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ABSTRACT
We propose a measure based upon the fundamental theoretical concept in
algorithmic information theory that provides a natural approach to the problem
of evaluating n-dimensional complexity by using an n-dimensional deterministic
Turing machine. The technique is interesting because it provides a natural algorith-
mic process for symmetry breaking generating complex n-dimensional structures
from perfectly symmetric and fully deterministic computational rules producing
a distribution of patterns as described by algorithmic probability. Algorithmic
probability also elegantly connects the frequency of occurrence of a pattern with its
algorithmic complexity, hence effectively providing estimations to the complexity
of the generated patterns. Experiments to validate estimations of algorithmic
complexity based on these concepts are presented, showing that the measure is
stable in the face of some changes in computational formalism and that results
are in agreement with the results obtained using lossless compression algorithms
when both methods overlap in their range of applicability. We then use the output
frequency of the set of 2-dimensional Turing machines to classify the algorithmic
complexity of the space-time evolutions of Elementary Cellular Automata.

Subjects Computational Biology, Artificial Intelligence, Theory and Formal Methods
Keywords Algorithmic complexity, Algorithmic probability, Kolmogorov–Chaitin complexity,
Algorithmic information theory, Cellular automata, Solomonoff–Levin universal distribution,
Information theory, Dimensional complexity, Image complexity, Small Turing machines

INTRODUCTION
The question of natural measures of complexity for objects other than strings and

sequences, in particular suited for 2-dimensional objects, is an open important problem in

complexity science and with potential applications to molecule folding, cell distribution,

artificial life and robotics. Here we provide a measure based upon the fundamental
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theoretical concept that provides a natural approach to the problem of evaluating

n-dimensional algorithmic complexity by using an n-dimensional deterministic Turing

machine, popularized under the term of Turmites for n = 2, from which the so-called

Langton’s ant is an example of a Turing universal Turmite. A series of experiments to

validate estimations of Kolmogorov complexity based on these concepts is presented,

showing that the measure is stable in the face of some changes in computational formalism

and that results are in agreement with the results obtained using lossless compression algo-

rithms when both methods overlap in their range of applicability. We also present a divide

and conquer algorithm that we call Block Decomposition Method (BDM) application to

classification of images and space–time evolutions of discrete systems, providing evidence

of the soundness of the method as a complementary alternative to compression algorithms

for the evaluation of algorithmic complexity. We provide exact numerical approximations

of Kolmogorov complexity of square image patches of size 3 and more, with the BDM

allowing scalability to larger 2-dimensional arrays and even greater dimensions.

The challenge of finding and defining 2-dimensional complexity measures has been

identified as an open problem of foundational character in complexity science (Feldman

& Crutchfield, 2003; Shalizi, Shalizi & Haslinger, 2004). Indeed, for example, humans

understand 2-dimensional patterns in a way that seems fundamentally different

than 1-dimensional (Feldman, 2008). These measures are important because current

1-dimensional measures may not be suitable to 2-dimensional patterns for tasks such as

quantitatively measuring the spatial structure of self-organizing systems. On the one hand,

the application of Shannon’s Entropy and Kolmogorov complexity has traditionally been

designed for strings and sequences. However, n-dimensional objects may have structure

only distinguishable in their natural dimension and not in lower dimensions. This is

indeed a question related to the loss of information in dimension reductionality (Zenil,

Kiani & Tegnér, in press). A few measures of 2-dimensional complexity have been proposed

before building upon Shannon’s entropy and block entropy (Feldman & Crutchfield,

2003; Andrienko, Brilliantov & Kurths, 2000), mutual information and minimal sufficient

statistics (Shalizi, Shalizi & Haslinger, 2004) and in the context of anatomical brain MRI

analysis (Young et al., 2009; Young & Schuff, 2008). A more recent application, also in

the medical context related to a measure of consciousness, was proposed using lossless

compressibility for EGG brain image analysis was proposed in Casali et al. (2013).

On the other hand, for Kolmogorov complexity, the common approach to evaluating

the algorithmic complexity of a string has been by using lossless compression algorithms

because the length of lossless compression is an upper bound of Kolmogorov complexity.

Short strings, however, are difficult to compress in practice, and the theory does not pro-

vide a satisfactory solution to the problem of the instability of the measure for short strings.

Here we use so-called Turmites (2-dimensional Turing machines) to estimate the

Kolmogorov complexity of images, in particular space–time diagrams of cellular automata,

using Levin’s Coding theorem from algorithmic probability theory. We study the problem

of the rate of convergence by comparing approximations to a universal distribution

using different (and larger) sets of small Turing machines and comparing the results to
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that of lossless compression algorithms carefully devising tests at the intersection of the

application of compression and algorithmic probability. We found that strings which are

more random according to algorithmic probability also turn out to be less compressible,

while less random strings are clearly more compressible.

Compression algorithms have proven to be signally applicable in several domains

(see e.g., Li & Vitányi, 2009), yielding surprising results as a method for approximating

Kolmogorov complexity. Hence their success is in part a matter of their usefulness. Here we

show that an alternative (and complementary) method yields compatible results with the

results of lossless compression. For this we devised an artful technique by grouping strings

that our method indicated had the same program-size complexity, in order to construct

files of concatenated strings of the same complexity (while avoiding repetition, which

could easily be exploited by compression). Then a lossless general compression algorithm

was used to compress the files and ascertain whether the files that were more compressed

were the ones created with highly complex strings according to our method. Similarly, files

with low Kolmogorov complexity were tested to determine whether they were better com-

pressed. This was indeed the case, and we report these results in ‘Validation of the Coding

Theorem Method by Compressibility’. In ‘Comparison of Km and compression of cellular

automata’ we also show that the Coding theorem method yields a very similar classification

of the space–time diagrams of Elementary Cellular Automata, despite the disadvantage of

having used a limited sample of a Universal Distribution. In all cases the statistical evidence

is strong enough to suggest that the Coding theorem method is sound and capable of

producing satisfactory results. The Coding theorem method also represents the only

currently available method for dealing with very short strings and in a sense is an expensive

but powerful “microscope” for capturing the information content of very small objects.

KOLMOGOROV–CHAITIN COMPLEXITY
Central to algorithmic information theory (AIT) is the definition of algorithmic

(Kolmogorov–Chaitin or program-size) complexity (Kolmogorov, 1965; Chaitin, 1969):

KT(s) = min{|p|,T(p) = s}. (1)

That is, the length of the shortest program p that outputs the string s running on a

universal Turing machine T. A classic example is a string composed of an alternation of

bits, such as (01)n, which can be described as “n repetitions of 01”. This repetitive string

can grow fast while its description will only grow by about log2(n). On the other hand,

a random-looking string such as 011001011010110101 may not have a much shorter

description than itself.

Uncomputability and instability of K
A technical inconvenience of K as a function taking s to the length of the shortest program

that produces s is its uncomputability (Chaitin, 1969). In other words, there is no program

which takes a string s as input and produces the integer K(s) as output. This is usually

considered a major problem, but one ought to expect a universal measure of complexity
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to have such a property. On the other hand, K is more precisely upper semi-computable,

meaning that one can find upper bounds, as we will do by applying a technique based on

another semi-computable measure to be presented in the ‘Solomonoff–Levin Algorithmic

Probability’.

The invariance theorem guarantees that complexity values will only diverge by a

constant c (e.g., the length of a compiler, a translation program between U1 and U2)

and that they will converge at the limit.

Invariance Theorem (Calude, 2002; Li & Vitányi, 2009): If U1 and U2 are two universal

Turing machines and KU1(s) and KU2(s) the algorithmic complexity of s for U1 and U2,

there exists a constant c such that for all s:

|KU1(s) − KU2(s)| < c. (2)

Hence the longer the string, the less important c is (i.e., the choice of programming

language or universal Turing machine). However, in practice c can be arbitrarily large

because the invariance theorem tells nothing about the rate of convergence between KU1

and KU2 for a string s of increasing length, thus having an important impact on short

strings.

SOLOMONOFF–LEVIN ALGORITHMIC PROBABILITY
The algorithmic probability (also known as Levin’s semi-measure) of a string s is a measure

that describes the expected probability of a random program p running on a universal

(prefix-free1) Turing machine T producing s upon halting. Formally (Solomonoff, 1964;

1 The group of valid programs forms a
prefix-free set (no element is a prefix of
any other, a property necessary to keep
0 < m(s) < 1). For details see Calude
(2002).

Levin, 1974; Chaitin, 1969),

m(s) =


p:T(p)=s

1/2|p|. (3)

Levin’s semi-measure2 m(s) defines a distribution known as the Universal Distribution

2 It is called a semi measure because
the sum is never 1, unlike probability
measures. This is due to the Turing
machines that never halt.

(a beautiful introduction is given in Kircher, Li & Vitanyi (1997)). It is important to notice

that the value of m(s) is dominated by the length of the smallest program p (when the

denominator is larger). However, the length of the smallest p that produces the string s

is K(s). The semi-measure m(s) is therefore also uncomputable, because for every s, m(s)

requires the calculation of 2−K(s), involving K, which is itself uncomputable. An alternative

to the traditional use of compression algorithms is the use of the concept of algorithmic

probability to calculate K(s) by means of the following theorem.

Coding Theorem (Levin, 1974):

|−log2m(s) − K(s)| < c. (4)

This means that if a string has many descriptions it also has a short one. It beautifully

connects frequency to complexity, more specifically the frequency of occurrence of a string

with its algorithmic (Kolmogorov) complexity. The Coding theorem implies that (Cover &

Thomas, 2006; Calude, 2002) one can calculate the Kolmogorov complexity of a string from
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its frequency (Delahaye & Zenil, 2007b; Delahaye & Zenil, 2007a; Zenil, 2011; Delahaye &

Zenil, 2012), simply rewriting the formula as:

Km(s) = −log2m(s) + O(1). (5)

An important property of m as a semi-measure is that it dominates any other effective

semi-measure µ, because there is a constant cµ such that for all s, m(s) ≥ cµµ(s). For this

reason m(s) is often called a Universal Distribution (Kircher, Li & Vitanyi, 1997).

THE CODING THEOREM METHOD
Let D(n,m) be a function (Delahaye & Zenil, 2012) defined as follows:

D(n,m)(s) =
|{T ∈ (n,m) : T produces s}|

|{T ∈ (n,m) : T halts }|
(6)

where (n,m) denotes the set of Turing machines with n states and m symbols, running

with empty input, and |A| is, in this case, the cardinality of the set A. In Zenil (2011) and

Delahaye & Zenil (2012) we calculated the output distribution of Turing machines with

2-symbols and n = 1,...,4 states for which the Busy Beaver (Radó, 1962) values are known,

in order to determine the halting time, and in Soler-Toscano et al. (2014) results were

improved in terms of number and Turing machine size (5 states) and in the way in which

an alternative to the Busy Beaver information was proposed, hence no longer needing exact

information of halting times in order to approximate an informative distribution.

Here we consider an experiment with 2-dimensional deterministic Turing machines

(also called Turmites) in order to estimate the Kolmogorov complexity of 2-dimensional

objects, such as images that can represent space–time diagrams of simple systems. A

Turmite is a Turing machine which has an orientation and operates on a grid for “tape”. The

machine can move in 4 directions rather than in the traditional left and right movements of

a traditional Turing machine head. A reference to this kind of investigation and definition

of 2D Turing machines can be found in Wolfram (2002), one popular and possibly one of

the first examples of this variation of a Turing machine is Lagton’s ant (Langton, 1986) also

proven to be capable of Turing-universal computation.

In ‘Comparison of Km and approaches based on compression’, we will use the so-called

Turmites to provide evidence that Kolmogorov complexity evaluated through algorithmic

probability is consistent with the other (and today only) method for approximating K,

namely lossless compression algorithms. We will do this in an artful way, given that

compression algorithms are unable to compress strings that are too short, which are

the strings covered by our method. This will involve concatenating strings for which

our method establishes a Kolmogorov complexity, which then are given to a lossless

compression algorithm in order to determine whether it provides consistent estimations,

that is, to determine whether strings are less compressible where our method says that they

have greater Kolmogorov complexity and whether strings are more compressible where

our method says they have lower Kolmogorov complexity. We provide evidence that this is

actually the case.
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In ‘Comparison of Km and compression of cellular automata’ we will apply the

results from the Coding theorem method to approximate the Kolmogorov complexity of

2-dimensional evolutions of 1-dimensional, closest neighbor Cellular Automata as defined

in Wolfram (2002), and by way of offering a contrast to the approximation provided by a

general lossless compression algorithm (Deflate). As we will see, in all these experiments

we provide evidence that the method is just as successful as compression algorithms, but

unlike the latter, it can deal with short strings.

Deterministic 2-dimensional Turing machines (Turmites)
Turmites or 2-dimensional (2D) Turing machines run not on a 1-dimensional tape but

in a 2-dimensional unbounded grid or array. At each step they can move in four different

directions (up, down, left, right) or stop. Transitions have the format {n1,m1} → {n2,m2,d},

meaning that when the machine is in state n1 and reads symbols m1, it writes m2, changes

to state n2 and moves to a contiguous cell following direction d. If n2 is the halting state

then d is stop. In other cases, d can be any of the other four directions.

Let (n,m)2D be the set of Turing machines with n states and m symbols. These

machines have nm entries in the transition table, and for each entry {n1,m1} there are

4nm + m possible instructions, that is, m different halting instructions (writing one of

the different symbols) and 4nm non-halting instructions (4 directions, n states and m

different symbols). So the number of machines in (n,m)2D is (4nm + m)nm. It is possible

to enumerate all these machines in the same way as 1D Turing machines (e.g., as has been

done in Wolfram (2002) and Joosten (2012)). We can assign one number to each entry in the

transition table. These numbers go from 0 to 4nm + m − 1 (given that there are 4nm + m

different instructions). The numbers corresponding to all entries in the transition table

(irrespective of the convention followed in sorting them) form a number with nm digits in

base 4nm + m. Then, the translation of a transition table to a natural number and vice versa

can be done through elementary arithmetical operations.

We take as output for a 2D Turing machine the minimal array that includes all cells

visited by the machine. Note that this probably includes cells that have not been visited, but

it is the more natural way of producing output with some regular format and at the same

time reducing the set of different outputs.

Figure 1 shows an example of the transition table of a Turing machine in (3,2)2D and

its execution over a ‘0’-filled grid. We show the portion of the grid that is returned as the

output array. Two of the six cells have not been visited by the machine.

AN APPROXIMATION TO THE UNIVERSAL
DISTRIBUTION
We have run all machines in (4,2)2D just as we have done before for deterministic

1-dimensional Turing machines (Delahaye & Zenil, 2012; Soler-Toscano et al., 2014).

That is, considering the output of all different machines starting both in a ‘0’-filled grid

(all white) and in a ‘1’-filled (all black) grid. Symmetries are described and used in the

same way than in Soler-Toscano et al. (2014) in order to avoid running a larger number of

machines whose output can be predicted from other equivalent machines (by rotation,
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Figure 1 Top: Example of a deterministic 2-dimensional Turing machine. Bottom: Accumulated runtime
distribution for (4,2)2D.

transposition, 1-complementation, reversion, etc.) that produce equivalent outputs with

the same frequency.

We also used a reduced enumeration to avoid running certain trivial machines whose

behavior can be predicted from the transition table, as well as filters to detect non-halting

machines before exhausting the entire runtime. In the reduced enumeration we considered

only machines with an initial transition moving to the right and changing to a different

state than the initial and halting states. Machines moving to the initial state at the starting

transition run forever, and machines moving to the halting state produce single-character

output. So we reduce the number of initial transitions in (n,m)2D to m(n−1) (the machine

can write any of the m symbols and change to any state in {2,...,n}). The set of different

machines is reduced accordingly to k(n − 1)(4nm + m)nm−1. To enumerate these machines

we construct a mixed-radix number, given that the digit corresponding to the initial

transition now goes from 0 to m(n − 1) − 1. To the output obtained when running this

reduced enumeration we add the single-character arrays that correspond to machines
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moving to the initial state at the starting transition. These machines and their output can

be easily quantified. Also, to take into account machines with the initial transition moving

in a different direction than the right one, we consider the 90, 180 and 270 degree rotations

of the strings produced, given that for any machine moving up (left/down) at the initial

transition, there is another one moving right that produces the identical output but rotates

−90 (−180/−270) degrees.

Setting the runtime
The Busy Beaver runtime value for (4,2) is 107 steps upon halting. But no equivalent

Busy Beavers are known for 2-dimensional Turing machines (although variations of

Turmite’s Busy Beaver functions have been proposed (Pegg, 2013)). So to set the runtime

in our experiment we generated a sample of 334 × 108 random machines in the reduced

enumeration. We used a runtime of 2,000 steps for the runtime sample, this is 10.6% of the

machines in the reduced enumeration for (4,2)2D, but 1,500 steps for running all (4,2)2D.

These machines were generated instruction by instruction. As we have explained above,

it is possible to assign a natural number to every instruction. So to generate a random

machine in the reduced enumeration for (n,m)2D we produce a random number from 0

to m(n − 1) − 1 for the initial transition and from 0 to 4nm + m − 1 for the other nm − 1

transitions. We used the implementation of the Mersenne Twister in the Boost C++ library.

The output of this sample was the distribution of the runtime of the halting machines.

Figure 1 shows the probability that a random halting machine will halt in at most

the number of steps indicated on the horizontal axis. For 100 steps this probability is

0.9999995273. Note that the machines in the sample are in the reduced enumeration, a

large number of very trivial machines halting in just one step having been removed. So in

the complete enumeration the probability of halting in at most 100 steps is even greater.

But we found some high runtime values—precisely 23 machines required more than

1,000 steps. The highest value was a machine progressing through 1,483 steps upon halting.

So we have enough evidence to believe that by setting the runtime at 2,000 steps we have

obtained almost all (if not all) output arrays. We ran all 6 × 347 Turing machines in the

reduced enumeration for (4,2)2D. Then we applied the completions explained before.

OUTPUT ANALYSIS
The final output represents the result of 2(4nm + m)2 executions (all machines in (4,2)2D

starting with both blank symbols ‘0’ and ‘1’). We found 3,079,179,980,224 non-halting

machines and 492,407,829,568 halting machines. A number of 1,068,618 different binary

arrays were produced after 12 days of calculation with a supercomputer of medium size

(a 25×86-64 CPUs running at 2,128 MHz each with 4 GB of memory each, located at the

Centro Informático Cientı́fico de Andalucı́a (CICA), Spain.

Let D(4,2)2D be the set constructed by dividing the occurrences of each different array

by the number of halting machines as a natural extension of Eq. (6) for 2-dimensional

Turing machines. Then, for every string s,

Km,2D(s) = −log2(D(4,2)(s)) (7)
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Figure 2 The top 36 objects in D(4,2)2D preceded by their Km,2D values, sorted by higher to lower fre-
quency and therefore from smaller to larger Kolmogorov complexity after application of the Coding
theorem. Only non-symmetrical cases are displayed. The grid is only for illustration purposes.

using the Coding theorem (Eq. (3)). Figure 2 shows the top 36 objects in D(4,2)2D, that is

the objects with lowest Kolmogorov complexity values.

Evaluating 2-dimensional Kolmogorov complexity
D(4,2)2D denotes the frequency distribution (a calculated Universal Distribution) from

the output of deterministic 2-dimensional Turing machines, with associated complexity

measure Km,2D. D(4,2)2D distributes 1,068,618 arrays into 1,272 different complexity

values, with a minimum complexity value of 2.22882 bits (an explanation of non-integer

program-size complexity is given in Soler-Toscano et al. (2014) and Soler-Toscano et al.

(2013)), a maximum value of 36.2561 bits and a mean of 35.1201. Considering the number

of possible square binary arrays given by the formula 2d×d (without considering any

symmetries), D(4,2)2D can be said to produce all square binary arrays of length up to

3 × 3, that is
3

d=12d×d
= 530 square arrays, and 60,016 of the 2(4×4)

= 65,536 square

arrays with side of length (or dimension) d = 4. It only produces 84,104 of the 33,554,432
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Figure 3 Top: Frequency of appearance of symmetric “checkerboard” patterns sorted from more to less
frequent according to D(4,2)2D (displayed only non-symmetrical cases under rotation and complemen-
tation). The checkerboard of size 4 × 4 doesn’t occur. However, all 3 × 3 as seen in Fig. 6, including the
“checkerboard” pattern of size 3 × 3 do occur. Bottom: Symmetry breaking from a fully deterministic set
of symmetric computational rules. Bottom Left: With a value of Km,2D = 6.7 this is the simplest 4 × 4
square array after the preceding all-blank 4 × 4 array (with Km,2D = 6.4) and before the 4 × 4 square
array with a black cell in one of the array corners (with complexity Km,2D = 6.9). Bottom Right: The only
and most complex square array (with 15 other symmetrical cases) in D(4,2)2D with Km,2D = 34.2561.
Another way to see this array is as one among those of length 13 with low complexity given that it occurred
once in the sampled distribution in the classification unlike all other square arrays of the same size that
are missing in D(4,2)2D.

possible square binary arrays of length d = 5 and only 11,328 of the possible 68,719,476,736

of dimension d = 6. The largest square array produced in D(4,2)2D is of side length d = 13

(Left of Fig. 3) out of a possible 748 × 1048; it has a Km,2D value equal to 34.2561.

What one would expect from a distribution where simple patterns are more frequent

(and therefore have lower Kolmogorov complexity after application of the Coding

theorem) would be to see patterns of the “checkerboard” type with high frequency and

low random complexity (K), and this is exactly what we found (see Fig. 3), while random

looking patterns were found at the bottom among the least frequent ones (Fig. 4).
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Figure 4 Symmetry breaking from fully deterministic symmetric computational rules. Bottom 16
objects in the classification with lowest frequency, or being most random according to D(4,2)2D. It is
interesting to note the strong similarities given that similar-looking cases are not always exact symmetries.
The arrays are preceded by the number of occurrences of production from all the (4,2)2D Turing
machines.

We have coined the informal notion of a “climber” as an object in the frequency

classification (from greatest to lowest frequency) that appears better classified among

objects of smaller size rather than with the arrays of their size, this is in order to highlight

possible candidates for low complexity, hence illustrating how the process make low

complexity patterns to emerge. For example, “checkerboard” patterns (see Fig. 3) seem

to be natural “climbers” because they come significantly early (more frequent) in the

classification than most of the square arrays of the same size. In fact, the larger the

checkerboard array, the more of a climber it seems to be. This is in agreement with what we
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Figure 5 Two “climbers” (and all their symmetric cases) found in D(4,2)2D. Symmetric objects have
higher frequency and therefore lower Kolmogorov complexity. Nevertheless, a fully deterministic algo-
rithmic process starting from completely symmetric rules produces a range of patterns of high complexity
and low symmetry.

have found in the case of strings (Zenil, 2011; Delahaye & Zenil, 2012; Soler-Toscano et al.,

2014) where patterned objects emerge (e.g., (01)n, that is, the string 01 repeated n times),

appearing relatively increasingly higher in the frequency classifications the larger n is, in

agreement with the expectation that patterned objects should also have low Kolmogorov

complexity.

An attempt of a definition of a climber is a pattern P of size a × b with small complexity

among all a × b patterns, such that there exists smaller patterns Q (say c × d, with cd < ab)

such that Km(P) < Km(Q) < median(Km(all ab patterns)).

For example, Fig. 5 shows arrays that come together among groups of much shorter

arrays, thereby demonstrating, as expected from a measure of randomness, that array—or

string—size is not what determines complexity (as we have shown before in Zenil (2011),

Delahaye & Zenil (2012) and Soler-Toscano et al. (2014) for binary strings). The fact that

square arrays may have low Kolmogorov complexity can be understood in several ways,

some of which strengthen the intuition that square arrays should be less Kolmogorov

random, such as for example, the fact that for square arrays one only needs the information

of one of its dimensions to determine the other, either height or width.

Figure 5 shows cases in which square arrays are significantly better classified towards the

top than arrays of similar size. Indeed, 100% of the squares of size 2 × 2 are in the first fifth
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(F1), as are the 3 × 3 arrays. Square arrays of 4 × 4 are distributed as follows when dividing

(4,2)2D in 5 equal parts: 72.66%, 15.07%, 6.17359%, 2.52%, 3.56%.

VALIDATION OF THE CODING THEOREM METHOD BY
COMPRESSIBILITY
One way to validate our method based on the Coding theorem (Eq. (3)) is to attempt to

measure its departure from the compressibility approach. This cannot be done directly,

for as we have explained, compression algorithms perform poorly on short strings, but we

did find a way to partially circumvent this problem by selecting subsets of strings for which

our Coding theorem method calculated a high or low complexity which were then used to

generate a file of length long enough to be compressed.

Comparison of Km and approaches based on compression
It is also not uncommon to detect instabilities in the values retrieved by a compression

algorithm for short strings, as explained in ‘Uncomputability and instability of K’, strings

which the compression algorithm may or may not compress. This is not a malfunction of a

particular lossless compression algorithm (e.g., Deflate, used in most popular computer

formats such as ZIP and PNG) or its implementation, but a commonly encountered

problem when lossless compression algorithms attempt to compress short strings.

When researchers have chosen to use compression algorithms for reasonably long

strings, they have proven to be of great value, for example, for DNA false positive

repeat sequence detection in genetic sequence analysis (Rivals et al., 1996), in distance

measures and classification methods (Cilibrasi & Vitanyi, 2005), and in numerous

other applications (Li & Vitányi, 2009). However, this effort has been hamstrung by the

limitations of compression algorithms–currently the only method used to approximate the

Kolmogorov complexity of a string–given that this measure is not computable.

In this section we study the relation between Km and approaches to Kolmogorov

complexity based on compression. We show that both approaches are consistent, that

is, strings with higher Km value are less compressible than strings with lower values. This

is as much validation of Km and our Coding theorem method as it is for the traditional

lossless compression method as approximation techniques to Kolmogorov complexity.

The Coding theorem method is, however, especially useful for short strings where losses

compression algorithms fail, and the compression method is especially useful where the

Coding theorem is too expensive to apply (long strings).

Compressing strings of length 10–15
For this experiment we have selected the strings in D(5) with lengths ranging from 10 to 15.

D(5) is the frequency distribution of strings produced by all 1-dimensional deterministic

Turing machines as described in Soler-Toscano et al. (2014). Table 1 shows the number of

D(5) strings with these lengths. Up to length 13 we have almost all possible strings. For

length 14 we have a considerable number and for length 15 there are less than 50% of the

215 possible strings. The distribution of complexities is shown in Fig. 7.
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Figure 6 Complete reduced set (non-symmetrical cases under reversion and complementation) of
3 × 3 patches in Km,2D sorted from lowest to greatest Kolmogorov complexity after application of
the Coding theorem (Eq. (3)) to the output frequency of 2-D Turing machines. We denote this set by
Km,2D3×3 . For example, the 2 glider configurations in the Game of Life (Gardner, 1970) come with high
Kolmogorov complexity (with approximated values of 20.2261 and 20.5031).
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Table 1 Number of strings of length 10–15 found in D(5).

Length (l) Strings

10 1,024

11 2,048

12 4,094

13 8,056

14 13,068

15 14,634

As expected, the longer the strings, the greater their average complexity. The overlapping

of strings with different lengths that have the same complexity correspond to climbers. The

experiment consisted in creating files with strings of different Km-complexity but equal

length (files with more complex (random) strings are expected to be less compressible

than files with less complex (random) strings). This was done in the following way. For

each l (10 ≤ l ≤ 15), we let S(l) denote the list of strings of length l, sorted by increasing

Km complexity. For each S(l) we made a partition of 10 sets with the same number of

consecutive strings. Let’s call these partitions P(l,p), 1 ≤ p ≤ 10.

Then for each P(l,p) we have created 100 files, each with 100 random strings in P(l,p) in

random order. We called these files F(l,p,f ), 1 ≤ f ≤ 100. Summarizing, we now have:

• 6 different string lengths l, from 10 to 15, and for each length

• 10 partitions (sorted by increasing complexity) of the strings with length l, and

• 100 files with 100 random strings in each partition.

This makes for a total of 6,000 different files. Each file contains 100 different binary

strings, hence with length of 100 × l symbols.

A crucial step is to replace the binary encoding of the files by a larger alphabet, retaining

the internal structure of each string. If we compressed the files F(l,p,f ) by using binary

encoding then the final size of the resulting compressed files would depend not only on the

complexity of the separate strings but on the patterns that the compressor discovers along

the whole file. To circumvent this we chose two different symbols to represent the ‘0’ and ‘1’

in each one of the 100 different strings in each file. The same set of 200 symbols was used

for all files. We were interested in using the most standard symbols we possibly could, so

we created all pairs of characters from ‘a’ to ‘p’ (256 different pairs) and from this set we

selected 200 two-character symbols that were the same for all files. This way, though we do

not completely avoid the possibility of the compressor finding patterns in whole files due to

the repetition of the same single character in different strings, we considerably reduce the

impact of this phenomenon.

The files were compressed using the Mathematica function Compress, which is an

implementation of the Deflate algorithm (Lempel–Ziv plus Huffman coding). Figure 7

shows the distributions of lengths of the compressed files for the different string lengths.

The horizontal axis shows the 10 groups of files in increasing Km. As the complexity of the
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Figure 7 Top: Distribution of complexity values for different string lengths (l). Bottom: Distribution of
the compressed lengths of the files.
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Figure 8 Scatterplot of Km with 2-dimensional Turing machines (Turmites) as a function of Km with
1-dimensional Turing machines.

strings grows (right part of the diagrams), the compressed files are larger, so they are harder

to compress. The relevant exception is length 15, but this is probably related to the low

number of strings of that length that we have found, which are surely not the most complex

strings of length 15.

We have used other compressors such as GZIP (which uses Lempel–Ziv algorithm LZ77)

and BZIP2 (Burrows–Wheeler block sorting text compression algorithm and Huffman

coding), with several compression levels. The results are similar to those shown in Fig. 7.

Comparing (4,2)2D and (4,2)

We shall now look at how 1-dimensional arrays (hence strings) produced by 2D Turing

machines correlate with strings that we have calculated before (Zenil, 2011; Delahaye &

Zenil, 2012; Soler-Toscano et al., 2014) (denoted by D(5)). In a sense this is like changing

the Turing machine formalism to see whether the new distribution resembles distributions

following other Turing machine formalisms, and whether it is robust enough.

All Turing machines in (4,2) are included in (4,2)2D because these are just the machines

that do not move up or down. We first compared the values of the 1,832 output strings in

(4,2) to the 1-dimensional arrays found in (4,2)2D. We are also interested in the relation

between the ranks of these 1,832 strings in both (4,2) and (4,2)2D.

Figure 8 shows the link between Km,2D with 2D Turing machines as a function of

ordinary Km,1D (that is, simply Km as defined in Soler-Toscano et al. (2014)). It suggests

a strong almost-linear overall association. The correlation coefficient r = 0.9982 confirms
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Figure 9 Scatterplot of Km with 2-dimensional Turing machines as a function of Km with 1-
dimensional Turing machines by length of strings, for strings of length 5–13.

the linear association, and the Spearman correlation coefficient rs = 0.9998 proves a tight

and increasing functional relation.

The length l of strings is a possible confounding factor. However Fig. 9 suggests that

the link between one and 2-dimensional complexities is not explainable by l. Indeed, the

partial correlation rKm,1DKm,2D.l = 0.9936 still denotes a tight association.

Figure 9 also suggests that complexities are more strongly linked with longer strings.

This is in fact the case, as Table 2 shows: the strength of the link increases with the length of

the resulting strings. One and 2-dimensional complexities are remarkably correlated and

may be considered two measures of the same underlying feature of the strings. How these

measures vary is another matter. The regression of Km,2D on Km,1D gives the following

approximate relation: Km,2D ≈ 2.64 + 1.11Km,1D. Note that this subtle departure from

identity may be a consequence of a slight non-linearity, a feature visible in Fig. 8.

Zenil et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.23 18/31

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.23


Table 2 Correlation coefficients between one and 2-dimensional
complexities by length of strings.

Length (l) Correlation

5 0.9724

6 0.9863

7 0.9845

8 0.9944

9 0.9977

10 0.9952

11 1

12 1

Comparison of Km and compression of cellular automata
A 1-dimensional CA can be represented by an array of cells xi where i ∈ Z (integer set) and

each x takes a value from a finite alphabet Σ. Thus, a sequence of cells {xi} of finite length

n describes a string or global configuration c on Σ. This way, the set of finite configurations

will be expressed as Σn. An evolution comprises a sequence of configurations {ci} produced

by the mapping Φ:Σn
→ Σn; thus the global relation is symbolized as:

Φ(ct) → ct+1 (8)

where t represents time and every global state of c is defined by a sequence of cell states. The

global relation is determined over the cell states in configuration ct updated simultaneously

at the next configuration ct+1 by a local function ϕ as follows:

ϕ(xt
i−r,...,xt

i ,...,xt
i+r) → xt+1

i . (9)

Wolfram (2002) represents 1-dimensional cellular automata (CA) with two parameters

(k,r) where k = |Σ| is the number of states, and r is the neighborhood radius. Hence this

type of CA is defined by the parameters (2,1). There are Σn different neighborhoods

(where n = 2r + 1) and kkn
distinct evolution rules. The evolutions of these cellular

automata usually have periodic boundary conditions. Wolfram calls this type of CA

Elementary Cellular Automata (denoted simply by ECA) and there are exactly kkn
= 256

rules of this type. They are considered the most simple cellular automata (and among the

simplest computing programs) capable of great behavioral richness.

1-dimensional ECA can be visualized in 2-dimensional space–time diagrams where

every row is an evolution in time of the ECA rule. By their simplicity and because we have

a good understanding about them (e.g., at least one ECA is known to be capable of Turing

universality (Cook, 2004; Wolfram, 2002)) they are excellent candidates to test our measure

Km,2D, being just as effective as other methods that approach ECA using compression

algorithms (Zenil, 2010) that have yielded the results that Wolfram obtained heuristically.

Km,2D comparison with compressed ECA evolutions
We have seen that our Coding theorem method with associated measure Km (or Km,2D in

this paper for 2D Kolmogorov complexity) is in agreement with bit string complexity as

Zenil et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.23 19/31

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.23


approached by compressibility, as we have reported in ‘Comparison of Km and approaches

based on compression’.

The Universal Distribution from Turing machines that we have calculated (D(4,2)2D)

will help us to classify Elementary Cellular Automata. Classification of ECA by compress-

ibility has been done before in Zenil (2010) with results that are in complete agreement

with our intuition and knowledge of the complexity of certain ECA rules (and related

to Wolfram’s (2002) classification). In Zenil (2010) both classifications by simplest initial

condition and random initial condition were undertaken, leading to a stable compress-

ibility classification of ECAs. Here we followed the same procedure for both simplest

initial condition (single black cell) and random initial condition in order to compare the

classification to the one that can be approximated by using D(4,2)2D, as follows.

We will say that the space–time diagram (or evolution) of an Elementary Cellular

Automaton c after time t has complexity:

Km,2Dd×d(ct) =


q∈{ct}d×d

Km,2D(q). (10)

That is, the complexity of a cellular automaton c is the sum of the complexities of the q

arrays or image patches in the partition matrix {ct
}d×d from breaking {ct

} into square

arrays of length d produced by the ECA after t steps. An example of a partition matrix of

an ECA evolution is shown in Fig. 13 for ECA Rule 30 and d = 3 where t = 6. Notice that

the boundary conditions for a partition matrix may require the addition of at most d − 1

empty rows or d − 1 empty columns to the boundary as shown in Fig. 13 (or alternatively

the dismissal of at most d − 1 rows or d − 1 columns) if the dimensions (height and width)

are not multiples of d, in this case d = 3.

If the classification of all rules in ECA by Km,2D yields the same classification obtained by

compressibility, one would be persuaded that Km,2D is a good alternative to compressibility

as a method for approximating the Kolmogorov complexity of objects, with the signal

advantage that Km,2D can be applied to very short strings and very short arrays such as

images. Because all possible 29 arrays of size 3 × 3 are present in Km,2D we can use this

arrays set to try to classify all ECAs by Kolmogorov complexity using the Coding Theorem

method. Figure 6 shows all relevant (non-symmetric) arrays. We denote by Km,2D3×3 this

subset from Km,2D.

Figure 11 displays the scatterplot of compression complexity against Km,2D3×3 calculated

for every cellular automaton. It shows a positive link between the two measures. The

Pearson correlation amounts to r = 0.8278, so the determination coefficient is r2
= 0.6853.

These values correspond to a strong correlation, although smaller than the correlation

between 1- and 2-dimensional complexities calculated in ‘Comparison of Km and

approaches based on compression’.

Concerning orders arising from these measures of complexity, they too are strongly

linked, with a Spearman correlation of rs = 0.9200. The scatterplots (Fig. 11) show a strong

agreement between the Coding theorem method and the traditional compression method

when both are used to classify ECAs by their approximation to Kolmogorov complexity.
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Figure 10 All the first 128 ECAs (the other 128 are 0–1 reverted rules) starting from the simplest (black
cell) initial configuration running for t = 36 steps, sorted from lowest to highest complexity according
to Km,2D3×3 . Notice that the same procedure can be extended for its use on arbitrary images.
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Figure 11 Scatterplots of Compress versus Km,2D3×3 on the 128 first ECA evolutions after t = 90
steps. Top: Distribution of points along the axes displaying clusters of equivalent rules and a distribution
corresponding to the known complexity of various cases. Bottom: Same plot but with some ECA rules
highlighted some of which were used in the side by side comparison in Fig. 13 (but unlike there, here for
a single black cell initial condition). That rules distribute on the diagonal indicates that both methods
are correlated as theoretically expected (even if lossless compression is a form of entropy rate up to the
compression fixed maximum word length).
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The anomalies found in the classification of Elementary Cellular Automata (e.g., Rule

77 being placed among ECA with high complexity according to Km,2D3×3) is a limitation

of Km,2D3×3 itself and not of the Coding theorem method which for d = 3 is unable to

“see” beyond 3-bit squares using, which is obviously very limited. And yet the degree of

agreement with compressibility is surprising (as well as with intuition, as a glance at Fig. 10

shows, and as the distribution of ECAs starting from random initial conditions in Fig. 13

confirms). In fact an average ECA has a complexity of about 20K bits, which is quite a

large program-size when compared to what we intuitively gauge to be the complexity

of each ECA, which may suggest that they should have smaller programs. However, one

can think of D(4,2)2D3×3 as attempting to reconstruct the evolution of each ECA for the

given number of steps with square arrays only 3 bits in size, the complexity of the three

square arrays adding up to approximate Km,2D of the ECA rule. Hence it is the deployment

of D(4,2)2D3×3 that takes between 500 to 50K bits to reconstruct every ECA space–time

evolution depending on how random versus how simple it is.

Other ways to exploit the data from D(4,2)2D (e.g., non-square arrays) can be utilized

to explore better classifications. We think that constructing a Universal Distribution from

a larger set of Turing machines, e.g., D(5,2)2D4×4 will deliver more accurate results but

here we will also introduce a tweak to the definition of the complexity of the evolution of a

cellular automaton.

Splitting ECA rules in array squares of size 3 is like trying to look through little windows

9 pixels wide one at a time in order to recognize a face, or training a “microscope” on a

planet in the sky. One can do better with the Coding theorem method by going further

than we have in the calculation of a 2-dimensional Universal Distribution (e.g., calculating

in full or a sample of D(5,2)2D4×4), but eventually how far this process can be taken is

dictated by the computational resources at hand. Nevertheless, one should use a telescope

where telescopes are needed and a microscope where microscopes are needed.

Block Decomposition Method
One can think of an improvement in resolution of Km,2D(c) for growing space–time

diagrams of cellular automaton by taking the log2(n) of the sum of the arrays where n is the

number of repeated arrays, instead of simply adding the complexity of the image patches

or arrays. That is, one penalizes repetition to improve the resolution of Km,2D for larger

images as a sort of “optical lens”. This is possible because we know that the Kolmogorov

complexity of repeated objects grows by log2(n), just as we explained with an example in

‘Kolmogorov–Chaitin Complexity’. Adding the complexity approximation of each array

in the partition matrix of a space–time diagram of an ECA provides an upper bound on

the ECA Kolmogorov complexity, as it shows that there is a program that generates the

ECA evolution picture with the length equal to the sum of the programs generating all the

sub-arrays (plus a small value corresponding to the code length to join the sub-arrays). So

if a sub-array occurs n times we do not need to consider its complexity n times but log2(n).

Taking into account this, Eq. (10) can be then rewritten as:

K ′
m,2Dd×d

(ct) =


(ru,nu)∈{ct}d×d

Km(ru) + log2(nu) (11)
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where ru are the different square arrays in the partition {ct
}d×d of the matrix ct and nu

the multiplicity of ru, that is the number of repetitions of d × d-length patches or square

arrays found in ct . From now on we will use K ′ for squares of size greater than 3 and it may

be denoted only by K or by BDM standing for Block decomposition method. BDM has now

been applied successfully to measure, for example, the Kolmogorov complexity of graphs

and complex networks (Zenil et al., 2014) by way of their adjacency matrices (a 2D grid)

and was shown to be consistent with labelled and unlabelled (up to isomorphisms) graphs.

Now complexity values of K ′
m,2Dd×d

range between 70 and 3K bits with a mean

program-size value of about 1K bits. The classification of ECA, according to Eq. (11), is

presented in Fig. 12. There is an almost perfect agreement with a classification by lossless

compression length (see Fig. 13) which makes even one wonder whether the Coding

theorem method is actually providing more accurate approximations to Kolmogorov

complexity than lossless compressibility for this objects length. Notice that the same

procedure can be extended for its use on arbitrary images. We denominate this technique

Block Decomposition Method. We think it will prove to be useful in various areas, including

machine learning as an of Kolmogorov complexity (other contributions to ML inspired in

Kolmogorov complexity can be found in Hutter (2003)).

Also worth notice that the fact that ECA can be successfully classified by Km,2D with

an approximation of the Universal Distribution calculated from Turing machines (TM)

suggests that output frequency distributions of ECA and TM cannot be but strongly

correlated, something that we had found and reported before in Zenil & Delahaye (2010)

and Delahaye & Zenil (2007b).

Another variation of the same Km,2D measure is to divide the original image into all

possible square arrays of a given length rather than taking a partition. This would, however,

be exponentially more expensive than the partition process alone, and given the results in

Fig. 12 further variations do not seem to be needed, at least not for this case.

Robustness of the approximations to m(s)

One important question that arises when positing the soundness of the Coding theorem

method as an alternative to having to pick a universal Turing machine to evaluate the

Kolmogorov complexity K of an object, is how many arbitrary choices are made in the

process of following one or another method and how important they are. One of the

motivations of the Coding theorem method is to deal with the constant involved in the

Invariance theorem (Eq. (2)), which depends on the (prefix-free) universal Turing machine

chosen to measure K and which has such an impact on real-world applications involving

short strings. While the constant involved remains, given that after application of the

Coding theorem (Eq. (3)) we reintroduce the constant in the calculation of K, a legitimate

question to ask is what difference it makes to follow the Coding theorem method compared

to simply picking the universal Turing machine.

On the one hand, one has to bear in mind that no other method existed for approx-

imating the Kolmogorov complexity of short strings. On the other hand, we have tried

to minimize any arbitrary choice, from the formalism of the computing model to the
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Figure 12 Block Decomposition Method. All the first 128 ECAs (the other 128 are 0–1 reverted rules)
starting from the simplest (black cell) initial configuration running for t = 36 steps, sorted from lowest
to highest complexity according to Klog as defined in Eq. (11).
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Figure 13 Top: Block decomposing (other boundary conditions are possible and under investigation) the evolution of Rule 30 (top) ECA after t = 6
steps into 10 subarrays of length 3 × 3 (bottom) in order to calculate Km,2D3×3 to approximate its Kolmogorov complexity. Bottom: Side by side
comparison of 8 evolutions of representative ECAs, starting from a random initial configuration, sorted from lowest to highest BDM values (top)
and smallest to largest compression lengths using the Deflate algorithm as a method to approximate Kolmogorov complexity (Zenil, 2010).
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informed runtime, when no Busy Beaver values are known and therefore sampling the

space using an educated runtime cut-off is called for. When no Busy Beaver values are

known the chosen runtime is determined according to the number of machines that

we are ready to miss (e.g., less than .01%) for our sample to be significative enough as

described in ‘Setting the runtime’. We have also shown in Soler-Toscano et al. (2014) that

approximations to the Universal Distribution from spaces for which Busy Beaver values are

known are in agreement with larger spaces for which Busy Beaver values are not known.

Among the possible arbitrary choices it is the enumeration that may perhaps be

questioned, that is, calculating D(n) for increasing n (number of Turing machine states),

hence by increasing size of computer programs (Turing machines). On the one hand, one

way to avoid having to make a decision on the machines to consider when calculating a

Universal Distribution is to cover all of them for a given number of n states and m symbols,

which is what we have done (hence the enumeration in a thoroughly (n,m) space becomes

irrelevant). While it may be an arbitrary choice to fix n and m, the formalisms we have

followed guarantee that n-state m-symbol Turing machines are in (n + i,m + j) with i,j ≥ 0

(that is, the space of all n + i-state m + j-symbol Turing machines). Hence the process is

incremental, taking larger spaces and constructing an average Universal Distribution. In

fact, we have demonstrated (Soler-Toscano et al., 2014) that D(5) (that is, the Universal

Distribution produced by the Turing machines with 2 symbols and 5 states) is strongly

correlated to D(4) and represents an improvement in accuracy of the string complexity

values in D(4), which in turn is in agreement with and an improvement on D(3) and so on.

We have also estimated the constant c involved in the invariance theorem (Eq. (2)) between

these D(n) for n > 2, which turned out to be very small in comparison to all the other

calculated Universal Distributions (Soler-Toscano et al., 2013).

Real-world evidence
We have provided here some theoretical and statistical arguments to show the reliability,

validity and generality of our measure, more empirical evidence has also been produced,

in particular in the field of cognition and psychology where researchers often have to deal

with too short strings or too small patterns for compression methods to be used. For

instance, it was found that the complexity of a (one-dimensional) string better predicts

its recall from short-term memory that the length of the string (Chekaf et al., 2015).

Incidentally, a study on the conspiracy theory believers mindset also revealed that human

perception of randomness is highly linked to our one-dimensional measure of complex-

ity (Dieguez, Wagner-Egger & Gauvrit, 2015). Concerning the two-dimensional version

introduced in this paper, it has been fruitfully used to show how language iterative learning

triggers the emergence of linguistic structures (Kempe, Gauvrit & Forsyth, 2015). A direct

link between the perception of two-dimensional randomness, our complexity measure,

and natural statistics was also established in two experiments (Gauvrit, Soler-Toscano &

Zenil, 2014). These findings further support the complexity metrics presented herein.

Furthermore, more theoretical arguments have been advanced in Soler-Toscano et al.

(2013) and Soler-Toscano & Zenil (2015).

Zenil et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.23 27/31

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.23


CONCLUSIONS
We have shown how a highly symmetric but algorithmic process is capable of generating a

full range of patterns of different structural complexity. We have introduced this technique

as a natural and objective measure of complexity for n-dimensional objects. With two

different experiments we have demonstrated that the measure is compatible with lossless

compression estimations of Kolmogorov complexity, yielding similar results but providing

an alternative particularly for short strings. We have also shown that Km,2D (and Km) are

ready for applications, and that calculating Universal Distributions is a stable alternative to

compression and a potential useful tool for approximating the Kolmogorov complexity of

objects, strings and images (arrays). We think this method will prove to do the same for a

wide range of areas where compression is not an option given the size of strings involved.

We also introduced the Block Decomposition Method. As we have seen with anomalies in

the classification such as ECA Rule 77 (see Fig. 10), when approaching the complexity

of the space–time diagrams of ECA by splitting them in square arrays of size 3, the

Coding theorem method does have its limitations, especially because it is computationally

very expensive (although the most expensive part needs to be done only once—that is,

producing an approximation of the Universal Distribution). Like other high precision

instruments for examining the tiniest objects in our world, measuring the smallest

complexities is very expensive, just as the compression method can also be very expensive

for large amounts of data.

We have shown that the method is stable in the face of the changes in Turing machine

formalism that we have undertaken (in this case Turmites) as compared to, for example,

traditional 1-dimensional Turing machines or to strict integer value program-size com-

plexity (Soler-Toscano et al., 2013) as a way to estimate the error of the numerical estima-

tions of Kolmogorov complexity through algorithmic probability. For the Turing machine

model we have now changed the number of states, the number of symbols and now even

the movement of the head and its support (grid versus tape). We have shown and reported

here and in Soler-Toscano et al. (2014) and Soler-Toscano et al. (2013) that all these changes

yield distributions that are strongly correlated with each other up to the point to assert that

all these parameters have marginal impact in the final distributions suggesting a fast rate

of convergence in values that reduce the concern of the constant involved in the invariance

theorem. In Zenil & Delahaye (2010) we also proposed a way to compare approximations

to the Universal Distribution by completely different computational models (e.g., Post tag

systems and cellular automata), showing that for the studied cases reasonable estimations

with different degrees of correlations were produced. The fact that we classify Elementary

Cellular Automata (ECA) as shown in this paper, with the output distribution of Turmites

with results that fully agree with lossless compressibility, can be seen as evidence of agree-

ment in the face of a radical change of computational model that preserves the apparent

order and randomness of Turmites in ECA and of ECA in Turmites, which in turn are in

full agreement with 1-dimensional Turing machines and with lossless compressibility.

We have made available to the community this “microscope” to look at the space of bit

strings and other objects in the form of the Online Algorithmic Complexity Calculator
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(http://www.complexitycalculator.com) implementing Km (in the future it will also

implement Km,2D and many other objects and a wider range of methods) that provides

objective algorithmic probability and Kolmogorov complexity estimations for short binary

strings using the method described herein. Raw data and the computer programs to

reproduce the results for this paper can also be found under the Publications section of

the Algorithmic Nature Group (http://www.algorithmicnature.org).
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