Submitted 10 November 2023
Accepted 13 August 2024
Published 25 October 2024

Corresponding author
Carlos Cares, carlos.cares@ceisufro.cl

Academic editor
Gui-Bin Bian

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.2305

© Copyright
2024 Navarro et al.

Distributed under
Creative Commons CC-BY-NC 4.0

OPEN ACCESS

Componentizing autonomous underwater
vehicles by physical-running algorithms

Claudio Navarro'”, Jose E. Labra Gayo’, Francisco A. Escobar Jara' and
Carlos Cares'

! Computer Science and Informatics Department, University of La Frontera, Temuco, La Araucania, Chile
? Departamento de Informatica, Universidad de Oviedo, Oviedo, Spain

ABSTRACT

Autonomous underwater vehicles (AUV) constitute a specific type of cyber-physical
system that utilize electronic, mechanical, and software components. A component-
based approach can address the development complexities of these systems through
composable and reusable components and their integration, simplifying the devel-
opment process and contributing to a more systematic, disciplined, and measurable
engineering approach. In this article, we propose an architecture to design and describe
the optimal performance of components for an AUV engineering process. The architec-
ture involves a computing approach that carries out the automatic control of a testbed
using genetic algorithms, where components undergo a ‘physical-running’ evaluation.
The procedure, defined from a method engineering perspective, complements the
proposed architecture by demonstrating its application. We conducted an experiment
to determine the optimal operating modes of an AUV thruster with a flexible propeller
using the proposed method. The results indicate that it is feasible to design and
assess physical components directly using genetic algorithms in real-world settings,
dispensing with the corresponding computational model and associated engineering
stages for obtaining an optimized and tested operational scope. Furthermore, we have
developed a cost-based model to illustrate that designing an AUV from a physical-
running perspective encompasses extensive feasibility zones, where it proves to be more
cost-effective than an approach based on simulation.

Subjects Artificial Intelligence, Autonomous Systems, Embedded Computing, Real-Time and
Embedded Systems, Robotics

Keywords Physical-running algorithms, Cyber-physical systems, Autonomous vehicles, Genetic
algorithms

INTRODUCTION

An autonomous underwater vehicle (AUV) is a submersible vehicle capable of operating
underwater with full or partial independence of a human operator. AUV are specialized
cyber-physical systems involving electronic, mechanical, and software components (Cares
et al., 2023). These complex systems face diverse challenges such as safety, security, energy
efficiency, and timing, from a multidisciplinary approach (Marwedel ¢ Engel, 2016).
Although these systems have intense software needs, their engineering still lags behind other
disciplines (like PMBOK for project management or SWEBOK for software engineering).
In particular, systematic, disciplined, and measurable approaches in cyber-physical systems

How to cite this article Navarro C, Labra Gayo JE, Escobar Jara FA, Cares C. 2024. Componentizing autonomous underwater vehicles by
physical-running algorithms. Peer] Comput. Sci. 10:2305 http://doi.org/10.7717/peerj-cs.2305

https://peerj.com/computer-science
mailto:carlos.cares@ceisufro.cl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2305
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
http://doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

are being proposed and modeling is still an open issue (Tyagi ¢ Sreenath, 2021; Duo, Zhou
& Abusorrah, 2022).

In the component-based approach, components are the fundamental building blocks
of a system, constraining and enabling system engineering. Components provide valuable
features to the system they comprise in a composable, independent, and reusable manner,
abstracting their internal complexities and enabling organized and well-defined interaction
through interfaces. While the interaction among components via these interfaces imposes
a discrete structure that restricts interactions, it also simplifies the variability of the
system (Crnkovic, 2001).

The fundamental concept behind the component-based approach is based on the
modular design of systems into smaller parts, serving as building blocks that are replaceable
and reusable through well-defined interfaces. In addition to its frequent use in software
engineering, the component-based approach is employed across various engineering
disciplines, ranging from electronic components, such as resistors, capacitors, and
integrated circuits, in electronic engineering to bolts, nuts, gears, and bearings in mechanical
engineering, and even precast concrete and steel beams in civil engineering (Gross, 2005).

The component-based approach has also shown its usefulness when addressing
complex systems such as cyber-physical systems, using components to support
multi-mode system behaviors (Yin ¢& Hansson, 2018), for complementing model-
based approaches (Sztipanovits et al., 2014), supporting the integration of autonomous
robots (Gobillot, Lesire ¢ Doose, 2019), modeling applied to smart city systems
interoperability (Palomar et al., 2016), and control-process based designing and
implementation (Serrano-Magaiia et al., 2021).

In the case of AUV, the component-based approach has been acknowledged in several
works. For example, this approach has been used in the development of a subsea-resident
AUV for infrastructure inspection (Albiez ef al., 2015), the creation of high-performance
AUV control software (Ortiz et al., 2015), and the design of AUV streamlined hulls for
survey and intervention missions (Ribas et al., 2011).

Therefore, from an engineering point of view, there are critical tasks to solve, which can
be addressed by simplifying each component’s operation modes without losing its core
capabilities, and ensuring that these modes are optimal operation points in a real-world
set. A classic way of solving this is by using simulation of environmental conditions, which
also requires simulating the behavior of the integrated solution. This solution has been
traditionally addressed by a modeling framework as Modelica or SysML and implemented
in a corresponding tool as Open Modelica or Simulink (Fritzson, 2014; Nakajima, Furukawa
¢ Ueda, 2012).

In abstract terms, the engineering approach is a tacit separation of concerns between
design, understood as a theoretical approach to the solution, and a test, understood
as an actual proof of concept. This separation is applied for parts and components,
which is known as ‘hardware in the loop’ (Ledin, 1999), and the whole system under
construction (Hehenberger et al., 2016). Modeling cyber-physical systems includes both the
continuous physical phenomena and their computing control, which is usually controlled
by discrete models. The simulation typically makes it possible to verify the requested

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 2/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

features of the continuous part and the complete system in a hybrid design (Babris,
Nikiforova & Sukovskis, 2019), i.e., conceptually, the design does not directly confront
the actual world to particular requirements for a cyber-physical component at design
time. This paradigmatic separation of concerns is still present in recent works such as
the work of Ayerdi et al. (2020), where a taxonomy for design-operation for the case of
continuous integration architectures for cyber-physical systems is proposed. In this case,
one of the taxonomic approaches (a view or face) of the taxonomy is the lifecycle approach,
in it, simulation is always present and real cases are considered as test cases and not as

a possible design alternative. Corso et al. (2021) summarized a set of different heuristics
and meta-heuristic algorithms from artificial intelligence and operational research for
validating cyber-physical components, which were meant to be applied simulation tools
with no alternative for their application. Bazydlo (2023) proposes a UML-based design for
cyber-physical systems. Although this work considers simulation as part of the life cycle, the
authors recognize a problem at the level of non-standard hardware description language
(HDL) as part of the diagnosis. This means that the assumption is that the control of the
embedded component, being part of a system, is delegated to a controller who knows its
internal behavior. This approach develops this line, and its generated code from UML
models overcomes the problem by generating specific HDL code.

In the specific case of an AUV thruster under an integrated point of view, using a flexible
propeller may result in irregular thrust, however, it also provides advantages over the
use of a rigid propeller, such as improved prevention of breakage and jamming, which is
especially useful in exploration missions in an unknown environment. In this scenario, the
AUV’s navigation software must compute all the control signals for efficient propulsion
requiring the system to be equipped with all necessary sensors and sufficient data flow
to continuously and timely measure and compute the thrust to apply and its resulting
performance.

This situation can change when using an AUV thruster component, where its controller,
driver, motor, gearbox, and flexible propeller are integrated. Such a component could
have optimized and predefined operating modes, like an off mode, optimal thrust mode,
and maximum thrust mode. In this case, the AUV’s navigation software only needs to
handle these three operating modes, simplifying interactions with the thruster component.
As expected when applying a component-based approach, this approach ensures that the
efficient operation complexities of the AUV thruster component are hidden from the other
AUV components and internally managed by itself. As a result, it reduces the computing
requirements, minimizes communication flow, and simplifies the complexity of AUV
navigation software. Ultimately, this streamlines the overall system engineering process.

Therefore, there is no doubt about the convenience of a component-based approach.
However, the error propagation from components to the integrated simulation is a
serious issue for cyber-physical systems. It has been addressed by continuous and discrete
simulation techniques (Mittal & Tolk, 2020), stochastic methods (Fabarisov et al., 2020),
and even machine learning approaches (Yusupova, Rizvanov & Andrushko, 2020). It is
preferable to use a component-based approach, and to simplify the component flow data
and to reduce the error propagation in the integrated simulation.

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 3/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

In this study, the optimal operation modes of cyber-physical components were obtained
by running an optimization algorithm in an actual set, namely a physical-running searching
algorithm. Therefore, the proposed approach aims to enhance the performance of the
AUV by identifying the optimal operational modes of each component and designing
their behavior and interactions with other components in a discrete and targeted manner,
including the complexities of the natural environment. The expected impact is that the
costs of using physical components in an actual set should find inflection points compared
to the computational costs and the number of engineers’ hours in the corresponding
simulation tasks, especially if the engineers want to avoid error propagation.

Under this approach, it is not about introducing arbitrary discretization into the
componentization process solely to reduce complexity in AUV engineering. Doing so
may compromise performance and hinder the ability to address problems within the
environment effectively. Instead, the AUV should be viewed as the solution while its
environment presents the problems it must resolve. Therefore, for the AUV to complete
its mission, its operational capabilities must exhibit only enough flexibility to match the
actual variability of its environment, which is a classic cybernetic perspective about what
intelligence is, according to Ashby (1956). In the case of an AUV thruster component, the
component’s variety could be then reduced to the number of states having ‘meaning’ for
the controller system, for example: inactive, uniform motion, and evacuation modes.

A notable feature of using a physical-running algorithm is the engineering creation of
pre-optimized component choices using a real set to obtain them. We understand that
this is not the classical engineering perspective, however, inexpensive and high-capacity
electronic elements and the easily obtained mechanical components (provided, for example,
by 3D printers) make it possible. Moreover, to anticipate its possible impacts, we claim
that this engineering alternative could save the costs of simulation units and improve
the performance of the integrated simulation of the final product by: (i) reducing the
complexity of controller-controlled pairs, (ii) improving the accuracy of the integrated
simulation by a better and simple description of component behavior, and (iii) reduced
energy consumption due to pre-optimized components. However, what we present in this
document is what we understand as its feasibility. The feasibility of a physical-running
approach is not clear because it has strong theoretical drawbacks such as: (i) convergence
time is significantly slower due to mechanical movements, (ii) it requires a physical set for
testing, and (iii) it requires an additional device for sensing and controlling. These three
elements constitute an additional cyber-physical set for realizing this design choice.

Therefore, to demonstrate their feasibility and economic viability in the following
sections, we propose an alternative for identifying the optimal operating modes for
components in a component-based approach by a physical-running approach. First, we
propose a general architecture for obtaining optimal operation modes for components.
Second, we show that genetic algorithms provide a search-based approach feasible for use
in an actual set. Third, we propose how to use a genetic algorithm and how to adapt it for
use under a physical-running approach. Finally, we demonstrate the use of the proposed
framework by determining the optimal capabilities of a soft-propeller component.

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 4/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

ARCHITECTURE FOR EVALUATING COMPONENTS USING
REAL SETS

The component-based approach offers numerous benefits directly related to best practices
in software engineering. This approach demonstrates software engineering principles
such as abstraction, modularity, encapsulation, separation of concerns, and reuse by
encapsulating and hiding the complexities of their operation within components and
providing well-defined and simplified interfaces for interaction with other components.

The cyber-physical components are hybrid in nature and expressed in the computational
space through data processing and communication interfaces and, in the physical world,
through their performance as sensors or actuators. For instance, a flexible propeller
component can integrate a communication interface to receive control signals specifying
the desired rotation speed employing a protocol. This component internally processes these
signals using a controller to activate its motor driver, motor, and gearbox. All parts work
together to deploy the desired rotational effect on the flexible propeller, which will generate
thrust in the physical world. This cyber-physical component exhibits communication
capabilities to interact with other components in the computational space and also shows
actuation capabilities in the physical world while encapsulating its internal complexities. In
the atomic interactions between these components, the required resources, such as time and
energy, are not dependent on the specific requests’ message contents for rotation speed in
the computational space. However, in the physical world, the situation is entirely different.
When applied to the flexible propeller, there will be rotation speeds that will produce
better or worse thrust-to-consumption ratios, which, given the resource scarcity context in
which the AUV operates, makes it necessary to work on optimal regimes. Operating only
in optimal regimes will reduce the variability of interactions, limit the range of applicable
control signals to the thruster component only to the optimal ones, and consequently
simplify the AUV engineering process. For instance, the soft-propeller component could
be operated in three modes: minimum thrust for precision maneuvers, optimal thrust for
displacement with the best thrust-to-consumption ratio, and maximum thrust in the case
of an emergency.

Thus, identifying the optimal or notable operational modes for cyber-physical
components is an entry point for applying the component-based approach for engineering
cyber-physical systems, particularly for AUV. In cases where information regarding the
notable or optimal operational modes of a given component is unavailable, testing and
experimentation can be employed as alternative methods to determine the components’
physical properties.

Figure 1 shows the architecture for evaluating components using real sets in a cyber-
physical loop that allows the integration of the physical world and computational space
in an iterative process to determine the notable operating modes of the cyber-physical
component under evaluation. In each iteration, the physical-running algorithm produces
the action vector that will be executed by the cyber-physical component, thereby altering
its physical environment as a result of its action. Its respective effects will be sent back to
the algorithm to provide feedback for the search process of the notable operating modes. In

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 5/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

Hypothetical Optimal
variables affecting Operadtlon
i : . mode
the behavior Physical-running -

Algorithm

Cyber-physical loop Software

Physical setup

Cyber-physical
component

Effects
sensing

Physical Environment

Figure 1 Architecture for evaluating components in a cyber-physical loop.
Full-size & DOI: 10.7717/peerjcs.2305/fig-1

each cycle, the physical running algorithm measures the performance of the action vector
using a cost function expressed in terms of the variables that hypothetically affect the
behavior of the cyber-physical component. Once the algorithm completes the optimization
process, it will find an operation mode associated with the cyber-physical component
according to the defined cost function.

Therefore, the design process of the cyber-physical component under this architecture
involves at least two well-defined stages. In the first stage, the cyber-physical component
must be prepared to implement a protocol capable of receiving action vectors from
the physical-running algorithm and providing access to its entire operating spectrum.
This allows the algorithm to explore any point within the component’s performance
possibilities during the search until notable points are found, which will then be reported
as optimal operation modes. In the second stage, the cyber-physical component must
implement a protocol capable of receiving action vectors from the physical-running
algorithm while offering only a discrete set of options to be activated. These options
correspond to the optimal operation modes detected by the algorithm in the previous
stage for optimal operating performance alternatives from the cyber physical component.
When the physical-running algorithm is instantiated, the optimal operation modes will
align with the local minima detected by the algorithm. These modes will be assigned as the
operational configurations for the final component design.

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 6/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2305/fig-1
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

GENETIC ALGORITHMS IN AN AUV DESIGN PROCESS

Genetic algorithms (GA) are a type of optimization algorithm inspired by natural selection
and genetic inheritance. By leveraging the principles of evolution and natural selection,
genetic algorithms can effectively search for optimal solutions (Holland, 1975). Genetic
algorithms aim to find the best solution to a problem by iteratively evolving a digital
population of potential solutions through mutation, crossover, and selection. They are
helpful when dealing with complex problems where traditional optimization techniques
may not be sufficient or feasible. One of the significant advantages of genetic algorithms is
their ability to handle cost functions that present drawbacks, such as large search spaces,
nonlinear and/or not straightforward cost functions, namely, non-derivable or discrete.
These drawbacks make it difficult or impossible to use traditional optimization methods,
and genetic algorithms can provide a rapid, robust, and effective alternative (Kowalski et
al., 2021; Cheng, Lu & Yu, 2022; Deng et al., 2023; Kumar et al., 2010).

As shown in Fig. 2A, the genetic algorithm emulates the natural evolutionary process
through a few sequential steps (Haupt ¢ Haupt, 2004). Once the cost function, variables,
and parameters are configured at the beginning of the process, it randomly generates an
initial population, evaluates each population’s element, and ranks them according to their
performance. Next, the best-performing elements are selected and combined to create the
next population generation, with mutations introduced to promote diversity. This process
is repeated until the algorithm converges or a predetermined stopping criterion is met,
such as reaching the maximum number of allowable iterations set in the first step.

The terms ‘fitness function’ and ‘performance’ will be used henceforth to describe
what was previously referred to as ‘cost function’ and ‘cost’ for each chromosome due
to the terminology employed by the technology we use in genetic algorithm execution.
Furthermore, to prevent ambiguity, we reserve the term ‘cost’ for discussing the resource
expenditure in a comparative analysis detailed later in this article.

Figure 2B shows a genetic algorithm instantiated version designed to find the optimal
operation for the case of a soft-propeller component. The first step involves specifying
the fitness function definition and the genetic algorithm parameters, such as stopping
and convergence criteria. The fitness function must express a performance measurement
involving a components’ computational model, which must accurately and precisely reflect
the attributes and behavior of the propeller component as faithfully as possible. In the
second step, the algorithm produces the first generation by randomly generating rotational
speed values. These values are then individually tested in the next step to evaluate and rank
their performance. Based on this evaluation, the algorithm selects the best performance
elements, mates them by adding mutations, and creates a new generation in an iterative
process. This process continues until the element that produces the best performance is
identified: for example, the rotational speed that produces the best ratio between thrust and
power consumption on the soft-propeller component. This way, the algorithm can identify
an optimal operation mode for this component. At this point, it is essential to note that
the quality of the computational model is critical to the algorithm’s ability to identify the

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 7/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

Start Start
Defining the AUV component fitness function (e.g., Thrust/Power
Define cost function, cost, Consumption in the case of a flexible propeller thruster
variables comy f)

um number of iterations before

Select GA parameters Select GA parameters (e.g. maxir

the algorithm halts
Generate a set of rotational speeds values
that will be applied to the thruster

v v

Find cost for each Apply each rotational speed value to the thruster and
chromosome measure the resulting thrust and power consumption

v v

Select the best elements

Generate initial population

Select mates e.g. Select the rotational speed values with best measured
Thrust/Consumption performance)
Mating ‘ Mating
Mutation ‘ Mutation

v

Convergence Check

v

Done

v

Convergence Check

(a) (b)

Figure 2 Genetic algorithm instantiation for finding flexible propeller thruster component perfor-
mance. (A) Flowchart of the genetic algorithm. (B) Instantiated version for specific application.
Full-size Gal DOI: 10.7717/peerjcs.2305/fig-2

optimal operation mode for the modeled component. Thus, the computational model’s
accuracy and precision will directly impact the resulting operational modes.

However, obtaining a faithful and precise computational model of a physical component
is a complex process; from non-rigid components like soft thrusters (Sodja et al., 2014) to
soft-robot applications, where the absence of rigidity results in infinite degrees of freedom
which, consequently, makes it more difficult to predict its behavior (Wang ¢ Chortos,
2022). Any component whose performance depends on the variability of the physical world
poses challenges from a modeling point of view. Their material, mechanical resistance,
rigidity and flexibility, thermodynamic and electromagnetic behavior, interactions with
other components, and non-linear behavior in boundary conditions are just some factors
that increase the time and resources involved in obtaining reliable computational models.

Obtaining an accurate and precise computational model for an AUV component can
be complex and costly. When evaluating the AUV-thruster components to identify their
optimal modes of operation, a decision must be made regarding whether to invest in
a computational model that faithfully represents the physical component or to directly
evaluate the physical component and avoid the cost of model preparation. It is also

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 8/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2305/fig-2
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

important to consider that evaluating a physical component may be much slower than
using a computational model even though computational models also require a great
deal of time and effort to create a simulation model. Therefore, the decision to model
or not to model depends on different factors, including the nature of the problem to be
addressed, the costs and benefits of alternatives, and the available resources and time. Later,
a comparative analysis is conducted to help elucidate this matter.

In fact, when a sufficiently adequate computational model for a physical component is
either too expensive or simply not feasible, the decision may be made to skip modeling in
favor of directly discovering, assessing, and specifying the physical component operation
modes by using a real set for executing a physical-running algorithm. In particular, using
a physical-running version of a genetic algorithm to overcome the absence of a reliable
computational model. In Fig. 2B, the third step is highlighted in blue to indicate that it
could include a physical component. In particular, the resulting thrust force and power
consumption should be obtained from a real set in place of the simulation’s output to
find each rotational speed performance and continue the instantiated genetic algorithm

execution process.

USING GENETIC ALGORITHMS UNDER A PHYSICAL-
RUNNING APPROACH

Despite the savings in a mathematical simulation model, it is necessary to use a physical
component for connecting the digital algorithm to the physical environment. In this
way, we acknowledge its benefits but also the additional costs. Therefore, the appropriate
communication interfaces must be integrated between the physical world where the
physical component operates and the computational space where the genetic algorithm
runs.

In Fig. 2A, the step ‘Find cost for each chromosome’ should implement communication
between the genetic algorithm and the physical component, which, must implement
communication capabilities through well-defined interfaces and offer functionality at a
higher level than its physical part only. Due to this physical component’s ability to exchange
and process messages and act as a counterpart in a communication process, hiding its
internal complexities, we will refer to it as a cyber-physical component (Thramboulidis ¢
Christoulakis, 2016).

Thus, the cyber-physical component will perform the role of the computational model.
This approach allows dispensing with the need for a computational model but could result
in significantly different timing. This can lead to noticeable waiting intervals while the
physical component is instructed to execute an action, starts its execution, and reaches a
stable state to measure the environmental effects.

Figure 3 shows a flowchart of an adapted genetic algorithm to determine the properties
of a cyber-physical component in a physical-running way. This adapted genetic algorithm
saves a component’s computational model and directly uses the cyber-physical component
in the physical world to find the performance of each chromosome in an analog computer
manner. This way, this adapted algorithm can directly determine the component’s optimal

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 9/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

Start

\

Define fitness function Physical World
Select GA parameters Instructions (Testbed)

+ for acting

Generate initial population ‘ ﬁ

v

Find the performance for each
chromosome

v

’ Select mates ‘

v

Mating]

v

Mutation]

v

Convergence Check ‘

v

Done

Internal

Status

Cyber-physical
component

Effects

Figure 3 Physical-running genetic algorithm: Dataflow between the adapted genetic algorithm and its
physical component.
Full-size Gl DOI: 10.7717/peerjcs.2305/fig-3

operation modes automatically guided by the genetic algorithm search process. As shown in
the step ‘Find the performance of each chromosome’, the adapted algorithm sends messages
to the cyber-physical component. These messages contain instructions for actions to be
carried out in the physical world. When the cyber-physical component receives these
instructions, it executes them by changing its internal state and producing effects on its
environment.

In general terms, the internal state of a cyber-physical component is defined by the
values of its internal variables resulting from its operational performance. The effects, in
contrast, are determined by the changes in environmental variables, which are or should
be influenced depending on the component’s functioning. For instance, in the case of a
cyber-physical heating component, its internal status could be characterized by its energy
consumption, while the effects could be represented by the temperature achieved in the
surrounding air following a heat exchange process. If an automatic transmission electronic
system is regarded as a cyber-physical component, its status variables could include the
rotational speeds of its gears, and the temperature of the lubricating oil, and the effects
would be the transmitted torque. In the case of a cyber-physical component for the cruise
control system of an autonomous vehicle, the status variables could include the vehicle’s
target speed, the distance to the vehicle ahead, and the engine’s status. On the other hand,
the effects might be represented by the actual speed of the vehicle, fuel consumption, and
control actions exerted on the powertrain.

In the example of the soft-propeller AUV thruster, the instructions received by the
component are the rotational speed that it must develop. This component’s internal status

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 10/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2305/fig-3
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

Population™ g
Find the performance for each
chromosgme . Select an unranked Physical World
> chromosome (Testbed)
from population
Chromosome
v
» Data acquisition: internal <
Assess performance | status, effects data Status— .
Cyber-physical
l T component
Effects
Update population Configuration
ranking (Timing settings)
Unranked .
TR Ranking ends
- - Ranked
population

Figure 4 Detail for ‘Find the performance for each chromosome’ step of the physical-running genetic
algorithm.
Full-size & DOI: 10.7717/peerjcs.2305/fig-4

is given by its energy consumption, and it changes as a result of applying the action,
producing effects on its environment, i.e., it produces thrust.

The adapted algorithm, which we will call the physical-running genetic algorithm, does
not evaluate the performance of each chromosome traditionally (4). Instead, it evaluates
the cyber-physical component directly on the testbed in the physical world. The process
consists of evaluating each chromosome to build a ranking, which will subsequently allow
for the selection of those with better performance (4). Through this process, an unranked
chromosome is selected. The chromosome is subsequently sent to the cyber-physical
component through a communication interface, which receives the message and interprets
it as instructions to execute. Then, the cyber-physical component must execute the
instructions. Whether the role of the cyber-physical component is to sense or act, the
operation in the physical world will take time to achieve the desired physical result. Next,
data acquisition must be performed on time once the necessary time interval has elapsed.
This time interval is a parameter that must be previously configured, as shown in Fig. 4
where it is represented by the box labeled ‘timing settings.’

For example, the flexible propeller of the AUV thruster component will receive messages
containing the instructions to act in its environment, that is, the desired rotation speed.
The consumption and thrust data will be measured once the specified rotation speed
is reached. An appropriate timing setting must be configured to ensure the propeller
reaches the desired rotation speed. Once the data have been obtained on the internal
state and the effects produced by the cyber-physical component, the performance will
be evaluated according to the fitness function in the ‘Assess performance’ step. In the
example mentioned, the fitness function will be the thrust-to-consumption ratio, allowing
the ranking of the population chromosomes according to their performance. The better-
ranked chromosomes, namely, those having the best thrust-consumption ratio, will be

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 11/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2305/fig-4
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

positioned higher in the ranking. The process proceeds iteratively until all elements of the
population have been ranked.

This architecture is designed to evaluate cyber-physical components using genetic
algorithms to determine their optimal operating modes. The optimal mode is achieved
when the component’s performance best achieves a design goal. We have not imposed
strict restrictions on the platform required to implement this architecture. However, we
have identified the need for at least one computing unit for executing the adapted genetic
algorithm linked to the cyber-physical component through a network connection or link,
allowing them to establish communication. The cyber-physical component should integrate
its computing unit for communication, data acquisition, and control. Examples of these
computing units include single-board computers and/or microcontroller units. Finally, a
well-equipped infrastructure is necessary to accurately assess cyber-physical components
and determine their optimal operating modes, including a testbed with sensing elements
capable of measuring relevant variables. These variables should include the component’s
internal state and the resulting operation effects. To ensure an accurate evaluation, the test
bed must also replicate the operational conditions as closely as possible.

Procedure for applying the physical-running genetic algorithm
Adopting a general methodological approach for a specific engineering problem is known
as situational method engineering (Henderson-Sellers ¢ Ralyté, 2010). The assumption is
that a method is composed by method fragments or chunks, which can be specialized and
arranged in different ways to obtain specific methods for specific situations. Usually, the
static part is modeled by class diagrams, and the dynamic part is modeled by transition
diagrams. Following these guides, we propose a procedure for applying an adapted genetic
algorithm to identify optimal operation modes for cyber-physical components under a
physical-running approach.

We use a state machine diagram to model the procedure, as shown in Fig. 5. After
identifying the cyber-physical component variables that define its state and are required
to measure its performance, a testbed must be set up to replicate physical operations as
accurately as possible. The testbed setup must allow for recreating the operating conditions
in which the component under evaluation will perform and should include all necessary
physical elements, power supplies, sensors, and actuators to continuously monitor and
control the cyber-physical component’s operation and performance throughout the entire
algorithm execution process. In the next step, the communication loop must be configured
between the cyber-physical component and the computing unit where its counterpart,
the adapted genetic algorithm, will run. The adapted genetic algorithm can be executed
after configuring the input variables, fitness function, algorithm stop criteria, and timing
settings. During execution, the algorithm physically tests each element of every generation
directly on the cyber-physical component, selecting the best ones for each generation based
on the configured algorithm parameters. The data acquisition for each chromosome takes
as much time as the configured timing settings. If the timing settings are too short, the
execution may be faster, but the measurements may be inaccurate. Conversely, unnecessary
waiting time may occur if the timing settings are too long. In the soft-propeller component

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 12/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

start

By offer of required component

A4

Get the array of cyber-physical

/”’_ components' relevant variables

Byw

Technique-based

Setup power supply,
sensors and actuators Replicate desired physical
for relevant variables operating conditions

¥> Setup test bed «<

By test bed operating properly /”’#b

Configure communication between
devices: cyber-physical component and j€——
genetic algorithm computer

By successful communication
Configure adapted genetic algorithm
parameters and evaluate results.
Input variables, fitness function
timing settings and stop parameters

Physical-run adapted
genetic algorithm

By satisfactory results

Add specification register for

cyber-physical component
Catalogued component

l Upanson
Stop

Figure 5 Procedure for applying physical-running genetic algorithms.
Full-size &l DOI: 10.7717/peerjcs.2305/fig-5

example, excessively brief timer settings can result in data acquisition occurring before the
propeller reaches the specified rotation speed, leading to inaccurate thrust and performance
measurements. Therefore, we recommend allowing sufficient time for the propeller to reach
a stable speed before stopping and to ensure a non-turbulent state before starting. This
balance is incorporated into the proposed physical running approach alongside established
parameters in genetic algorithms, such as the initial population size and stopping criteria,
which have received attention in the genetic algorithm literature (Diaz-Gomiez ¢ Hougen,
2007; Safe et al., 2004).

The results of this physical-running genetic algorithm will reveal the optimal operation
modes according to the configured parameters. In the example of the soft-propeller
component, the result will be the optimal thrust mode operation ratio when the fitness
function is the thrust-power consumption ratio. Additionally, the results can be the
maximum thrust capacity when the fitness function considers the measured thrust. Finally,

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 13/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2305/fig-5
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

these optimal operation modes of the component can shape the cyber-physical component
specification in a component-based approach.

EXPERIMENTAL EVALUATION OF AN AUV THRUSTER WITH
A SOFT PROPELLER

We analyzed an AUV thruster with a soft propeller as a case of a physical-running
algorithm for characterizing a cyber-physical component. This component comprises

a microcontroller board based on the Atmel SAMD21 unit (Arduino MKR1000). The
microcontroller board has capabilities for WIFI communication and communication
through a serial port. It is connected to a dual full-bridge motor driver L298N, which
delivers power to a 12V DC brushed motor. After testing several 3D-printed propeller
prototypes that were not sufficiently flexible, we decided to mount a flexible clear PVC
plastic propeller with two blades. Each blade was 65 mm long, 20 mm wide, and 0.7 mm
thick, and having a pitch angle of 90 degrees. It was attached to the DC motor shaft to
rotate at a speed proportional to the pulse width modulation (PWM) signal produced by
the microcontroller.

We measured two variables to determine the performance of the cyber-physical
component: the thrust it can produce and its power consumption. This requires weight
and power sensors, which are not part of the component and were used here for data
acquisition.

In preparing the testbed, a rigid structure capable of holding the component over a
bucket of water was implemented, submerging only the flexible propeller. The structure
was built using ad-hoc 3d printed PLA fixtures, PVC tubes, and fittings. The direction
of rotation was arranged so that the propeller pushed the water downwards. A weight
sensor was installed to measure the increase in the weight of the bucket when the propeller
rotates, that is, the thrust measured in grams. Since the motor’s power supply operates at a
constant and known voltage of 12V DC, a current sensor was installed in series to measure
the motor’s power consumption proportionally in amperes.

Figure 6 depicts, sequentially from left to right, the key components of the testbed.
Figure 6A illustrates the installation of the primary structure supporting the motor.
This structure incorporates Fig. 6C custom 3D-printed elements designed to adjust
the propeller’s submersion depth in water. The base, resting on Fig. 6D fastenings,
ensures stability, complemented by the structure’s material properties. In Fig. 6B, the
interconnected electronic components are visible, including the microcontroller board,
motor driver, and current and thrust sensors. Figure 6E shows the USB cable connected to
the microcontroller board, establishing a serial communication link. Explicit labels have
been included to denote the effects induced by the cyber-physical component’s action, such
as the thrust generated by the rotation of the flexible propeller. This thrust is measured by a
weight sensor placed beneath the water-filled container where the propeller is submerged.
The figure also highlights the cyber-physical component’s status, indicated by the overall
power consumption, measured using a current sensor. Another dynamic aspect illustrated
in the figure is the transmission of chromosomes. Initially sent from the executing genetic

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 14/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

Status (consumption
measured by usinga ™
current sensor)

Action (rotating
flexible propeller)

~.Chromosome
Effects (Thrust 1 (rotation speed control 1link (e)
measured by using a signal from MCU to : 8
(a) weight sensor)) Motor Driver) 4 i

Figure 6 (A—E) Main testbed components.
Full-size G4l DOI: 10.7717/peerjcs.2305/fig-6

algorithm on a computer, these chromosomes sequentially reach the microcontroller via
the serial port. They are then relayed to the motor driver to assess the corresponding effects
and status. These effects and status are captured by the microcontroller from sensors and
transmitted back to the computer via the serial link. There, the genetic algorithm ranks each
chromosome and iterates the optimization process until completion based on predefined
termination criteria.

Figure 7 provides an overview of the two computing units constituting this distributed
system. The genetic algorithm is executed on a computer, and it has been modified
to evaluate each chromosome directly in the testbed or physical world, bypassing a
computational model, as previously mentioned. The second computing unit in this
distributed system is the microcontroller, which forms the cyber-physical component in
conjunction with the motor driver, motor, and flexible propeller. In the setup depicted in
the figure, sensors have been added to measure the status of the cyber-physical component
(current consumption) and the effects in the physical world (thrust). These readings are
crucial because, when relayed back to the genetic algorithm running on the computer, they
enable the performance assessment of each chromosome according to a fitness function. In
the search for an optimal operation mode for efficient AUV movement, the fitness function
defined for identifying the most efficient chromosome, i.e., the rotational speed with which
the cyber-physical component performs with the best thrust-to-consumption ratio, is:
Thrust
Current’

(1)

PhysicalPerformance(chromosome : rotational speed) = —1 x

The rationale for multiplying by the additive inverse arises because the version of the
genetic algorithm is based on the ga() function included in the R software (4.2.0; R Core

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 15/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2305/fig-6
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

Computer

Genetic algorithm

Fitness function

Serial link
l Physical World
: Cyber-physical component
! AUV thruster with flexible propeller
Power
< e =+ supply Thrust
K3 J
S 1 Y [sensor
NS ! $
S S (R _[)Current O
éoooofb > sensor K \ @
£ .
é |
Motor I
PWM driver :
A signal — '
|

Figure7 Testbed for implementing a physical-running genetic algorithm on a flexible-propeller
thruster.

Full-size & DOI: 10.7717/peerjcs.2305/fig-7

Team, 2022; RStudio Team, 2022) and is designed to optimize by searching for minima.
Thus, multiplying by —1 facilitates the search for the best thrust-to-current ratio.

According to the pseudocode presented in Algorithm 1, the microcontroller board was
programmed to report data once the rotation speed was reached. As there is no motor shaft
rotation speed meter, the device waits for a time interval (delay of 3.5 s) before reporting
data to ensure the instructed rotational speed is reached by the motor shaft before taking the
measurement. This specific behavior is part of the internal operation of the cyber-physical
component and is not accessible from the computer side.

On the computer side, the genetic algorithm was configured to operate in accordance
with the pseudocode presented in Algorithm 2. As previously mentioned, the modified
algorithm fundamentally relies on the ga() function available in the R software, with
the primary modification being the introduction of a custom fitness function. Unlike its
traditional application, which involves evaluating the performance of each chromosome
using a mathematical formula or model, this modified version evaluates chromosomes
directly in the physical world. This is achieved by having the PhysicalPerformance() function
send the chromosome under evaluation, i.e., the rotational speed, to the cyber-physical
component via the serial port. The cyber-physical component then returns the status
and effect measurements from the evaluated chromosome through the same port. These
statuses and effects, relayed back to the computer from the microcontroller, are used by

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 16/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2305/fig-7
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

Algorithm 1: Cyber-physical component pseudo-code
Computing Unit: Microcontroller

Input: serial_port (for reading instructed rotational speed)
Output: PWM signal to motor driver pin, and Data sent back through serial_port
(thrust and current sensor readings)

Define: motor_driver_pin;
Define: thrust_sensor_reading;
Define: current_sensor_reading;

Function setup:

// 1Initialize and calibrate sensors
calibrate_thrust_sensor;
calibrate_current_sensor;

Function loop:

serial_port.read instructed_speed;

motor_driver_pin := instructed_speed; // Send rotational speed to motor
driver

delay;

// Obtain thrust and current sensors readings after delay
serial_port.read thrust_sensor_reading;
serial_port.read current_sensor_reading;

serial_port.write thrust_sensor_reading, current_sensor_reading;

the modified fitness function to calculate the chromosome’s performance. As previously
explained, this performance is gauged by the thrust-to-consumption ratio, aiming to find
the chromosome that enables the most efficient movement of the AUV.

As shown in Algorithm 2, the specific parameters allowed the genetic algorithm to
operate in real-valued mode using floating-point representations for rotation speed values.
These parameters limited the population size of each generation to seven chromosomes
and defined the termination criteria as reaching ten consecutive generations without
performance improvement or completing a total of forty-five iterations. Regarding timing
settings, the fitness function was designed to introduce an 8.2-second delay between each
rotation speed evaluation, ensuring that the water turbulence and propeller rotation had
ceased, thus preventing undesired impacts on the measurements. This execution of the
genetic algorithm identified the optimal performance for efficient movement at a rotation
speed control signal of 67% (PWM signal of 172 over an interval from 0 to 255). Through
this method, the genetic algorithm successfully identified an optimal operation mode for
efficient movement.

Figure 8 displays all the data points generated by the physical-running genetic algorithm
during its execution. The X -axis represents the applied rotation speed, the Y -axis indicates
the thrust/current consumption ratio, and the marked point is the obtained value in

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 17/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

Algorithm 2: Physical-running GA pseudo-code

Computing Unit: Computer

Input: serial_port (for getting thrust and current readings sent back from micro-
controller)
Output: Optimal cyber-physical component rotational speed: Best ratio thrust/cur-
rent as a result of R software ga() genetic algorithm function

Define: rotational_speed;
Define: thrust;
Define: current;

Function PhysicalPerformance (rotational_speed):

// Send rotational speed to microcontroller through serial port
serial_port.write rotational_speed;

delay;

// Get thrust and current readings from microcontroller
serial_port.read thrust;
serial_port.read current;

return (—1 x thrust/current);

// The ga() function in R software, which implements a genetic algorithm,
utilizes the parametrized ‘PhysicalPerformance()‘ function to evaluate
each rotational speed, treating these as chromosomes.

ga (fitness function: PhysicalPerformance (chromosome), lower, upper,

population_size, consecutive_generations_without_improvement,
maximum_iterations_number);

Report and store results;

the final generation of the genetic algorithm. Notably, the algorithm tends to produce
different Y values across generations at almost the same X values, suggesting that factors
beyond the algorithm’s operation may be at play. Possible causes could include mechanical
deformations, sensor limitations, and actuator constraints.

We can apply the same procedure by modifying the fitness function definition to explore
alternative optimal operation modes. For instance, if we want to search for the maximum
thrust, we can define the fitness function as the additive inverse of the measured thrust.
This way, the genetic algorithm implemented in R will find a minimum corresponding to
the maximum thrust capacity of the AUV thruster with a flexible propeller.

COMPARATIVE ANALYSIS

Simulation activities are significant in the fields of robotics, autonomous vehicles, and
cyber-physical systems. As an alternative to constructing real artifacts, simulation serves as
a valuable tool for modeling and design, facilitating the inclusion of smart features, and

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 18/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

e
80
= ° @ °
s 3 ‘!.: *’
—
) 60 0.1 s N
E . v o
5 o °
o . :
EO 40 (] .
- o
1%
2
£ 20 H
}—
0 [] []
0 50 100 150 200 250

PWM signal (0-255)

Figure 8 Physical experiment chart, thrust/current vs. rotational speed control signal (PWM signal 0-
255).
Full-size & DOI: 10.7717/peerjcs.2305/fig-8

mitigating implementation costs and the need for physical testing beds. However, while
its benefits have been detailed, issues such as insufficient speed for required complexity,
composability, uncertainty, and calibration have also been recognized (Choi et al., 2020).
Years ago, a component-based approach seemed to be in opposition to a model-based
approach in vehicular systems; however, it was eventually recommended to integrate them
under a unified approach (Torngren, Chen ¢ Crnkovic, 2005). In our component-based
approach, we consider the existence of an integrated simulation for the complete system
or simplified simulations for an early feasibility assessment of components.

Therefore, it is reasonable to assume that using a physical approach rather than a
simulation is more convenient in some applications. Naturally, if we are discussing an
autonomous vehicle for exploration on the planet Mars, a physical-running approach in
the same Mars will not prove economically feasible.

Therefore we do not advocate for doing away with simulations. We are, however, stating
that there are situations where is more convenient to adopt a physical-running approach
for establishing the optimal performance of components in place of simulation. In the
previous section, we demonstrated that the idea is feasible for a flexible propeller component
and have considered showing a general comparison from a cost perspective to show its
broader application. Helbig, Hoos & Westkdmper (2014) formulated a cost model for a
component-based approach in automation solutions. We refined some of their concepts
and established some differences in the cost of their model, including the cost of running
it in the physical environment. We extracted the commissioning unitary testing and called
it integration. Additionally, we conducted a review on https:/www.glassdoor.com, and
found no significant differences between the salaries of simulation engineers and software
developers for embedded systems or similar cyber-physical engineering roles. Therefore, in
the proposed comparative cost model we focused on the time spent on projects, similar to
Helbig, Hoos & Westkidmper (2014). We employed the symbols in Table 1 for a cost-based

comparative.

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 19/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2305/fig-8
https://www.glassdoor.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

Table 1 Symbols in the comparative of approaches.

N Number of components

I Integration cost

H; Hardware cost of component k

M Software and Modeling cost of component k

Sk Simulation cost of component k

Py Physical cost for prototyping and testing component k

superscript S Engineering approach with simulation in component design

superscript P Engineering approach with physical-running in component
design

cs Total cost of the engineering approach with Simulation

cP Total cost of the engineering approach with Physical
running

Using these symbols we have the total cost of the simulation approach as expressed in
Eq. (2) and the total cost of physical running in Eq. (3).

N

CS=I+) " (H + M +S; +P}) (2)
k=1
N

CP=1"+> " (HF + M} +S{ +Pf). (3)
k=1

The usual and tacit assumption is that C5 < C”; however, we support that there are
cases where Cf < CS. Due to this, we have sustained that there are inflection points, which
means that C5 = CP. This general formulation was modified to adapt it to our case, i.e.,
a physical-running case. To do that we will consider some factors to get a simplification
in the inequation C* < CS. Therefore, we will assume that the integration costs of using a
simulation-based design at component levels and simulation in the integration is greater
than only in the integration phase at the physical-running approach. Thus we will assume
that there is a factor, f; > 1 for this proportion. Also, we assume that there is a factor for
describing the software, modeling, and simulation costs in the physical-running approach.
It will be only a part of the corresponding costs in the simulation-based approach. On
the contrary, a physical-running approach will have additional costs due to the physical
set for designing. Thus fp < 1 means that the physical-set costs in the simulation-based
approach will be only a part of the costs in the physical-running approach. Regarding the
hardware cost, we will assume that there are no differences because, if the approach means
some hardware-cost difference, we can allocate the expense in P. All these assumptions
are without loss of generality (WLOG) and they are summarized in Table 2.

Using these assumptions to identify the inflection points and substituting the expressions
related to C* in the equation C* — C5 =0 we obtain Eq. (4).

A= +(1—=fi))_(M"+8")+(1—fp) Y PP =0. (4)

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 20/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

Table 2 Assumptions for sensitivity analysis,.

I’ = fi x1? CPt<CS=fi>1

S MS = fu x> MP Cr<C=fu>1

xS = fux 328"

S HS = > HF Hardware costs are equivalent in both approaches
> ps = fp x> PP C'<C=fpr<l

@ Simulation-based approach @ Plane of Feasible Factors

@@ Physical-running approach

240
220
200
180

Total Costs

-
N3 &
© oo

100

Figure 9 Minimal costs and factor feasibility.
Full-size Gal DOI: 10.7717/peerjcs.2305/fig-9

Consequently, a multidimensional space is defined, representing several feasible
combinations of factors. For instance, with IX =20, M? + S =4, PP = 48, fi=m=2,
and fp = 0.5 an inflection point emerges, as Eqs. (2) and (3) yield identical values.
These inflection points demarcate the boundary between the desirability of the two
alternatives. In the case of the flexible propeller, approximately 14 h were allocated to
physical experimentation, 6 h to modeling and distributed software. Integration efforts
were approximated to 8 h, employing factors f; = fyr = 2.2 and fp = 0.4. The resultant
time savings for this model amounted to 30%. Figure 9 illustrates a comparison of these
two approaches. The red plane delineates the convenience zone for the simulation-based
approach, while the blue plane indicates the convenience for the physical experimentation
approach. The right segment showcases the region of the plane (the dark blue section)
where the factors yield feasible combinations using the values from the initial example.

DISCUSSION

Although models of physical behaviors offer many advantages, such as precise
documentation, easy communication, and use in support simulations, we have also
identified challenges due to their cost. Consequently, there are situations where it is more
cost-effective to experiment and design a component directly in a physical set rather than
invest in modeling and perfecting a computational model for it.

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 21/29

https://peerj.com
https://doi.org/10.7717/peerjcs.2305/fig-9
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

We have presented the case of an AUV thruster with a soft propeller, a cyber-physical
component that includes a microcontroller board, a driver, a motor, and a flexible prop.
The flexible propeller provides features such as a lower possibility of getting stuck or
damaging other objects while spinning. However, it also introduces complexities and
challenges to the modeling process, for example, making it difficult to predict the thrust
that can be achieved under a given rotational speed or predict its maximum thrust before
its geometry yields due to water resistance.

According to the execution log of the genetic algorithm, we obtained a nearly ideal
chromosome in the early iterations, and, as anticipated, its descendants persisted until the
final generations. This observation suggests the possibility of reaching an almost optimal
solution in fewer iterations, resulting in reduced waiting times. Consequently, this leads
to new avenues for exploration in relation to the specific configuration of the genetic
algorithm, particularly regarding the identification of stopping criteria that are tailored
to the nature of the problem under study. This insight could significantly enhance the
efficiency of the algorithm, reducing computational overhead and time while still achieving
high-quality solutions.

One additional observation from this study is that the fitness function produced varying
thrust-current ratios for similar rotational speeds. We suspect that these irregularities
could be attributed to various factors, including the presence of mechanical imperfections
in the testbed, the performance of the DC motor over time (which could be affected by
increasing operation temperature), the consistency of the motor driver’s performance
(also influenced by temperature), the variability of the mechanical resistance of the
materials used, the unwanted turbulent flows of the water (which could cause variations
in consecutive thrust measurements), and the accuracy and consistency of the thrust
and power consumption measurements obtained from the sensors. It is possible that more
sensing elements may avoid some of these limitations and operate in a closed loop, including
the use of additional sensors to measure propeller rotation speed instead of trusting on a
timing parameter to guarantee that the rotation speed has been reached. Also, monitoring
the water movement to start the subsequent measurement after the water is effectively
stopped, instead of trusting on another timing parameter that allows waiting an interval
time to restart measurements, presuming the water movement has stopped. Despite the
limitations posed by the physical nature of the test bed, such as mechanical imperfections,
temperature-dependent performance variations, sensor measurement uncertainties, and
the possibility of the genetic algorithm getting trapped in local minima, our physical
running genetic algorithm successfully converged to detect an optimal operating mode
for the cyber-physical component under real-world considerations. Therefore, applying
the proposed architecture to the search for optimal operating modes of a cyber-physical
component in a physical-running set is possible. We have proposed and used a procedure
for applying this strategy, finding real optimal thrust/power consumption regimes for a
cyber-physical component. Moreover, the final version of the software to be integrated into
the assessed cyber-physical component is expected to be more streamlined. This is because
it will be necessary to exclude certain code segments, thereby reducing the investment in
computation and energy, which were previously dedicated to capturing and processing

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 22/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

status and effects data. While these elements were crucial during the investigation of the
operational modes of the cyber-physical component, they will no longer be needed for its
subsequent normal operation.

The entire process can be extended to evaluate other functional components of the AUV,
determine their optimal operating modes, and catalog them based on their capabilities
and possibilities for integration through defined interfaces. This approach enables
the advancement towards component-based AUV engineering, where each functional
component is optimized individually and can be efficiently integrated into an AUV system.
Furthermore, we have presented this experiment as a specific instance of a physical-running
algorithm. We have also suggested a methodological approach to replicate this case by
providing a method engineering perspective for guiding the adoption, an architecture to
support the design process, and a cost model to assess its economic feasibility.

However, there are problems associated in developing a design using a physical schema,
such as determining the equilibrium points of relevant engineering variables, including
cost, sustainability, and safety. From the engineering tradition, we assume that modeling
and simulating are less expensive than designing by looking for the optimal modes in real
sets. However, the reduced size of new vehicles has enabled this engineering alternative
due to their autonomy, the low price of electromechanical components, and packetized
artificial intelligence. Our results indicate the feasibility of this procedural approach.

Under a theoretical perspective, other search-based algorithms can be used for the same
objective. For example those mentioned by Corso er al. (2021) include simulated annealing,
Bayesian optimization, and ant-colony optimization are open alternative to study. Method
engineering approaches for adapting and adopting the proposed approached require
empirical evidence to be improved and refined. The cost model, that was formulated for
supporting the proposed approach, should be refined for generating hybrid and optimized
approach where a simulation-based or a physical-based design can be adopted in the same
project for different components, while considering the cost of each option.

CONCLUSIONS

We recognize the importance of a component-based approach in addressing the
complexities inherent in engineering cyber-physical systems, particularly those manifested
as autonomous underwater vehicles. In tackling the challenge of identifying notable
operation modes of cyber-physical components as a preliminary step to their integration,
our approach acknowledges the traditional method based on simulation through
computational models, while focusing on the alternative of directly evaluating components
in the physical world.

We proposed an architecture that employs a cyber-physical loop, utilizing search
algorithms to directly evaluate components in their real-world environment, a method
we have termed the ‘physical-running approach.” Specifically, we analyzed the case of an
AUV thruster component that integrates a flexible propeller, which is particularly suitable
for exploration missions in unknown environments. This scenario presents significant
challenges in developing a computational model that can accurately represent the dynamic

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 23/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

behavior of such a component. A genetic algorithm was instantiated specifically for this
case, and we modified it by incorporating the ability to operate without a traditional
fitness function. Instead, we evaluated the performance of chromosomes, generation by
generation, directly in the physical world.

We developed a procedure to apply this architecture and verified its efficacy. This
required setting up a small distributed system to maintain the execution of the genetic
algorithm in a computational space on a dedicated computing unit. This unit communicates
via a data link with a second computing unit (a microcontroller board) that serves as an
interface with the physical world. Here, actions and their effects are tested, impacting both
the cyber-physical component itself and its surrounding environment. As a complementary
step, we conducted a comparative analysis to identify the specific conditions that lead to
inflection points where the physical-running approach becomes more cost-effective
compared to a traditional simulation-based approach. This allowed us to establish not only
technical feasibility as an advantage but also economic feasibility as part of the comparison.

The results demonstrate that, under the physical-running approach, genetic algorithms
are effective in identifying optimal operation points for cyber-physical components within a
real context, leading to optimal design alternatives. This approach offers several advantages,
including eliminating the need for a computational model of the component (regardless
of its existence), and a reduction in the time and effort required to achieve an accurate
description of the cyber-physical component in real-world conditions. Additionally, the
use of genetic algorithms enables the automated evaluation of an AUV thruster and
the determination of its optimal operating points, facilitating simplified component
specifications that theoretically enhance interoperability with other components and
reduce the combinatorial complexity of an integrated system.

While the physical-running approach yields more realistic results, it is not without
limitations. Compared to a traditional simulation-based method, this approach demands
more computing time and physical resources, such as laboratory space and specific testing
conditions. Although these limitations are typical in naval engineering, they do not
necessarily imply the higher costs and risks associated with computational models.

Additionally, we have recognized that enabling the engineering alternative of using
physical-running approaches at design time implies a set of open problems that require
further study. For example, it is important to establish decision points between physical and
traditional design approaches, namely, to determine when and under which conditions
a physical-running approach is better than a computational model for designing and
characterizing cyber-physical components.

In the comparative analysis section, we presented a set of cost factors which, if understood
as abstractions or simplifications, could prove useful in characterizing the performance of
work teams and their respective infrastructures under different approaches. Consequently,
further work is necessary to more precisely determine the behavior of these cost factors
and their relationships within both physical-running and traditional approaches.

Although, we are under the impression that the time and cost savings in component
are comparable under the physical-running, in the integration phase, and due to (i) the
simplification of interfaces, (ii) less error propagation, and (iii) the simplification of the

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 24/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

general control complexity, the physical-running approach could represent a radical saving
that warrants further study.

Finally, we believe that these approaches are not mutually exclusive; thus, additional
studies are needed to establish the conditions and characteristics of an integration between
both. This realization opens up new possibilities for future research and development,
highlighting the importance of a comprehensive approach that leverages the strengths of
both physical-running and traditional methodologies in cyber-physical systems engineering
design.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This research received support from Universidad de la Frontera through the project titled
“Semantic Technologies Applied to Cyber-Physical Systems Modelling,” which provided
dedicated research hours, under the project code DI22-0065. Additionally, it was funded
by the National Chilean Agency of Research, Development, and Innovation (ANID) via
the project “Trabots: Traceability in the Design of Cyber-physical Systems.” This project
facilitated the enhancement of the international research collaboration between Chile and
Spain, bearing the project code FOVI210006. There was no additional external funding
received for this study. The ANGLIRU: Applying knowledge graphs for research data
interoperability and reusability with code MCI-21-PID2020-117912RB-C21 supported the
APC. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Universidad de la Frontera through the project titled “Semantic Technologies Applied to
Cyber-Physical Systems Modelling”: DI22-0065.

The National Chilean Agency of Research, Development, and Innovation (ANID) via the
project “Trabots: Traceability in the Design of Cyber-physical Systems”.

The international research collaboration between Chile and Spain: FOVI210006.

The ANGLIRU: Applying knowledge graphs for research data interoperability and
reusability: MCI-21-PID2020-117912RB-C21.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Claudio Navarro conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, contribution to sustain novelty and impact,
and approved the final draft.

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 25/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

e Jose E. Labra Gayo conceived and designed the experiments, authored or reviewed drafts
of the article, contribution to sustain methodology and procedures, and approved the
final draft.

e Francisco A. Escobar Jara conceived and designed the experiments, performed the
experiments, performed the computation work, prepared figures and/or tables,
contribution to 3D-design of experiment’s components, and approved the final draft.

e Carlos Cares conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, contribution to sustain
novelty and impact, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The experiment details are available at GitHub and Zenodo:

- https:/dci-ufro.github.io/eese/

- Navarro, C., Escobar, F., Labra, J., & Cares, C. (2023). Componentizing Autonomous
Underwater Vehicles by Physical-runnning Algorithms: Data supporting. Zenodo.
https:/doi.org/10.5281/enodo.8350552.

The raw data are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.2305#supplemental-information.

REFERENCES

Albiez J, Joyeux S, Gaudig C, Hilljegerdes J, Kroffke S, Schoo C, Arnold S, Mimoso
G, Alcantara P, Saback R, Britto J, Cesar D, Neves G, Watanabe T, Merz Paran-
hos P, Reis M, Kirchner F. 2015. FlatFish - a compact subsea-resident inspec-
tion AUV. In: OCEANS 2015 - MTS/IEEE Washington. Piscataway: IEEE, 1-8
DOI10.23919/0CEANS.2015.7404442.

Ashby WR. 1956. An introduction to cybernetics. Boca Raton: Chapman & Hall Ltd.

Ayerdi], Garciandia A, Arrieta A, Afzal W, Enoiu E, Agirre A, Sagardui G, Arratibel M,
Sellin O. 2020. Towards a taxonomy for eliciting design-operation continuum re-
quirements of cyber-physical systems. In: 2020 IEEE 28th International requirements
engineering conference (RE). Piscataway: IEEE, 280-290.

Babris K, Nikiforova O, Sukovskis U. 2019. Brief overview of modelling methods, life-
cycle and application domains of cyber-physical systems. Applied Computer Systems
24(1):1-8 DOI 10.2478/acss-2019-0001.

Bazydlo G. 2023. Designing reconfigurable cyber-physical systems using unified
modeling language. Energies 16(3):1273 DOI 10.3390/en16031273.

Cares C, Lithr D, Mora S, Navarro C, Olivares L, Sepilveda S, Vidal G. 2023. Archi-
tecting autonomous underwater vehicles by adapting software product lines. In:
Nechyporuk M, Pavlikov V, Kritskiy D, eds. Integrated Computer Technologies in

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 26/29

https://peerj.com
https://dci-ufro.github.io/aeese/
https://doi.org/10.5281/zenodo.8350552
http://dx.doi.org/10.7717/peerj-cs.2305#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2305#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2305#supplemental-information
http://dx.doi.org/10.23919/OCEANS.2015.7404442
http://dx.doi.org/10.2478/acss-2019-0001
http://dx.doi.org/10.3390/en16031273
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

Mechanical Engineering - 2022. ICTM 2022. Lecture Notes in Networks and Systems,
vol. 657. Cham: Springer DOI 10.1007/978-3-031-36201-9_59.

Cheng R, Lu X, Yu X. 2022. A mathematical model for the routing optimization
problem with time window. Journal of Physics: Conference Series 2219(1):012038
DOI 10.1088/1742-6596/2219/1/012038.

Choi H, Crump C, Duriez C, Flmquist A, Hager G, Han D, Hearl F, Hodgins J, Jain A,
Leve F, Li C, Meier F, Negrut D, Righetti L, Rodriguez A, Tan J, Trinkle J. 2020.
On the use of simulation in robotics: opportunities, challenges, and suggestions for
moving forward. Proceedings of the National Academy of Sciences of the United States
of America 118(1):e1907856118 DOI 10.1073/pnas.1907856118.

Corso A, Moss R, Koren M, Lee R, Kochenderfer M. 2021. A survey of algorithms for
black-box safety validation of cyber-physical systems. Journal of Artificial Intelligence
Research 72:377-428.

Crnkovic I. 2001. Component-based software engineering—new challenges in software
development. Software Focus 2(4):127-133 DOI 10.1002/swf.45.

Deng L, Peng Q, Cai L, Zeng J, Bhatt NR, Hui F. 2023. Multiobjective collabora-
tive optimization method for the urban rail multirouting train operation plan.
Journal of Advanced Transportation 2023 Epub ahead of print 2023 3 April
DOI 10.1155/2023/3897353.

Diaz-Gomez PA, Hougen DF. 2007. Initial population for genetic algorithms: a metric
approach. In: International conference on genetic and evolutionary methods, Las Vegas,
Nevada. Las Vegas: CSREA Press, 43—49.

Duo W, Zhou M, Abusorrah A. 2022. A survey of cyber attacks on cyber physical
systems: recent advances and challenges. IEEE/CAA Journal of Automatica Sinica
9(5):784-800 DOT 10.1109/JAS.2022.105548.

Fabarisov T, Yusupova N, Ding K, Morozov A, Janschek K. 2020. Model-based
stochastic error propagation analysis for Cyber-Physical Systems. Acta Polytechnica
Hungarica 17(8):15-28 DOI 10.12700/APH.17.8.2020.8.2.

Fritzson P. 2014. Principles of object-oriented modeling and simulation with Modelica
3.3: a cyber-physical approach. Hoboken: John Wiley & Sons.

Gobillot N, Lesire C, Doose D. 2019. A design and analysis methodology for component-
based real-time architectures of autonomous systems. Journal of Intelligent ¢& Robotic
Systems 96:123—138 DOI 10.1007/s10846-018-0967-5.

Gross H-G. 2005. Component-based software testing with UML. Berlin, Heidelberg:
Springer Science & Business Media.

Haupt RL, Haupt SE. 2004. Practical genetic algorithms. Hoboken: John Wiley & Sons.

Hehenberger P, Vogel-Heuser B, Bradley D, Eynard B, Tomiyama T, Achiche S. 2016.
Design, modelling, simulation and integration of cyber physical systems: methods
and applications. Computers in Industry 82:273-289
DOI 10.1016/j.compind.2016.05.006.

Helbig T, Hoos J, Westkdmper E. 2014. A method for estimating and evaluating life
cycle costs of decentralized component-based automation solutions. Procedia CIRP
17:332-337 DOI 10.1016/j.procir.2014.01.117.

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 27/29

https://peerj.com
http://dx.doi.org/10.1007/978-3-031-36201-9_59
http://dx.doi.org/10.1088/1742-6596/2219/1/012038
http://dx.doi.org/10.1073/pnas.1907856118
http://dx.doi.org/10.1002/swf.45
http://dx.doi.org/10.1155/2023/3897353
http://dx.doi.org/10.1109/JAS.2022.105548
http://dx.doi.org/10.12700/APH.17.8.2020.8.2
http://dx.doi.org/10.1007/s10846-018-0967-5
http://dx.doi.org/10.1016/j.compind.2016.05.006
http://dx.doi.org/10.1016/j.procir.2014.01.117
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

Henderson-Sellers B, Ralyté J. 2010. Situational method engineering: state-of-the-art
review. Journal of Universal Computer Science 16(3):424-478
DOI10.3217/jucs-016-03-0424.

Holland J. 1975. Adaptation in natural and artificial systems. Ann Arbor: University of
Michigan Press.

Kowalski M, Izdebski M, Zak J, Golda P, Manerowski J. 2021. Planning and manage-
ment of aircraft maintenance using a genetic algorithm. Eksploatacja I Niezawodnosc
23(1):143-153 DOI 10.17531/ein.2021.1.15.

Kumar M, Husain M, Upreti N, Gupta D. 2010. Genetic algorithm: review and applica-
tion. SSRN http:/dx.doi.org/10.2139/ssr1.3529843.

Ledin JA. 1999. Hardware-in-the-loop simulation. Embedded Systems Programming
12:42-62.

Marwedel P, Engel M. 2016. Cyber-physical systems: opportunities, challenges and
(some) solutions. In: Guerrieri A, Loscri V, Rovella A, Fortino G, eds. Management
of Cyber Physical Objects in the Future Internet of Things. Internet of Things. Cham:
Springer, 1-30 DOI 10.1007/978-3-319-26869-9_1.

Mittal S, Tolk A. 2020. The complexity in application of modeling and simulation for
cyber physical systems engineering. In: Mittal S, Tolk A, eds. Complexity challenges in
cyber physical systems. Hoboken: John Wiley & Sons, 3-26.

Nakajima S, Furukawa S, Ueda Y. 2012. Co-analysis of sysml and simulink models for
cyber-physical systems design. In: 2012 IEEE International conference on embedded
and real-time computing systems and applications. Piscataway: IEEE, 473-478.

Ortiz FJ, Insaurralde CC, Alonso D, Sanchez F, Petillot YR. 2015. Model-driven analysis
and design for software development of autonomous underwater vehicles. Robotica
33(8):1731-1750 DOI 10.1017/50263574714001027.

Palomar E, Chen X, Liu Z, Maharjan S, Bowen J. 2016. Component-based modelling
for scalable smart city systems interoperability: a case study on integrating energy
demand response systems. Sensors 16(11):1810 DOT 10.3390/s16111810.

R Core Team. 2022. R: A language and environment for statistical computing. Version
4.2.0. Vienna: R Foundation for Statistical Computing. Available at https://www.r-
project.org.

RStudio Team. 2022. RStudio: integrated development for R. Boston: RStudio, Inc.
Available at http://www.rstudio.com/.

Ribas D, Palomeras N, Ridao P, Carreras M, Mallios A. 2011. Girona 500 AUV: from
survey to intervention. IEEE/ASME Transactions on Mechatronics 17(1):46-53
DOI 10.1109/TMECH.2011.2174065.

Safe M, Carballido J, Ponzoni I, Brignole N. 2004. On stopping criteria for genetic
algorithms. In: Bazzan ALC, Labidi S, eds. Advances in Artificial Intelligence —SBIA
2004, SBIA 2004. Lecture Notes in Computer Science, vol. 3171. Berlin, Heidelberg:
Springer, 405-413 DOI 10.1007/978-3-540-28645-5_41.

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 28/29

https://peerj.com
http://dx.doi.org/10.3217/jucs-016-03-0424
http://dx.doi.org/10.17531/ein.2021.1.15
http://dx.doi.org/10.2139/ssrn.3529843
http://dx.doi.org/10.1007/978-3-319-26869-9_1
http://dx.doi.org/10.1017/S0263574714001027
http://dx.doi.org/10.3390/s16111810
https://www.r-project.org
https://www.r-project.org
http://www.rstudio.com/
http://dx.doi.org/10.1109/TMECH.2011.2174065
http://dx.doi.org/10.1007/978-3-540-28645-5_41
http://dx.doi.org/10.7717/peerj-cs.2305

PeerJ Computer Science

Serrano-Magaina H, Gonzalez-Potes A, Ibarra-Junquera V, Balbastre P, Martinez-
Castro D, Simg J. 2021. Software components for smart industry based on mi-
croservices: a case study in ph control process for the beverage industry. Electronics
10(7):763 DOI 10.3390/electronics10070763.

SodjaJ, Drazumeric R, Kosel T, Marzocca P. 2014. Design of flexible propellers with
optimized load-distribution characteristics. Journal of Aircraft 51(1):117-128
DOI10.2514/1.C032131.

Sztipanovits J, Bapty T, Neema S, Howard L, Jackson E. 2014. OpenMETA: a model-
and component-based design tool chain for cyber-physical systems. In: Bensalem
S, Lakhneck Y, Legay A, eds. From Programs to Systems. The Systems perspective
in Computing. Lecture Notes in Computer Science, vol. 8415. Berlin, Heidelberg:
Springer, 235-248 DOI 10.1007/978-3-642-54848-2_16.

Thramboulidis K, Christoulakis F. 2016. UML4IoT—A UML-based approach to exploit
IoT in cyber-physical manufacturing systems. Computers in Industry 82:259-272
DOI10.1016/j.compind.2016.05.010.

Torngren M, Chen D, Crnkovic I. 2005. Component-based vs. model-based develop-
ment: a comparison in the context of vehicular embedded systems. In: 31st EU-
ROMICRO conference on software engineering and advanced applications. Piscataway:
IEEE, 432-440.

Tyagi AK, Sreenath N. 2021. Cyber Physical Systems: analyses, challenges and
possible solutions. Internet of Things and Cyber-Physical Systems 1:22-33
DOI 10.1016/j.iotcps.2021.12.002.

Wang J, Chortos A. 2022. Control strategies for soft robot systems. Advanced Intelligent
Systems 4(5):2100165 DOI 10.1002/aisy.202100165.

Yin H, Hansson H. 2018. Fighting CPS complexity by component-based software
development of multi-mode systems. Designs 2(4):39 DOI 10.3390/designs2040039.

Yusupova N, Rizvanov D, Andrushko D. 2020. Cyber-physical systems and relia-
bility issues. In: 8th Scientific conference on information technologies for intelli-
gent decision making support (ITIDS 2020). Dordrecht: Atlantis Press, 133—-137
DOI 10.2991/aisr.k.201029.026.

Navarro et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2305 29/29

https://peerj.com
http://dx.doi.org/10.3390/electronics10070763
http://dx.doi.org/10.2514/1.C032131
http://dx.doi.org/10.1007/978-3-642-54848-2_16
http://dx.doi.org/10.1016/j.compind.2016.05.010
http://dx.doi.org/10.1016/j.iotcps.2021.12.002
http://dx.doi.org/10.1002/aisy.202100165
http://dx.doi.org/10.3390/designs2040039
http://dx.doi.org/10.2991/aisr.k.201029.026
http://dx.doi.org/10.7717/peerj-cs.2305

