Assem (2019) _ 84.24

RT-Cabi 97.15 84.75
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Proof 1 This theorem demonstrates the existence of a set of parameters ��, which can
effectively balance the aforementioned system performance indicators, defining the
system’s overall performance loss function Hð�Þ:
Hð�Þ ¼ �k Einfoð�Þð Þ þ l � Rtaskð�Þð Þ þ n �Dcomplexityð�Þ (43)

We need to prove the existence of �� that minimizes Hð�Þ. Using the method of
Lagrange multipliers, we introduce a Lagrange multiplier c, and construct the Lagrangian
function Lð�; cÞ to address the constraints in this optimization problem:

Lð�; cÞ ¼ Hð�Þ þ c C � Einfoð�Þ �Rtaskð�Þð Þ (44)

To find ��, we derive Lð�; cÞ with respect to � and c respectively, and set the
derivatives equal to zero:

@L

@�
¼ 0;

@L

@c
¼ 0 (45)

By solving these equations, we obtain an optimized set of parameters�� that satisfy the
minimization condition of the overall performance loss function Hð�Þ. Further, we use
the KKT (Karush-Kuhn-Tucker) conditions, which are necessary for solving constrained
optimization problems, to ensure that the found �� is a global optimum:

r�Hð��Þ þ cr� C � Einfoð��Þ �Rtaskð��Þð Þ ¼ 0; c C � Einfoð��Þ �Rtaskð��Þð Þ ¼ 0 (46)

At ��, not only is the overall performance loss function minimized, but also an optimal
balance is achieved among all system performance indicators.

Corollary 1 (Parameter optimization strategy for the adaptive edge collaboration
framework) In the adaptive edge collaboration framework, the key lies in optimizing the
framework parameters � to achieve the highest efficiency of information sharing and task
allocation, while adapting to dynamic network conditions. Through the following strategy,
we ensure that the framework parameters gradually converge to the optimal solution ��,
achieving optimal system performance:

�� ¼ argmin
�

Lsystemð�Þ � k � E
XN
i¼1

xi � log pðyij�; xiÞ
pðyijxiÞ

" #
þ l �DKLðqð�Þjjpð�ÞÞ

( )
(47)

where Lsystemð�Þ represents the overall system performance loss, k and l are
hyperparameters to balance different terms, xi is the weight of device i, pðyij�; xiÞ and
pðyijxiÞ respectively represent the predictive probability with parameters � and the
baseline probability, DKLðqð�Þjjpð�ÞÞ measures the divergence between the prior and
posterior distribution of parameters �, reflecting the model’s adaptability and
generalization capability. This optimization process not only enhances the framework’s
performance but also ensures gradual convergence of parameters, improving the overall
system’s efficiency and adaptability.
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Proof 2 Let �0 be any initial set of parameters. We first prove that by adjusting �, the
system performance loss Lsystem can be reduced. Considering the system performance is
directly related to the parameters, we have:

r�Lsystemð�Þ ¼ @Lsystem

@�

� 

(48)

representing the rate of change of system performance loss with a small change in �.
By considering constraints on information sharing efficiency and task allocation

responsiveness, we use the method of Lagrange multipliers to construct the following
optimization problem:

Lð�; kÞ ¼ Lsystemð�Þ þ k Einfoð�Þ þRtaskð�Þ � Cð Þ; (49)

where k is the Lagrange multiplier, C is a predetermined performance target. By setting
r�;kL ¼ 0, we obtain a set of equations, indicating the existence of a set of parameters��

that minimizes system performance loss while satisfying constraints on information
sharing efficiency and task allocation responsiveness.

By solving this set of equations:

�� ¼ argmin
�

Hð�Þ subject to Einfoð�Þ þRtaskð�Þ 
 C (50)

We can find a set of parameters �� that minimize the system performance lossLsystem

while satisfying the given constraint C. This proves that by meticulously adjusting the
framework parameters, the overall system performance can be optimized while
maintaining key performance indicators.

Theorem 2 (Performance Optimization through Dynamic Feature Processing in Multi-
Task Learning) Significant improvements in performance and generalization capability of
multi-task learning models can be achieved through dynamic feature fusion and selection
strategies. There exists an optimal set of parameters ��;��, which optimizes the model
performance:

��;�� ¼ argmin
�;�

Lcomplexð�;�Þ � k �
XT
t¼1

at � log pðytj�;�; xtÞ
pðytjxtÞ þ l � DKLðqð�Þjjpð�ÞÞ

( )
(51)

Here, Lcomplex is a composite loss function combining multi-task loss and feature
processing loss, k and l are tuning coefficients, at represents the dynamic weight at time t,
and DKL measures the model parameters’ generalization capability, proving the existence
of an optimal solution.
Proof 3 By appropriately adjusting these parameters, we can effectively reduce the model’s
prediction error Lpred, with respect to the sensitivity of parameters � and �:

r�;�Lpredð�;�Þ ¼ @Lpred

@�
;
@Lpred

@�

� 

; (52)
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We consider constraints on attention mechanisms and transfer learning
efficiency, and construct an optimization problem using the method of Lagrange
multipliers:

Lð�;�; kÞ ¼ Lpredð�;�Þ þ k Eattð�Þ þ Gtransð�Þ � Cð Þ; (53)

where k is a Lagrange multiplier, C represents a performance target.
By solving for the extremum of this Lagrangian function, we obtain the optimal

parameters �� and ��:

��;�� ¼ argmin
�;�

Hð�;�Þ subject to Eattð�ÞþGtransð�Þ 
 C; (54)

This set of equations indicates that there exists a set of parameters �� and ��, which
under the given constraint C, can minimize the prediction error.

Further, we consider dynamically adjusting the self-attention weights to enhance model
performance:

anewt ¼ at exp �gratLpredð�;�Þ� �
; (55)

where g is the learning rate, at represents the self-attention weight at time step t.
Considering the Kullback-Leibler divergence DKLðqð�Þjjpð�ÞÞ between the prior and

posterior distributions of the transfer learning parameters �, we quantify the model’s
generalization capability:

DKLðqð�Þjjpð�ÞÞ � h; (56)

where h is a predefined threshold to ensure the model has good generalization capability.
We have shown that by appropriately adjusting the model parameters � and �, under

constraints on attention mechanisms and transfer learning efficiency, the prediction error
Lpred can be effectively reduced, thereby optimizing the model’s predictive performance

while maintaining key performance indicators.

Corollary 2 (Efficiency Enhancement in Dynamic Feature Processing for Multi-Task
Learning) Dynamic feature fusion and selection mechanisms significantly enhance the
model’s performance in handling complex feature spaces, ensuring the optimization of
overall learning efficiency and performance:

��
eff ¼ argmin

�
Ltotalð�;X;YÞ ¼ argmin

�

XT
i¼1

aiðtÞLi þRð�Þ
( )

(57)

Here, Ltotalð�;X;YÞ integrates all task losses Li, weights aiðtÞ, and regularization
term Rð�Þ, indicating that the model gradually converges to the optimal parameter set
��

eff through a dynamic feature processing strategy, minimizing the overall objective

function.
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Proof 4 Our goal is to find an optimal set of parameters�� that minimizes the overall loss
function Ltotal, which combines the losses of all tasks, the correlation loss between tasks,
and regularization terms:

Ltotalð�Þ ¼
XT
i¼1

aiLiðfiðX; �Þ;YiÞ þ kjj�sharedjj22 þ
XT
i;j

qijjj�i ��jjj22; (58)

whereLi represents the loss function of the ith task, ai is the task weight,�shared represents
the parameters shared between tasks, and qij measures the correlation between tasks i and j.

Dynamic feature fusion and selection are optimized through the introduction of an
additional loss term �ð�Þ, considering the dynamics of feature selection and the effect of
feature completion:

�ð�Þ ¼ b
XT
i¼1

XK
k¼1

cik fiðXik; �Þ � Yikð Þ2; (59)

where b is a tuning coefficient, and cik represents the dynamic importance weight of the kth

feature in the ith task.
The adjustment of task weights ai is based on the dynamic performance changes of

tasks, updated through the following formula:

anewi ¼ ai exp �g
@Ltotalð�Þ

@ai


 �
; (60)

where g is the learning rate.
Shared parameters�shared and task-specific parameters�i are updated through gradient

descent to minimize the overall loss function:

�new
shared ¼ �shared � lr�sharedLtotalð�Þ; �new

i ¼ �i � lr�iLtotalð�Þ; (61)

Considering the convexity ofLtotal and the boundedness of the parameter space, we can
ensure that the parameters �� obtained by the iterative update strategy are globally
optimal:

�� ¼ argmin
�

Ltotalð�Þ þ �ð�Þ; (62)

proving the existence of a set of parameters ��, which can effectively balance the loss
functions in multi-task learning with the support of a dynamic feature processing strategy,
achieving model performance optimization.

Theorem 3 (Optimization of lightweight CNN under the RT-Cabi framework) There
exists an optimal set of parameters �� obtained by minimizing the following integrated
optimization objective:

�ðx̂; F0; hÞ ¼ x1 �
XN
i¼1

�ðx̂iÞ þ x2 �
XN
i¼1

�ðF0iÞ

þ x3 � LcnnðhÞ þ n
XN
i¼1

X
j2N i

jjF0i � F0jjj2
(63)
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where � and � respectively represent the efficacy functions of edge collaboration and
feature fusion, LcnnðhÞ is the optimization loss function of the lightweight CNN,x1, x2, x3

are weight coefficients, n is the regularization coefficient for neighboring device feature
differentiation, and Ni represents the set of neighboring devices for device i. This
optimization objective comprehensively considers the accuracy of state estimation, the
efficiency of feature fusion, and the complexity of the CNN model.

Proof 5 By adjusting parameters within the RT-Cabi framework to optimize the
performance of the lightweight CNN, we define the overall optimization objective �,
combining various aspects of performance enhancement for lightweight CNNs in edge
computing:

�ðx̂; F0; hÞ ¼ x1

XN
i¼1

Lðyi; ŷi; hÞ þ x2RðF0; hÞ þ x3DðF0;NiÞ; (64)

where Lðyi; ŷi; hÞ represents the loss function based on model parameters h, RðF0; hÞ
represents the regularization term after dynamic feature fusion and selection, DðF0;NiÞ
measures the feature differences between neighboring devices, and x1, x2, x3 are weight
parameters, adjusting the impact of different components.

Dynamic feature fusion can be expressed as:

F0i
t ¼

XM
j¼1

aij � Fi
t;j þ b

XM
j¼1

XM
k¼1

aij � aik � ðFi
t;j � Fi

t;kÞ; (65)

where aij are dynamically computed weights, b is a coefficient adjusting the second-order
interaction items, and � represents element-wise multiplication, optimizing the efficiency
of feature fusion.

The structure optimization of the lightweight CNN takes the following form:

Lcnn ¼ min
h

XN
i¼1

Lðyi; f ðxi; hÞÞ þ kjjhjj1 þ l
X
p2P

exp � jjhpjj2
2r2

 !" #
; (66)

where k and l are regularization coefficients, r2 is the variance of the Gaussian
distribution, andP represents the set of pruned parameters, aiming to promote parameter
sparsity through regularization terms and apply network pruning techniques to streamline
the model.

Finally, by minimizing the feature differences between neighboring devices, we promote
model collaboration and consistency:

� ¼ n
XN
i¼1

X
j2Ni

jjF0i � F0jjj2; (67)
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where n is the regularization coefficient, and Ni represents the set of neighboring devices
for device i. This term ensures the model’s collaborative working capability in the IoT
device network, enhancing its generalization ability.

In the RT-Cabi framework, through precise adjustment of model parameters, we can
effectively enhance the performance of the lightweight CNN in the edge computing
environment, achieving efficient monitoring of IoT device behaviors and accurate analysis
of abnormal behaviors.

Corollary 3 (Optimizing transfer learning and self-attention mechanisms) In the
transfer learning framework combined with LSTM and attention mechanisms, there exists
a parameter combination ��;��, which achieves optimal predictive performance by
optimizing the following objective function:

��;�� ¼ argmin
�;�

Lcomplexð�;�Þ � k � E
XT
t¼1

at � log pðytj�;�; xtÞ
pðytjxtÞ

" #
þ l � DKLðqð�Þjjpð�ÞÞ

( )
(68)

where k and l are hyperparameters, adjusting the balance between self-attention efficacy
and transfer learning generalization ability.

Proof 6 We revisit the model’s composite loss function Lcomplex, which integrates the
contributions of prediction error, model complexity, and the effects of transfer learning:

Lcomplexð�;�Þ ¼
XT
t¼1

Lðyt; f ðxt; �;�ÞÞ þ kjj�jj1 þ q
XM
i¼1

exp � jj�ijj2
2r2


 �
; (69)

where L is the loss function, k and q are regularization parameters, and r2 is the variance.
We define two key metrics, self-attention efficacy Eatt and transfer learning

generalization capability Gtrans, to quantify the impacts of self-attention mechanisms and
transfer learning parameters on model performance:

Eatt ¼
XT
t¼1

at log
at
�a

� �
; (70)

Gtrans ¼ DKLðqð�Þjjpð�ÞÞ; (71)

where �a represents the average value of the self-attention weights.
To optimize model performance, we set the objective function to minimize the

composite loss while maximizing self-attention efficacy and maintaining the generalization
capability of transfer learning parameters:

��;�� ¼ argmin
�;�

Lcomplexð�;�Þ þ fðEatt � gGtransÞ
� �

; (72)

f and g are parameters adjusting the efficacy of self-attention and the generalization
capability of transfer learning.

By adjusting the self-attention weights at and transfer learning parameters�, we further
refine the model to strengthen its ability to process time-series data while maintaining
adaptability to new datasets:
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@Eatt

@at
¼ 0; (73)

@Gtrans

@�
¼ 0; (74)

We proved that there exists a set of optimized parameters �� and ��, which can
effectively balance between enhancing the ability to capture key time-series features and
maintaining the model’s generalization ability on new datasets, achieving optimal
predictive performance.
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